JP2021173585A - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
JP2021173585A
JP2021173585A JP2020076261A JP2020076261A JP2021173585A JP 2021173585 A JP2021173585 A JP 2021173585A JP 2020076261 A JP2020076261 A JP 2020076261A JP 2020076261 A JP2020076261 A JP 2020076261A JP 2021173585 A JP2021173585 A JP 2021173585A
Authority
JP
Japan
Prior art keywords
detection
signal
frequency
phase
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020076261A
Other languages
Japanese (ja)
Inventor
吉隆 笹子
Yoshitaka Sasako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A R P Co Ltd
Original Assignee
A R P Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A R P Co Ltd filed Critical A R P Co Ltd
Priority to JP2020076261A priority Critical patent/JP2021173585A/en
Publication of JP2021173585A publication Critical patent/JP2021173585A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a measurement device and a measurement method that can perform accurate measurement with a simplified structure.SOLUTION: An aspect of the present invention is a measurement device including a detection unit including a pair of detection electrodes, a signal generation unit that generates a detection AC signal with a predetermined frequency and varies the frequency of the detection AC signal in a predetermined range, a phase shift unit that includes an LC circuit including a coil and a capacitor, is connected to the pair of detection electrodes, and shifts the phase of the detection AC signal in accordance with the frequency, a phase comparison unit that obtains the phase difference between the detection AC signal and the signal with the phase shifted by the phase shift unit, and a calculation unit that determines the frequency of the detection AC signal where the phase difference obtained by the phase comparison unit is 90° to be a reference frequency, obtains a resistance component between the pair of detection electrodes in accordance with the change quantity of the phase difference obtained by the phase comparison unit when the frequency of the detection AC signal is changed in a predetermined range with the reference frequency as a center, and obtains a capacity component between the pair of detection electrodes in accordance with the reference frequency.SELECTED DRAWING: Figure 1

Description

本発明は測定装置および測定方法に関し、より詳しくは、土壌などの測定対象物の電気伝導度や水分量を検出する測定装置および測定方法に関するものである。 The present invention relates to a measuring device and a measuring method, and more particularly to a measuring device and a measuring method for detecting the electric conductivity and the amount of water of a measurement object such as soil.

測定対象物の物理量を測定する装置として、特許文献1には、燃料の導電率の変化や電源電圧の変化に対して影響を受けず、精度が良く大量生産に適した燃料の誘電率検知装置が開示される。また、特許文献2には、単純な手段を用い、信頼性の高い識別により、同一範囲で感知でき、かつ、鉄金属物と非鉄金属物とを識別することができる誘導型近接感知器が開示される。 As a device for measuring a physical quantity of an object to be measured, Patent Document 1 describes a fuel dielectric constant detection device that is not affected by changes in fuel conductivity or power supply voltage, has good accuracy, and is suitable for mass production. Is disclosed. Further, Patent Document 2 discloses an inductive proximity detector capable of detecting a ferrous metal object and a non-ferrous metal object in the same range by using a simple means and by highly reliable identification. Will be done.

特許文献3には、アルコール混合燃料の電気伝導度の大小に関わらず精度よく混合燃料中のアルコール混合率を検出する燃料の混合比率検知装置が開示される。特許文献4には、トナー濃度などの透磁率検知の動作を安定して実施するとともに、透磁率検知の感度を向上させる透磁率検知装置が開示される。 Patent Document 3 discloses a fuel mixing ratio detecting device that accurately detects the alcohol mixing ratio in the mixed fuel regardless of the magnitude of the electric conductivity of the alcohol mixed fuel. Patent Document 4 discloses a magnetic permeability detecting device that stably performs an operation of detecting magnetic permeability such as toner concentration and improves the sensitivity of magnetic permeability detection.

また、特許文献5には、リアルタイムに近い迅速性を備え、特定の生体の数を簡便に検出する、生体の定量方法および定量装置が開示される。特許文献6には、溶媒中に該溶媒に溶解しない不溶成分を分散した分散系において、溶媒に含まれるイオン性の溶質の濃度を特定する濃度特定方法が開示される。 Further, Patent Document 5 discloses a quantification method and a quantification device for a living body, which has a speed close to real time and easily detects a specific number of living bodies. Patent Document 6 discloses a concentration specifying method for specifying the concentration of an ionic solute contained in a solvent in a dispersion system in which an insoluble component insoluble in the solvent is dispersed in the solvent.

特開平05−126778号公報Japanese Unexamined Patent Publication No. 05-126778 特開平07−294489号公報Japanese Unexamined Patent Publication No. 07-294489 特開平07−306172号公報Japanese Unexamined Patent Publication No. 07-306172 特開2002−296240号公報Japanese Unexamined Patent Publication No. 2002-296240 特開2007−071766号公報JP-A-2007-071766 国際公開WO2011/158812International release WO2011 / 158812

土壌などの媒質を対象物として電気伝導度や水分量を測定する装置において電気信号を利用する場合、数メガヘルツ(MHz)から100MHzやマイクロ波といった高い周波数の信号を用いることが多い。このため、回路の複雑化や高周波対策が必要であり、コスト高になりやすく、消費電力も増加しやすい。また、電気伝導度や水分量を測定する場合、互いの値が影響しあうと、それぞれの値を独立して正確に測定することが困難となる。 When an electric signal is used in a device for measuring electric conductivity or water content in a medium such as soil, a high frequency signal such as several megahertz (MHz) to 100 MHz or a microwave is often used. For this reason, it is necessary to complicate the circuit and take measures against high frequencies, which tends to increase the cost and increase the power consumption. In addition, when measuring electrical conductivity and water content, if the values affect each other, it becomes difficult to measure each value independently and accurately.

本発明は、構成の簡素化とともに正確な測定を行うことができる測定装置および測定方法を提供することを目的とする。 An object of the present invention is to provide a measuring device and a measuring method capable of performing accurate measurement while simplifying the configuration.

上記課題を解決するため、本発明の一態様は、一対の検知電極を有する検知部と、所定周波数の検知用交流信号を発生し、検知用交流信号の周波数を所定範囲で可変する信号発生部と、コイルおよびコンデンサによるLC回路を有し、一対の検知電極と接続され、周波数に応じて検知用交流信号の位相をシフトさせる位相シフト部と、検知用交流信号と、位相シフト部で位相シフトした信号との位相差を求める位相比較部と、位相比較部で求めた位相差が90°となる検知用交流信号の周波数を基準周波数として、基準周波数を中心とした所定範囲で検知用交流信号の周波数を変化させた際の位相比較部で求めた位相差の変化量に応じて一対の検知電極間の抵抗成分を求める計算部と、を備えた測定装置である。 In order to solve the above problems, one aspect of the present invention is a detection unit having a pair of detection electrodes and a signal generation unit that generates a detection AC signal of a predetermined frequency and changes the frequency of the detection AC signal within a predetermined range. A phase shift unit that has an LC circuit with a coil and a capacitor, is connected to a pair of detection electrodes, and shifts the phase of the detection AC signal according to the frequency, a detection AC signal, and a phase shift unit. The detection AC signal is set in a predetermined range centered on the reference frequency, with the frequency of the detection AC signal at which the phase difference obtained by the phase comparison unit is 90 ° as the reference frequency and the phase comparison unit that obtains the phase difference from the signal. It is a measuring device provided with a calculation unit for obtaining a resistance component between a pair of detection electrodes according to the amount of change in the phase difference obtained by the phase comparison unit when the frequency of the above is changed.

