JP2021175393A - Photo-controlled amplification reagent, photo-controlled amplification method and detection method for target nucleic acid - Google Patents

Photo-controlled amplification reagent, photo-controlled amplification method and detection method for target nucleic acid Download PDF

Info

Publication number
JP2021175393A
JP2021175393A JP2021071848A JP2021071848A JP2021175393A JP 2021175393 A JP2021175393 A JP 2021175393A JP 2021071848 A JP2021071848 A JP 2021071848A JP 2021071848 A JP2021071848 A JP 2021071848A JP 2021175393 A JP2021175393 A JP 2021175393A
Authority
JP
Japan
Prior art keywords
nucleic acid
target nucleic
primer
group
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021071848A
Other languages
Japanese (ja)
Inventor
宗宣 井上
Munenobu Inoue
秋生 前田
Akio Maeda
浩明 足立
Hiroaki Adachi
賢司 福原
Kenji Fukuhara
友理子 牧野
Yuriko Makino
智久 加藤
Tomohisa Kato
智大 秀野
Tomohiro Hideno
晃治 片山
Koji Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh Corp filed Critical Sagami Chemical Research Institute
Publication of JP2021175393A publication Critical patent/JP2021175393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide an amplification reagent for a target nucleic acid containing a photoresponsive deoxynucleoside triphosphate that can control the initiation of the amplification reaction of the target nucleic acid by light irradiation, and a photo-controlled amplification method for the target nucleic acid using the amplification reagent.SOLUTION: The above problem is solved by an amplification reagent for a target nucleic acid containing: an enzyme having RNA-dependent DNA polymerase activity; an enzyme having DNA-dependent DNA polymerase activity; an enzyme having ribonuclease H (RNase H) activity; an enzyme having DNA-dependent RNA polymerase activity; a first primer having a sequence complementary to a part of the target nucleic acid; a second primer having a sequence homologous to a part of the target nucleic acid; ribonucleoside triphosphate, and deoxynucleoside triphosphate, with a proviso that one of the first primer and the second primer has a promoter sequence of the enzyme having RNA polymerase activity at 5'end thereof. The followings are satisfied: (1) a deoxyribonucleotide at 3'end of the primer is conjugated with a photodegradable protective group, and/or (2) at least one of deoxyadenosine triphosphate, and deoxythymidine triphosphate, deoxyguanosine triphosphate and deoxycytidine triphosphate which constitute the deoxynucleoside triphosphate is a photoreactive deoxynucleoside triphosphate conjugated with a photodegradable protective group.SELECTED DRAWING: None

Description

本発明は、光応答性デオキシヌクレオシド三リン酸を含む標的核酸の光制御増幅試薬、光照射により標的核酸の増幅反応を開始する標的核酸の光制御増幅方法および標的核酸の検出方法に関するものである。 The present invention relates to a photo-controlled amplification reagent for a target nucleic acid containing a photoresponsive deoxynucleoside triphosphate, a photo-controlled amplification method for the target nucleic acid that initiates an amplification reaction for the target nucleic acid by irradiation with light, and a method for detecting the target nucleic acid. ..

臨床診断で用いられる遺伝子検査では、臨床試料中に含まれる極微量の標的核酸を増幅して信号強度を増大させることで、高感度かつ良好な再現性のある測定を実現している。標的核酸がDNAである場合の増幅方法としては、例えばPCR(ポリメラーゼチェーンリアクション)法が挙げられる。また、標的核酸がRNAである場合の増幅方法としては、NASBA(Nucleic Acid Sequence−Based Amplification)法(特許文献1および2、非特許文献1)、TMA(Transcription Mediated Amplification)法(特許文献3)、TRC(Transcription−Reverse transcription Concerted)法(特許文献4および非特許文献2)などが報告されている。RNAの増幅方法は、比較的低温(例えば41℃から46℃)の一定温度での反応が可能であるため、自動化への適用が容易である。一方、急激な昇温・降温を必要とするPCR法では、大量処理を目的とした自動化への適用は容易ではなかったが、鎖置換活性を有する酵素を添加することで、比較的低温の一定温度下でのDNA増幅も可能となっている(特許文献5)。しかしながら、前述した比較的低温の一定温度下での標的核酸の増幅が可能な反応では、室温下においても反応が進行する可能性がある。 In genetic testing used in clinical diagnosis, highly sensitive and well-reproducible measurement is realized by amplifying a very small amount of target nucleic acid contained in a clinical sample to increase the signal intensity. Examples of the amplification method when the target nucleic acid is DNA include a PCR (polymerase chain reaction) method. Further, as an amplification method when the target nucleic acid is RNA, NASBA (Nucleic Acid Sequence-Based Amplification) method (Patent Documents 1 and 2, Non-Patent Document 1), TMA (Transcription Prepared Amplification) method (Patent Document 3). , TRC (Transcription-Reverse Transcription Concentrated) method (Patent Document 4 and Non-Patent Document 2) and the like have been reported. Since the RNA amplification method can react at a relatively low temperature (for example, 41 ° C. to 46 ° C.) at a constant temperature, it can be easily applied to automation. On the other hand, the PCR method, which requires rapid temperature rise and fall, was not easy to apply to automation for the purpose of mass processing, but by adding an enzyme having chain substitution activity, the temperature was kept constant at a relatively low temperature. DNA amplification under temperature is also possible (Patent Document 5). However, in the above-mentioned reaction capable of amplifying the target nucleic acid at a relatively low temperature at a constant temperature, the reaction may proceed even at room temperature.

試料中に含まれる微量な標的RNAを正確に定量する技術としてデジタルNASBA法(特許文献6)が挙げられるが、前記のように、室温下においても増幅反応が進行する可能性があるため、すなわち反応液を調製した後、微小区画に分配するまでに増幅反応が進行する可能性があるため、高精度な定量は極めて困難であった。したがって、試料中に存在する極微量の標的RNAをより高効率に再現性良く検出するためには、特に室温下における前記増幅反応を制御する必要があった。 A digital NASBA method (Patent Document 6) can be mentioned as a technique for accurately quantifying a small amount of target RNA contained in a sample, but as described above, the amplification reaction may proceed even at room temperature, that is, After preparing the reaction solution, the amplification reaction may proceed before it is distributed to the micro-compartment, so highly accurate quantification was extremely difficult. Therefore, in order to detect a very small amount of target RNA present in a sample with higher efficiency and reproducibility, it is necessary to control the amplification reaction especially at room temperature.

標的核酸の増幅反応を制御する方法としては、プライマーや核酸構成成分となるdNTP(デオキシリボヌクレオシド三リン酸)を光分解性保護基で保護した基質を用いて、光照射により増幅反応を抑制する方法があげられる(非特許文献3および4)。しかしながら、これまでに、核酸の構成成分となるdNTPの3’位のヒドロキシ基を光分解性保護基で保護した光応答性dNTPを標的核酸の構成原料として用い、光照射により増幅反応を開始するような、標的核酸の光制御増幅方法は報告されていなかった。 As a method for controlling the amplification reaction of the target nucleic acid, a method of suppressing the amplification reaction by light irradiation using a primer or a substrate in which dNTP (deoxyribonucleoside triphosphate), which is a nucleic acid component, is protected with a photodegradable protecting group. (Non-Patent Documents 3 and 4). However, so far, photoresponsive dNTP in which the hydroxy group at the 3'position of dNTP, which is a constituent of nucleic acid, is protected by a photodegradable protecting group has been used as a constituent raw material of the target nucleic acid, and the amplification reaction is started by light irradiation. Such a photocontrolled amplification method of the target nucleic acid has not been reported.

特開平2−005864号公報Japanese Unexamined Patent Publication No. 2-005864 特表平4−503451号公報Special Table No. 4-503451 特表平4−500759号公報Special Table No. 4-507579 特開2000−014400号公報Japanese Unexamined Patent Publication No. 2000-014400 特開2015−116136号公報Japanese Unexamined Patent Publication No. 2015-116136 米国公開2014/0141502号公報Published in the United States 2014/0141502

de Baar,M.P.et al.,Journal of Clinical Microbiology,39,1895−1902(2001)de Baar, M.D. P. et al. , Journal of Clinical Microbiology, 39, 1895-1902 (2001) Ishiguro,T.et al.,Analytical Biochemistry,314,77−86(2003)Ishiguro, T.I. et al. , Analytical Biochemistry, 314, 77-86 (2003) Jian,W.et al.,Proc.Natl.Acad.Sci.USA,104,42,16462−16467(2007)Jian, W. et al. , Proc. Natl. Acad. Sci. USA, 104, 42, 16462-16467 (2007) Weidong,W.et al., Nucleic Acids Research,35,19,6339−6349(2007)Weidong, W. et al. et al. , Nucleic Acids Research, 35, 19, 6339-6349 (2007)

本発明は以上のような事情に基づいてなされたものであり、試料中に存在する微量の標的核酸の増幅反応を光照射により開始する、標的核酸の光制御増幅方法を提供することにある。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide an optical control amplification method for a target nucleic acid, which initiates an amplification reaction of a trace amount of the target nucleic acid present in a sample by light irradiation.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、標的核酸の増幅反応の開始を光照射により制御しうる光応答性dNTPを含む、標的核酸の光制御増幅試薬およびその増幅試薬を用いる標的核酸の光制御増幅方法により、前記課題を解決することを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have conducted a photo-controlled amplification reagent for a target nucleic acid and its amplification, which contains a photoresponsive dNTP whose initiation of an amplification reaction for the target nucleic acid can be controlled by light irradiation. We have found that the above-mentioned problems can be solved by a method for photocontrolling and amplifying a target nucleic acid using a reagent, and have completed the present invention.

すなわち本発明は以下の[1]から[8]に示す実施形態を含むものである。 That is, the present invention includes the embodiments shown in the following [1] to [8].

[1]RNA依存性DNAポリメラーゼ活性を有する酵素と、DNA依存性DNAポリメラーゼ活性を有する酵素と、リボヌクレアーゼH(RNase H)活性を有する酵素と、DNA依存性RNAポリメラーゼ活性を有する酵素と、標的核酸の一部と相補的な配列を有する第一のプライマーと、標的核酸の一部と相同的な配列を有する第二のプライマーと、リボヌクレオシド三リン酸と、デオキシヌクレオシド三リン酸とを含む、前記標的核酸の増幅試薬(ただし、前記第一のプライマーおよび前記第二のプライマーのいずれか一方には、その5’末端側に前記RNAポリメラーゼ活性を有する酵素のプロモータ配列を付加している)であって、
下記<1>および<2>のうち、少なくともいずれか一つの態様を満たす、前記標的核酸の光制御増幅試薬:
<1>前記第一および/または前記第二のプライマーが、該プライマーの3’末端のデオキシリボヌクレオチドが光分解性保護基で修飾されている下記一般式(0)で表されるプライマー、
[1] An enzyme having RNA-dependent DNA polymerase activity, an enzyme having DNA-dependent DNA polymerase activity, an enzyme having ribonuclease H (RNase H) activity, an enzyme having DNA-dependent RNA polymerase activity, and a target nucleic acid. A first primer having a sequence complementary to a part of the target nucleic acid, a second primer having a sequence homologous to a part of the target nucleic acid, ribonucleoside triphosphate, and deoxynucleoside triphosphate. With the amplification reagent of the target nucleic acid (however, the promoter sequence of the enzyme having RNA polymerase activity is added to either one of the first primer and the second primer on the 5'terminal side thereof). There,
Photocontrolled amplification reagent of the target nucleic acid satisfying at least one of the following <1> and <2>:
<1> The primer represented by the following general formula (0), wherein the first and / or the second primer is a primer in which the deoxyribonucleotide at the 3'end of the primer is modified with a photodegradable protecting group.

Figure 2021175393
Figure 2021175393

なお一般式(0)中、Zは第一または第二のプライマーを構成するオリゴデオキシリボヌクレオチドを表し、Xは下記式(2)から(5)のいずれかの核酸塩基を表す。 In the general formula (0), Z represents an oligodeoxyribonucleotide constituting the first or second primer, and X represents a nucleobase according to any of the following formulas (2) to (5).

Figure 2021175393
Figure 2021175393

そしてYは下記一般式(7)で表されるo−ニトロベンジル基 And Y is an o-nitrobenzyl group represented by the following general formula (7).

Figure 2021175393
Figure 2021175393

(一般式(7)中、X、X、XおよびXは各々独立に水素原子、炭素数1から6のアルキル基またはヒドロキシメチル基を表す。)
または下記一般式(6)で表される3−(ジアルキルアミノ)ベンジル基を表す。
(In the general formula (7), X 1 , X 2 , X 3 and X 4 independently represent a hydrogen atom and an alkyl group or a hydroxymethyl group having 1 to 6 carbon atoms, respectively.)
Alternatively, it represents a 3- (dialkylamino) benzyl group represented by the following general formula (6).

Figure 2021175393
Figure 2021175393

(一般式(6)中、RおよびRは各々独立に炭素数1から8のアルキル基を表す。または、RおよびRはそれらが結合する窒素原子と一体となって5から7員環の複素環を形成してもよい。RおよびRは各々独立に水素原子、炭素数1から6のアルキル基またはフェニル基を表す。)
<2>前記デオキシヌクレオシド三リン酸を構成する、デオキシアデノシン三リン酸、デオキシチミジン三リン酸、デオキシグアノシン三リン酸およびデオキシシチジン三リン酸のうち、少なくともいずれか一つが光分解性保護基で修飾されている下記一般式(1)で表される光応答性デオキシヌクレオシド三リン酸。
(In general formula (6), R 1 and R 2 each independently represent an alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 are integrated with the nitrogen atom to which they are bonded to 5 to 7. A heterocyclic ring of members may be formed. R 3 and R 4 independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.)
<2> At least one of deoxyadenosine triphosphate, deoxythymidine triphosphate, deoxyguanosine triphosphate and deoxycytidine triphosphate constituting the deoxynucleoside triphosphate is a photodegradable protective group. A modified photoresponsive deoxynucleoside triphosphate represented by the following general formula (1).

Figure 2021175393
Figure 2021175393

なお一般式(1)中、Xは下記式(2)から(5)のいずれかの核酸塩基を表す。 In the general formula (1), X represents any of the nucleobases of the following formulas (2) to (5).

Figure 2021175393
Figure 2021175393

そしてYは下記一般式(7)で表されるo−ニトロベンジル基 And Y is an o-nitrobenzyl group represented by the following general formula (7).

Figure 2021175393
Figure 2021175393

(一般式(7)中、X、X、XおよびXは各々独立に水素原子、炭素数1から6のアルキル基またはヒドロキシメチル基を表す。)
または下記一般式(6)で表される3−(ジアルキルアミノ)ベンジル基を表す。
(In the general formula (7), X 1 , X 2 , X 3 and X 4 independently represent a hydrogen atom and an alkyl group or a hydroxymethyl group having 1 to 6 carbon atoms, respectively.)
Alternatively, it represents a 3- (dialkylamino) benzyl group represented by the following general formula (6).

Figure 2021175393
Figure 2021175393

(一般式(6)中、RおよびRは各々独立に炭素数1から8のアルキル基を表す。または、RおよびRはそれらが結合する窒素原子と一体となって5から7員環の複素環を形成してもよい。RおよびRは各々独立に水素原子、炭素数1から6のアルキル基またはフェニル基を表す。)
[2]標的核酸がDNAおよび/またはRNAである、[1]に記載の標的核酸の光制御増幅試薬。
(In general formula (6), R 1 and R 2 each independently represent an alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 are integrated with the nitrogen atom to which they are bonded to 5 to 7. A heterocyclic ring of members may be formed. R 3 and R 4 independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.)
[2] The photocontrolled amplification reagent for a target nucleic acid according to [1], wherein the target nucleic acid is DNA and / or RNA.

[3][1]または[2]に記載の標的核酸の光制御増幅試薬を用いて標的核酸を増幅する方法であって、光照射により標的核酸の増幅反応を開始することを特徴とする標的核酸の増幅方法。 [3] A method for amplifying a target nucleic acid using the photo-controlled amplification reagent of the target nucleic acid according to [1] or [2], wherein the amplification reaction of the target nucleic acid is started by light irradiation. Nucleic acid amplification method.

[4]標的核酸がRNAである[3]に記載の標的核酸の増幅方法。 [4] The method for amplifying a target nucleic acid according to [3], wherein the target nucleic acid is RNA.

[5]RNAの増幅方法が、NASBA法、TMA法またはTRC法のいずれかの方法である、[4]に記載のRNAの増幅方法。 [5] The method for amplifying RNA according to [4], wherein the method for amplifying RNA is any of the NASBA method, the TMA method, and the TRC method.

[6]RNAの増幅方法が、TRC法である、[5]に記載のRNAの増幅方法。 [6] The RNA amplification method according to [5], wherein the RNA amplification method is the TRC method.

[7][1]または[2]に記載の光制御増幅試薬と、増幅した標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブとを含む、前記標的核酸の検出試薬。 [7] The photocontrolled amplification reagent according to [1] or [2] and an oligonucleotide probe whose fluorescence characteristics change when a complementary double strand is formed with a part of the amplified target nucleic acid as compared with that before the formation. A reagent for detecting the target nucleic acid.

[8][7]に記載の標的核酸の検出試薬を用いて標的核酸を増幅する方法であって、光照射により標的核酸の増幅反応を開始し、増幅した標的核酸を検出することを特徴とする標的核酸の検出方法。 [8] A method for amplifying a target nucleic acid using the target nucleic acid detection reagent according to [7], characterized in that the amplification reaction of the target nucleic acid is started by light irradiation and the amplified target nucleic acid is detected. A method for detecting a target nucleic acid.

本発明の標的核酸の光制御増幅試薬を用いることにより、試料中に存在する微量の標的核酸の増幅反応を光照射により制御することができる。すなわち、比較的低温の一定温度下での試料中に含まれる標的核酸の増幅反応において、核酸増幅反応の開始を光で制御することができ、従来困難であった標的核酸の高精度な定量を行なうことができる。 By using the photo-controlled amplification reagent of the target nucleic acid of the present invention, the amplification reaction of a trace amount of the target nucleic acid present in the sample can be controlled by light irradiation. That is, in the amplification reaction of the target nucleic acid contained in the sample at a relatively low temperature at a constant temperature, the start of the nucleic acid amplification reaction can be controlled by light, and highly accurate quantification of the target nucleic acid, which has been difficult in the past, can be performed. Can be done.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

<1>本発明の光制御増幅試薬
一般式(1)で表される光応答性デオキシヌクレオシド三リン酸(以下、光応答性dNTP(1)と呼ぶことがある。)および/または一般式(0)で表される光応答性デオキシリボヌクレオチドで修飾されたプライマーを含む、本発明の標的核酸の光制御増幅試薬は、比較的低温の一定温度下での試料中に含まれる標的核酸の増幅反応において用いることで、核酸増幅反応の開始を光で制御することができる。
<1> Photo-controlled amplification reagent of the present invention Photoresponsive deoxynucleoside triphosphate represented by the general formula (1) (hereinafter, may be referred to as photoresponsive dNTP (1)) and / or the general formula ( The photocontrolled amplification reagent of the target nucleic acid of the present invention containing the primer modified with the photoresponsive deoxyribonucleotide represented by 0) is an amplification reaction of the target nucleic acid contained in the sample at a relatively low temperature at a constant temperature. By using in, the initiation of the nucleic acid amplification reaction can be controlled by light.

