JP2021175360A - Human-powered generator - Google Patents
Human-powered generator Download PDFInfo
- Publication number
- JP2021175360A JP2021175360A JP2020089211A JP2020089211A JP2021175360A JP 2021175360 A JP2021175360 A JP 2021175360A JP 2020089211 A JP2020089211 A JP 2020089211A JP 2020089211 A JP2020089211 A JP 2020089211A JP 2021175360 A JP2021175360 A JP 2021175360A
- Authority
- JP
- Japan
- Prior art keywords
- human
- vibration
- power generation
- powered generator
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Transmission Devices (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
本発明は、人力によって電力を生み出す装置に関するものである。 The present invention relates to a device that generates electric power by human power.
従来の人力発電機には、自転車の回転運動あるいは歩行により、発電できるという容易さがある。 Conventional human-powered generators have the ease of being able to generate electricity by rotating or walking a bicycle.
しかしながら、筋力だけに頼るこれらの方式では、100Wを超える電力を得ることは難しく、実用的な発電機とは言えなかった。本発明は、人間の力をバネと組み合わせることで、大きな発電ができる人力発電機を提供することを目的とする。 However, with these methods that rely only on muscle strength, it is difficult to obtain electric power exceeding 100 W, and it cannot be said that it is a practical generator. An object of the present invention is to provide a human-powered generator capable of generating a large amount of power by combining human power with a spring.
この目的のため、本発明は、人間の体をおもりにしたバネ・マス系において、屈伸や跳躍などの人間の体重移動を、振動運動の固有周期に合わせて、タイミング良く外力として与えて共振を引き起こすことを考える。共振で増大したこの振動運動を、発電機によって電気に変換する。 For this purpose, in the spring-mass system with the human body as the weight, the present invention applies human weight movement such as bending and stretching and jumping as an external force in a timely manner according to the natural period of vibrational motion to cause resonance. Think about causing. This vibrational motion increased by resonance is converted into electricity by a generator.
代表的なバネ振動機構として、図3に示す遊具(ホッピング)があり、これらのバネ機構には、一定周期で振動を繰り返す性質がある。年少者が、うまくこの遊具に乗れないのは、この固有周期を無視して、動かそうとするからで、年長者は、この周期に体重移動を合わせることで、振動を大きくすることができるようになる。人間のこの能力を活用すれば、筋力だけに頼らずに効率よく発電ができる。この手段を、記載すると以下の項目のようになる。 As a typical spring vibration mechanism, there is a playset (hopping) shown in FIG. 3, and these spring mechanisms have a property of repeating vibration at regular intervals. The reason why young people can't ride this playset well is because they ignore this natural cycle and try to move it, so that older people can increase the vibration by adjusting the weight shift to this cycle. become. By utilizing this ability of human beings, it is possible to generate electricity efficiently without relying solely on muscle strength. The description of this means is as follows.
(項目1)
人間の体重移動に伴って振動するバネ振動機構と、その力を伝達する伝達機構および、その力を受けて発電を行う発電機構からなる人力発電機である。(Item 1)
It is a human power generator consisting of a spring vibration mechanism that vibrates with the movement of human weight, a transmission mechanism that transmits the force, and a power generation mechanism that receives the force to generate electricity.
(項目2)
前記伝達機構に、ラック・ピニオン機構を使用しており、前記振動機構の振動に伴って、ピニオンが正逆転し、発電機構に回転力を伝達する。(Item 2)
A rack and pinion mechanism is used for the transmission mechanism, and the pinion reverses forward and reverse with the vibration of the vibration mechanism to transmit a rotational force to the power generation mechanism.
(項目3)
前記伝達機構に、ボールねじ機構を使用しており、前記振動機構の振動で、ボールねじ機構のボールナットが直線運動し、ねじ軸を回転させ、発電機構に回転力を伝達する。(Item 3)
A ball screw mechanism is used for the transmission mechanism, and the vibration of the vibration mechanism causes the ball nut of the ball screw mechanism to move linearly, rotate the screw shaft, and transmit the rotational force to the power generation mechanism.
(項目4)
前記伝達機構の出力部にワンウェイ・クラッチを設けて、回転が一方向のみになるようにした。(Item 4)
A one-way clutch is provided in the output section of the transmission mechanism so that the rotation can be performed in only one direction.