このような構成によれば、検知用交流信号と、位相シフト部で位相シフトした信号との位相差が90°となる基準周波数では、一対の検知電極間の抵抗成分にかかわらず位相差が90°となる。また、基準周波数を中心とした所定範囲の周波数変化に対する位相差の変化量は、一対の検知電極間の容量成分にかかわらず抵抗成分に応じて変化する。このため、基準周波数を中心とした所定範囲で検知用交流信号の周波数を変化させた際の位相差の変化量によって、一対の検知電極間の容量成分に影響を受けずに抵抗成分を得ることができる。 According to such a configuration, at the reference frequency where the phase difference between the detection AC signal and the signal whose phase is shifted by the phase shift portion is 90 °, the phase difference is 90 regardless of the resistance component between the pair of detection electrodes. It becomes °. Further, the amount of change in the phase difference with respect to the frequency change in a predetermined range centered on the reference frequency changes according to the resistance component regardless of the capacitance component between the pair of detection electrodes. Therefore, the resistance component is obtained without being affected by the capacitance component between the pair of detection electrodes by the amount of change in the phase difference when the frequency of the detection AC signal is changed within a predetermined range centered on the reference frequency. Can be done.

上記測定装置において、位相差の変化量と測定対象物の電気伝導度との関係を示す電気伝導度データを記憶する記憶部をさらに備え、計算部は、記憶部に記憶された電気伝導度データを参照して、位相差に対応する電気伝導度を出力するようにしてもよい。これにより、一対の検知電極間の容量成分に影響を受けずに電気伝導度を得ることができる。 The measuring device further includes a storage unit for storing electrical conductivity data indicating the relationship between the amount of change in the phase difference and the electrical conductivity of the object to be measured, and the calculation unit is the electrical conductivity data stored in the storage unit. The electrical conductivity corresponding to the phase difference may be output with reference to. As a result, electrical conductivity can be obtained without being affected by the capacitance component between the pair of detection electrodes.

本実施形態の一態様は、一対の検知電極を有する検知部と、所定周波数の検知用交流信号を発生し、検知用交流信号の周波数を所定範囲で可変する信号発生部と、コイルおよびコンデンサによるLC回路を有し、一対の検知電極と接続され、周波数に応じて検知用交流信号の位相をシフトさせる位相シフト部と、検知用交流信号と、位相シフト部で位相シフトした信号との位相差を求める位相比較部と、位相比較部で求めた位相差が90°となる検知用交流信号の周波数を基準周波数として、基準周波数に応じて一対の検知電極間の容量成分を求める計算部と、を備えた測定装置である。 One aspect of the present embodiment includes a detection unit having a pair of detection electrodes, a signal generation unit that generates a detection AC signal of a predetermined frequency and changes the frequency of the detection AC signal within a predetermined range, and a coil and a capacitor. A phase shift unit having an LC circuit, connected to a pair of detection electrodes, and shifting the phase of the detection AC signal according to the frequency, and a phase difference between the detection AC signal and the phase-shifted signal in the phase shift unit. A phase comparison unit that obtains It is a measuring device equipped with.

このような構成によれば、検知用交流信号と、位相シフト部で位相シフトした信号との位相差が90°となる基準周波数が、一対の検知電極間の抵抗成分にかかわらず容量成分に応じてシフトすることになる。このため、基準周波数を求めることで一対の検知電極間の抵抗成分に影響を受けずに容量成分を得ることができる。 According to such a configuration, the reference frequency at which the phase difference between the detection AC signal and the phase-shifted signal at the phase shift portion is 90 ° depends on the capacitance component regardless of the resistance component between the pair of detection electrodes. Will shift. Therefore, by obtaining the reference frequency, the capacitance component can be obtained without being affected by the resistance component between the pair of detection electrodes.

上記測定装置において、基準周波数と測定対象物の水分量との関係を示す水分量データを記憶する記憶部をさらに備え、計算部は、記憶部に記憶された水分量データを参照して、求めた基準周波数に対応する水分量を出力するようにしてもよい。これにより、一対の検知電極間の抵抗成分に影響を受けずに水分量を得ることができる。 The measuring device further includes a storage unit that stores water content data indicating the relationship between the reference frequency and the water content of the object to be measured, and the calculation unit obtains the water content data by referring to the water content data stored in the storage unit. The amount of water corresponding to the reference frequency may be output. As a result, the amount of water can be obtained without being affected by the resistance component between the pair of detection electrodes.

上記測定装置において、信号発生部は、1メガヘルツ(MHz)以下で周波数を変えながら検知用交流信号を位相シフト部へ供給することが好ましい。このように、1MHz以下の信号によって測定できるため、回路の複雑化が抑制され、過度な高周波対策が不要となる。 In the above measuring device, it is preferable that the signal generation unit supplies the detection AC signal to the phase shift unit while changing the frequency at 1 megahertz (MHz) or less. As described above, since the measurement can be performed by a signal of 1 MHz or less, the complexity of the circuit is suppressed, and excessive high frequency countermeasures are not required.

本発明の一態様は、測定対象物に一対の検知電極を接触させて測定対象物の物理量を測定する方法であって、所定周波数の検知用交流信号を発生し、検知用交流信号の周波数を所定範囲で可変する工程と、一対の検知電極間の容量成分および抵抗成分、並びに周波数に応じて検知用交流信号の位相をシフトさせる工程と、検知用交流信号と、位相がシフトした信号との位相差が90°となる検知用交流信号の周波数を基準周波数として、基準周波数を中心とした所定範囲で検知用交流信号の周波数を変化させた際の位相差の変化量に応じて一対の検知電極間の抵抗成分を求める工程と、を備えた測定方法である。 One aspect of the present invention is a method of measuring a physical quantity of a measurement object by bringing a pair of detection electrodes into contact with the measurement object, generating a detection AC signal having a predetermined frequency, and determining the frequency of the detection AC signal. A step of varying within a predetermined range, a step of shifting the phase of the detection AC signal according to the capacitance component and resistance component between the pair of detection electrodes, and the frequency, a detection AC signal, and a phase-shifted signal. A pair of detections according to the amount of change in the phase difference when the frequency of the detection AC signal is changed within a predetermined range centered on the reference frequency, with the frequency of the detection AC signal having a phase difference of 90 ° as the reference frequency. This is a measurement method including a step of obtaining a resistance component between electrodes.

このような構成によれば、検知用交流信号と、この検知用交流信号の位相シフト信号との位相差が90°となる基準周波数では、一対の検知電極間の抵抗成分にかかわらず位相差が90°となる。また、基準周波数を中心とした所定範囲の周波数変化に対する位相差の変化量は、一対の検知電極間の容量成分にかかわらず抵抗成分に応じて変化する。このため、基準周波数を中心とした所定範囲で検知用交流信号の周波数を変化させた際の位相差の変化量によって、一対の検知電極間の容量成分に影響を受けずに抵抗成分を得ることができる。 According to such a configuration, at the reference frequency where the phase difference between the detection AC signal and the phase shift signal of the detection AC signal is 90 °, the phase difference is large regardless of the resistance component between the pair of detection electrodes. It becomes 90 °. Further, the amount of change in the phase difference with respect to the frequency change in a predetermined range centered on the reference frequency changes according to the resistance component regardless of the capacitance component between the pair of detection electrodes. Therefore, the resistance component is obtained without being affected by the capacitance component between the pair of detection electrodes by the amount of change in the phase difference when the frequency of the detection AC signal is changed within a predetermined range centered on the reference frequency. Can be done.