本発明の光制御増幅試薬の一態様は、以下の(A)から(I)の成分を含む試薬である。なお以下の(A)および(B)のいずれか一方には、その5’末端側に以下の(G)のプロモータ配列を付加している。また一般的に使用される増幅反応に必要という理由以外の理由で、より好ましい別の成分を添加してもよい。
(A)標的核酸の一部と相補的な配列を有する第一の一本鎖オリゴヌクレオチド(第一のプライマー)、
(B)標的核酸の一部と相同的な配列を有する第二の一本鎖オリゴヌクレオチド(第二のプライマー)、
(C)RNA依存性DNAポリメラーゼ活性を有する酵素、
(D)光応答性dNTP(1)、
(E)リボヌクレアーゼH(RNase H)活性を有する酵素、
(F)DNA依存性DNAポリメラーゼ活性を有する酵素、
(G)DNA依存性RNAポリメラーゼ活性を有する酵素、
(H)デオキシリボヌクレオシド三リン酸(dNTPs:dATP、dTTP、dGTP、dCTP)。ただし、(D)に記載の光応答性dNTP(1)と同一の核酸塩基をもつdNTPは含まないか、または、光照射前に増幅反応が開始しない程度に含んでいてもよい。
(I)リボヌクレオシド三リン酸(NTPs:ATP、UTP、GTP、CTP)。
One aspect of the optical control amplification reagent of the present invention is a reagent containing the following components (A) to (I). The promoter sequence of (G) below is added to either one of the following (A) and (B) on the 5'end side thereof. Further, another more preferable component may be added for reasons other than the reason that it is necessary for the commonly used amplification reaction.
(A) First single-stranded oligonucleotide (first primer) having a sequence complementary to a part of the target nucleic acid,
(B) A second single-stranded oligonucleotide (second primer) having a sequence homologous to a part of the target nucleic acid,
(C) An enzyme having RNA-dependent DNA polymerase activity,
(D) Photoresponsive dNTP (1),
(E) An enzyme having ribonuclease H (RNase H) activity,
(F) An enzyme having DNA-dependent DNA polymerase activity,
(G) An enzyme having DNA-dependent RNA polymerase activity,
(H) Deoxyribonucleoside triphosphate (dNTPs: dATP, dTTP, dGTP, dCTP). However, dNTP having the same nucleobase as the photoresponsive dNTP (1) described in (D) may not be contained, or may be contained to the extent that the amplification reaction does not start before light irradiation.
(I) Ribonucleoside triphosphate (NTPs: ATP, UTP, GTP, CTP).

前述したように(A)および(B)のいずれか一方は、その5’末端側に前記(G)のプロモータ配列を付加している。なお付加するプライマーと前記プロモータ配列との間に、数から数十ヌクレオチドからなるエンハンサー配列を挿入してもよい。 As described above, either one of (A) and (B) has the promoter sequence of (G) added to the 5'terminal side thereof. An enhancer sequence consisting of several to several tens of nucleotides may be inserted between the added primer and the promoter sequence.

(C)、(E)および(F)の酵素は、それぞれ異なる酵素を用いてもよいし、一部または全部を共通の酵素としてもよい。例えば、トリ骨髄芽細胞腫ウイルス(AMV)逆転写酵素は、(C)、(E)および(F)の酵素活性を全て包含する酵素であり、光制御増幅試薬として特に好ましい態様である。 The enzymes (C), (E) and (F) may use different enzymes, or some or all of them may be common enzymes. For example, avian myeloblastoma virus (AMV) reverse transcriptase is an enzyme that includes all of the enzymatic activities of (C), (E) and (F), and is a particularly preferable embodiment as a photoregulated amplification reagent.

(G)の酵素の一例として、T7 RNAポリメラーゼ、T3 RNAポリメラーゼ、SP6 RNAポリメラーゼが挙げられる。なお(A)および(B)のいずれか一方に付加させるプロモータ配列は、(G)で用いる成分(ポリメラーゼ)に対応した配列を付加させればよい。 Examples of the enzyme (G) include T7 RNA polymerase, T3 RNA polymerase, and SP6 RNA polymerase. As the promoter sequence to be added to either (A) or (B), a sequence corresponding to the component (polymerase) used in (G) may be added.

(D)の光応答性dNTP(1)は、下記一般式(1)で表されるデオキシリボヌクレオシド三リン酸である。 The photoresponsive dNTP (1) of (D) is a deoxyribonucleoside triphosphate represented by the following general formula (1).

Figure 2021175393
Figure 2021175393

本発明において、光応答性dNTP(1)は、化学的に許容される塩を含むものとし、それを含み一般式(1)で表す。 In the present invention, the photoresponsive dNTP (1) is assumed to contain a chemically acceptable salt, which is represented by the general formula (1).

Xは、アデニン塩基(2)、グアニン塩基(3)、チミン塩基(4)、およびシトシン塩基(5)のいずれかの核酸塩基である。 X is a nucleobase of any of an adenine base (2), a guanine base (3), a thymine base (4), and a cytosine base (5).

Yは、特定の波長の照射により脱保護される光分解性保護基であり、下記一般式(7)で表されるo−ニトロベンジル基、 Y is a photodegradable protecting group that is deprotected by irradiation with a specific wavelength, and is an o-nitrobenzyl group represented by the following general formula (7).

Figure 2021175393
Figure 2021175393

(一般式(7)中、X、X、XおよびXは各々独立に水素原子、炭素数1から6のアルキル基またはヒドロキシメチル基を表す。)
または下記一般式(6)で表される3−(ジアルキルアミノ)ベンジル基を表す。
(In the general formula (7), X 1 , X 2 , X 3 and X 4 independently represent a hydrogen atom and an alkyl group or a hydroxymethyl group having 1 to 6 carbon atoms, respectively.)
Alternatively, it represents a 3- (dialkylamino) benzyl group represented by the following general formula (6).

Figure 2021175393
Figure 2021175393

一般式(6)中、RおよびRは各々独立に炭素数1から8のアルキル基を表す。なおRおよびRはそれらが結合する窒素原子と一体となって5から7員環の複素環を形成してもよい。またRおよびRは各々独立に水素原子、炭素数1から6のアルキル基またはフェニル基を表す。 In the general formula (6), R 1 and R 2 each independently represent an alkyl group having 1 to 8 carbon atoms. R 1 and R 2 may be integrated with the nitrogen atom to which they are bonded to form a 5- to 7-membered heterocycle. Further, R 3 and R 4 independently represent a hydrogen atom and an alkyl group or a phenyl group having 1 to 6 carbon atoms, respectively.

一般式(6)中のRおよびRで表される炭素数1から8のアルキル基としては、直鎖状、分岐状または環状のいずれであってもよく、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、へキシル基、へプチル基、オクチル基を例示することができる。また、RおよびRは、それらが結合する窒素原子と一体となって5から7員環の複素環を形成してもよく、このとき、形成される複素環の炭素原子は、窒素原子および酸素原子からなる群より選ばれる少なくとも1個のヘテロ原子で置き換えられていてもよい。該複素環としては、ピロリジン、ピペリジン、モルホリンを例示することができる。 The alkyl group having 1 to 8 carbon atoms represented by R 1 and R 2 in the general formula (6) may be linear, branched or cyclic, and may be a methyl group, an ethyl group or a propyl group. Examples thereof include a group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a cyclobutyl group, a pentyl group, a hexyl group, a heptyl group and an octyl group. Further, R 1 and R 2 may form a heterocycle having a 5- to 7-membered ring together with the nitrogen atom to which they are bonded, and the carbon atom of the heterocycle formed at this time is a nitrogen atom. And may be replaced with at least one heteroatom selected from the group consisting of oxygen atoms. Examples of the heterocycle include pyrrolidine, piperidine, and morpholine.

一般式(7)中のX、X、XおよびXならびに一般式(6)中のRおよびRで表される炭素数1から6のアルキル基としては、直鎖状、分岐状または環状のいずれであってもよく、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、へキシル基を例示することができる。 The alkyl groups having 1 to 6 carbon atoms represented by X 1 , X 2 , X 3 and X 4 in the general formula (7) and R 3 and R 4 in the general formula (6) are linear. It may be branched or cyclic, and may be a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a cyclobutyl group, a pentyl group, Hexyl groups can be exemplified.

一般式(7)で表されるo−ニトロベンジル基としては、o−ニトロベンジル基、4−(ヒドロキシメチル)−2−ニトロベンジル基、3−(ヒドロキシメチル)−2−ニトロベンジル基、2−(ヒドロキシメチル)−6−ニトロベンジル基、5−(ヒドロキシメチル)−2−ニトロベンジル基、4−メチル−2−ニトロベンジル基、3−メチル−2−ニトロベンジル基、2−メチル−6−ニトロベンジル基、5−メチル−2−ニトロベンジル基、4−エチル−2−ニトロベンジル基、3−エチル−2−ニトロベンジル基、2−エチル−6−ニトロベンジル基、5−エチル−2−ニトロベンジル基を例示することができる。 Examples of the o-nitrobenzyl group represented by the general formula (7) include an o-nitrobenzyl group, a 4- (hydroxymethyl) -2-nitrobenzyl group, a 3- (hydroxymethyl) -2-nitrobenzyl group, and 2 -(Hydroxymethyl) -6-nitrobenzyl group, 5- (hydroxymethyl) -2-nitrobenzyl group, 4-methyl-2-nitrobenzyl group, 3-methyl-2-nitrobenzyl group, 2-methyl-6 -Nitrobenzyl group, 5-methyl-2-nitrobenzyl group, 4-ethyl-2-nitrobenzyl group, 3-ethyl-2-nitrobenzyl group, 2-ethyl-6-nitrobenzyl group, 5-ethyl-2 A nitrobenzyl group can be exemplified.

一般式(6)で表される3−(ジアルキルアミノ)ベンジル基としては、3−(ジメチルアミノ)ベンジル基、3−(ジエチルアミノ)ベンジル基、3−(ジプロピルアミノ)ベンジル基、3−(ジブチルアミノ)ベンジル基、3−(ジオクチルアミノ)ベンジル基、3−(エチルメチルアミノ)ベンジル基、3−(エチルプロピルアミノ)ベンジル基、3−ピロリジノベンジル基、3−ピペリジノベンジル基、1−[3−(ジメチルアミノ)フェニル]エチル基、1−[3−(ジエチルアミノ)フェニル]エチル基、[3−(ジメチルアミノ)フェニル](フェニル)メチル基、[3−(ジエチルアミノ)フェニル](フェニル)メチル基、1−[3−(ジメチルアミノ)フェニル]−1−メチルエチル基、1−[3−(ジエチルアミノ)フェニル]−1−メチルエチル基、を例示することができる。 Examples of the 3- (dialkylamino) benzyl group represented by the general formula (6) include 3- (dimethylamino) benzyl group, 3- (diethylamino) benzyl group, 3- (dipropylamino) benzyl group, and 3-(. Dibutylamino) benzyl group, 3- (dioctylamino) benzyl group, 3- (ethylmethylamino) benzyl group, 3- (ethylpropylamino) benzyl group, 3-pyrrolidinobenzyl group, 3-piperidinobenzyl group, 1- [3- (dimethylamino) phenyl] ethyl group, 1- [3- (diethylamino) phenyl] ethyl group, [3- (dimethylamino) phenyl] (phenyl) methyl group, [3- (diethylamino) phenyl] Examples thereof include (phenyl) methyl group, 1- [3- (dimethylamino) phenyl] -1-methylethyl group, and 1- [3- (diethylamino) phenyl] -1-methylethyl group.

Yは光分解性の高い点で、o−ニトロベンジル基または3−(ジエチルアミノ)ベンジル基が好ましい。 Y is preferably an o-nitrobenzyl group or a 3- (diethylamino) benzyl group because of its high photodegradability.

(D)の光応答性dNTP(1)は、光照射により、DNA伸長の基質として利用可能な未修飾のデオキシヌクレオシド三リン酸(dNTP)を与える。用いる光応答性dNTP(1)は、式(2)から(5)で表される4種の核酸塩基(アデニン塩基(2)、グアニン塩基(3)、チミン塩基(4)、またはシトシン塩基(5))を有する光応答性dNTP(1)のうちいずれか一種であってもよく、いずれか二種または三種であってもよく、全てであってもよい。 The photoresponsive dNTP (1) of (D) provides unmodified deoxynucleoside triphosphate (dNTP) that can be used as a substrate for DNA elongation upon light irradiation. The photoresponsive dNTP (1) used is four kinds of nucleobases represented by the formulas (2) to (5) (adenine base (2), guanine base (3), thymine base (4), or cytosine base ( It may be any one of the photoresponsive dNTPs (1) having 5)), any two or three, or all.

なお前記(A)および/または前記(B)のプライマーが、該プライマーの3’末端のデオキシリボヌクレオチドが光分解性保護基で修飾されている下記一般式(0)で表されるプライマーであってもよい。 The primer (A) and / or the primer (B) is a primer represented by the following general formula (0) in which the deoxyribonucleotide at the 3'end of the primer is modified with a photodegradable protecting group. May be good.

Figure 2021175393
Figure 2021175393

一般式(0)中、Zは第一または第二のプライマーを構成するオリゴデオキシリボヌクレオチドを表し、Xは、アデニン塩基(2)、グアニン塩基(3)、チミン塩基(4)、およびシトシン塩基(5)のいずれかの核酸塩基であり、Yは、上記一般式(7)で表されるo−ニトロベンジル基または上記一般式(6)で表される3−(ジアルキルアミノ)ベンジル基を表す。 In the general formula (0), Z represents an oligodeoxyribonucleotide that constitutes the first or second primer, and X is an adenine base (2), a guanine base (3), a thymine base (4), and a cytosine base ( It is any nucleobase of 5), and Y represents an o-nitrobenzyl group represented by the general formula (7) or a 3- (dialkylamino) benzyl group represented by the general formula (6). ..

本発明の光制御増幅試薬が上記一般式(0)で表されるプライマーを含む場合、前記(D)(光応答性dNTP(1))は含んでもよいし、含まなくてもよい。ただし前記(D)を含まない場合、前記(H)(デオキシヌクレオシド三リン酸)は4種(dATP、dTTP、dGTP、dCTP)全てを含む必要がある。 When the photocontrolled amplification reagent of the present invention contains the primer represented by the above general formula (0), the above (D) (photoresponsive dNTP (1)) may or may not be contained. However, when the (D) is not contained, the (H) (deoxynucleoside triphosphate) must include all four types (dATP, dTTP, dGTP, dCTP).

次に、本発明で用いる光応答性デオキシリボヌクレオシド三リン酸(1)の製造方法について説明する。 Next, a method for producing the photoresponsive deoxyribonucleoside triphosphate (1) used in the present invention will be described.

例えば、Proceedings of the National Academy of Sciences of the United States of America,104,16462−16467(2007)やNucleic Acids Research,35,6339−6349(2007)に開示された方法を参考に合成できるデオキシリボヌクレオシド(7)を原料として用いて、デオキシリボヌクレオシド(7)のヒドロキシ基を三リン酸化することで、本発明で用いるデオキシリボヌクレオシド三リン酸(1)を製造することができる。 For example, Proceedings of the National Academia of Sciences of the United States of America, 104, 16462-16467 (2007) and Nucleic Acids Research (2007) and Nucleic Acids Reseach, 35, 6339-6349 The deoxyribonucleoside triphosphate (1) used in the present invention can be produced by triphosphorylating the hydroxy group of the deoxyribonucleoside (7) using 7) as a raw material.

Figure 2021175393
Figure 2021175393

(式中、XおよびYは前記と同じ意味を表す。)
すなわち、デオキシリボヌクレオシド(7)とクロロ亜リン酸サリチルを塩基の存在下に反応させた後に、ピロリン酸塩で処理することにより、環状化合物(8)を得る(工程−A)。次いで、これを水存在下に酸化剤と反応させることにより(工程−B)、デオキシリボヌクレオシド三リン酸(1)を製造することができる。
(In the formula, X and Y have the same meanings as described above.)
That is, a cyclic compound (8) is obtained by reacting deoxyribonucleoside (7) with salicyl chlorophosphite in the presence of a base and then treating with pyrophosphate (step-A). Then, by reacting this with an oxidizing agent in the presence of water (step-B), deoxyribonucleoside triphosphate (1) can be produced.

工程−Aの後に得られた環状化合物(8)は単離精製してもよいし、そのまま単離精製することなく次の工程−Bに供してもよい。 The cyclic compound (8) obtained after the step-A may be isolated and purified, or may be subjected to the next step-B without being isolated and purified as it is.

本発明において、環状化合物(8)は、その化学的に許容される塩を含むものとし、それを含み一般式(8)で表す。 In the present invention, the cyclic compound (8) is assumed to contain a chemically acceptable salt thereof, and is represented by the general formula (8).

本製造方法に用いるクロロ亜リン酸サリチルは市販されている。 Salicyl chlorophosphite used in this production method is commercially available.

本製造方法に用いることのできる塩基としては、トリエチルアミン、トリブチルアミン、ピリジン、ピコリン等の有機塩基を例示することができる。 Examples of the base that can be used in this production method include organic bases such as triethylamine, tributylamine, pyridine, and picoline.

本製造方法に用いることのできるピロリン酸塩としては、ビス(テトラブチルアンモニウム)ピロリン酸二水素、ビス(トリブチルアンモニウム)ピロリン酸を例示することができる。これらは市販されている。 Examples of the pyrophosphate that can be used in this production method include bis (tetrabutylammonium) dihydrogen pyrophosphate and bis (tributylammonium) pyrophosphate. These are commercially available.

本製造方法に用いることのできる酸化剤としては、ヨウ素を例示することができる。 Iodine can be exemplified as an oxidizing agent that can be used in this production method.

本製造方法は、反応を阻害しない溶媒であれば溶媒中で行なってもよい。本製造方法で用いることのできる溶媒として、例えばテトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、1,2−ジメトキシエタン等のエーテル系溶媒、ヘキサン、ペンタン、シクロヘキサン等の炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化炭化水素系溶媒、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、ピリジンを例示することができ、これらの溶媒の中から2種類以上を混合して用いてもよい。中でも収率が良い点で、ジメチルホルムアミドを用いることが好ましい。 This production method may be carried out in a solvent as long as it does not inhibit the reaction. Examples of the solvent that can be used in this production method include ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane and 1,2-dimethoxyethane, hydrocarbon solvents such as hexane, pentane and cyclohexane, benzene and toluene. , Aromatic hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, acetonitrile, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, pyridine Can be exemplified, and two or more kinds of these solvents may be mixed and used. Of these, dimethylformamide is preferably used because of its good yield.

本製造方法に用いるデオキシリボヌクレオシド(7)とクロロ亜リン酸サリチルとのモル比は、1:0.8から1:10の範囲が好ましく、中でも収率が良い点で1:1から1:2がさらに好ましい。 The molar ratio of deoxyribonucleoside (7) used in this production method to salicyl chlorophosphite is preferably in the range of 1: 0.8 to 1:10, and among them, the yield is good, from 1: 1 to 1: 2. Is even more preferable.

本製造方法に用いるデオキシリボヌクレオシド(7)と塩基とのモル比は、1:0.8から1:10の範囲が好ましく、中でも収率が良い点で1:1から1:2がさらに好ましい。 The molar ratio of the deoxyribonucleoside (7) used in the present production method to the base is preferably in the range of 1: 0.8 to 1:10, and more preferably 1: 1 to 1: 2 in terms of good yield.

本製造方法に用いるデオキシリボヌクレオシド(7)とピロリン酸塩とのモル比は、1:0.8から1:10の範囲が好ましく、中でも収率が良い点で1:1から1:2がさらに好ましい。 The molar ratio of deoxyribonucleoside (7) to pyrophosphate used in this production method is preferably in the range of 1: 0.8 to 1:10, and is further preferably 1: 1 to 1: 2 in terms of good yield. preferable.