この方法によれば、ホッピングで跳ねるように、屈伸や跳躍などの体重移動による力をタイミング良く振動機構に与えることが出来るので、比較的小さな力で、発電機構に大きな力が伝達でき、数百Wの発電を持続させることが可能になる。 According to this method, the force due to weight movement such as bending and stretching and jumping can be applied to the vibration mechanism in a timely manner as if it bounces by hopping, so a large force can be transmitted to the power generation mechanism with a relatively small force, and several hundreds. It becomes possible to sustain the power generation of W.
))
以下、本発明の実施の形態を、添付の図に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying figures.
図3は市販されている遊具の振動機構1である。人間が踏板に乗って、適切なタイミングで体重移動すると、共振が起こり大きな跳躍が可能になる。
バネを使った振動機構1の固有周期Tは、人間の質量M、バネ定数Kから下記のように表せる。FIG. 3 is a vibration mechanism 1 of a commercially available playset. When a person rides on a tread and shifts his weight at the right time, resonance occurs and a large jump is possible.
The natural period T of the vibration mechanism 1 using a spring can be expressed as follows from the human mass M and the spring constant K.
人間は、これらの固有周期を、体の感覚によって体得することができるため、体重移動を適切に行って、大きな跳躍を達成できる。体重移動による位置エネルギーWは、跳躍者の質量をm、重力加速度をg、重心位置移動量をhとすると、下記となる。 Since human beings can acquire these natural cycles by the senses of the body, they can appropriately move their weight and achieve a large jump. The potential energy W due to weight movement is as follows, where m is the mass of the jumper, g is the gravitational acceleration, and h is the amount of movement of the center of gravity.
この式から体重50kgの跳躍者の一回の重心移動量が1mとすると、位置エネルギーの増加は、Mgh=50・9.8・1=490J=490Wsばね定数を調整することにより、固有周期を1.6秒にすると、490Ws÷1.6s=300Wとなり、これが発電機に与えられる平均パワーになる。 From this equation, assuming that the amount of movement of the center of gravity of a jumper with a weight of 50 kg is 1 m, the increase in potential energy can be determined by adjusting the spring constant of Mgh = 50.9.8.1 = 490J = 490Ws. In 1.6 seconds, 490 Ws ÷ 1.6 s = 300 W, which is the average power given to the generator.
ホッピングは、器具全体が飛び上がる構造になっているが、室内での使用を考え、図1のように、全体を支持台において、バネと踏板部分のみが振動する構造に変える。そうすると、人間が乗るだけのスペースで良いので、30cm×30cm程度の面積に設置できる。
図1に示すように、振動機構1は、支持台、バネ、踏板、支持棒、ハンドルから構成され、伝達機構3は、ラック・ピニオンで構成される。踏板上での体重移動は、踏板の振動となり、踏板上のピニオンが床に固定されたラックによって回され、それが発電機構2に回転運動を与える。The hopping has a structure in which the entire device jumps up, but considering the use indoors, the whole is changed to a structure in which only the spring and the tread are vibrated on the support base as shown in FIG. Then, since the space for a human to ride is sufficient, it can be installed in an area of about 30 cm × 30 cm.
As shown in FIG. 1, the vibration mechanism 1 is composed of a support base, a spring, a tread plate, a support rod, and a handle, and the transmission mechanism 3 is composed of a rack and pinion. The weight shift on the tread becomes vibration of the tread, and the pinion on the tread is rotated by a rack fixed to the floor, which gives a rotational motion to the power generation mechanism 2.
図2は、本発明の第2実施形態である。これは、伝達機構3として、ボールねじを使用するものである。踏板の振動によって、ボールナットが移動し、それがボールねじとボールねじに連結した発電機構2に回転を与える。 FIG. 2 is a second embodiment of the present invention. This uses a ball screw as the transmission mechanism 3. The vibration of the tread plate causes the ball nut to move, which gives rotation to the ball screw and the power generation mechanism 2 connected to the ball screw.