上記測定方法において、抵抗成分を求める工程は、予め求められた位相差の変化量と測定対象物の電気伝導度との関係に基づき、位相差に対応する電気伝導度を出力するようにしてもよい。これにより、一対の検知電極間の容量成分に影響を受けずに電気伝導度を得ることができる。 In the above measurement method, in the step of obtaining the resistance component, the electric conductivity corresponding to the phase difference may be output based on the relationship between the amount of change in the phase difference obtained in advance and the electric conductivity of the object to be measured. good. As a result, electrical conductivity can be obtained without being affected by the capacitance component between the pair of detection electrodes.

本発明の一態様は、測定対象物に一対の検知電極を接触させて測定対象物の物理量を測定する方法であって、所定周波数の検知用交流信号を発生し、検知用交流信号の周波数を所定範囲で可変する工程と、一対の検知電極間の容量成分および抵抗成分、並びに周波数に応じて検知用交流信号の位相をシフトさせる工程と、検知用交流信号と、位相がシフトした信号との位相差が90°となる検知用交流信号の周波数を基準周波数として、基準周波数に応じて一対の検知電極間の容量成分を求める工程と、を備えた測定方法である。 One aspect of the present invention is a method of measuring a physical quantity of a measurement object by bringing a pair of detection electrodes into contact with the measurement object, generating a detection AC signal having a predetermined frequency, and determining the frequency of the detection AC signal. A step of varying within a predetermined range, a step of shifting the phase of the detection AC signal according to the capacitance component and resistance component between the pair of detection electrodes, and the frequency, a detection AC signal, and a phase-shifted signal. This is a measurement method including a step of obtaining a capacitance component between a pair of detection electrodes according to a reference frequency, with the frequency of a detection AC signal having a phase difference of 90 ° as a reference frequency.

このような構成によれば、検知用交流信号と、この検知用交流信号の位相シフト信号との位相差が90°となる基準周波数が、一対の検知電極間の抵抗成分にかかわらず容量成分に応じてシフトすることになる。このため、基準周波数を求めることで一対の検知電極間の抵抗成分に影響を受けずに容量成分を得ることができる。 According to such a configuration, the reference frequency at which the phase difference between the detection AC signal and the phase shift signal of the detection AC signal is 90 ° becomes a capacitance component regardless of the resistance component between the pair of detection electrodes. It will shift accordingly. Therefore, by obtaining the reference frequency, the capacitance component can be obtained without being affected by the resistance component between the pair of detection electrodes.

上記測定方法において、容量成分を求める工程は、予め求められた基準周波数と測定対象物の水分量との関係に基づき、基準周波数に対応する水分量を出力するようにしてもよい。これにより、一対の検知電極間の抵抗成分に影響を受けずに水分量を得ることができる。 In the above measuring method, in the step of obtaining the capacitance component, the water content corresponding to the reference frequency may be output based on the relationship between the reference frequency obtained in advance and the water content of the measurement object. As a result, the amount of water can be obtained without being affected by the resistance component between the pair of detection electrodes.

上記測定方法において、検知用交流信号の周波数は1MHz以下であることが好ましい。このように、1MHz以下の信号によって測定できるため、回路の複雑化が抑制され、過度な高周波対策が不要となる。 In the above measurement method, the frequency of the detection AC signal is preferably 1 MHz or less. As described above, since the measurement can be performed by a signal of 1 MHz or less, the complexity of the circuit is suppressed, and excessive high frequency countermeasures are not required.

本発明によれば、構成の簡素化とともに正確な測定を行うことができる測定装置および測定方法を提供することが可能になる。 According to the present invention, it is possible to provide a measuring device and a measuring method capable of performing accurate measurement while simplifying the configuration.

本実施形態に係る測定装置の構成を例示する回路図である。It is a circuit diagram which illustrates the structure of the measuring apparatus which concerns on this embodiment. (a)および(b)は、アナログ乗算器を使用した位相比較部を例示する図である。(A) and (b) are diagrams illustrating a phase comparison unit using an analog multiplier. (a)および(b)は、コンパレータを使用した位相比較部を例示する図である。(A) and (b) are diagrams illustrating a phase comparison unit using a comparator. 本実施形態に係る測定装置の測定原理を説明する等価回路図である。It is an equivalent circuit diagram explaining the measurement principle of the measuring apparatus which concerns on this embodiment. 位相差θの周波数特性を例示する図である。It is a figure which illustrates the frequency characteristic of a phase difference θ. 位相差θの周波数特性を例示する図(拡大図)である。It is a figure (enlarged view) which illustrates the frequency characteristic of a phase difference θ. 抵抗成分Rをパラメータとして位相差特性を電圧(検波電圧)に変換する回路例を示す図である。It is a figure which shows the circuit example which converts the phase difference characteristic into a voltage (detection voltage) with a resistance component RL as a parameter. 図7に示す回路例において抵抗成分Rをパラメータとした検波電圧Vmの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the detection voltage Vm with the resistance component RL as a parameter in the circuit example shown in FIG. 7. 容量成分Cをパラメータとして位相差特性を電圧(検波電圧)に変換する回路例を示す図である。It is a figure which shows the circuit example which converts the phase difference characteristic into a voltage (detection voltage) with the capacitance component C 2 as a parameter. 図9に示す回路例において容量成分Cをパラメータとした検波電圧Vmの周波数特性を示す図である。Is a diagram showing a frequency characteristic of the detection voltage Vm in which the capacitive component C 2 as a parameter in the circuit example shown in FIG. 溶液のEC値をパラメータとした検波電圧Vmの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the detection voltage Vm with the EC value of a solution as a parameter. 検波電圧Vmの変化からEC値を求める方法を説明する図である。It is a figure explaining the method of obtaining the EC value from the change of the detection voltage Vm. Vx(Vm)とEC値との関係を示す図である。It is a figure which shows the relationship between Vx (Vm) and EC value. 基準周波数fcと水分量との関係を示す図である。It is a figure which shows the relationship between the reference frequency fc and the water content. 他の回路例を示す図である。It is a figure which shows the other circuit example. 容量成分Cをパラメータとした出力信号の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the output signal with the capacitance component C 2 as a parameter. 抵抗成分Rをパラメータとした出力信号の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the output signal with the resistance component RL as a parameter.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same members are designated by the same reference numerals, and the description of the members once described will be omitted as appropriate.

(測定装置の構成)
図1は、本実施形態に係る測定装置の構成を例示する回路図である。
図1に示すように、本実施形態に係る測定装置1は、測定対象物Wの抵抗成分や容量成分を求める装置である。例えば、測定対象物Wが土壌である場合、測定装置1は抵抗成分に基づき電気伝導度(EC値とも言う。)を求め、容量成分から水分量を求める装置として適用される。
(Measuring device configuration)
FIG. 1 is a circuit diagram illustrating the configuration of the measuring device according to the present embodiment.
As shown in FIG. 1, the measuring device 1 according to the present embodiment is a device for obtaining a resistance component and a capacitance component of the measurement object W. For example, when the object W to be measured is soil, the measuring device 1 is applied as a device for obtaining the electric conductivity (also referred to as an EC value) based on the resistance component and obtaining the water content from the volume component.