本製造方法に用いるデオキシリボヌクレオシド(7)と酸化剤とのモル比は、1:0.8から1:20の範囲が好ましく、中でも収率が良い点で1:1から1:5がさらに好ましい。 The molar ratio of the deoxyribonucleoside (7) used in this production method to the oxidizing agent is preferably in the range of 1: 0.8 to 1:20, and more preferably 1: 1 to 1: 5 in terms of good yield. ..

本製造方法に用いるデオキシリボヌクレオシド(7)と水とのモル比は、特に制限はなく、デオキシリボヌクレオシド(7)に対して等量以上用いれば良く、溶媒として用いることが好ましい。 The molar ratio of deoxyribonucleoside (7) to water used in this production method is not particularly limited, and may be used in an equal amount or more with respect to deoxyribonucleoside (7), and is preferably used as a solvent.

本製造方法の反応温度は、−78℃以上150℃以下の範囲から適宜選ばれた温度で行なうことができる。中でも収率が良い点で0℃以上120℃以下の範囲にあることが好ましい。 The reaction temperature of this production method can be appropriately selected from the range of −78 ° C. or higher and 150 ° C. or lower. Above all, it is preferable that the yield is in the range of 0 ° C. or higher and 120 ° C. or lower in terms of good yield.

本製造方法で得られるデオキシリボヌクレオシド三リン酸(1)は、必要に応じて反応終了後、反応溶液から精製することができる。精製する方法には特に限定は無いが、溶媒抽出、シリカゲルカラムクロマトグラフィー、分取薄層クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を精製することができる。 The deoxyribonucleoside triphosphate (1) obtained by this production method can be purified from the reaction solution after completion of the reaction, if necessary. The purification method is not particularly limited, but the desired product can be purified by a general-purpose method such as solvent extraction, silica gel column chromatography, preparative thin layer chromatography, preparative liquid chromatography, recrystallization or sublimation. can.

次に、前記(A)および/または前記(B)のプライマーが、該プライマーの3’末端のデオキシリボヌクレオチドが光分解性保護基で修飾されている一般式(0)で表されるプライマーの製造方法について説明する。 Next, the preparation of the primer represented by the general formula (0), wherein the primer of the above (A) and / or the above (B) is the deoxyribonucleotide at the 3'end of the primer modified with a photodegradable protecting group. The method will be described.

例えば、Proceedings of the National Academy of Sciences of the United States of America,104,16462−16467(2007)に開示された方法を参考に合成できるデオキシリボヌクレオシドを原料として用いて、3’末端のデオキシリボヌクレオチドが光分解性保護基で修飾されている一般式(0)で表されるプライマーを合成することができる。核酸塩基がチミン塩基であるデオキシリボヌクレオシド(9)を原料として用いるプライマーの合成法を下記に記す。 For example, a deoxyribonucleotide nucleoside that can be synthesized with reference to the method disclosed in Proceedings of the National Academia of Sciences of the United States of America, 104, 16462-16467 (2007) as a raw material is used as a raw material for deoxyribonucleosides of 3'terminals. A primer represented by the general formula (0) modified with a degradable protecting group can be synthesized. The method for synthesizing a primer using deoxyribonucleoside (9) whose nucleobase is a thymine base as a raw material is described below.

Figure 2021175393
Figure 2021175393

5’位がDMTr(4,4’−ジメトキシトリチリル)基で保護されているデオキシリボヌクレオシド(9)を塩基存在下に、臭化4−[[(t−ブチルジメチルシリル)オキシ]メチル]−2−ニトロベンジル(10)と反応させた後に、ベンゾイル基、TBS(tert−ブチルジメチルシリル)基の脱保護を行なうことで、3’位が光分解性保護基で修飾されたデオキシリボヌクレオシド(11)が得られる。続いて、光反応性保護基に置換しているヒドロキシメチル基を無水コハク酸と反応させてカルボキシル基を導入し、該カルボキシル基を3,4−ジヒドロ−3−ヒドロキシ−4−オキソ−1,2,3−ベンゾトリアジン等を用いて活性化エステル(12)に変換できる。得られた活性化エステル(12)をポリスチレンやシリカゲル等の担体に固定化されたアミン(13)(例えば、Amino−SynBase CPG 1000/110[LGC LINK Technologies社製])と反応させることにより、3’位が光分解性保護基で修飾されている固定化デオキシリボヌクレオシド(14)が得られる。得られた固定化デオキシリボヌクレオシド(14)を通常の自動DNA合成法に付すことにより、3’末端のデオキシリボヌクレオチドが光分解性保護基で修飾されたプライマーを合成することができる。 Deoxyribonucleoside (9) whose 5'position is protected by a DMTr (4,4'-dimethoxytritylyl) group is bromide 4-[[(t-butyldimethylsilyl) oxy] methyl]-in the presence of a base. After reacting with 2-nitrobenzyl (10), deprotection of the benzoyl group and TBS (tert-butyldimethylsilyl) group is performed to deoxyribonucleoside (11) in which the 3'position is modified with a photodegradable protecting group. ) Is obtained. Subsequently, the hydroxymethyl group substituted with the photoreactive protecting group was reacted with succinic anhydride to introduce a carboxyl group, and the carboxyl group was changed to 3,4-dihydro-3-hydroxy-4-oxo-1, It can be converted to the activated ester (12) using 2,3-benzotriazine or the like. By reacting the obtained activated ester (12) with an amine (13) immobilized on a carrier such as polystyrene or silica gel (for example, Amino-SynBase CPG 1000/110 [LGC LINK Technologies]), 3 An immobilized deoxyribonucleoside (14) is obtained in which the'position is modified with a photodegradable protecting group. By subjecting the obtained immobilized deoxyribonucleoside (14) to a conventional automatic DNA synthesis method, a primer in which the 3'-terminal deoxyribonucleotide is modified with a photodegradable protecting group can be synthesized.

<2>標的核酸の光制御増幅方法
次に本発明の光制御増幅試薬を用いる、本発明の標的核酸の光制御増幅反応について説
明する。
<2> Photo-Controlled Amplification Method of Target Nucleic Acid Next, the photo-controlled amplification reaction of the target nucleic acid of the present invention using the photo-controlled amplification reagent of the present invention will be described.

標的核酸は任意の塩基配列を有するDNAまたはRNAであってよく、他の核酸から区別し得る程度に特異的な配列部分を上記(A)および(B)に含んでいる限り、任意に決定できる。当該標的核酸の由来に特に限定はなく、例えば、PCR法に代表される核酸増幅反応により合成されたポリヌクレオチドであってもよいし、化学的に合成されたオリゴヌクレオチドであってもよいし、血液、組織、細胞等から抽出されたポリヌクレオチドであってもよいし、食品、土壌、排水等から抽出されたポリヌクレオチドであってもよい。 The target nucleic acid may be DNA or RNA having an arbitrary base sequence, and can be arbitrarily determined as long as the above (A) and (B) contain a sequence portion specific to the extent that it can be distinguished from other nucleic acids. .. The origin of the target nucleic acid is not particularly limited, and may be, for example, a polynucleotide synthesized by a nucleic acid amplification reaction typified by the PCR method, or a chemically synthesized oligonucleotide. It may be a polynucleotide extracted from blood, tissue, cells or the like, or it may be a polynucleotide extracted from food, soil, wastewater or the like.

標的核酸がDNAの場合は、標的核酸の増幅方法としては、PCR法などを用いることができる。 When the target nucleic acid is DNA, a PCR method or the like can be used as a method for amplifying the target nucleic acid.

標的核酸がRNAの場合は、標的核酸の増幅方法としては、NASBA(Nucleic Acid Sequence−Based Amplification)法、TMA(Transcription Mediated Amplification)法、TRC(Transcription−Reverse transcription Concerted)法などを用いることができる。これらの方法は、標的RNAに対してプロモータ配列を含むプライマーと、逆転写酵素およびリボヌクレアーゼH(RNase H)を用いて、プロモータ配列を含む2本鎖DNAを生成し、RNAポリメラーゼにより特定塩基配列を含むRNAを生成し、以後は、当該生成されたRNAを、前記プロモータ配列を含む2本鎖DNA合成の鋳型とする連鎖反応を行なうものである。 When the target nucleic acid is RNA, the target nucleic acid can be amplified by NASBA (Nucleic Acid Sequence-Based Amplification) method, TMA (Transcription Measured Amplification) method, TRC (Transcription-Revolution) method, or the like. .. In these methods, a primer containing a promoter sequence for a target RNA, reverse transcriptase and ribonuclease H (RNase H) are used to generate double-stranded DNA containing the promoter sequence, and a specific base sequence is obtained by RNA polymerase. An RNA containing the RNA is generated, and thereafter, a linkage reaction is performed using the produced RNA as a template for double-stranded DNA synthesis containing the promoter sequence.

標的核酸の増幅反応に用いる溶媒に特に制限はないものの、緩衝液を用いることが好ましい。用いることのできる緩衝液としては、トリス−塩酸緩衝液、酢酸ナトリウム緩衝液、HEPES(2−[4−(2−HydroxyEthyl)−1−Piperazinyl]EthaneSulfonic acid)−KOH緩衝液、リン酸ナトリウム緩衝液、リン酸カリウム緩衝液を例示することができる。前述の緩衝液に任意の濃度で無機塩またはカルボン酸塩を添加してもよい。該無機塩としては、塩化ナトリウム、塩化マグネシウム、塩化カリウム、臭化ナトリウム、臭化マグネシウム、臭化カリウム、ヨウ化ナトリウム、ヨウ化カリウムを例示することができ、該カルボン酸塩としては、酢酸マグネシウム、酢酸マンガンを例示することができる。これらの無機塩およびカルボン酸塩のうち2種類以上を混合して用いてもよい。無機塩またはカルボン酸塩の添加濃度は0M以上5M以下の範囲が好ましい。さらに、緩衝液に混和可能な有機溶媒を0%以上80%以下の割合で添加してもよい。該有機溶媒としては、ジメチルスルホキシド(DMSO)、メタノール、エタノール、ヘキサメチルリン酸トリアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,4−ジオキサン、テトラヒドロフラン、エチレングリコール、グリセリンを例示することができ、これらの有機溶媒のうち2種類以上を混合して用いてもよい。 Although the solvent used for the amplification reaction of the target nucleic acid is not particularly limited, it is preferable to use a buffer solution. Examples of the buffer solution that can be used include Tris-hydrochloride buffer solution, sodium acetate buffer solution, HEPES (2- [4- (2-HydroxyEthyl) -1-Piperazinyl] EthaneSulphonic acid) -KOH buffer solution, and sodium phosphate buffer solution. , Potassium phosphate buffer can be exemplified. Inorganic salts or carboxylic acid salts may be added to the above-mentioned buffer solution at any concentration. Examples of the inorganic salt include sodium chloride, magnesium chloride, potassium chloride, sodium bromide, magnesium bromide, potassium bromide, sodium iodide, and potassium iodide, and examples of the carboxylate include magnesium acetate. , Manganese acetate can be exemplified. Two or more of these inorganic salts and carboxylates may be mixed and used. The concentration of the inorganic salt or carboxylate added is preferably in the range of 0M or more and 5M or less. Further, an organic solvent miscible with the buffer solution may be added at a ratio of 0% or more and 80% or less. Examples of the organic solvent include dimethyl sulfoxide (DMSO), methanol, ethanol, hexamethylphosphoric acid triamide, N, N-dimethylformamide, N, N-dimethylacetamide, 1,4-dioxane, tetrahydrofuran, ethylene glycol, and glycerin. Two or more of these organic solvents may be mixed and used.

本発明の標的核酸の増幅方法では、標的核酸の光制御増幅試薬と標的核酸を混合し光照射を行なうことにより増幅反応が開始する。すなわち、光応答性dNTP(1)が、遊離のデオキシリボヌクレオシド三リン酸として含んでいる場合、光照射がなければ、光応答性dNTP(1)と同一の核酸塩基を有するdNTPは増幅反応系中に存在しない。したがって、この状態の光制御増幅試薬に標的核酸を添加しても増幅反応は進行しない。一方、光応答性dNTP(1)に、光照射を行なうと、光応答性保護基が遊離し、DNA伸長の基質の一つである、未修飾のdNTPが光制御増幅試薬に存在するようになる。したがって、この状態の光制御増幅試薬に標的核酸を添加し、かつ当該試薬を適切な増幅反応条件(適切な温度など)にすることで、当該標的核酸の増幅反応が進行する。 In the method for amplifying a target nucleic acid of the present invention, the amplification reaction is started by mixing the photo-controlled amplification reagent of the target nucleic acid and the target nucleic acid and performing light irradiation. That is, when the photoresponsive dNTP (1) is contained as a free deoxyribonucleoside triphosphate, in the absence of light irradiation, the dNTP having the same nucleobase as the photoresponsive dNTP (1) is contained in the amplification reaction system. Does not exist in. Therefore, even if the target nucleic acid is added to the photocontrolled amplification reagent in this state, the amplification reaction does not proceed. On the other hand, when the photoresponsive dNTP (1) is irradiated with light, the photoresponsive protecting group is released so that unmodified dNTP, which is one of the substrates for DNA elongation, is present in the photoregulated amplification reagent. Become. Therefore, by adding the target nucleic acid to the photocontrolled amplification reagent in this state and setting the reagent to appropriate amplification reaction conditions (appropriate temperature, etc.), the amplification reaction of the target nucleic acid proceeds.

また光応答性dNTP(1)が、第一および/または第二のプライマーを構成するデオキシリボヌクレオチド(すなわち一般式(0)の態様)として含んでいる場合、光照射がなければ、光応答性dNTP(1)に修飾した光分解保護基が、前記プライマーと標的核酸とのハイブリダイゼーションを阻害するため、標的核酸を添加しても増幅反応は進行しない。一方、光応答性dNTP(1)(一般式(0))に、光照射を行なうと、光応答性保護基が遊離し、前記プライマーが標的核酸とハイブリダイズ可能となる。したがって、標的核酸を添加した光制御増幅試薬を適切な増幅反応条件(適切な温度など)にすることで、当該標的核酸の増幅反応が進行する。 Further, when the photoresponsive dNTP (1) is contained as a deoxyribonucleotide (that is, an embodiment of the general formula (0)) constituting the first and / or second primers, the photoresponsive dNTP (1) is not irradiated with light. Since the photodegradation protective group modified in (1) inhibits hybridization between the primer and the target nucleic acid, the amplification reaction does not proceed even if the target nucleic acid is added. On the other hand, when the photoresponsive dNTP (1) (general formula (0)) is irradiated with light, the photoresponsive protecting group is released and the primer can hybridize with the target nucleic acid. Therefore, by setting the photocontrolled amplification reagent to which the target nucleic acid is added under appropriate amplification reaction conditions (appropriate temperature, etc.), the amplification reaction of the target nucleic acid proceeds.

一般式(1)で表される光応答性dNTPまたは一般式(0)で表されるプライマーのYがo−ニトロベンジル基(一般式(7))の場合、200nm以上450nm以下の波長の光を照射することで、ニトロベンジル基の脱保護が進行する。光分解速度が速い点から300nm以上400nm以下の波長の光を用いることが好ましい。光応答性dNTP(1)または一般式(0)で表されるプライマーのYが3−(ジアルキルアミノ)ベンジル基の場合、200nm以上400nm以下の波長の光を照射することで、3−(ジアルキルアミノ)ベンジル基の脱保護が進行する。光分解速度が速い点から300nm以上340nm以下の波長の光を用いることが好ましい。光の放射照度は特に限定されるものではないが、0.1mW/cm以上3W/cm以下の範囲の光を用いることが好ましい。光の照射時間は特に限定されるものではないが、30分以内の照射時間が好ましく、5分以内の照射時間がさらに好ましい。 When the photoresponsive dNTP represented by the general formula (1) or the Y of the primer represented by the general formula (0) is an o-nitrobenzyl group (general formula (7)), light having a wavelength of 200 nm or more and 450 nm or less. By irradiating with, deprotection of the nitrobenzyl group proceeds. From the viewpoint of high photodecomposition rate, it is preferable to use light having a wavelength of 300 nm or more and 400 nm or less. When Y of the primer represented by the photoresponsive dNTP (1) or the general formula (0) is a 3- (dialkylamino) benzyl group, 3- (dialkyl) is obtained by irradiating with light having a wavelength of 200 nm or more and 400 nm or less. Deprotection of the amino) benzyl group proceeds. From the viewpoint of high photodecomposition rate, it is preferable to use light having a wavelength of 300 nm or more and 340 nm or less. The irradiance of light is not particularly limited, but it is preferable to use light in the range of 0.1 mW / cm 2 or more and 3 W / cm 2 or less. The irradiation time of light is not particularly limited, but the irradiation time of 30 minutes or less is preferable, and the irradiation time of 5 minutes or less is more preferable.

標的核酸の増幅反応を行なう温度は、0℃以上80℃以下の範囲の中から、用いる溶媒の組成を考慮の上、適宜設定すればよい。なお増幅反応をTRC法で行なう場合、40℃以上50℃以下の範囲で行なうと好ましい。 The temperature at which the amplification reaction of the target nucleic acid is carried out may be appropriately set from the range of 0 ° C. or higher and 80 ° C. or lower in consideration of the composition of the solvent to be used. When the amplification reaction is carried out by the TRC method, it is preferable to carry out the amplification reaction in the range of 40 ° C. or higher and 50 ° C. or lower.

<3>本発明の検出方法
本発明の標的核酸の増幅方法において、増幅した標的核酸は以下の方法で検出することができる。
<3> Detection Method of the Present Invention In the method for amplifying the target nucleic acid of the present invention, the amplified target nucleic acid can be detected by the following method.

本発明の光制御増幅試薬で増幅した標的核酸は、予めまたは増幅反応後に検出用成分を添加し、当該成分由来の蛍光強度や化学発光強度を測定することで、標的核酸を検出すればよい。検出用成分の好ましい態様として、標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブが挙げられる。 The target nucleic acid amplified by the photocontrolled amplification reagent of the present invention may be detected by adding a detection component in advance or after the amplification reaction and measuring the fluorescence intensity or chemiluminescence intensity derived from the component. A preferred embodiment of the detection component is an oligonucleotide probe whose fluorescence characteristics change when a double strand complementary to a part of the target nucleic acid is formed as compared with that before the formation.

前記プローブの一例として、標的核酸の一部と相補的または相同的な配列を有するインターカレーター性蛍光色素を結合したDNAが挙げられる。前記DNA部分の配列は、標的核酸中に存在する配列であって、標的核酸以外の核酸と十分に区別可能な部分と相補的または相同的な配列である必要がある。前記DNA部分の長さは、標的核酸の特異的分析のため、6ヌクレオチド以上100ヌクレオチド以下、さらに好ましくは10ヌクレオチド以上30ヌクレオチド以下とすることが好ましい。なお前記DNA部分は、増幅した標的核酸と相補結合を形成した場合に、RNA依存性DNAポリメラーゼ活性を有する酵素による3’末端からの伸長が生じないように、当該3’末端が標的核酸と非相補的な配列が付加されているか、または、その3’末端が化学的に修飾(例えばアミノ化)されていることが好ましい。 An example of the probe is DNA bound with an intercalator fluorescent dye having a sequence complementary or homologous to a part of the target nucleic acid. The sequence of the DNA portion needs to be a sequence existing in the target nucleic acid and complementary or homologous to a portion sufficiently distinguishable from a nucleic acid other than the target nucleic acid. The length of the DNA portion is preferably 6 nucleotides or more and 100 nucleotides or less, more preferably 10 nucleotides or more and 30 nucleotides or less for specific analysis of the target nucleic acid. The DNA portion has a non-target nucleic acid at the 3'end so that extension from the 3'end by an enzyme having RNA-dependent DNA polymerase activity does not occur when a complementary bond is formed with the amplified target nucleic acid. It is preferred that a complementary sequence is added or that the 3'end is chemically modified (eg, amination).