図4は、発電機構2の例を二種類、正逆回転で発電機を回す方法と、一方向回転で発電機を回す方法を示している。踏板の上下振動は、回転に変換すると、正逆回転になる。最初の方法は、正逆回転でそのまま発電し、交流出力を整流して直流に変換し、平滑化してバッテリーに充電する。第二の方法は、正逆回転をワンウェイ・クラッチで一方向回転に変換して、発電機に入力し、その直流出力を平滑化して、バッテリーを充電する方法である。 FIG. 4 shows two types of examples of the power generation mechanism 2, a method of rotating the generator by forward and reverse rotation and a method of rotating the generator by unidirectional rotation. When the vertical vibration of the tread is converted into rotation, it becomes forward / reverse rotation. The first method is to generate electricity as it is by rotating forward and reverse, rectify the AC output, convert it to DC, smooth it, and charge the battery. The second method is to convert forward / reverse rotation into one-way rotation with a one-way clutch, input it to a generator, smooth the DC output, and charge the battery.
))
1 振動機構
2 発電機構
3 伝達機構1 Vibration mechanism 2 Power generation mechanism 3 Transmission mechanism
Claims (4)
請求項1に記載の人力発電機。A rack and pinion mechanism is used for the transmission mechanism, and the pinion reverses forward and reverse with the vibration of the vibration mechanism to transmit the rotational force to the power generation mechanism.
The human-powered generator according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020089211A JP2021175360A (en) | 2020-04-17 | 2020-04-17 | Human-powered generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020089211A JP2021175360A (en) | 2020-04-17 | 2020-04-17 | Human-powered generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021175360A true JP2021175360A (en) | 2021-11-01 |
Family
ID=78280149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020089211A Pending JP2021175360A (en) | 2020-04-17 | 2020-04-17 | Human-powered generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021175360A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7240693B1 (en) | 2022-08-01 | 2023-03-16 | 株式会社アントレックス | power transmission device |
-
2020
- 2020-04-17 JP JP2020089211A patent/JP2021175360A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7240693B1 (en) | 2022-08-01 | 2023-03-16 | 株式会社アントレックス | power transmission device |
JP2024019917A (en) * | 2022-08-01 | 2024-02-14 | 株式会社アントレックス | power transmission device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fan et al. | A lightweight biomechanical energy harvester with high power density and low metabolic cost | |
Xie et al. | An unpowered flexible lower limb exoskeleton: Walking assisting and energy harvesting | |
TWI469884B (en) | The design of the shock absorbing system for energy recycling | |
US20100283264A1 (en) | Impact Powered Devices | |
Xie et al. | Knee-braced energy harvester: Reclaim energy and assist walking | |
JP2021175360A (en) | Human-powered generator | |
KR20150133867A (en) | Portable self-generation device | |
Liu et al. | Comparison of negative-muscle-work energy harvesters from the human ankle: Different designs and trade-offs | |
Chan et al. | Knee energy harvester with variable transmission to reduce the effect on the walking gait | |
Martin et al. | Generating electricity while walking with a medial–lateral oscillating load carriage device | |
Sriramdas et al. | Human gait energy harvesting through decoupled suspended load backpacks | |
KR200381106Y1 (en) | Self-generating system having health bicycle | |
Mostafavi et al. | An efficient design of an energy harvesting backpack for remote applications | |
Liu et al. | Energy harvesting from ankle: Generating electricity by harvesting negative work | |
CN108757843A (en) | A kind of driving mechanism and the rehabilitation wheelchair for being equipped with the driving mechanism | |
US20140265334A1 (en) | Energy generator powered by gym facility | |
Khan et al. | Self-energy sustainable playgrounds for children | |
KR101700650B1 (en) | Stepper sporting apparatus which having a independent electricity generator | |
US20140001764A1 (en) | Human-Powered Electrical Generating Device | |
CN108938231B (en) | Rehabilitation training wheelchair and intelligent rehabilitation system thereof | |
JP7157962B2 (en) | electromechanical device | |
Wang et al. | Energy harvesting from horizontal and vertical backpack movements during walking | |
Deshmukh et al. | Design and development of human operated flywheel to generate electricity | |
Gothane et al. | „Foot step power generation‟ | |
Saeed et al. | SMART BICEPS MACHINE |