測定装置1は、一対の検知電極11、12を有する検知部10と、所定周波数の検知用交流信号を発生する信号発生部20と、検知用交流信号の位相をシフトさせる位相シフト部30と、位相差を求める位相比較部40と、測定結果を求める計算部50とを備える。測定装置1では、検知部10の一対の検知電極11、12の間に測定対象物Wを配置したり、測定対象物Wに一対の検知電極11、12を差し込んだりすることで、測定対象物Wの抵抗成分や容量成分を求める。 The measuring device 1 includes a detection unit 10 having a pair of detection electrodes 11 and 12, a signal generation unit 20 that generates a detection AC signal of a predetermined frequency, and a phase shift unit 30 that shifts the phase of the detection AC signal. A phase comparison unit 40 for obtaining a phase difference and a calculation unit 50 for obtaining a measurement result are provided. In the measuring device 1, the measurement object W is arranged between the pair of detection electrodes 11 and 12 of the detection unit 10, or the pair of detection electrodes 11 and 12 are inserted into the measurement object W to measure the object. Obtain the resistance component and capacitance component of W.

検知部10の一対の検知電極11、12は、導通性を有する材料で構成した平行平板でもよいし、平行棒(丸棒、角柱棒など)であってもよい。一例として、本実施形態では、長さ20ミリメートル(mm)、幅2mm、厚さ2mm、電極間距離10mmのステンレス板を検知電極11、12として用いている。
検知部10には温度計15が設けられていてもよい。温度計15で測定した温度は計算部50へ送られ、演算の補正などに用いられる。
The pair of detection electrodes 11 and 12 of the detection unit 10 may be parallel flat plates made of a conductive material, or may be parallel bars (round bars, prism bars, etc.). As an example, in the present embodiment, stainless steel plates having a length of 20 mm (mm), a width of 2 mm, a thickness of 2 mm, and a distance between electrodes of 10 mm are used as the detection electrodes 11 and 12.
The detection unit 10 may be provided with a thermometer 15. The temperature measured by the thermometer 15 is sent to the calculation unit 50 and used for correction of calculation and the like.

信号発生部20は、所定周波数の検知用交流信号を発生するとともに、検知用交流信号の周波数を所定範囲で可変して出力する。信号発生部20には制御部60から制御信号が送られ、この制御信号によって発生する検知用交流信号の周波数を可変させる。 The signal generation unit 20 generates a detection AC signal having a predetermined frequency, and outputs the detection AC signal with a variable frequency within a predetermined range. A control signal is sent from the control unit 60 to the signal generation unit 20, and the frequency of the detection AC signal generated by the control signal is changed.

本実施形態では、信号発生部20は1MHz以下の周波数の検知用交流信号を発生し、後段の位相シフト部30へ供給する。周波数の可変範囲は例えば数十kHzから数百kHzである。本実施形態に係る測定装置1では、検知用交流信号として1MHz以下という比較的低周波の信号によって測定を行うため、回路の複雑化が抑制されるとともに、過度な高周波対策が不要となる。 In the present embodiment, the signal generation unit 20 generates an AC signal for detection having a frequency of 1 MHz or less and supplies it to the phase shift unit 30 in the subsequent stage. The variable range of frequency is, for example, several tens of kHz to several hundreds of kHz. In the measuring device 1 according to the present embodiment, since the measurement is performed by a relatively low frequency signal of 1 MHz or less as the detection AC signal, the complexity of the circuit is suppressed and excessive high frequency countermeasures are not required.

位相シフト部30は、コイル311およびコンデンサ312によるLC回路310を有する。位相シフト部30は一対の検知電極11、12と接続され、周波数に応じて検知用交流信号の位相をシフトさせる。図1に示す例では、LC回路310のコイル311とコンデンサ312との接続点に検知電極11が接続され、コンデンサ312の接地側に検知電極12が接続される。これにより、位相シフト部30は、一対の検知電極11、12の間の抵抗成分Rおよび容量成分CがLC回路310の特性に寄与し、検知用交流信号の位相を抵抗成分Rおよび容量成分Cに応じてシフトさせる。 The phase shift unit 30 has an LC circuit 310 with a coil 311 and a capacitor 312. The phase shift unit 30 is connected to the pair of detection electrodes 11 and 12 and shifts the phase of the detection AC signal according to the frequency. In the example shown in FIG. 1, the detection electrode 11 is connected to the connection point between the coil 311 and the capacitor 312 of the LC circuit 310, and the detection electrode 12 is connected to the ground side of the capacitor 312. As a result, in the phase shift unit 30, the resistance component RL and the capacitance component C 2 between the pair of detection electrodes 11 and 12 contribute to the characteristics of the LC circuit 310, and the phase of the detection AC signal is changed to the resistance component RL and It is shifted according to the capacitance component C 2.

位相比較部40は、検知用交流信号と、位相シフト部30で位相シフトした信号との位相差θを求める。位相比較部40は、位相シフト部30の入力信号(検知用交流信号)と、位相シフト部30の出力信号とを比較して、位相差θに基づく位相差信号を出力する。すなわち、位相比較部40は、検知用交流信号を基準として、この検知用交流信号と位相シフト部30で位相シフトした信号との比較によって位相差θを得る。
なお、以下の説明において「位相差θ」と称するときは、検知用交流信号と、位相シフト部30で位相シフトした信号との位相差のことをいうものとする。
The phase comparison unit 40 obtains the phase difference θ between the detection AC signal and the signal phase-shifted by the phase shift unit 30. The phase comparison unit 40 compares the input signal (detection AC signal) of the phase shift unit 30 with the output signal of the phase shift unit 30, and outputs a phase difference signal based on the phase difference θ. That is, the phase comparison unit 40 obtains the phase difference θ by comparing the detection AC signal with the phase-shifted signal in the phase shift unit 30 with reference to the detection AC signal.
In the following description, when the term "phase difference θ" is used, it means the phase difference between the detection AC signal and the signal whose phase is shifted by the phase shift unit 30.

ここで、位相比較部40の構成例について説明する。
図2(a)および(b)は、アナログ乗算器を使用した位相比較部を例示する図である。
図2(a)に示すように、位相比較部40は、位相シフト部30の入力信号(検知用交流信号)と、位相シフト部30の出力信号とを乗算する乗算器41と、乗算器41の出力を積分する積分回路42とを有する。これにより、位相差θに基づく検波電圧Vmを得ることができる。図2(b)には、図2(a)に示す位相比較部40による検波電圧Vmと位相差θとの関係が示される。
Here, a configuration example of the phase comparison unit 40 will be described.
2 (a) and 2 (b) are diagrams illustrating a phase comparison unit using an analog multiplier.
As shown in FIG. 2A, the phase comparison unit 40 includes a multiplier 41 that multiplies the input signal (detection AC signal) of the phase shift unit 30 and the output signal of the phase shift unit 30, and the multiplier 41. It has an integrator circuit 42 that integrates the output of. Thereby, the detection voltage Vm based on the phase difference θ can be obtained. FIG. 2B shows the relationship between the detection voltage Vm by the phase comparison unit 40 shown in FIG. 2A and the phase difference θ.