インターカレーター性蛍光色素は、前述したDNA部分が他の核酸と相補結合を形成すると二本鎖部分にインターカレーションして蛍光特性が変化するものである。この目的のためには、例えば、インターカレーター性蛍光色素を、二本鎖部分へのインターカレーションを妨げない程度の適当な分子長リンカーを介してDNAと結合すればよい。かかるリンカーとしては、インターカレーター性蛍光色素が二本鎖部分にインターカレーションすることを妨げない分子であれば特に制限はない。特に両末端に官能基を有する二官能性炭化水素から選択されるリンカー分子は、オリゴヌクレオチドへの修飾を行なう上で簡便で好ましい。また市販の試薬セット(例えば、Clontech社製C6−Thiolmodifier)を使用してもよい。 In the intercalating fluorescent dye, when the above-mentioned DNA portion forms a complementary bond with another nucleic acid, it intercalates into the double-stranded portion and the fluorescence characteristics change. For this purpose, for example, the intercalating fluorescent dye may be attached to the DNA via a suitable molecular length linker that does not interfere with the intercalation to the double-stranded moiety. The linker is not particularly limited as long as it is a molecule that does not prevent the intercalating fluorescent dye from intercalating into the double-stranded portion. In particular, a linker molecule selected from bifunctional hydrocarbons having functional groups at both ends is convenient and preferable for modifying an oligonucleotide. Alternatively, a commercially available reagent set (for example, C6-Thiolmodifer manufactured by Clontech) may be used.

インターカレーター性蛍光色素としては、二本鎖にインターカレーションすることで、例えば発する蛍光波長が変動したりする等、その蛍光特性が変化するものであれば特に制限はないが、測定の容易さ等の観点からインターカレーションにより蛍光強度が増加する性質を有するものが特に好ましい。具体的には、蛍光強度の変化が特に著しい、チアゾールオレンジやオキサゾールイエロー、ならびにそれらの誘導体が、好ましいインターカレーター性蛍光色素として例示できる。 The intercalating fluorescent dye is not particularly limited as long as its fluorescent characteristics change, for example, the emitted fluorescence wavelength fluctuates by intercalating into a double strand, but it is easy to measure. From the above viewpoints, those having the property of increasing the fluorescence intensity by intercalation are particularly preferable. Specifically, thiazole orange and oxazole yellow, which have a particularly remarkable change in fluorescence intensity, and derivatives thereof can be exemplified as preferable intercalator fluorescent dyes.

インターカレーター性蛍光色素をリンカーを介してDNA部分に結合させる位置は、当該DNA部分の5’末端、3’末端または中央部等、インターカレーター性蛍光色素の二本鎖へのインターカレーションが妨げられず、かつ、DNA部分とRNAとの相補結合を阻害しない限り特に制限はない。 The position at which the intercalating fluorescent dye is bound to the DNA portion via the linker hinders the intercalation of the intercalating fluorescent dye to the double strand such as the 5'end, 3'end or the central portion of the DNA portion. There is no particular limitation as long as it is not possible and the complementary binding between the DNA portion and RNA is not inhibited.

標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブの別の例として、モレキュラービーコン(Molecular beacon)が挙げられる。モレキュラービーコンは、標的核酸の一部と相補的または相同的な配列を有するDNAであり、その両端に蛍光色素とクエンチャーを有するステムループ構造になっている。ステムループ構造の状態では、蛍光色素の蛍光がクエンチャーにより抑制されているが、ループ配列中に存在する標的RNAに相補的な領域が反応中に生じた増幅産物とハイブリダイズするとステム部分が開裂し蛍光を発する。ステムの形成は、分子内でDNAの二本鎖を形成し、会合能の高い蛍光色素(Cy3など)とクエンチャー(アゾ化合物など)のペアをDNAに導入することで形成できる。 Another example of an oligonucleotide probe whose fluorescence characteristics change when it forms a double strand complementary to a part of the target nucleic acid as compared with that before the formation is a molecular beacon. A molecular beacon is a DNA having a sequence complementary or homologous to a part of a target nucleic acid, and has a stem-loop structure having a fluorescent dye and a quencher at both ends thereof. In the state of the stem-loop structure, the fluorescence of the fluorescent dye is suppressed by the quencher, but when the region complementary to the target RNA present in the loop sequence hybridizes with the amplification product generated during the reaction, the stem portion is cleaved. It emits fluorescence. Stems can be formed by forming double strands of DNA in the molecule and introducing a pair of highly associative fluorescent dye (Cy3, etc.) and quencher (azo compound, etc.) into the DNA.

標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブのさらに別の例として、FRET(Fluorescence Resonance Energy Transfer)プローブが挙げられる。この場合、標的核酸の配列において、増幅に用いた第一および第二のプライマーの内側に設計された2本のプローブを使用する。2本のプローブのうち、一方のプローブの3’末端にはドナー蛍光色素を、もう一方のプローブの5’末端にはアクセプター蛍光色素を、それぞれ修飾する。ハイブリダイゼーションした際に、ドナー蛍光色素とアクセプター蛍光色素が近接するように設計することで、2本のプローブが反応中に生じた増幅産物とハイブリダイゼーションすることにより生じるFRET現象により、標的核酸を検出できる。 Another example of an oligonucleotide probe whose fluorescence characteristics change when it forms a double strand complementary to a part of the target nucleic acid as compared with that before the formation is a FRET (Fluorescence Resonance Energy Transfer) probe. In this case, in the sequence of the target nucleic acid, two probes designed inside the first and second primers used for amplification are used. Of the two probes, the 3'end of one probe is modified with a donor fluorescent dye, and the 5'end of the other probe is modified with an acceptor fluorescent dye. By designing the donor fluorescent dye and the acceptor fluorescent dye to be close to each other when hybridized, the target nucleic acid is detected by the FRET phenomenon caused by the hybridization of the two probes with the amplification product generated during the reaction. can.

標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブのさらにまた別の例として、TaqManプローブが挙げられる。この場合、標的核酸の配列において、増幅に用いた第一および第二のプライマーの内側に設計された1本のプローブを使用する。TaqManプローブの5’末端には蛍光色素(レポーター色素)を、3’末端にはクエンチャーを、それぞれ標識する。レポーター色素の蛍光はクエンチャーにより抑制されているが、DNAポリメラーゼによるプライマーの伸長反応時に、標的RNAにプローブがハイブリダイズしていると、5’→3’エキソヌクレアーゼ活性によりプローブが分解され、レポーター色素が遊離することで生じる蛍光により検出できる。 Yet another example of an oligonucleotide probe whose fluorescence properties change when it forms a double strand complementary to a portion of the target nucleic acid as compared to before formation is the TaqMan probe. In this case, in the sequence of the target nucleic acid, one probe designed inside the first and second primers used for amplification is used. A fluorescent dye (reporter dye) is labeled at the 5'end of the TaqMan probe, and a quencher is labeled at the 3'end. The fluorescence of the reporter dye is suppressed by the quencher, but if the probe hybridizes to the target RNA during the primer extension reaction by DNA polymerase, the probe is degraded by 5'→ 3'exonuclease activity, and the reporter It can be detected by the fluorescence generated by the liberation of the dye.

次に本発明を実施例および合成例によってさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお反応に用いた試薬および無水溶媒は市販品(東京化成工業社製、関東化学社製、富士フイルム和光純薬社製、Sigma−Aldrich社製)を精製せずに用いた。核磁気共鳴(NMR)スペクトルは400MHz Bruker AVANCE III 400および400MHz Bruker AVANCE III HDで測定した。化学シフト値については、テトラメチルシラン(TMS)を内部標準物質に用いてppmで示した。sはsingletを、dはdoubletを、tはtripletを、qはquartetを、quintはquintetを、brsはbroad singletを、mはmultipletを、それぞれ表している。 Next, the present invention will be described in more detail with reference to Examples and Synthesis Examples, but the present invention is not limited thereto. The reagents and anhydrous solvents used in the reaction were commercially available products (manufactured by Tokyo Chemical Industry Co., Ltd., manufactured by Kanto Chemical Co., Ltd., manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., manufactured by Sigma-Aldrich) without purification. Nuclear magnetic resonance (NMR) spectra were measured on 400 MHz Bruker AVANCE III 400 and 400 MHz Bruker AVANCE III HD. The chemical shift value was shown in ppm using tetramethylsilane (TMS) as an internal standard substance. s stands for singlet, d stands for doublet, t stands for triplet, q stands for quartet, quint stands for quintet, br s stands for broad singlet, and m stands for quartet.

合成例1 Synthesis example 1

Figure 2021175393
Figure 2021175393

25mL容量二口フラスコに3’−O−(2−ニトロベンジル)−2’−デオキシアデノシン(115mg,0.30mmol)を脱水トルエン(1mL)により5回共沸した後、脱水ピリジン(1mL)により5回共沸した。アルゴン雰囲気下にして、脱水ピリジン(2mL)を加え、1,4−ジオキサン(1mL)に溶かしたクロロ亜リン酸サリチル(73mg,0.36mmol)を加えた。30分間反応させた後、トリブチルアミン(220μL,0.90mmol)およびDMF(N,N−ジメチルホルムアミド)(2mL)に溶かしたピロリン酸トリブチルアンモニウム塩(198mg,0.36mmol)を加え、1時間反応させた。続いて1%(w/v)ヨウ素溶液(ピリジン/水=9:1)を溶液が茶色に呈色するまで加えた後、30分間反応させた。水(2mL)を加え、さらに30分間撹拌した。反応終了後、酢酸エチル(10mL)を加え激しく撹拌し、有機相を取り除く操作を3回行なった。回収した水相を減圧濃縮し、残渣を逆相カラムクロマトグラフィー(酢酸トリエチルアミン緩衝液:メタノール,10:0→8:2)により精製した後、減圧濃縮を行なった。得られた残渣をメタノール(1mL)に溶かし、そこに0.6M過塩素酸ナトリウム/アセトン溶液(10mL)を加えた。この溶液を遠心分離し、上澄みを取り除いた。さらにアセトン(10mL)を加え、遠心分離をし、上澄みを取り除く操作を3回行なった。得られた白色固体を減圧乾燥することで、3’−O−(2−ニトロベンジル)−2’−デオキシアデノシン三リン酸(NB−dATP)(34mg,51μmol,17%,H NMR purity 95%)を得た。 3'-O- (2-nitrobenzyl) -2'-deoxyadenosine (115 mg, 0.30 mmol) is azeotroped 5 times with dehydrated toluene (1 mL) in a 25 mL volumetric flask and then with dehydrated pyridine (1 mL). Azeotropically boiled 5 times. Under an argon atmosphere, dehydrated pyridine (2 mL) was added, and salicyl chlorophosphate (73 mg, 0.36 mmol) dissolved in 1,4-dioxane (1 mL) was added. After reacting for 30 minutes, tributylammonium pyrophosphate (198 mg, 0.36 mmol) dissolved in tributylamine (220 μL, 0.90 mmol) and DMF (N, N-dimethylformamide) (2 mL) was added, and the reaction was carried out for 1 hour. I let you. Subsequently, a 1% (w / v) iodine solution (pyridine / water = 9: 1) was added until the solution turned brown, and then the reaction was carried out for 30 minutes. Water (2 mL) was added and the mixture was further stirred for 30 minutes. After completion of the reaction, ethyl acetate (10 mL) was added and the mixture was vigorously stirred to remove the organic phase three times. The recovered aqueous phase was concentrated under reduced pressure, and the residue was purified by reverse phase column chromatography (triethylamine acetate buffer: methanol, 10: 0 → 8: 2) and then concentrated under reduced pressure. The obtained residue was dissolved in methanol (1 mL), and 0.6 M sodium perchlorate / acetone solution (10 mL) was added thereto. The solution was centrifuged to remove the supernatant. Further, acetone (10 mL) was added, and the mixture was centrifuged to remove the supernatant three times. The obtained white solid was dried under reduced pressure to obtain 3'-O- (2-nitrobenzyl) -2'-deoxyadenosine triphosphate (NB-dATP) (34 mg, 51 μmol, 17%, 1 1 H NMR purity 95). %) Was obtained.

H NMR(DO,400MHz):δ8.45(s,1H),8.16(s,1H),8.01(m,1H),7.68−7.73(m,2H),7.52(m,1H),6.42(dd,J=6.2,8.6Hz,1H),4.96(m,2H),4.61(m,1H),4.45(m,1H),4.07−4.19(m,2H),2.66−2.78(m,2H)ppm;31P NMR(DO,161MHz):δ−6.29(m,1P),−11.0(m,1P),−21.8(m,1P)ppm;HR−MS(ESI−TOF):molecular formula C172014;[M−H]−:625.0490(calculated:625.0250).
合成例2
,N−ビス(tert−ブトキシカルボニル)−5’−O−tert−ブチルジメチルシリル−2’−デオキシアデノシン(2.88g,5.1mmol)を塩化メチレン(20mL)に溶解し、ヨウ化ナトリウム(100mg,0.67mmol)、1.5M水酸化テトラブチルアンモニウム水溶液(6.78mL,10mmol)、1.0M水酸化ナトリウム水溶液(7.63mL,7.6mmol)および蒸留水(10mL)を加えて室温で5分間撹拌した。得られた混合液にm−(ジエチルアミノ)ベンジルクロライド(3.02g,15mmol)の塩化メチレン(9.0mL)溶液を加え、遮光下室温で15時間反応させた。水相と有機相を分離し、水相を塩化メチレン(50mL)で二回抽出した。有機相を合わせて無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=70:30)により精製し、N,N−ビス(tert−ブトキシカルボニル)−5’−O−tert−ブチルジメチルシリル−3’−O−[3−(ジエチルアミノ)ベンジル]−2’−デオキシアデノシン(625mg,17%)を黄色固体として得た。
1 H NMR (D 2 O, 400MHz): δ8.45 (s, 1H), 8.16 (s, 1H), 8.01 (m, 1H), 7.68-7.73 (m, 2H) , 7.52 (m, 1H), 6.42 (dd, J = 6.2,8.6Hz, 1H), 4.96 (m, 2H), 4.61 (m, 1H), 4.45 (m, 1H), 4.07-4.19 ( m, 2H), 2.66-2.78 (m, 2H) ppm; 31 P NMR (D 2 O, 161MHz): δ-6.29 ( m, 1P), -11.0 (m, 1P), -21.8 (m, 1P) ppm; HR-MS (ESI-TOF): magnetic resonance C 17 H 20 N 6 O 14 P 3 ; [M −H + ] −: 625.0490 (calculated: 625.0250).
Synthesis example 2
N 6 , N 6 -bis (tert-butoxycarbonyl) -5'-O-tert-butyldimethylsilyl-2'-deoxyadenosin (2.88 g, 5.1 mmol) was dissolved in methylene chloride (20 mL) and iodine was added. Sodium chloride (100 mg, 0.67 mmol), 1.5 M aqueous tetrabutylammonium hydroxide solution (6.78 mL, 10 mmol), 1.0 M aqueous sodium hydroxide solution (7.63 mL, 7.6 mmol) and distilled water (10 mL). In addition, the mixture was stirred at room temperature for 5 minutes. A solution of m- (diethylamino) benzyl chloride (3.02 g, 15 mmol) in methylene chloride (9.0 mL) was added to the obtained mixed solution, and the mixture was reacted at room temperature for 15 hours under shading. The aqueous phase and the organic phase were separated, and the aqueous phase was extracted twice with methylene chloride (50 mL). The organic phases were combined and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by flash silica gel column chromatography (hexane: ethyl acetate = 70:30) and N 6 , N 6 -bis (tert-butoxycarbonyl) -5'-O-tert-butyldimethylsilyl-3. '-O- [3- (diethylamino) benzyl] -2'-deoxyadenosine (625 mg, 17%) was obtained as a yellow solid.

H NMR(400MHz,CDCl):δ8.84(s,1H),8.42(s,1H),7.19(t,J=7.9Hz,1H),6.64−6.61(m,3H),6.55(m,1H),4.53(d,J=1.4Hz,2H),4.37(m,1H),4.27(m,1H),3.89(dd,J=11.1,4.0Hz,1H),3.78(dd,J=11.1,3.2Hz,1H),3.36(q,J=7.1Hz,4H),2.70−2.59(m,2H),1.45(s,18H),1.16(t,J=7.1Hz,6H),0.88(s,9H),0.07(s,3H),0.06(s,3H).
合成例3
合成例2で得た、N,N−ビス(tert−ブトキシカルボニル)−5’−O−tert−ブチルジメチルシリル−3’−O−[3−(ジエチルアミノ)ベンジル]−2’−デオキシアデノシン(625mg,0.87mmol)を遮光容器に量り取り、塩化メチレン(30mL)に溶解して活性化(80℃で3時間真空乾燥)させたシリカゲル(6.0g)を加えて減圧下溶媒を留去した。得られた残渣を減圧下80℃で13時間加熱した。得られた固体をメタノールおよびクロロホルムで洗浄し、ろ液を濃縮することで、5’−O−tert−ブチルジメチルシリル−3’−O−[3−(ジエチルアミノ)ベンジル]−2’−デオキシアデノシン(369mg,81%)を黄色固体として得た。
1 1 H NMR (400 MHz, CDCl 3 ): δ8.84 (s, 1H), 8.42 (s, 1H), 7.19 (t, J = 7.9 Hz, 1H), 6.64-6.61 (M, 3H), 6.55 (m, 1H), 4.53 (d, J = 1.4Hz, 2H), 4.37 (m, 1H), 4.27 (m, 1H), 3. 89 (dd, J = 11.1, 4.0Hz, 1H), 3.78 (dd, J = 11.1, 3.2Hz, 1H), 3.36 (q, J = 7.1Hz, 4H) , 2.70-2.59 (m, 2H), 1.45 (s, 18H), 1.16 (t, J = 7.1Hz, 6H), 0.88 (s, 9H), 0.07 (S, 3H), 0.06 (s, 3H).
Synthesis example 3
N 6 , N 6 -bis (tert-butoxycarbonyl) -5'-O-tert-butyldimethylsilyl-3'-O- [3- (diethylamino) benzyl] -2'-deoxy obtained in Synthesis Example 2 Weigh adenosine (625 mg, 0.87 mmol) in a light-shielding container, dissolve it in methylene chloride (30 mL), add activated silica gel (vacuum dried at 80 ° C. for 3 hours), add silica gel (6.0 g), and add the solvent under reduced pressure. Distilled away. The obtained residue was heated at 80 ° C. under reduced pressure for 13 hours. The obtained solid was washed with methanol and chloroform, and the filtrate was concentrated to concentrate 5'-O-tert-butyldimethylsilyl-3'-O- [3- (diethylamino) benzyl] -2'-deoxyadenosine. (369 mg, 81%) was obtained as a yellow solid.