図3(a)および(b)は、コンパレータを使用した位相比較部を例示する図である。
図3(a)に示すように、位相比較部40は、第1コンパレータ45、第2コンパレータ46、論理演算部47および積分回路42を有する。
3A and 3B are diagrams illustrating a phase comparison unit using a comparator.
As shown in FIG. 3A, the phase comparison unit 40 includes a first comparator 45, a second comparator 46, a logical operation unit 47, and an integration circuit 42.

第1コンパレータ45には位相シフト部30の入力信号(検知用交流信号)が入力され、第2コンパレータ46には位相シフト部30の出力信号が入力される。第1コンパレータ45および第2コンパレータ46のそれぞれの基準信号は共通である。 The input signal (detection AC signal) of the phase shift unit 30 is input to the first comparator 45, and the output signal of the phase shift unit 30 is input to the second comparator 46. The reference signals of the first comparator 45 and the second comparator 46 are common.

論理演算部47には第1コンパレータ45および第2コンパレータ46のそれぞれの出力が入力される。論理演算部47は排他的論理和を演算する。この論理演算部47の出力を積分回路42で積分することで、位相差θに基づく検波電圧Vmを得ることができる。図3(b)には、図3(a)に示す位相比較部40による検波電圧Vmと位相差θとの関係が示される。ここで、位相差θが90°となる検波電圧をVm(90)とする。 The outputs of the first comparator 45 and the second comparator 46 are input to the logical operation unit 47. The logical operation unit 47 calculates the exclusive OR. By integrating the output of the logical operation unit 47 with the integration circuit 42, the detection voltage Vm based on the phase difference θ can be obtained. FIG. 3B shows the relationship between the detection voltage Vm by the phase comparison unit 40 shown in FIG. 3A and the phase difference θ. Here, the detection voltage at which the phase difference θ is 90 ° is defined as Vm (90).

位相比較部40としては、図2に示す乗算器41を用いたもの、図3に示すコンパレータ(第1コンパレータ45、第2コンパレータ46)を用いたもの、これら以外の回路構成を用いたもの、いずれでもよいが、本実施形態では図3に示すコンパレータを用いた位相比較部40を例として説明する。 As the phase comparison unit 40, one using the multiplier 41 shown in FIG. 2, one using the comparators (first comparator 45, second comparator 46) shown in FIG. 3, and one using a circuit configuration other than these. Either of them may be used, but in the present embodiment, the phase comparison unit 40 using the comparator shown in FIG. 3 will be described as an example.

計算部50は、位相比較部40で求めた位相差θが90°となる検知用交流信号の周波数を基準周波数fcとして、この基準周波数fcを用いて一対の検知電極11、12の間の抵抗成分Rや容量成分Cを求める計算を行う。 The calculation unit 50 uses the reference frequency fc as the frequency of the detection AC signal at which the phase difference θ obtained by the phase comparison unit 40 is 90 °, and uses this reference frequency fc to resist between the pair of detection electrodes 11 and 12. Calculations are performed to obtain the component RL and the volume component C 2.

ここで、一対の検知電極11、12の間の抵抗成分Rは、基準周波数fcを中心とした所定範囲で検知用交流信号の周波数を変化させた際の位相比較部40で求めた位相差θの変化量に応じて求められる。
また、一対の検知電極11、12の間の容量成分Cは、基準周波数fcに応じて求められる。
Here, the resistance component RL between the pair of detection electrodes 11 and 12 is the phase difference obtained by the phase comparison unit 40 when the frequency of the detection AC signal is changed within a predetermined range centered on the reference frequency fc. It is obtained according to the amount of change in θ.
Further, the capacitance component C 2 between the pair of detection electrodes 11 and 12 is obtained according to the reference frequency fc.

本実施形態に係る測定装置1では、検知用交流信号と、位相シフト部30で位相シフトした信号との位相差θが90°となる基準周波数fcを用いることで、一対の検知電極11、12の間の抵抗成分Rおよび容量成分Cを互いに影響を受けることなく独立して測定することができる。 In the measuring device 1 according to the present embodiment, the pair of detection electrodes 11 and 12 are used by using the reference frequency fc in which the phase difference θ between the detection AC signal and the signal phase-shifted by the phase shift unit 30 is 90 °. The resistance component RL and the capacitance component C 2 between them can be measured independently without being affected by each other.

また、測定装置1には記憶部70が設けられていてもよい。記憶部70は、位相差θの変化量と測定対象物Wの電気伝導度との関係を示す電気伝導度データを記憶してもよい。この場合、計算部50は、記憶部70に記憶された電気伝導度データを参照して、位相差θに対応する電気伝導度を出力する。これにより、一対の電極間の容量成分に影響を受けずに電気伝導度を得ることができる。 Further, the measuring device 1 may be provided with a storage unit 70. The storage unit 70 may store electrical conductivity data indicating the relationship between the amount of change in the phase difference θ and the electrical conductivity of the object W to be measured. In this case, the calculation unit 50 refers to the electric conductivity data stored in the storage unit 70 and outputs the electric conductivity corresponding to the phase difference θ. As a result, electrical conductivity can be obtained without being affected by the capacitance component between the pair of electrodes.

また、記憶部70は、基準周波数fcと測定対象物Wの水分量との関係を示す水分量データを記憶してもよい。この場合、計算部50は、記憶部70に記憶された水分量データを参照して、求めた基準周波数fcに対応する水分量を出力するようにしてもよい。これにより、一対の電極間の抵抗成分に影響を受けずに水分量を得ることができる。 Further, the storage unit 70 may store water content data indicating the relationship between the reference frequency fc and the water content of the measurement object W. In this case, the calculation unit 50 may output the water content corresponding to the obtained reference frequency fc by referring to the water content data stored in the storage unit 70. As a result, the amount of water can be obtained without being affected by the resistance component between the pair of electrodes.

(測定原理)
次に、本実施形態に係る測定装置1の測定原理について説明する。
図4は、本実施形態に係る測定装置の測定原理を説明する等価回路図である。
図4において、信号発生部20で発生する検知用交流信号の電圧をe、信号発生部20の内部抵抗をR、LC回路310のコイル311のリアクタンスをL、コンデンサ312のキャパシタンスをC、LC回路310に入力される信号の電圧をe、LC回路310の出力の電圧をe、一対の検知電極11、12の間の抵抗成分をR、容量成分をC、C=C+C、信号発生部20で発生する検知用交流信号の角周波数をωとする。抵抗成分Rや容量成分Cには、一対の検知電極11、12の間の測定対象物Wの抵抗値および容量値や、一対の検知電極11、12の材料および構造に基づく固有の抵抗値や固有の容量値が含まれる。
LC回路310の入力側と出力側との各電圧は、次の式(1)(2)で表される。
(Measurement principle)
Next, the measurement principle of the measuring device 1 according to the present embodiment will be described.
FIG. 4 is an equivalent circuit diagram illustrating the measurement principle of the measuring device according to the present embodiment.
In FIG. 4, the voltage of the detection AC signal generated by the signal generation unit 20 is e S , the internal resistance of the signal generation unit 20 is RS , the reactor of the coil 311 of the LC circuit 310 is L, and the capacitance of the capacitor 312 is C 1. , C 2, the R L, capacitance component and the resistance component between the voltage of the signal input to the LC circuit 310 e i, the voltage of the output of the LC circuit 310 e o, the pair of sensing electrodes 11, 12 C = Let C 1 + C 2 and the angular frequency of the detection AC signal generated by the signal generation unit 20 be ω. The resistance component RL and the capacitance component C 2 include the resistance value and capacitance value of the measurement object W between the pair of detection electrodes 11 and 12, and the unique resistance based on the material and structure of the pair of detection electrodes 11 and 12. Contains values and unique capacity values.
Each voltage on the input side and the output side of the LC circuit 310 is represented by the following equations (1) and (2).