H NMR(400MHz,CDCl):δ8.32(s,1H),8.14(s,1H),7.17(t,J=7.8Hz,1H),6.63−6.59(m,3H),6.47(t,J=6.5Hz,1H),6.05(brs,2H),4.51(d,J=3.7Hz,2H),4.34(m,1H),4.24(m,1H),3.88(dd,J=11.0.4.2Hz,1H),3.76(dd,J=11.0,3.2Hz,1H),3.33(q,J=7.0Hz,4H),2.64−2.61(m,2H),1.13(t,J=7.0Hz,6H),0.89(s,9H),0.06(s,3H),0.05(s,3H).
次いで、5’−O−tert−ブチルジメチルシリル−3’−O−[3−(ジエチルアミノ)ベンジル]−2’−デオキシアデノシン(369mg,0.70mmol)をテトラヒドロフラン(3.0mL)に溶解し、0℃に冷却した。得られた混合液に1Mフッ化テトラブチルアンモニウム−テトラヒドロフラン溶液(0.70mL,0.70mmol)をゆっくりと滴下したのち、室温まで昇温した。室温で2時間反応させ、メタノール(3.0mL)を加えて反応を停止した。反応液を濃縮し、得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=90:10)により精製し、3’−O−[3−(ジエチルアミノ)ベンジル]−2’−デオキシアデノシン(202mg,70%)を黄色固体で得た。
1 1 H NMR (400 MHz, CDCl 3 ): δ8.32 (s, 1H), 8.14 (s, 1H), 7.17 (t, J = 7.8 Hz, 1H), 6.63-6.59 (M, 3H), 6.47 (t, J = 6.5Hz, 1H), 6.05 (brs, 2H), 4.51 (d, J = 3.7Hz, 2H), 4.34 (m) , 1H), 4.24 (m, 1H), 3.88 (dd, J = 11.0.4.2Hz, 1H), 3.76 (dd, J = 11.0, 3.2Hz, 1H) , 3.33 (q, J = 7.0Hz, 4H), 2.64-2.61 (m, 2H), 1.13 (t, J = 7.0Hz, 6H), 0.89 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H).
Then, 5'-O-tert-butyldimethylsilyl-3'-O- [3- (diethylamino) benzyl] -2'-deoxyadenosine (369 mg, 0.70 mmol) was dissolved in tetrahydrofuran (3.0 mL). It was cooled to 0 ° C. A 1M tetrabutylammonium fluoride-tetrahydrofuran solution (0.70 mL, 0.70 mmol) was slowly added dropwise to the obtained mixed solution, and then the temperature was raised to room temperature. The reaction was carried out at room temperature for 2 hours, and methanol (3.0 mL) was added to stop the reaction. The reaction mixture was concentrated, and the obtained residue was purified by flash silica gel column chromatography (ethyl acetate: methanol = 90:10) to purify 3'-O- [3- (diethylamino) benzyl] -2'-deoxyadenosine ( 202 mg, 70%) was obtained as a yellow solid.

H NMR(400MHz,CDCl):δ8.32(s,1H),7.81(s,1H),7.20(t,J=8.1Hz,1H),6.65−6.62(m,3H),6.57(m,1H),6.28(m,1H),5.74(brs,2H),4.54(s,2H),4.49(m,1H),4.39(s,1H),3.99(m,1H),3.70(m,1H),3.36(q,J=7.0Hz,4H),3.01(m,1H),2.44(m,1H),1.17(t,J=7.0Hz,6H).
合成例4
合成例3で得た、3’−O−[3−(ジエチルアミノ)ベンジル]−2’−デオキシアデノシン(70.0mg,0.17mmol)を脱水トルエン(3.0mL)で二回、脱水ピリジン(3.0mL)で三回共沸し、水を除去した。乾燥した固体の脱水ピリジン(2.0mL)溶液に対してクロロ亜リン酸サリチル(40.0mg,0.20mmol)、1,4−ジオキサン(1.0mL)を加えて室温で1時間半反応させた。続いてビス(トリブチルアンモニウム)ピロリン酸(82.0mg,0.15mmol)のDMF溶液(1.0mL)およびトリブチルアミン(0.12mL,0.50mmol)を加えて室温で2時間反応させた。ヨウ素(32mg,0.13mmol)/ピリジン(9.0mL)/蒸留水(1.0mL)の溶液を、反応液が赤色を呈するまで加えた。反応液を室温で15分程度撹拌しても退色しないことを確認したのち、蒸留水(2.0mL)を加えて室温で12時間反応させた。反応液を酢酸エチル(60mL)で洗浄し、水相を濃縮した。得られた残渣をオクタデシル基修飾シリカゲルカラムクロマトグラフィー(水:メタノール=9:1)により精製し、減圧下溶媒を留去した。得られた残渣を蒸留水(1.3mL)、メタノール(0.5mL)に懸濁させ、過塩素酸ナトリウム(850mg)のアセトン(10mL)溶液を加えて遠心分離を行ない、上澄みを除去したのち減圧下溶媒を留去した。同様の操作を2回行ない、3’−O−[3−(ジエチルアミノ)ベンジル]−2’−デオキシアデノシン三リン酸(DEAB−dATP)(13mg,12%)を白色固体として得た。
1 1 H NMR (400 MHz, CDCl 3 ): δ8.32 (s, 1H), 7.81 (s, 1H), 7.20 (t, J = 8.1 Hz, 1H), 6.65-6.62 (M, 3H), 6.57 (m, 1H), 6.28 (m, 1H), 5.74 (brs, 2H), 4.54 (s, 2H), 4.49 (m, 1H) , 4.39 (s, 1H), 3.99 (m, 1H), 3.70 (m, 1H), 3.36 (q, J = 7.0Hz, 4H), 3.01 (m, 1H) ), 2.44 (m, 1H), 1.17 (t, J = 7.0Hz, 6H).
Synthesis example 4
Dehydrated pyridine (3'-O- [3- (diethylamino) benzyl] -2'-deoxyadenosine (70.0 mg, 0.17 mmol) obtained in Synthesis Example 3 twice with dehydrated toluene (3.0 mL). Water was removed by azeotropically boiling with 3.0 mL) three times. Salicyl chlorophosphate (40.0 mg, 0.20 mmol) and 1,4-dioxane (1.0 mL) were added to a dry solid dehydrated pyridine (2.0 mL) solution and reacted at room temperature for one and a half hours. rice field. Subsequently, a DMF solution (1.0 mL) of bis (tributylammonium) pyrophosphate (82.0 mg, 0.15 mmol) and tributylamine (0.12 mL, 0.50 mmol) were added, and the mixture was reacted at room temperature for 2 hours. A solution of iodine (32 mg, 0.13 mmol) / pyridine (9.0 mL) / distilled water (1.0 mL) was added until the reaction turned red. After confirming that the reaction solution did not fade even after stirring at room temperature for about 15 minutes, distilled water (2.0 mL) was added and the mixture was reacted at room temperature for 12 hours. The reaction mixture was washed with ethyl acetate (60 mL) and the aqueous phase was concentrated. The obtained residue was purified by octadecyl group-modified silica gel column chromatography (water: methanol = 9: 1), and the solvent was distilled off under reduced pressure. The obtained residue was suspended in distilled water (1.3 mL) and methanol (0.5 mL), and a solution of sodium perchlorate (850 mg) in acetone (10 mL) was added for centrifugation to remove the supernatant. The solvent was distilled off under reduced pressure. The same operation was performed twice to obtain 3'-O- [3- (diethylamino) benzyl] -2'-deoxyadenosine triphosphate (DEAB-dATP) (13 mg, 12%) as a white solid.

H NMR(DO,400MHz):δ8.14(m,1H),7.56(m,3H),7.53(m,1H),7.41(m,1H),6.40(m,1H),4.60(m,2H,obscured by the residual proton of DO),4.58(m,1H,obscured by the residual proton of DO),4.40(m,1H),4.11(m,2H),3.57(m,4H),2.66(m,2H),1.01(m,6H);31P NMR(DO,162MHz):δ−8.0(m,1P),−11.4(d,1P),−21.5(m,1P);HR−MS(ESI−TOF):molecular formula C213012;[M−H]−:651.1179(calculated:651.118). 1 H NMR (D 2 O, 400MHz): δ8.14 (m, 1H), 7.56 (m, 3H), 7.53 (m, 1H), 7.41 (m, 1H), 6.40 (M, 1H), 4.60 (m, 2H, obcured by the reactive proton of D 2 O), 4.58 (m, 1H, obcured by the reactive proton of D 2 O), 4.40 (m, 1H) 1H), 4.11 (m, 2H ), 3.57 (m, 4H), 2.66 (m, 2H), 1.01 (m, 6H); 31 P NMR (D 2 O, 162MHz): δ-8.0 (m, 1P) , - 11.4 (d, 1P), - 21.5 (m, 1P); HR-MS (ESI-TOF): molecular formula C 21 H 30 N 6 O 12 P 3 ; [MH + ]-: 651.1179 (calculated: 651.118).

Figure 2021175393
Figure 2021175393

合成例5
2−ニトロ−p−キシレングリコール(5.00g,27.3mmol)およびイミダゾ−ル(3.72g,54.6mmol)をアルゴン雰囲気下DMF(15.0mL)に溶解し、0℃に冷却した。得られた溶液に対して、塩化t−ブチルジメチルシリル(4.25g,27.3mmol)のDMF(10.0mL)溶液を加えた。得られた混合液を室温に昇温して1.5時間反応させたのち、メタノール(20mL)を加えて室温で30分撹拌し反応を停止した。減圧下で反応液中の溶媒を留去し得られた残渣に蒸留水(200mL)を加え、酢酸エチル(200mL)で5回抽出した。有機相を無水硫酸ナトリウムにより乾燥し、減圧下溶媒を留去した。得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)により精製し、4−[[(t−ブチルジメチルシリル)オキシ]メチル]−2−ニトロベンゼンメタノール(1.9g,23%)を白黄色固体として得た。
Synthesis example 5
2-Nitro-p-xylene glycol (5.00 g, 27.3 mmol) and imidazole (3.72 g, 54.6 mmol) were dissolved in DMF (15.0 mL) under an argon atmosphere and cooled to 0 ° C. A solution of t-butyldimethylsilyl chloride (4.25 g, 27.3 mmol) in DMF (10.0 mL) was added to the obtained solution. The obtained mixed solution was heated to room temperature and reacted for 1.5 hours, then methanol (20 mL) was added, and the mixture was stirred at room temperature for 30 minutes to stop the reaction. Distilled water (200 mL) was added to the residue obtained by distilling off the solvent in the reaction solution under reduced pressure, and the mixture was extracted 5 times with ethyl acetate (200 mL). The organic phase was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by flash silica gel column chromatography (hexane: ethyl acetate = 4: 1) and 4-[[(t-butyldimethylsilyl) oxy] methyl] -2-nitrobenzenemethanol (1.9 g, 23). %) Was obtained as a white-yellow solid.

Figure 2021175393
Figure 2021175393

H NMR(400MHz,CDCl):δ8.06(s,1H),7.66(d,J=8.0Hz,1H),7.60(d,J=8.0Hz,1H),4.93(d,J=6.7Hz,2H,CH−OH),4.79(s,2H,CH−OTBS),2.51(t,J=6.7Hz,1H,OH),0.95(s,9H,TBS),0.11(s,6H,TBS).
合成例6
合成例5で得た、4−[[(t−ブチルジメチルシリル)オキシ]メチル]−2−ニトロベンゼンメタノール(648mg,2.17mmol)、トリフェニルホスフィン(1.71g,6.51mmol)、四塩化炭素(2.16g,6.51mmol)およびジイソプロピルエチルアミン(929mg,7.16mmol)をアルゴン雰囲気下THF(テトラヒドロフラン)(7.3mL)に溶解し、室温で1時間撹拌した。反応液に蒸留水(50mL)を加えて、酢酸エチル(100mL)で抽出した。有機相を無水硫酸ナトリウムにより乾燥し、減圧下溶媒を留去した。得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=15:1)により精製し、臭化4−[[(t−ブチルジメチルシリル)オキシ]メチル]−2−ニトロベンジル(747mg,83%)を白色固体として得た。
1 1 H NMR (400 MHz, CDCl 3 ): δ8.06 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 4 .93 (d, J = 6.7Hz, 2H, CH 2- OH), 4.79 (s, 2H, CH 2- OTBS), 2.51 (t, J = 6.7Hz, 1H, OH), 0.95 (s, 9H, TBS), 0.11 (s, 6H, TBS).
Synthesis example 6
4-[[(T-butyldimethylsilyl) oxy] methyl] -2-nitrobenzenemethanol (648 mg, 2.17 mmol), triphenylphosphine (1.71 g, 6.51 mmol), tetrachloride obtained in Synthesis Example 5. Carbon (2.16 g, 6.51 mmol) and diisopropylethylamine (929 mg, 7.16 mmol) were dissolved in THF (tetrahydrofuran) (7.3 mL) under an argon atmosphere, and the mixture was stirred at room temperature for 1 hour. Distilled water (50 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (100 mL). The organic phase was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by flash silica gel column chromatography (hexane: ethyl acetate = 15: 1) and 4-[[(t-butyldimethylsilyl) oxy] methyl] -2-nitrobenzyl bromide (747 mg, 83). %) Was obtained as a white solid.

Figure 2021175393
Figure 2021175393

H NMR(400MHz,CDCl):δ8.00(s,1H),7.55−7.51(m,2H),4.82(s,CH−Br),4.79(s,2H,CH−OTBS),0.95(s,9H,TBS),0.11(s,6H,TBS).
合成例7
5’−O−(4,4’−ジメトキシトリチリル)チミジン(2.72g,5.0mmol)をジクロロメタン/ジメチルアセトアミド(10:1)の混合溶媒(25mL)に溶解し、トリエチルアミン(607mg,6.0mmol)を加え室温で10分間撹拌後、塩化ベンゾイル(773mg,5.5mmol)を加え室温で15時間反応させた。反応後、酢酸エチル(50mL)で希釈し、飽和食塩水(30mL)で洗浄した。減圧下溶媒を留去して得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=3:1→1:1)により精製することで、N−ベンゾイル−5’−O−(4,4’−ジメトキシトリチリル)チミジンおよび3’−O−ベンゾイル−5’−O−(4,4’−ジメトキシトリチリル)チミジンの混合物を得た(1.78g,55%,N−Bz体:O−Bz体=6.5:1)を無色固体として得た。
1 H NMR (400MHz, CDCl 3 ): δ8.00 (s, 1H), 7.55-7.51 (m, 2H), 4.82 (s, CH 2 -Br), 4.79 (s, 2H, CH 2- OTBS), 0.95 (s, 9H, TBS), 0.11 (s, 6H, TBS).
Synthesis example 7
5'-O- (4,4'-dimethoxytrityryl) thymidine (2.72 g, 5.0 mmol) was dissolved in a mixed solvent (25 mL) of dichloromethane / dimethylacetamide (10: 1) and triethylamine (607 mg, 6). .0 mmol) was added, and the mixture was stirred at room temperature for 10 minutes, benzoyl chloride (773 mg, 5.5 mmol) was added, and the mixture was reacted at room temperature for 15 hours. After the reaction, the mixture was diluted with ethyl acetate (50 mL) and washed with saturated brine (30 mL). The residue obtained by distilling off the solvent under reduced pressure was purified by flash silica gel column chromatography (toluene: ethyl acetate = 3: 1 → 1: 1) to obtain N-benzoyl-5'-O- (4, A mixture of 4'-dimethoxytrityryl) thymidine and 3'-O-benzoyl-5'-O- (4,4'-dimethoxytrityryl) thymidine was obtained (1.78 g, 55%, N-Bz form: O-Bz compound = 6.5: 1) was obtained as a colorless solid.

Figure 2021175393
Figure 2021175393

N−ベンゾイル−5’−O−(4,4’−ジメトキシトリチリル)チミジン;H NMR(400MHz,CDCl):δ7.88(dd,J=7.2,1.2Hz,2H),7.73(d,J=0.84Hz,1H),7.55(t,J=7.4Hz,1H),7.37−7.42(m,4H),7.25−7.30(m,5H),7.19−7.23(m,2H),6.82(d,J=8.0Hz,4H),6.34(t,J=7.2Hz,1H),4.49(quint,J=2.5Hz,1H),3.97(q,J=2.5Hz,1H),3.74(s,6H),3.42(dd,J=10.6,2.7Hz,1H),3.31(dd,J=10.6,2.7Hz,1H),2.23−2.34(m,2H),1.41(s,3H).
3’−O−ベンゾイル−5’−O−(4,4’−ジメトキシトリチリル)チミジン;H NMR(400MHz,CDCl):δ8.02(t,J=6.9Hz,2H),7.66(d,J=0.96Hz,1H),7.55(t,J=7.4Hz,1H),7.37−7.42(m,4H),7.25−7.30(m,5H),7.09−7.14(m,2H),6.82(d,J=8.0Hz,4H),6.50(dd,J=5.6Hz,3.0Hz,1H),5.68(d,J=5.6Hz,1H),4.26(d,J=1.8Hz,1H),3.73(s,6H),3.53(t,J=2.4Hz,1H),2.47−2.64(m,1H),1.37(s,3H).
合成例8
合成例6で得た、臭化4−[[(t−ブチルジメチルシリル)オキシ]メチル]−2−ニトロベンジル(377mg,1.05mmol)を塩化メチレン(2.0mL)に溶解し室温で10分間撹拌させた後、合成例7で得た、N−ベンゾイル−5’−O−(4,4’−ジメトキシトリチリル)チミジンおよび3’−ベンゾイル−5’−O−(4,4’−ジメトキシトリチリル)チミジンの混合物(521mg,0.81mmol,N−Bz体:O−Bz体=4:1)、ヨウ化テトラブチルアンモニウム(236mg,0.64mmol)、1M水酸化ナトリウム水溶液(1.62mL,1.62mmol)ならびに塩化メチレン(6mL)の混合溶液を滴下して、室温3時間で反応させた。反応液をジクロロメタン(20mL)で希釈し、飽和食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=30:1)により精製し、生成物(146mg)を得た。続いて、得られた生成物をアンモニアの2Mエタノール/塩化メチレン溶液(16mL,エタノール:塩化メチレン=2.5:1)に溶解し室温で6.5時間撹拌させた後、減圧下溶媒を留去して得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)により精製することで3’−O−[4−[[(t−ブチルジメチルシリル)オキシ]メチル]−2−ニトロ]ベンジル−5’−O−(4,4’−ジメトキシトリチリル)チミジン(46.7mg,2工程7%)を無色固体として得た。
N-benzoyl-5'-O- (4,4'-dimethoxytritylyl) thymidine; 1 1 H NMR (400 MHz, CDCl 3 ): δ7.88 (dd, J = 7.2, 1.2 Hz, 2H), 7.73 (d, J = 0.84Hz, 1H), 7.55 (t, J = 7.4Hz, 1H), 7.37-7.42 (m, 4H), 7.25-7.30 (M, 5H), 7.19-7.23 (m, 2H), 6.82 (d, J = 8.0Hz, 4H), 6.34 (t, J = 7.2Hz, 1H), 4 .49 (quint, J = 2.5Hz, 1H), 3.97 (q, J = 2.5Hz, 1H), 3.74 (s, 6H), 3.42 (dd, J = 10.6, 2.7Hz, 1H), 3.31 (dd, J = 10.6, 2.7Hz, 1H), 2.23-2.34 (m, 2H), 1.41 (s, 3H).
3'-O-benzoyl-5'-O- (4,4'-dimethoxytritylyl) thymidine; 1 1 H NMR (400 MHz, CDCl 3 ): δ8.02 (t, J = 6.9 Hz, 2H), 7 .66 (d, J = 0.96Hz, 1H), 7.55 (t, J = 7.4Hz, 1H), 7.37-7.42 (m, 4H), 7.25-7.30 ( m, 5H), 7.09-7.14 (m, 2H), 6.82 (d, J = 8.0Hz, 4H), 6.50 (dd, J = 5.6Hz, 3.0Hz, 1H) ), 5.68 (d, J = 5.6Hz, 1H), 4.26 (d, J = 1.8Hz, 1H), 3.73 (s, 6H), 3.53 (t, J = 2) .4Hz, 1H), 2.47-2.64 (m, 1H), 1.37 (s, 3H).
Synthesis example 8
4-[[(T-Butyldimethylsilyl) oxy] methyl] -2-nitrobenzyl (377 mg, 1.05 mmol) obtained in Synthesis Example 6 was dissolved in methylene chloride (2.0 mL) and 10 at room temperature. After stirring for a minute, N-benzoyl-5'-O- (4,4'-dimethoxytritylyl) thymidin and 3'-benzoyl-5'-O- (4,4'-) obtained in Synthesis Example 7 were obtained. Mixture of dimethoxytritylyl) thymidin (521 mg, 0.81 mmol, N-Bz form: O-Bz form = 4: 1), tetrabutylammonium iodide (236 mg, 0.64 mmol), 1 M aqueous sodium hydroxide solution (1. A mixed solution of 62 mL, 1.62 mmol) and methylene chloride (6 mL) was added dropwise and reacted at room temperature for 3 hours. The reaction was diluted with dichloromethane (20 mL), washed with saturated brine (20 mL) and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was purified by flash silica gel column chromatography (toluene: ethyl acetate = 30: 1) to obtain a product (146 mg). Subsequently, the obtained product was dissolved in a 2M ethanol / methylene chloride solution of ammonia (16 mL, ethanol: methylene chloride = 2.5: 1), stirred at room temperature for 6.5 hours, and then the solvent was retained under reduced pressure. The residue obtained after removal was purified by flash silica gel column chromatography (hexane: ethyl acetate = 1: 1) to 3'-O- [4-[[(t-butyldimethylsilyl) oxy] methyl]-. 2-Nitro] benzyl-5'-O- (4,4'-dimethoxytritylyl) thymidin (46.7 mg, 2 steps 7%) was obtained as a colorless solid.