Figure 2021173585
Figure 2021173585

Figure 2021173585
Figure 2021173585

式(1)(2)から伝達関数は以下の式(3)で示される。 From equations (1) and (2), the transfer function is represented by the following equation (3).

Figure 2021173585
Figure 2021173585

この伝達関数の実部と虚部とを分離して、実部をA、虚部をBとすると、以下の式(4)(5)のようになる。 If the real part and the imaginary part of this transfer function are separated and the real part is A and the imaginary part is B, the following equations (4) and (5) are obtained.

Figure 2021173585
Figure 2021173585

Figure 2021173585
Figure 2021173585

この実部Aと虚部Bとから、位相差θを算出すると、次の式(6)のようになる。 When the phase difference θ is calculated from the real part A and the imaginary part B, the following equation (6) is obtained.

Figure 2021173585
Figure 2021173585

ここで、ω=2πfであるから、LC回路310の入出力の位相差θを周波数特性としてグラフ化すると、図5および図6のようになる。図6は、図5の拡大図である。なお、一例として、ここで採用した回路定数は、L=100μH、C=470pFである。図5および図6において、グラフのパラメータは抵抗成分Rである。 Here, since ω = 2πf, the graphs of the input / output phase difference θ of the LC circuit 310 as frequency characteristics are as shown in FIGS. 5 and 6. FIG. 6 is an enlarged view of FIG. As an example, the circuit constants adopted here are L = 100 μH and C = 470 pF. In FIGS. 5 and 6, the parameter of the graph is the resistance component RL .

図5および図6に示すように、位相差θの周波数特性は、抵抗成分Rによって位相差θの変化特性は変わるものの、一定の周波数で一定の位相差θを示すことが分かる。この一定の位相差θは90°である。位相差θが90°になる周波数を基準周波数fcということにする。 As shown in FIGS. 5 and 6, it can be seen that the frequency characteristic of the phase difference θ shows a constant phase difference θ at a constant frequency, although the change characteristic of the phase difference θ changes depending on the resistance component RL. This constant phase difference θ is 90 °. The frequency at which the phase difference θ becomes 90 ° is referred to as the reference frequency fc.

本実施形態に係る測定装置1は、上記のような位相差θの周波数特性を利用して、一対の検知電極11、12の間の抵抗成分Rおよび容量成分Cを測定する。 The measuring device 1 according to the present embodiment measures the resistance component RL and the capacitance component C 2 between the pair of detection electrodes 11 and 12 by utilizing the frequency characteristic of the phase difference θ as described above.

先ず、一対の検知電極11、12の間の抵抗成分Rの周波数特性について説明する。
図7は、抵抗成分Rをパラメータとして位相差特性を電圧(検波電圧)に変換する回路例を示す図である。図7では、第1コンパレータ45、第2コンパレータ46、論理演算部47および積分回路42を用いた回路例である。この回路から出力される検波電圧をVmとする。
First, the frequency characteristics of the resistance component RL between the pair of detection electrodes 11 and 12 will be described.
FIG. 7 is a diagram showing an example of a circuit that converts a phase difference characteristic into a voltage (detection voltage) with the resistance component RL as a parameter. FIG. 7 is a circuit example using the first comparator 45, the second comparator 46, the logical operation unit 47, and the integrator circuit 42. Let Vm be the detection voltage output from this circuit.

図8は、図7に示す回路例において抵抗成分Rをパラメータとした検波電圧Vmの周波数特性を示す図である。ここで、無負荷とは、一対の検知電極11、12を気中でオープンにした状態である。
図8に示すグラフにおいて、抵抗成分Rにかかわらず一定の周波数で一定の位相差θとなるクロスポイントが発生する。このクロスポイントの周波数が基準周波数fcであり、基準周波数fcでの検波電圧Vmは、位相差θが90°となる検波電圧Vm(90)である。
FIG. 8 is a diagram showing the frequency characteristics of the detection voltage Vm with the resistance component RL as a parameter in the circuit example shown in FIG. 7. Here, no load means that the pair of detection electrodes 11 and 12 are open in the air.
In the graph shown in FIG. 8, a cross point having a constant phase difference θ occurs at a constant frequency regardless of the resistance component RL. The frequency of this cross point is the reference frequency fc, and the detection voltage Vm at the reference frequency fc is the detection voltage Vm (90) at which the phase difference θ is 90 °.

一方、抵抗成分Rの変化は、クロスポイントを中心とした周波数特性(変化度合い)として現れる。いずれの抵抗成分Rの周波数特性でも、クロスポイントを中心とした点対称の特性となっている。 On the other hand, the change in the resistance component RL appears as a frequency characteristic (degree of change) centered on the cross point. The frequency characteristics of any of the resistance components RL are point-symmetrical characteristics centered on the cross point.

次に、一対の検知電極11、12の間の容量成分Cの周波数特性について説明する。
図9は、容量成分Cをパラメータとして位相差特性を電圧(検波電圧)に変換する回路例を示す図である。図9に示す回路例は、図7に示す回路例と同様であるが、一対の検知電極11、12の間の容量成分Cのみをパラメータとしている。
Next, the frequency characteristics of the capacitance component C 2 between the pair of detection electrodes 11 and 12 will be described.
FIG. 9 is a diagram showing an example of a circuit that converts a phase difference characteristic into a voltage (detection voltage) using the capacitance component C 2 as a parameter. The circuit example shown in FIG. 9 is the same as the circuit example shown in FIG. 7, but only the capacitance component C 2 between the pair of detection electrodes 11 and 12 is used as a parameter.

図10は、図9に示す回路例において容量成分Cをパラメータとした検波電圧Vmの周波数特性を示す図である。
図10に示すグラフにおいて、検波電圧Vmの周波数特性は容量成分Cに応じてシフトするものの、周波数特性(変化度合い)はほぼ等しく現れる。
FIG. 10 is a diagram showing the frequency characteristics of the detection voltage Vm with the capacitance component C 2 as a parameter in the circuit example shown in FIG.
In the graph shown in FIG. 10, the frequency characteristics of the detection voltage Vm although shifted in accordance with the capacitance component C 2, the frequency characteristics (degree of change) appears substantially equal.

次に、図7および図9に示す回路例を用い、測定対象物Wを溶液として検波電圧Vmの周波数特性を測定した。一例として、一対の検知電極11、12として、長さ20ミリメートル(mm)、幅2mm、厚さ2mm、電極間距離10mmのステンレス板を用いた。その測定結果を図11に示す。図11は、溶液のEC値をパラメータとした検波電圧Vmの周波数特性を示す図である。 Next, using the circuit examples shown in FIGS. 7 and 9, the frequency characteristics of the detection voltage Vm were measured using the measurement object W as a solution. As an example, as a pair of detection electrodes 11 and 12, stainless steel plates having a length of 20 mm (mm), a width of 2 mm, a thickness of 2 mm, and a distance between electrodes of 10 mm were used. The measurement result is shown in FIG. FIG. 11 is a diagram showing the frequency characteristics of the detection voltage Vm with the EC value of the solution as a parameter.

図11に示す検波電圧Vmの基準電圧は、位相差θが90°となる電圧である。溶液のEC値は、0.002ミリジーメンス(mS/cm)、0.1mS/cm、0.5mS/cm、1mS/cm、3.5mS/cm、7mS/cmおよび無負荷である。なお、無負荷とは、一対の検知電極11、12を気中でオープンにした状態である。したがって、無負荷の場合の検波電圧Vmの周波数特性は、EC値として非常に低く(0.002mS/cm程度)、水分量として非常に低い状態の特性であるといえる。 The reference voltage of the detection voltage Vm shown in FIG. 11 is a voltage at which the phase difference θ is 90 °. The EC values of the solution are 0.002 milliemens (mS / cm), 0.1 mS / cm, 0.5 mS / cm, 1 mS / cm, 3.5 mS / cm, 7 mS / cm and no load. The no-load state is a state in which the pair of detection electrodes 11 and 12 are opened in the air. Therefore, it can be said that the frequency characteristic of the detection voltage Vm in the case of no load is a characteristic in a state where the EC value is very low (about 0.002 mS / cm) and the water content is very low.

溶液を測定対象物Wとしているため、無負荷時以外、水分量は100%である。無負荷時以外の測定結果は、基準電圧を示す周波数である基準周波数fcを中心として、EC値に応じて検波電圧Vmの変化の傾きが異なる。また、それぞれのEC値の周波数特性において、基準周波数fcを中心とした検波電圧Vmの変化は、基準周波数fcと基準電圧との交点を中心としてほぼ点対称となる。 Since the solution is the object W to be measured, the water content is 100% except when there is no load. In the measurement results other than when there is no load, the slope of the change in the detection voltage Vm differs depending on the EC value, centering on the reference frequency fc, which is a frequency indicating the reference voltage. Further, in the frequency characteristics of each EC value, the change of the detection voltage Vm centered on the reference frequency fc is substantially point-symmetrical about the intersection of the reference frequency fc and the reference voltage.

一方、EC値0.002mS/cmの場合と無負荷の場合とで検波電圧Vmの周波数特性を比較すると、検波電圧Vmの変化の傾きはほとんど同じであるが、基準電圧となる周波数(すなわち、位相差θが90°となる周波数)がシフトしている。このことから、EC値は水分量に影響を受けず、検波電圧Vmの変化の傾きによって決まることが分かる。 On the other hand, when the frequency characteristics of the detection voltage Vm are compared between the case where the EC value is 0.002 mS / cm and the case where there is no load, the slope of the change in the detection voltage Vm is almost the same, but the frequency that becomes the reference voltage (that is, that is). The frequency at which the phase difference θ is 90 °) is shifted. From this, it can be seen that the EC value is not affected by the amount of water and is determined by the slope of the change in the detection voltage Vm.

(EC値)
図12は、検波電圧Vmの変化からEC値を求める方法を説明する図である。
図12には、図11の基準周波数fcを中心とした拡大図が示される。
上記に説明したように、EC値は検波電圧Vmの変化の傾きに応じて決まる。また、検波電圧Vmの変化は基準周波数fcと基準電圧との交点を中心としてほぼ点対称となる。したがって、基準周波数fcを中心として所定の周波数範囲Wfを設定し、その範囲での最大の検波電圧V2と、最小の検波電圧V1との差を求めることで、EC値を得ることができる。
(EC value)
FIG. 12 is a diagram illustrating a method of obtaining an EC value from a change in the detection voltage Vm.
FIG. 12 shows an enlarged view centered on the reference frequency fc of FIG.
As described above, the EC value is determined according to the slope of the change in the detection voltage Vm. Further, the change of the detection voltage Vm is substantially point-symmetrical about the intersection of the reference frequency fc and the reference voltage. Therefore, the EC value can be obtained by setting a predetermined frequency range Wf centering on the reference frequency fc and obtaining the difference between the maximum detection voltage V2 and the minimum detection voltage V1 in that range.

図12に示す例では、基準周波数fcを710MHz、周波数範囲Wfを一例として60kHzに設定している。したがって、周波数範囲Wfにおける周波数の最大値は740kHz、最小値は680kHzである。そして、周波数の最大値である740kHzのときの検波電圧V2と、周波数の最小値である680kHzのときの検波電圧V1とを求め、V2−V1を計算する。ここで、Vx(Vm)=V2−V1とする。 In the example shown in FIG. 12, the reference frequency fc is set to 710 MHz, and the frequency range Wf is set to 60 kHz as an example. Therefore, the maximum value of the frequency in the frequency range Wf is 740 kHz, and the minimum value is 680 kHz. Then, the detection voltage V2 at the maximum frequency value of 740 kHz and the detection voltage V1 at the minimum frequency value of 680 kHz are obtained, and V2-V1 is calculated. Here, Vx (Vm) = V2-V1.

Vx(Vm)の値は検波電圧Vmの変化の傾きと等価であり、EC値に応じた周波数特性によって決まる。したがって、このVx(Vm)の値とEC値との相関関係からEC値を求めることができる。 The value of Vx (Vm) is equivalent to the slope of the change of the detection voltage Vm, and is determined by the frequency characteristic according to the EC value. Therefore, the EC value can be obtained from the correlation between the Vx (Vm) value and the EC value.

図13は、Vx(Vm)とEC値との関係を示す図である。
図13に示す関係は、予め各種のEC値の溶液を用いて周波数範囲Wfを掃引して検波電圧V1、V2を得てVx(Vm)を求め、EC値とVx(Vm)との対応をプロットしたものである。プロット間は適宜の方法で補間している。この図13に示す関係は、Vx(Vm)とEC値との変換特性を示す。
FIG. 13 is a diagram showing the relationship between Vx (Vm) and the EC value.
The relationship shown in FIG. 13 is that the frequency range Wf is swept in advance using solutions of various EC values to obtain the detection voltages V1 and V2, Vx (Vm) is obtained, and the correspondence between the EC value and Vx (Vm) is obtained. It is a plot. Interpolation is performed between plots by an appropriate method. The relationship shown in FIG. 13 shows the conversion characteristics between Vx (Vm) and the EC value.

本実施形態に係る測定装置1は、図13に示すVx(Vm)とEC値との変換特性を電気伝導度データとして用いる。電気伝導度データは例えば記憶部70に記憶される。測定装置1は、測定対象物Wの検波電圧V1、V2を計測し、計算部50によってVx(Vm)を求め、電気伝導度データを参照してVx(Vm)からEC値を出力する。これにより、一対の検知電極11、12の間の容量成分Cに影響を受けずにEC値を得ることができる。 The measuring device 1 according to the present embodiment uses the conversion characteristics of Vx (Vm) and the EC value shown in FIG. 13 as electrical conductivity data. The electrical conductivity data is stored in, for example, the storage unit 70. The measuring device 1 measures the detection voltages V1 and V2 of the object W to be measured, obtains Vx (Vm) by the calculation unit 50, and outputs an EC value from Vx (Vm) with reference to the electrical conductivity data. As a result, the EC value can be obtained without being affected by the capacitance component C 2 between the pair of detection electrodes 11 and 12.