Figure 2021175393
Figure 2021175393

H NMR(400MHz,CDCl):δ8.05(brs,1H),7.98(brs,1H),7.68(d,J=8.0Hz,1H),7.59(d,J=4.6Hz,2H),7.39(d,J=8.6Hz,2H),7.21−7.31(m,7H),6.83(dd,J=8.9,1.2Hz,4H),6.39(dd,J=8.4,5.6Hz,1H),4.85(q,J=14.6Hz,2H),4.76(brs,2H),4.33(d,J=5.6Hz,1H),4.22(d,J=2.4Hz,1H),3.78(s,6H),3.52(dd,J=10.6,3.2Hz,1H),3.37(dd,J=10.6,3.2Hz,1H),2.53−2.58(m,1H),2.21−2.29(m,1H),1.47(d,J=0.8Hz,3H),0.95(s,9H),0.12(s,6H).
合成例9
合成例8で得た、3’−O−[4−[[(t−ブチルジメチルシリル)オキシ]メチル]−2−ニトロ]ベンジル−5’−O−(4,4’−ジメトキシトリチリル)チミジン(157mg,0.19mmol)のTHF(3.8mL)溶液に、フッ化テトラブチルアンモニウムの1M THF溶液(0.23mL,0.23mmol)を加えて0℃で2時間反応させた。酢酸エチル(20mL)で希釈し、飽和食塩水(20mL)で洗浄した。減圧下溶媒を留去して得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1→1:4)により精製することで、3’−O−[4−(ヒドロキシメチル)−2−ニトロ]ベンジル−5’−O−(4,4’−ジメトキシトリチリル)チミジン(124mg,92%)を無色オイル状で得た。
1 1 H NMR (400 MHz, CDCl 3 ): δ8.05 (brs, 1H), 7.98 (brs, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.59 (d, J) = 4.6Hz, 2H), 7.39 (d, J = 8.6Hz, 2H), 7.21-7.31 (m, 7H), 6.83 (dd, J = 8.9, 1. 2Hz, 4H), 6.39 (dd, J = 8.4,5.6Hz, 1H), 4.85 (q, J = 14.6Hz, 2H), 4.76 (brs, 2H), 4. 33 (d, J = 5.6Hz, 1H), 4.22 (d, J = 2.4Hz, 1H), 3.78 (s, 6H), 3.52 (dd, J = 10.6, 3) .2Hz, 1H), 3.37 (dd, J = 10.6, 3.2Hz, 1H), 2.53-2.58 (m, 1H), 2.21-2.29 (m, 1H) , 1.47 (d, J = 0.8Hz, 3H), 0.95 (s, 9H), 0.12 (s, 6H).
Synthesis example 9
3'-O- [4-[[(t-butyldimethylsilyl) oxy] methyl] -2-nitro] benzyl-5'-O- (4,4'-dimethoxytritylyl) obtained in Synthesis Example 8 To a solution of timidine (157 mg, 0.19 mmol) in THF (3.8 mL) was added a 1 M solution of tetrabutylammonium fluoride in THF (0.23 mL, 0.23 mmol), and the mixture was reacted at 0 ° C. for 2 hours. It was diluted with ethyl acetate (20 mL) and washed with saturated brine (20 mL). The residue obtained by distilling off the solvent under reduced pressure was purified by flash silica gel column chromatography (hexane: ethyl acetate = 1: 1 → 1: 4) to obtain 3'-O- [4- (hydroxymethyl). -2-Nitro] Benzyl-5'-O- (4,4'-dimethoxytritylyl) thymidine (124 mg, 92%) was obtained in the form of a colorless oil.

Figure 2021175393
Figure 2021175393

H NMR(400MHz,CDCl):δ8.10(d,J=1.4Hz,1H),7.91(brs,1H),7.70(d,J=8.0Hz,1H),7.61(dd,J=8.6,1.1Hz,2H),7.38(dd,J=7.0,1.5Hz,2H),7.31−7.20(m,7H),6.82(dd,J=8.9,3.4Hz,4H),6.39(dd,J=8.4,5.6Hz,1H),4.86(q,J=14.9Hz,2H),4.79(s,2H),4.31(d,J=5.9Hz,1H),4.23(d,J=2.5Hz,1H),3.79(s,6H),3.53(dd,J=10.6,2.7Hz,1H),3.35(dd,J=10.6,2.7Hz,1H),2.54(dq,J=13.6,5.4Hz,1H),2.17−2.28(m,1H),1.94(t,J=6.0Hz,1H),1.49(d,J=0.96Hz,3H).
合成例10
合成例9で得た、3’−O−[4−(ヒドロキシメチル)−2−ニトロ]ベンジル−5’−O−(4,4’−ジメトキシトリチリル)チミジン(130mg,0.18mmol)の塩化メチレン(3.6mL)溶液に対し無水コハク酸(22mg,0.21mmol)、トリエチルアミン(36mg,0.36mmol)および4−ジメチルアミノピリジン(22mg,0.18mmol)を加え室温で18時間反応させた。酢酸エチル(20mL)で希釈し、精製水(20mL)で洗浄した。減圧下溶媒を留去して生成物(78.2mg)を無色オイル状で得た。得られた生成物(21.6mg)のジメチルホルムアミド(3.6mL)溶液に対し3,4−ジヒドロ−3−ヒドロキシ−4−オキソ−1,2,3−ベンゾトリアジン(90mg,0.55mmol)および1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(70mg,0.37mmol)を加え室温で18時間反応させた。酢酸エチル(20mL)で希釈し、精製水(20mL)で洗浄した。減圧下溶媒を留去して得られた残渣をフラッシュシリカゲルカラムクロマトグラフィー(クロロホルム:酢酸エチル=3:1)により精製することで、3’−O−[[[[[4−(3,4−ジヒドロ−4−オキソ−1,2,3−ベンゾトリアジン)−3−イルオキシ]カルボニルエチル]カルボニル]オキシメチル]−2−ニトロ]ベンジル−5’−O−(4,4’−ジメトキシトリチリル)チミジン(65mg,2工程38%)を無色オイル状で得た。
1 1 H NMR (400 MHz, CDCl 3 ): δ8.10 (d, J = 1.4 Hz, 1H), 7.91 (brs, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7 .61 (dd, J = 8.6, 1.1Hz, 2H), 7.38 (dd, J = 7.0, 1.5Hz, 2H), 7.31-7.20 (m, 7H), 6.82 (dd, J = 8.9, 3.4Hz, 4H), 6.39 (dd, J = 8.4,5.6Hz, 1H), 4.86 (q, J = 14.9Hz, 2H), 4.79 (s, 2H), 4.31 (d, J = 5.9Hz, 1H), 4.23 (d, J = 2.5Hz, 1H), 3.79 (s, 6H) , 3.53 (dd, J = 10.6, 2.7Hz, 1H), 3.35 (dd, J = 10.6, 2.7Hz, 1H), 2.54 (dq, J = 13.6) , 5.4Hz, 1H), 2.17-2.28 (m, 1H), 1.94 (t, J = 6.0Hz, 1H), 1.49 (d, J = 0.96Hz, 3H) ..
Synthesis example 10
Of 3'-O- [4- (hydroxymethyl) -2-nitro] benzyl-5'-O- (4,4'-dimethoxytritylyl) thymidine (130 mg, 0.18 mmol) obtained in Synthesis Example 9. To a solution of methylene chloride (3.6 mL), succinic anhydride (22 mg, 0.21 mmol), triethylamine (36 mg, 0.36 mmol) and 4-dimethylaminopyridine (22 mg, 0.18 mmol) were added, and the mixture was reacted at room temperature for 18 hours. rice field. It was diluted with ethyl acetate (20 mL) and washed with purified water (20 mL). The solvent was evaporated under reduced pressure to give the product (78.2 mg) in the form of a colorless oil. 3,4-Dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (90 mg, 0.55 mmol) in a solution of the resulting product (21.6 mg) in dimethylformamide (3.6 mL). And 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (70 mg, 0.37 mmol) were added and reacted at room temperature for 18 hours. It was diluted with ethyl acetate (20 mL) and washed with purified water (20 mL). The residue obtained by distilling off the solvent under reduced pressure was purified by flash silica gel column chromatography (chloroform: ethyl acetate = 3: 1) to 3'-O-[[[[[4- (3,4). −Dihydro-4-oxo-1,2,3-benzotriazine) -3-yloxy] carbonyl ethyl] carbonyl] oxymethyl] -2-nitro] benzyl-5'-O- (4,4'-dimethoxytrityryl) ) Thymidine (65 mg, 38% in 2 steps) was obtained in the form of a colorless oil.

Figure 2021175393
Figure 2021175393

H NMR(400MHz,CDCl):δ8.36(dd,J=8.0,1.0Hz,1H),8.22(dd,J=8.2,0.48Hz,1H),8.08(dd,J=13.0,1.6Hz,1H),8.00(dt,J=7.4,1.4Hz,2H),7.84(dt,J=7.4,1.1Hz,1H),7.74(d,J=8.0,2.5Hz,1H),7.63(dd,J=8.0,1.7Hz,1H),7.59(d,J=1.1Hz,1H),7.38(dd,J=8.5,1.5Hz,2H),7.30
−7.21(m,7H),6.82(dd,J=8.9,2.0Hz,4H),6.39(dd,J=8.4,5.6Hz,1H),5.29(s,2H),5.24(s,1H),4.86(q,J=15.0Hz,2H),4.32(d,J=5.9Hz,1H),4.22(d,J=2.4Hz,1H),3.78(s,6H),3.52(dd,J=10.6,2.7Hz,1H),3.36(dd,J=10.6,2.7Hz,1H),3.13(t,J=6.6Hz,2H),2.91(t,J=6.6Hz,2H),2.50−2.58(m,1H),2.16−2.28(m,1H),1.48(d,J=1.0Hz,3H).
合成例11
1 1 H NMR (400 MHz, CDCl 3 ): δ8.36 (dd, J = 8.0, 1.0 Hz, 1H), 8.22 (dd, J = 8.2,0.48 Hz, 1H), 8. 08 (dd, J = 13.0, 1.6Hz, 1H), 8.00 (dt, J = 7.4, 1.4Hz, 2H), 7.84 (dt, J = 7.4,1. 1Hz, 1H), 7.74 (d, J = 8.0, 2.5Hz, 1H), 7.63 (dd, J = 8.0, 1.7Hz, 1H), 7.59 (d, J) = 1.1Hz, 1H), 7.38 (dd, J = 8.5, 1.5Hz, 2H), 7.30
-7.21 (m, 7H), 6.82 (dd, J = 8.9, 2.0Hz, 4H), 6.39 (dd, J = 8.4,5.6Hz, 1H), 5. 29 (s, 2H), 5.24 (s, 1H), 4.86 (q, J = 15.0Hz, 2H), 4.32 (d, J = 5.9Hz, 1H), 4.22 ( d, J = 2.4Hz, 1H), 3.78 (s, 6H), 3.52 (dd, J = 10.6, 2.7Hz, 1H), 3.36 (dd, J = 10.6) , 2.7Hz, 1H), 3.13 (t, J = 6.6Hz, 2H), 2.91 (t, J = 6.6Hz, 2H), 2.50-2.58 (m, 1H) , 2.16-2.28 (m, 1H), 1.48 (d, J = 1.0Hz, 3H).
Synthesis example 11

Figure 2021175393
Figure 2021175393

プラスチック製の遠沈管にAmino−SynBase CPG 1000/110 (LCAA)(LGC LINK Technologies社製)(400mg,ローディング量105μmol/g)を入れ固相合成器にセットし、合成例10で得た、3’−O−[[[[[4−(3,4−ジヒドロ−4−オキソ−1,2,3−ベンゾトリアジン)−3−イルオキシ]カルボニルエチル]カルボニル]オキシメチル]−2−ニトロ]ベンジル−5’−O−(4,4’−ジメトキシトリチリル)チミジン(61.6mg,64.5μmol)およびジイソプロピルエチルアミン(8.4mg,64.5μmol)のDMF溶液を加え室温で3日間反応させた。反応終了後吸引ろ過により固相を取り出し酢酸エチルで洗浄し乾燥させることで固相担持されたチミジン誘導体(349.5mg)を得た。チミジン誘導体の固相中のローディング量は100.5μmol/gであった。 Amino-SynBase CPG 1000/110 (LCAA) (manufactured by LGC LINK Technologies) (400 mg, loading amount 105 μmol / g) was placed in a plastic centrifuge tube and set in a solid phase synthesizer, and obtained in Synthesis Example 103. '-O-[[[[[4- (3,4-dihydro-4-oxo-1,2,3-benzotriazine) -3-yloxy] carbonylethyl] carbonyl] oxymethyl] -2-nitro] benzyl A DMF solution of -5'-O- (4,4'-dimethoxytritylyl) thymidine (61.6 mg, 64.5 μmol) and diisopropylethylamine (8.4 mg, 64.5 μmol) was added and reacted at room temperature for 3 days. .. After completion of the reaction, the solid phase was taken out by suction filtration, washed with ethyl acetate and dried to obtain a solid phase-supported thymidine derivative (349.5 mg). The loading amount of the thymidine derivative in the solid phase was 100.5 μmol / g.

以下、核酸増幅法としてTRC(Transcription−Reverse transcription Concerted)法を用いたときの実施例を用いて、本発
明をさらに詳細に説明するが、本発明はこれら例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples when the TRC (Transcription-Reverse Transcription Concerted) method is used as the nucleic acid amplification method, but the present invention is not limited to these examples.

実施例1 dATP濃度のTRC反応への影響
TRC法における、dATP添加濃度による検出時間への影響を調べた。
Example 1 Effect of dATP concentration on TRC reaction The effect of the dATP addition concentration on the detection time in the TRC method was investigated.

(1)C型肝炎ウイルス標準RNA(以下、単に標準RNAとも表記する)遺伝子が挿入されたプラスミドから、in vitro転写により、前記標準RNA(配列番号1)を調製した。当該標準RNAを注射用水を用いて10コピー/2μLとなるように希釈し、これをRNA試料とした。 (1) The standard RNA (SEQ ID NO: 1) was prepared by in vitro transcription from a plasmid into which a hepatitis C virus standard RNA (hereinafter, also simply referred to as standard RNA) gene was inserted. Diluted the standard RNA so that 10 3 copies / 2 [mu] L with water for injection, which was used as a RNA sample.

(2)以下の組成からなる反応液12μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した後、前記RNA試料2μLを添加した。なお標準RNA検出用プローブであるモレキュラービーコンプローブ(配列番号2)は、標準RNAの相同鎖の一部[配列番号1の108番目から123番目まで]を含む。また第一のプライマー(配列番号3)は、標準RNAの相補鎖の一部(具体的には配列番号1の125番目から145番目まで:配列番号5)の5’末端側にT7プロモーター配列(配列番号6)を付加したオリゴヌクレオチドである。 (2) After dispensing 12 μL of the reaction solution having the following composition into a 0.5 mL volume PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI), 2 μL of the RNA sample was added. The molecular beacon probe (SEQ ID NO: 2), which is a probe for detecting standard RNA, contains a part of the homologous strand of standard RNA [from 108th to 123rd of SEQ ID NO: 1]. The first primer (SEQ ID NO: 3) is a T7 promoter sequence (specifically, from 125th to 145th of SEQ ID NO: 1: SEQ ID NO: 5) on the 5'terminal side of a part of the complementary strand of standard RNA. It is an oligonucleotide to which SEQ ID NO: 6) is added.

反応液の組成:濃度は後述の開始剤添加後(20μL中)の最終濃度
66mM Tris−HCl緩衝液(pH8.36)
各0.33mM dCTP、dGTP、dTTP
各2.0mM ATP、CTP、GTP、UTP
3.3mM ITP
150mM トレハロース
50nM モレキュラービーコンプローブ(標準RNAの相同鎖の一部[配列番号1の108番目から123番目まで]を含む:配列番号2)
1.0μM 第一のプライマー(配列番号3)
1.0μM 第二のプライマー(標準RNAの相同鎖の一部[配列番号1の1番目から16番目まで]:配列番号4)
12.8U AMV逆転写酵素
166U T7 RNAポリメラーゼ
各種濃度(0から3300μM)のdATP
(3)上記の反応液を46℃で3分間保温後、以下の組成からなる開始剤6μLを添加した。
Composition of reaction solution: The concentration is the final concentration after addition of the initiator described below (in 20 μL) 66 mM Tris-HCl buffer (pH 8.36).
0.33 mM dCTP, dGTP, dTTP, respectively
2.0 mM ATP, CTP, GTP, UTP respectively
3.3 mM ITP
150 mM trehalose 50 nM molecular beacon probe (including a part of the homologous strand of standard RNA [from 108th to 123rd of SEQ ID NO: 1]: SEQ ID NO: 2)
1.0 μM first primer (SEQ ID NO: 3)
1.0 μM second primer (part of the homologous strand of standard RNA [1st to 16th of SEQ ID NO: 1]: SEQ ID NO: 4)
12.8U AMV reverse transcriptase 166U T7 RNA polymerase dATP at various concentrations (0 to 3300 μM)
(3) The above reaction solution was kept warm at 46 ° C. for 3 minutes, and then 6 μL of an initiator having the following composition was added.

開始剤の組成:濃度は開始剤添加後(20μL中)の最終濃度
18.4mM 塩化マグネシウム
90.0mM 塩化カリウム
0.1%(w/v) Tween 20(富士フイルム和光純薬社製)
9.0%(v/v) DMSO
2.5%(w/v) グリセロール
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃で反応させると同時に反応液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に30分間測定した。開始剤添加時を0分として、反応液の蛍光強度比(所定時間の蛍光強度値をバックグラウンドの蛍光強度比で割った値)が2.3を超えた時間を検出時間とした。
Initiator composition: The concentration is the final concentration after addition of the initiator (in 20 μL) 18.4 mM magnesium chloride 90.0 mM potassium chloride 0.1% (w / v) Tween 20 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
9.0% (v / v) DMSO
2.5% (w / v) glycerol (4) Using a fluorescence spectrophotometer with a temperature control function that can directly measure the PCR tube, react at 46 ° C. and at the same time, the fluorescence intensity of the reaction solution (excitation wavelength 470 nm, fluorescence). Wavelength 520 nm) was measured over time for 30 minutes. The time when the fluorescence intensity ratio of the reaction solution (the value obtained by dividing the fluorescence intensity value at a predetermined time by the fluorescence intensity ratio of the background) exceeded 2.3 was defined as 0 minutes when the initiator was added, and was defined as the detection time.

結果を表1に示す。反応液中のdATP濃度が165μM以上であれば、増幅反応への影響がないことがわかる。 The results are shown in Table 1. It can be seen that when the dATP concentration in the reaction solution is 165 μM or more, there is no effect on the amplification reaction.

Figure 2021175393
Figure 2021175393

実施例2 光分解性保護基のTRC反応への影響(その1)
dNTPに修飾する光分解性保護基のTRC反応への影響を調べた。
Example 2 Effect of photodegradable protecting group on TRC reaction (Part 1)
The effect of photodegradable protecting groups that modify dNTPs on the TRC reaction was investigated.

(1)文献記載(Nucleic Acids Research,35,6339−6349(2007))の合成法により、アデノシンの3’末端側ヒドロキシ基に光分解性保護基として2−ニトロベンジル基を修飾した、3’−O−(2−ニトロベンジル)−2’−デオキシアデノシンを合成した。 (1) The 3'terminal hydroxy group of adenosine was modified with a 2-nitrobenzyl group as a photodegradable protecting group by the synthetic method described in the literature (Nucleic Acids Research, 35, 6339-6349 (2007)), 3'. -O- (2-nitrobenzyl) -2'-deoxyadenosine was synthesized.

(2)(1)で合成した3’−O−(2−ニトロベンジル)−2’−デオキシアデノシンを含む溶液が一定の濃度となるようDMSOに溶解した。 (2) The solution containing 3'-O- (2-nitrobenzyl) -2'-deoxyadenosine synthesized in (1) was dissolved in DMSO to a constant concentration.

(3)以下の組成からなる反応液8μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した後、実施例1(1)で調製したRNA試料2μLを添加した。 (3) 8 μL of the reaction solution having the following composition was dispensed into a 0.5 mL volume PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI), and then 2 μL of the RNA sample prepared in Example 1 (1) was added. ..

反応液の組成:濃度は後述の開始剤添加後(20μL中)の最終濃度
66mM Tris−HCl緩衝液(pH8.36)
各0.33mM dATP、dCTP、dGTP、dTTP
各2.0mM ATP、CTP、GTP、UTP
3.3mM ITP
150mM トレハロース
50nM モレキュラービーコンプローブ(配列番号2)
1.0μM 第一のプライマー(配列番号3)
1.0μM 第二のプライマー(配列番号4)
12.8U AMV逆転写酵素
166U T7 RNAポリメラーゼ
(4)上記の反応液を46℃で3分間保温後、以下の組成からなる開始剤10μLを添加した。なお、DMSO濃度が実施例1(9%(v/v))とは異なる濃度となっているが、TRC反応への影響がないことは事前に確認済である。
Composition of reaction solution: The concentration is the final concentration after addition of the initiator described below (in 20 μL) 66 mM Tris-HCl buffer (pH 8.36).
0.33 mM dATP, dCTP, dGTP, dTTP, respectively
2.0 mM ATP, CTP, GTP, UTP respectively
3.3 mM ITP
150 mM trehalose 50 nM molecular beacon probe (SEQ ID NO: 2)
1.0 μM first primer (SEQ ID NO: 3)
1.0 μM second primer (SEQ ID NO: 4)
12.8U AMV reverse transcriptase 166UT7 RNA polymerase (4) The above reaction solution was kept warm at 46 ° C. for 3 minutes, and then 10 μL of an initiator having the following composition was added. Although the DMSO concentration is different from that of Example 1 (9% (v / v)), it has been confirmed in advance that there is no effect on the TRC reaction.

開始剤の組成:濃度は開始剤添加後(20μL中)の最終濃度
18.4mM 塩化マグネシウム
90.0mM 塩化カリウム
0.1%(w/v) Tween 20(富士フイルム和光純薬社製)
2.5%(w/v) グリセロール
10%(v/v) DMSO(光分解性保護基として0から100μM含む、(2)
で調製)
(5)実施例1(4)と同様な方法で測定し、検出時間を求めた。
Initiator composition: Concentration is the final concentration after addition of the initiator (in 20 μL) 18.4 mM magnesium chloride 90.0 mM potassium chloride 0.1% (w / v) Tween 20 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
2.5% (w / v) Glycerol 10% (v / v) DMSO (containing 0 to 100 μM as a photodegradable protecting group, (2)
Prepared with)
(5) The detection time was determined by measurement in the same manner as in Example 1 (4).

結果を表2に示す。光分解性保護基として2−ニトロベンジル基(o−ニトロベンジル基)を用いた場合、その濃度が50μM以下であれば、TRC反応への影響はないことがわかる。 The results are shown in Table 2. When a 2-nitrobenzyl group (o-nitrobenzyl group) is used as the photodegradable protecting group, it can be seen that if the concentration is 50 μM or less, there is no effect on the TRC reaction.

Figure 2021175393
Figure 2021175393

実施例3 光分解性保護基を修飾した2’−デオキシアデノシン三リン酸(dATP)のTRC反応への影響
(1)1.65mMの3’−O−(2−ニトロベンジル)−2’−デオキシアデノシン三リン酸(NB−dATP、合成例1で合成)溶液に対し、紫外光(波長365nm、強度700μW/cm)を1分間から40分間照射した。なお対照として未修飾のdATP溶液に対し、前記光源を40分間照射したもの、ならびに前記光源を照射しないNB−dATP溶液および未修飾のdATP溶液も用意した。
Example 3 Effect of 2'-deoxyadenosine triphosphate (dATP) modified with a photodegradable protecting group on the TRC reaction (1) 1.65 mM 3'-O- (2-nitrobenzyl) -2'- The deoxyadenosine triphosphate (NB-dATP, synthesized in Synthesis Example 1) solution was irradiated with ultraviolet light (wavelength 365 nm, intensity 700 μW / cm 2 ) for 1 to 40 minutes. As a control, an unmodified dATP solution irradiated with the light source for 40 minutes, an NB-dATP solution not irradiated with the light source, and an unmodified dATP solution were also prepared.

(2)以下の組成からなる反応液12μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した後、実施例1(1)で調製したRNA試料2μLを添加した。 (2) 12 μL of the reaction solution having the following composition was dispensed into a 0.5 mL volume PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI), and then 2 μL of the RNA sample prepared in Example 1 (1) was added. ..

反応液の組成:濃度は後述の開始剤添加後(20μL中)の最終濃度
66mM Tris−HCl緩衝液(pH8.36)
各0.33mM dCTP、dGTP、dTTP
各2.0mM ATP、CTP、GTP、UTP
3.3mM ITP
150mM トレハロース
50nM モレキュラービーコンプローブ(配列番号2)
1.0μM 第一のプライマー(配列番号3)
1.0μM 第二のプライマー(配列番号4)
12.8U AMV逆転写酵素
166U T7 RNAポリメラーゼ
0.33mM 照射または未照射のdATPもしくはNB−dATP((1)で調製)
(3)実施例1(3)と同様な方法で開始剤を添加後、実施例1(4)と同様な方法で測定し、検出時間を求めた。
Composition of reaction solution: The concentration is the final concentration after addition of the initiator described below (in 20 μL) 66 mM Tris-HCl buffer (pH 8.36).
0.33 mM dCTP, dGTP, dTTP, respectively
2.0 mM ATP, CTP, GTP, UTP respectively
3.3 mM ITP
150 mM trehalose 50 nM molecular beacon probe (SEQ ID NO: 2)
1.0 μM first primer (SEQ ID NO: 3)
1.0 μM second primer (SEQ ID NO: 4)
12.8U AMV reverse transcriptase 166U T7 RNA polymerase 0.33 mM irradiated or unirradiated dATP or NB-dATP (prepared with (1))
(3) After adding the initiator in the same manner as in Example 1 (3), the measurement was carried out in the same manner as in Example 1 (4) to determine the detection time.

dATP溶液もしくはNB−dATP溶液に対し、紫外光を未照射または1分間から40分間照射したときの結果を表3に、NB−dATP溶液に対し、紫外光を未照射または1分間から10分間照射したときの結果を表4に、それぞれ示す。反応液にdATPを添加したときは紫外光照射の有無によるTRC反応への影響はなかった(表3)。一方、反応液にNB−dATPを添加したときは、紫外光照射時間によりTRC反応への影響が変化した。紫外光未照射および照射時間0.017分以下では、未修飾dATPが、TRC
反応に必要な量、反応液に含まれていないため、TRC反応が進まなかった(表3および表4)。紫外光を0.5分間から5分間照射したときは、当該照射により生じた未修飾のdATPによりTRC反応が進行し、未修飾のdATPを添加したときと同等の検出時間となった(表3および表4)。紫外光を10分間以上照射したときは、当該照射により生じた光分解性保護基(2−ニトロベンジル基)によりTRC反応が阻害され、未修飾のdATPを添加したときよりも検出時間は遅くなった(表3および表4)。
Table 3 shows the results when the dATP solution or NB-dATP solution was not irradiated with ultraviolet light or was irradiated for 1 minute to 40 minutes. The NB-dATP solution was not irradiated with ultraviolet light or irradiated for 1 minute to 10 minutes. Table 4 shows the results of each of these cases. When dATP was added to the reaction solution, there was no effect on the TRC reaction depending on the presence or absence of ultraviolet light irradiation (Table 3). On the other hand, when NB-dATP was added to the reaction solution, the effect on the TRC reaction changed depending on the ultraviolet light irradiation time. When not irradiated with ultraviolet light and the irradiation time is 0.017 minutes or less, the unmodified dATP is TRC.
The TRC reaction did not proceed because the amount required for the reaction was not contained in the reaction solution (Tables 3 and 4). When ultraviolet light was irradiated for 0.5 to 5 minutes, the TRC reaction proceeded due to the unmodified dATP generated by the irradiation, and the detection time was equivalent to that when the unmodified dATP was added (Table 3). And Table 4). When irradiated with ultraviolet light for 10 minutes or more, the TRC reaction is inhibited by the photodegradable protecting group (2-nitrobenzyl group) generated by the irradiation, and the detection time is slower than when unmodified dATP is added. (Tables 3 and 4).

Figure 2021175393
Figure 2021175393

Figure 2021175393
Figure 2021175393

実施例4 NB−dATPを用いたTRC反応の光制御
dATPの代わりにNB−dATPを添加したTRC反応液を使用し、光照射によるTRC反応の制御効果を調べた。
Example 4 Optical control of TRC reaction using NB-dATP A TRC reaction solution to which NB-dATP was added instead of dATP was used, and the control effect of the TRC reaction by light irradiation was investigated.

(1)以下の組成からなる反応液12μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した後、実施例1(1)で調製したRNA試料2μLを添加した。 (1) After dispensing 12 μL of the reaction solution having the following composition into a 0.5 mL volume PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI), 2 μL of the RNA sample prepared in Example 1 (1) was added. ..

反応液の組成:濃度は後述の開始剤添加後(20μL中)の最終濃度
66mM Tris−HCl緩衝液(pH8.36)
各0.33mM dCTP、dGTP、dTTP
各2.0mM ATP、CTP、GTP、UTP
3.3mM ITP
150mM トレハロース
50nM モレキュラービーコンプローブ(配列番号2)
1.0μM 第一のプライマー(配列番号3)
1.0μM 第二のプライマー(配列番号4)
12.8U AMV逆転写酵素
166U T7 RNAポリメラーゼ
0.33mM dATPまたはNB−dATP
(2)上記の反応液を46℃で3分間保温後、実施例1(3)の記載の組成からなる開始剤6μLを添加した。保温の際には、46℃の保温機に、紫外光(波長365nm、強度700μW/cm)照射時間分ずらして保温を始め、検討しているPCRチューブへの紫外光照射が同時に終わるようにした。
Composition of reaction solution: The concentration is the final concentration after addition of the initiator described below (in 20 μL) 66 mM Tris-HCl buffer (pH 8.36).
0.33 mM dCTP, dGTP, dTTP, respectively
2.0 mM ATP, CTP, GTP, UTP respectively
3.3 mM ITP
150 mM trehalose 50 nM molecular beacon probe (SEQ ID NO: 2)
1.0 μM first primer (SEQ ID NO: 3)
1.0 μM second primer (SEQ ID NO: 4)
12.8U AMV reverse transcriptase 166U T7 RNA polymerase 0.33 mM dATP or NB-dATP
(2) The above reaction solution was kept warm at 46 ° C. for 3 minutes, and then 6 μL of the initiator having the composition described in Example 1 (3) was added. When keeping warm, start keeping warm by shifting the irradiation time of ultraviolet light (wavelength 365 nm, intensity 700 μW / cm 2 ) to a warmer at 46 ° C, so that the irradiation of ultraviolet light to the PCR tube under consideration ends at the same time. bottom.

(3)紫外光照射終了後、実施例1(4)と同様な方法で測定し、検出時間を求めた。なお検出時間の0分は保温機から蛍光分光光度計へ移動した時点としている。 (3) After the completion of the ultraviolet light irradiation, the measurement was carried out in the same manner as in Example 1 (4), and the detection time was determined. The detection time of 0 minutes is the time when the thermometer is moved to the fluorescence spectrophotometer.

結果を表5に示す。紫外光を照射しないときは、反応液に未修飾dATPがないためTRC反応が進まなかった。紫外光を1分照射したときは、当該光照射により反応液に未修飾dATPが存在するものの、その量が少ないため、反応時間は約25分と遅かった。紫外光を1.5分間から4分間照射したときは、当該照射により生じた未修飾のdATPによりTRC反応が進行し、紫外光照射時間を合わせても11分前後で検出できた。紫外光を5分間以上照射したときは、当該照射により生じた光分解性保護基(2−ニトロベンジル基)によりTRC反応が阻害され、未検出となった。本結果より、反応液に含まれるデオキシヌクレオシド三リン酸のうち、少なくとも一つ(本実施例ではデオキシアデノシン三リン酸)を光分解性保護基で修飾することで、TRC反応を光で制御できることがわか
る。
The results are shown in Table 5. When not irradiated with ultraviolet light, the TRC reaction did not proceed because there was no unmodified dATP in the reaction solution. When the reaction solution was irradiated with ultraviolet light for 1 minute, the reaction time was as slow as about 25 minutes due to the presence of unmodified dATP in the reaction solution due to the small amount of the unmodified dATP. When the ultraviolet light was irradiated for 1.5 to 4 minutes, the TRC reaction proceeded due to the unmodified dATP generated by the irradiation, and the UV light irradiation time could be detected in about 11 minutes. When ultraviolet light was irradiated for 5 minutes or more, the TRC reaction was inhibited by the photodegradable protecting group (2-nitrobenzyl group) generated by the irradiation, and the TRC reaction was not detected. From this result, the TRC reaction can be controlled by light by modifying at least one of the deoxynucleoside triphosphates contained in the reaction solution (deoxyadenosine triphosphate in this example) with a photodegradable protecting group. I understand.

Figure 2021175393
Figure 2021175393

実施例5 光分解性保護基のTRC反応への影響(その2)
実施例2から4では光分解性保護基として2−ニトロベンジル基を用いたが、本実験では同様に光分解性保護基として利用できる3−(ジエチルアミノ)ベンジル基について、TRC反応への影響を調べた。
Example 5 Effect of photodegradable protecting group on TRC reaction (Part 2)
In Examples 2 to 4, 2-nitrobenzyl group was used as a photodegradable protecting group, but in this experiment, the effect of 3- (diethylamino) benzyl group, which can also be used as a photodegradable protecting group, on the TRC reaction was observed. Examined.

(1)合成例2から3により、アデノシンの3’末端側ヒドロキシ基に光分解性保護基として3−(ジエチルアミノ)ベンジル基を修飾した、3’−O−[3−(ジエチルアミノ)ベンジル]−2’−デオキシアデノシンを合成した。 (1) According to Synthesis Examples 2 to 3, the 3'-terminal hydroxy group of adenosine was modified with a 3- (diethylamino) benzyl group as a photodegradable protecting group, and 3'-O- [3- (diethylamino) benzyl]- 2'-deoxyadenosine was synthesized.

(2)(1)で合成した3’−O−[3−(ジエチルアミノ)ベンジル]−2’−デオキシアデノシンを含む溶液が一定の濃度となるようDMSOに溶解した。 (2) The solution containing 3'-O- [3- (diethylamino) benzyl] -2'-deoxyadenosine synthesized in (1) was dissolved in DMSO to a constant concentration.

(3)実施例2(3)に記載の組成からなる反応液8μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した後、実施例1(1)で調製したRNA試料2μLを添加した。 (3) Prepared in Example 1 (1) after dispensing 8 μL of the reaction solution having the composition described in Example 2 (3) into a 0.5 mL volume PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI). 2 μL of the RNA sample was added.

(4)上記の反応液を46℃で3分間保温後、以下の組成からなる開始剤10μLを添加した。 (4) The above reaction solution was kept warm at 46 ° C. for 3 minutes, and then 10 μL of an initiator having the following composition was added.

開始剤の組成:濃度は開始剤添加後(20μL中)の最終濃度
18.4mM 塩化マグネシウム
90.0mM 塩化カリウム
0.1%(w/v) Tween 20(富士フイルム和光純薬社製)
2.5%(w/v) グリセロール
10%(v/v) DMSO(光分解性保護基として0から200μM含む、(2)で調製)
(5)実施例1(4)と同様な方法で測定し、検出時間を求めた。
Initiator composition: The concentration is the final concentration after addition of the initiator (in 20 μL) 18.4 mM magnesium chloride 90.0 mM potassium chloride 0.1% (w / v) Tween 20 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
2.5% (w / v) Glycerol 10% (v / v) DMSO (containing 0 to 200 μM as a photodegradable protecting group, prepared in (2))
(5) The detection time was determined by measurement in the same manner as in Example 1 (4).

結果を表6に示す。光分解性保護基としてジエチルアミノベンジル基を用いた場合、少なくともその濃度が200μMまでであれば、TRC反応への影響はないことがわかる。 The results are shown in Table 6. It can be seen that when a diethylaminobenzyl group is used as the photodegradable protecting group, there is no effect on the TRC reaction as long as the concentration is at least 200 μM.

Figure 2021175393
Figure 2021175393

実施例6 光分解性保護基修飾プライマーを用いたTRC反応の光制御
(1)合成例11で得た、固相担持されたチミジン誘導体を用いて、3’末端(49番目)のチミジンの3’位のヒドロキシ基を光分解性保護基で修飾した、配列番号7に記載のヌクレオチド配列からなる第一のプライマー(以下、単に「光分解性保護基修飾プライマー」とも表記する)を合成した(ジーンデザイン社に委託)。なお配列番号7に記載の配列からなる第一のプライマーのうち、5’末端側28塩基はT7プロモーター配列(配列番号6)である。合成品はHPLCを用いて精製し、エレクトロスプレーイオン化質量分析装置(ESI−MS)で分子量を確認後、TEバッファーで100μMに希釈された状態で、−20℃で保管した。
Example 6 Photocontrol of TRC reaction using photodegradable protecting group-modified primer (1) Using the solid-phase-supported thymidine derivative obtained in Synthesis Example 11, 3'-terminal (49th) thymidine 3 A first primer consisting of the nucleotide sequence shown in SEQ ID NO: 7 in which the hydroxy group at the'position'was modified with a photodegradable protecting group (hereinafter, also simply referred to as "photodegradable protecting group-modifying primer") was synthesized (hereinafter, also referred to as "photoresolvable protecting group modifying primer"). Outsourced to Gene Design). Of the first primer consisting of the sequence shown in SEQ ID NO: 7, 28 bases on the 5'end side are the T7 promoter sequence (SEQ ID NO: 6). The synthetic product was purified by HPLC, and after confirming the molecular weight with an electrospray ionization mass spectrometer (ESI-MS), it was diluted to 100 μM with TE buffer and stored at −20 ° C.

(2)以下の組成からなる反応液8μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した。 (2) 8 μL of the reaction solution having the following composition was dispensed into a 0.5 mL volume PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI).

反応液の組成:濃度は後述の開始剤添加後(20μL中)の最終濃度
0.1%(w/v) Tween 20(富士フイルム和光純薬社製)
66mM Tris−HCl緩衝液(pH8.36)
2.5%(w/v) グリセロール
各0.33mM dATP、dCTP、dGTP、dTTP
各2.0mM ATP、CTP、GTP、UTP
3.3mM ITP
94.5mM トレハロース
50nM モレキュラービーコンプローブ(配列番号2)
1.0μM 第二のプライマー(配列番号4)
45.4U AMV逆転写酵素
100U T7 RNAポリメラーゼ
(3)注射用水を用いて10μMに調製した、(1)で合成した光分解性保護基修飾プライマー溶液、または(光分解性保護基による修飾のない)配列番号7に記載のヌクレオチド配列からなる第一のプライマー溶液を、紫外光未照射(紫外光照射時間0分)の状態で、上記の反応液に2μL添加した(後述の開始剤添加後の最終濃度として1μM)。
Composition of reaction solution: The concentration is the final concentration of 0.1% (w / v) after the addition of the initiator described later (in 20 μL) Tween 20 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
66 mM Tris-HCl buffer (pH 8.36)
2.5% (w / v) glycerol 0.33 mM dATP, dCTP, dGTP, dTTP, respectively
2.0 mM ATP, CTP, GTP, UTP respectively
3.3 mM ITP
94.5 mM trehalose 50 nM molecular beacon probe (SEQ ID NO: 2)
1.0 μM second primer (SEQ ID NO: 4)
45.4U AMV Reverse Transcriptase 100UT7 RNA polymerase (3) Photodegradable protecting group-modified primer solution synthesized in (1) prepared to 10 μM using water for injection, or (without modification by photodegradable protecting group) ) 2 μL of the first primer solution consisting of the nucleotide sequence shown in SEQ ID NO: 7 was added to the above reaction solution without irradiation with ultraviolet light (ultraviolet light irradiation time: 0 minutes) (after the addition of the initiator described later). 1 μM as the final concentration).

(4)(3)で調製した10μM 光分解性保護基修飾プライマー溶液に、紫外光照射装置(Omnicure LX405S UV LED スポット硬化装置、サンエイテック社製)を用いて、紫外光(波長365nm、強度1mW/cm)を1分間または10分間照射した。照射後のプライマー溶液2μLを上記の反応液に添加した。 (4) The 10 μM photodegradable protecting group-modified primer solution prepared in (3) was subjected to ultraviolet light (wavelength 365 nm, intensity 1 mW) using an ultraviolet light irradiation device (Omnicure LX405S UV LED spot curing device, manufactured by Sanei Tech Co., Ltd.). / Cm 2 ) was irradiated for 1 minute or 10 minutes. 2 μL of the irradiated primer solution was added to the above reaction solution.

(5)標準RNA(配列番号1)をTEバッファー(0.01%(w/v)コール酸添加)を用いて10コピー/2μLとなるように希釈後、上記(3)および(4)で調製した、プライマー溶液を添加した反応液に2μLずつ添加した。 (5) Standard RNA (SEQ ID NO: 1) TE buffer (0.01% (w / v) cholate added) after diluted to 105 copies / 2 [mu] L using the above (3) and (4) 2 μL was added to the reaction solution to which the primer solution was added, which was prepared in 1.

(6)標準RNA添加後、反応液を46℃で3分間保温し、同様に46℃で3分間保温した実施例1(3)に記載の組成からなる開始剤8μLを添加した。 (6) After the addition of the standard RNA, the reaction solution was kept warm at 46 ° C. for 3 minutes, and 8 μL of the initiator having the composition described in Example 1 (3), which was also kept warm at 46 ° C. for 3 minutes, was added.

(7)実施例1(4)と同様な方法で測定し、検出時間を求めた。 (7) The detection time was determined by measurement in the same manner as in Example 1 (4).

結果を表7に示す。紫外線照射時間0分の結果から、(1)で合成した光分解性保護基修飾プライマーを第一のプライマーとして用いると、光分解性保護基による修飾のない第一のプライマーを用いたときと比較し、検出時間が約1分遅れていることがわかる。このことからプライマーの3’末端のデオキシリボヌクレオチドを光分解性保護基で修飾することで、TRC反応を阻害できることがわかる。一方、(1)で合成した光分解性保護基修飾プライマーを第一のプライマーとして用いたとしても、紫外光を1分間または10分間照射し、前記保護基を分解させると、前記修飾のない第一のプライマーを用いたときと同等の検出時間になった。このことから、プライマーの3’末端のデオキシリボヌクレオチドを光分解性保護基で修飾することで、TRC反応を光で制御できることがわかる。 The results are shown in Table 7. From the result of the ultraviolet irradiation time of 0 minutes, when the photodegradable protecting group-modified primer synthesized in (1) was used as the first primer, it was compared with the case where the first primer not modified by the photodegradable protecting group was used. However, it can be seen that the detection time is delayed by about 1 minute. From this, it can be seen that the TRC reaction can be inhibited by modifying the deoxyribonucleotide at the 3'end of the primer with a photodegradable protecting group. On the other hand, even if the photodegradable protecting group-modified primer synthesized in (1) is used as the first primer, when the protective group is decomposed by irradiating with ultraviolet light for 1 minute or 10 minutes, the unmodified first primer is used. The detection time was equivalent to that when one primer was used. From this, it can be seen that the TRC reaction can be controlled by light by modifying the deoxyribonucleotide at the 3'end of the primer with a photodegradable protecting group.

Figure 2021175393
Figure 2021175393

実施例7 TRC反応の光制御に伴うTRC反応性への影響
実施例6では、第一のプライマーのみに紫外光を照射したが、本実験では、第一のプライマーを含めた反応液に紫外光を照射し、当該照射によるTRC反応への影響を調べた。
Example 7 Effect of TRC reaction on TRC reactivity due to light control In Example 6, only the first primer was irradiated with ultraviolet light, but in this experiment, the reaction solution containing the first primer was exposed to ultraviolet light. Was irradiated, and the effect of the irradiation on the TRC reaction was investigated.

(1)実施例6(2)に記載の組成からなる反応液8μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した。 (1) 8 μL of the reaction solution having the composition described in Example 6 (2) was dispensed into a 0.5 mL volume PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI).

(2)実施例6(3)で調製した、10μM 光分解性保護基修飾プライマー(配列番号7)溶液または(光分解性保護基による修飾のない)第一のプライマー(配列番号7)溶液を、上記の反応液に2μLずつ添加した(後述の開始剤添加後の最終濃度として1μM)。 (2) A 10 μM photodegradable protecting group-modified primer (SEQ ID NO: 7) solution or a first primer (SEQ ID NO: 7) solution (without modification by a photodegradable protecting group) prepared in Example 6 (3). , 2 μL each was added to the above reaction solution (1 μM as the final concentration after the addition of the initiator described later).

(3)標準RNA(配列番号1)をTEバッファー(0.01%(w/v)コール酸添加)を用いて10コピー/2μLとなるように希釈後、上記(2)で調製した、プライマー溶液を添加した反応液に2μLずつ添加した。 (3) after diluted to 105 copies / 2 [mu] L using standard RNA (SEQ ID NO: 1) TE buffer (0.01% (w / v) cholate added) were prepared in the above (2), 2 μL was added to the reaction solution to which the primer solution was added.

(4)標準RNA添加後、反応液を46℃で3分間保温し、同様に46℃で3分間保温した実施例1(3)に記載の組成からなる開始剤8μLを添加後、紫外光(波長365nm、強度1mw/cm)を1分間照射した。 (4) After adding the standard RNA, the reaction solution was kept warm at 46 ° C. for 3 minutes, and 8 μL of the initiator having the composition according to Example 1 (3) was similarly kept warm at 46 ° C. for 3 minutes, and then ultraviolet light (4). The wavelength was 365 nm and the intensity was 1 mw / cm 2 ) for 1 minute.

(5)実施例1(4)と同様な方法で測定し、検出時間を求めた。 (5) The detection time was determined by measurement in the same manner as in Example 1 (4).

結果を表8に示す。反応液全体に紫外光を照射しても、実施例6と同等の検出時間であった。このことから反応液全体に紫外光を照射しても、TRC反応への影響はないことがわかる。 The results are shown in Table 8. Even if the entire reaction solution was irradiated with ultraviolet light, the detection time was the same as in Example 6. From this, it can be seen that even if the entire reaction solution is irradiated with ultraviolet light, there is no effect on the TRC reaction.

Figure 2021175393
Figure 2021175393

Claims (8)

RNA依存性DNAポリメラーゼ活性を有する酵素と、DNA依存性DNAポリメラー
ゼ活性を有する酵素と、リボヌクレアーゼH(RNase H)活性を有する酵素と、D
NA依存性RNAポリメラーゼ活性を有する酵素と、標的核酸の一部と相補的な配列を有
する第一のプライマーと、標的核酸の一部と相同的な配列を有する第二のプライマーと、
リボヌクレオシド三リン酸と、デオキシヌクレオシド三リン酸とを含む、前記標的核酸の
増幅試薬(ただし、前記第一のプライマーおよび前記第二のプライマーのいずれか一方に
は、その5’末端側に前記RNAポリメラーゼ活性を有する酵素のプロモータ配列を付加
している)であって、
下記<1>および<2>のうち、少なくともいずれか一つの態様を満たす、前記標的核酸の光制御増幅試薬:
<1>前記第一および/または前記第二のプライマーが、該プライマーの3’末端のデオキシリボヌクレオチドが光分解性保護基で修飾されている下記一般式(0)で表されるプライマー、
Figure 2021175393
なお一般式(0)中、Zは第一または第二のプライマーを構成するオリゴデオキシリボヌクレオチドを表し、Xは下記式(2)から(5)のいずれかの核酸塩基を表す。
Figure 2021175393
そしてYは下記一般式(7)で表されるo−ニトロベンジル基
Figure 2021175393
(一般式(7)中、X、X、XおよびXは各々独立に水素原子、炭素数1から6のアルキル基またはヒドロキシメチル基を表す。)
または下記一般式(6)で表される3−(ジアルキルアミノ)ベンジル基を表す。
Figure 2021175393
(一般式(6)中、RおよびRは各々独立に炭素数1から8のアルキル基を表す。または、RおよびRはそれらが結合する窒素原子と一体となって5から7員環の複素環を形成してもよい。RおよびRは各々独立に水素原子、炭素数1から6のアルキル基またはフェニル基を表す。)
<2>前記デオキシヌクレオシド三リン酸を構成する、デオキシアデノシン三リン酸、デオキシチミジン三リン酸、デオキシグアノシン三リン酸およびデオキシシチジン三リン酸のうち、少なくともいずれか一つが光分解性保護基で修飾されている下記一般式(1)で表される光応答性デオキシヌクレオシド三リン酸。
Figure 2021175393
なお一般式(1)中、Xは下記式(2)から(5)のいずれかの核酸塩基を表す。
Figure 2021175393
そしてYは下記一般式(7)で表されるo−ニトロベンジル基
Figure 2021175393
(一般式(7)中、X、X、XおよびXは各々独立に水素原子、炭素数1から6のアルキル基またはヒドロキシメチル基を表す。)
または下記一般式(6)で表される3−(ジアルキルアミノ)ベンジル基を表す。
Figure 2021175393
(一般式(6)中、RおよびRは各々独立に炭素数1から8のアルキル基を表す。または、RおよびRはそれらが結合する窒素原子と一体となって5から7員環の複素環を形成してもよい。RおよびRは各々独立に水素原子、炭素数1から6のアルキル基またはフェニル基を表す。)
An enzyme having RNA-dependent DNA polymerase activity, an enzyme having DNA-dependent DNA polymerase activity, an enzyme having ribonuclease H (RNase H) activity, and D
An enzyme having NA-dependent RNA polymerase activity, a first primer having a sequence complementary to a part of the target nucleic acid, and a second primer having a sequence homologous to a part of the target nucleic acid.
An amplification reagent for the target nucleic acid, comprising ribonucleoside triphosphate and deoxynucleoside triphosphate (provided that either the first primer or the second primer has the 5'terminal side thereof. The primer sequence of the enzyme having RNA polymerase activity is added).
Photocontrolled amplification reagent of the target nucleic acid satisfying at least one of the following <1> and <2>:
<1> The primer represented by the following general formula (0), wherein the first and / or the second primer is a primer in which the deoxyribonucleotide at the 3'end of the primer is modified with a photodegradable protecting group.
Figure 2021175393
In the general formula (0), Z represents an oligodeoxyribonucleotide constituting the first or second primer, and X represents a nucleobase according to any of the following formulas (2) to (5).
Figure 2021175393
And Y is an o-nitrobenzyl group represented by the following general formula (7).
Figure 2021175393
(In the general formula (7), X 1 , X 2 , X 3 and X 4 independently represent a hydrogen atom and an alkyl group or a hydroxymethyl group having 1 to 6 carbon atoms, respectively.)
Alternatively, it represents a 3- (dialkylamino) benzyl group represented by the following general formula (6).
Figure 2021175393
(In general formula (6), R 1 and R 2 each independently represent an alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 are integrated with the nitrogen atom to which they are bonded to 5 to 7. A heterocyclic ring of members may be formed. R 3 and R 4 independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.)
<2> At least one of deoxyadenosine triphosphate, deoxythymidine triphosphate, deoxyguanosine triphosphate and deoxycytidine triphosphate constituting the deoxynucleoside triphosphate is a photodegradable protective group. A modified photoresponsive deoxynucleoside triphosphate represented by the following general formula (1).
Figure 2021175393
In the general formula (1), X represents any of the nucleobases of the following formulas (2) to (5).
Figure 2021175393
And Y is an o-nitrobenzyl group represented by the following general formula (7).
Figure 2021175393
(In the general formula (7), X 1 , X 2 , X 3 and X 4 independently represent a hydrogen atom and an alkyl group or a hydroxymethyl group having 1 to 6 carbon atoms, respectively.)
Alternatively, it represents a 3- (dialkylamino) benzyl group represented by the following general formula (6).
Figure 2021175393
(In general formula (6), R 1 and R 2 each independently represent an alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 are integrated with the nitrogen atom to which they are bonded to 5 to 7. A heterocyclic ring of members may be formed. R 3 and R 4 independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.)
標的核酸がDNAおよび/またはRNAである、請求項1に記載の標的核酸の光制御増幅試薬。 The photocontrolled amplification reagent for a target nucleic acid according to claim 1, wherein the target nucleic acid is DNA and / or RNA. 請求項1または2に記載の標的核酸の光制御増幅試薬を用いて標的核酸を増幅する方法であって、光照射により標的核酸の増幅反応を開始することを特徴とする標的核酸の増幅方法。 A method for amplifying a target nucleic acid using the photo-controlled amplification reagent for the target nucleic acid according to claim 1 or 2, wherein the amplification reaction for the target nucleic acid is started by irradiation with light. 標的核酸がRNAである請求項3に記載の標的核酸の増幅方法。 The method for amplifying a target nucleic acid according to claim 3, wherein the target nucleic acid is RNA. RNAの増幅方法が、NASBA法、TMA法またはTRC法のいずれかの方法である、請求項4に記載のRNAの増幅方法。 The method for amplifying RNA according to claim 4, wherein the method for amplifying RNA is any of the NASBA method, the TMA method, and the TRC method. RNAの増幅方法が、TRC法である、請求項5に記載のRNAの増幅方法。 The method for amplifying RNA according to claim 5, wherein the method for amplifying RNA is the TRC method. 請求項1または2に記載の光制御増幅試薬と、増幅した標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブとを含む、前記標的核酸の検出試薬。 The target nucleic acid comprising the photocontrolled amplification reagent according to claim 1 or 2 and an oligonucleotide probe whose fluorescence characteristics change when a complementary double strand is formed with a part of the amplified target nucleic acid as compared with that before the formation. Detection reagent. 請求項7に記載の標的核酸の検出試薬を用いて標的核酸を増幅する方法であって、光照射により標的核酸の増幅反応を開始し、増幅した標的核酸を検出することを特徴とする標的核酸の検出方法。 A method for amplifying a target nucleic acid using the target nucleic acid detection reagent according to claim 7, wherein the amplification reaction of the target nucleic acid is started by light irradiation to detect the amplified target nucleic acid. Detection method.
JP2021071848A 2020-04-23 2021-04-21 Photo-controlled amplification reagent, photo-controlled amplification method and detection method for target nucleic acid Pending JP2021175393A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020076488 2020-04-23
JP2020076488 2020-04-23

Publications (1)

Publication Number Publication Date
JP2021175393A true JP2021175393A (en) 2021-11-04

Family

ID=78300074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021071848A Pending JP2021175393A (en) 2020-04-23 2021-04-21 Photo-controlled amplification reagent, photo-controlled amplification method and detection method for target nucleic acid

Country Status (1)

Country Link
JP (1) JP2021175393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253563A1 (en) * 2022-03-29 2023-10-04 Miltenyi Biotec B.V. & Co. KG Photo-responsive oligonucleotides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253563A1 (en) * 2022-03-29 2023-10-04 Miltenyi Biotec B.V. & Co. KG Photo-responsive oligonucleotides

Similar Documents

Publication Publication Date Title
US10059986B2 (en) Reversible terminator molecules and methods of their use
CN106117288B (en) The reversible terminator of disulfide bond connection
CA2622649C (en) Nucleic acid amplification method using primer exhibiting exciton effect
CN105377869B (en) The nucleosides or nucleotide of modification
US7256019B2 (en) Terminal phosphate blocked nucleoside polyphosphates
US8268978B2 (en) Modified oligonucleotides and applications thereof
CA2774344C (en) Terminal-phosphate-labeled nucleotides and methods of use
Kumar et al. Terminal phosphate labeled nucleotides: synthesis, applications, and linker effect on incorporation by DNA polymerases
JP4713514B2 (en) Improved labeling reagent
JP2008526877A (en) Reversible nucleotide terminator and use thereof
JP4370385B2 (en) Primer, primer set, nucleic acid amplification method and mutation detection method using the same
US7408051B2 (en) Modified oligonucleotides and applications thereof
CN112739781A (en) Dual conjugate markers and methods of use
JP2021175393A (en) Photo-controlled amplification reagent, photo-controlled amplification method and detection method for target nucleic acid
JP2021175736A (en) Photoresponsive deoxyribonucleoside triphosphate
US7118871B2 (en) Reagents for monitoring nucleic acid amplification and methods of using same
JP2001502665A (en) Heterocyclic compounds and their use in nucleic acid detection
WO2020214589A1 (en) Modified nucleotides and methods for dna and rna polymerization and sequencing
US20220389049A1 (en) Reversible terminators for dna sequencing and methods of using the same
US20170159112A1 (en) Amplified isothermal detection of polynucleotides with atp release
US7759469B2 (en) Labeling reagent
JP4150166B2 (en) High density labeling of DNA using modified polymerases or nucleotides with chromophores and DNA polymerase
US20230332197A1 (en) Nucleosides and nucleotides with 3&#39; vinyl blocking group
EP1546399B1 (en) Terminal phosphate blocked nucleoside polyphosphates
EP1700922B1 (en) 3-Substituted 5-Nitroindole derivatives and labeled oligonucleotide probes containing them

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240311