(水分量)
図14は、基準周波数fcと水分量との関係を示す図である。
図14に示す関係は、予め各種の水分量の対象物を用いて基準周波数fcと水分量(%)との関係を得たものである。本実施形態に係る測定装置1は、図14に示す基準周波数fcと水分量(%)との関係を水分量データとして用いる。水分量データは例えば記憶部70に記憶される。測定装置1は、測定対象物Wの検波電圧Vmから位相差θが90°になる検波電圧(基準電圧)となる周波数(基準周波数fc)を計算部50によって求める。計算部50は、水分量データを参照して基準周波数fcから水分量(%)を出力する。これにより、一対の検知電極11、12の間の抵抗成分Rに影響を受けずに水分量を得ることができる。
(amount of water)
FIG. 14 is a diagram showing the relationship between the reference frequency fc and the amount of water.
The relationship shown in FIG. 14 is obtained by obtaining the relationship between the reference frequency fc and the water content (%) in advance using objects having various water content. The measuring device 1 according to the present embodiment uses the relationship between the reference frequency fc and the water content (%) shown in FIG. 14 as the water content data. The water content data is stored in, for example, the storage unit 70. The measuring device 1 uses the calculation unit 50 to obtain a frequency (reference frequency fc) that is a detection voltage (reference voltage) at which the phase difference θ is 90 ° from the detection voltage Vm of the object W to be measured. The calculation unit 50 outputs the water content (%) from the reference frequency fc with reference to the water content data. As a result, the amount of water can be obtained without being affected by the resistance component RL between the pair of detection electrodes 11 and 12.

(他の回路例)
図15は、他の回路例を示す図である。
この回路例は、先に説明した回路例に対してLC回路310のコイル311とコンデンサ312との接続を入れ替えた構成となっている。説明の便宜上、LC回路310のコイル311とコンデンサ312との接続を入れ替えた回路をCL回路320ということにする。このCL回路320を用いた構成であっても、先に説明したLC回路310を用いた構成と同様な結果を得ることができる。
(Other circuit examples)
FIG. 15 is a diagram showing another circuit example.
This circuit example has a configuration in which the connection between the coil 311 and the capacitor 312 of the LC circuit 310 is replaced with respect to the circuit example described above. For convenience of explanation, a circuit in which the connection between the coil 311 and the capacitor 312 of the LC circuit 310 is exchanged is referred to as a CL circuit 320. Even with the configuration using the CL circuit 320, the same result as the configuration using the LC circuit 310 described above can be obtained.

CL回路320の入力側と出力側との各電圧は、次の式(7)(8)で表される。 Each voltage on the input side and the output side of the CL circuit 320 is represented by the following equations (7) and (8).

Figure 2021173585
Figure 2021173585

Figure 2021173585
Figure 2021173585

式(7)(8)から伝達関数は以下の式(9)で示される。 From equations (7) and (8), the transfer function is represented by the following equation (9).

Figure 2021173585
Figure 2021173585

この伝達関数の実部と虚部とを分離して、実部をA、虚部をBとすると、以下の式(10)(11)のようになる。 When the real part and the imaginary part of this transfer function are separated and the real part is A and the imaginary part is B, the following equations (10) and (11) are obtained.

Figure 2021173585
Figure 2021173585

Figure 2021173585
Figure 2021173585

この実部Aと虚部Bとから、位相差θを算出すると、次の式(12)のようになる。 When the phase difference θ is calculated from the real part A and the imaginary part B, the following equation (12) is obtained.

Figure 2021173585
この結果は、LC回路310を用いた構成と全く同じである。したがって、位相差検出特性として周波数特性も全く同じ結果を得ることができる。
Figure 2021173585
This result is exactly the same as the configuration using the LC circuit 310. Therefore, it is possible to obtain exactly the same result as the frequency characteristic as the phase difference detection characteristic.

(本実施形態と共振回路との相違)
ここで、交流信号の位相の変化を利用して対象物の物理量を測定する回路構成として、一般的には共振回路(いわゆるタンク回路)が用いられる。本実施形態に係る測定装置1は、リアクタンス素子(インダクタンスおよびキャパシタンス)を用いるものの一般的な共振回路とは測定原理において全く相違する。
(Difference between this embodiment and the resonant circuit)
Here, a resonance circuit (so-called tank circuit) is generally used as a circuit configuration for measuring a physical quantity of an object by utilizing a change in the phase of an AC signal. Although the measuring device 1 according to the present embodiment uses a reactance element (inductance and capacitance), it is completely different in measurement principle from a general resonant circuit.

例えば、図4に示す測定装置1の等価回路図において共振を用いた場合、図16に示すような周波数特性となる。図16では、入力信号の電圧を一定にして周波数を500kHzから1MHzまで掃引したときの出力信号eoの電圧を測定したものである。回路定数は、抵抗成分R=100kΩ、L=100μH、C=470pFである。 For example, when resonance is used in the equivalent circuit diagram of the measuring device 1 shown in FIG. 4, the frequency characteristics are as shown in FIG. In FIG. 16, the voltage of the output signal eo is measured when the voltage of the input signal is kept constant and the frequency is swept from 500 kHz to 1 MHz. The circuit constants are resistance components RL = 100 kΩ, L = 100 μH, and C 1 = 470 pF.

図16において、パラメータは容量成分Cである。容量成分Cが0pFのときは水分量がゼロの場合で、LとCとの直列共振によりピークの周波数を読み取ることができる。水分量の増加によって容量成分Cが増加し、ピークの周波数は低い方向へシフトすることが分かる。したがって、ピークの周波数を計測することで容量成分Cが分かり、その容量成分Cから水分量を割り出すことができる。しかしながら、容量成分Cの増加によって出力信号eoの電圧は低下する。 In FIG. 16, the parameter is the volume component C 2 . When the capacitance component C 2 is 0 pF, the water content is zero, and the peak frequency can be read by the series resonance between L and C 1. It can be seen that the capacitance component C 2 increases as the water content increases, and the peak frequency shifts in the lower direction. Therefore, the capacitance component C 2 can be found by measuring the peak frequency, and the water content can be calculated from the capacitance component C 2. However, the voltage of the output signal eo decreases as the capacitance component C 2 increases.

図17は、抵抗成分Rをパラメータとした出力信号の周波数特性を示す図である。
図17では、入力信号の電圧を一定にして周波数を500kHzから1MHzまで掃引したときの出力信号eoの電圧を測定したものである。回路乗数は、L=100μH、C=470pF、容量成分C=0pFである。容量成分C=0pFとは、水分量が存在しない状態を想定している。
FIG. 17 is a diagram showing the frequency characteristics of the output signal with the resistance component RL as a parameter.
In FIG. 17, the voltage of the output signal eo when the voltage of the input signal is kept constant and the frequency is swept from 500 kHz to 1 MHz is measured. The circuit multiplier is L = 100 μH, C 1 = 470 pF, and capacitance component C 2 = 0 pF. The volume component C 2 = 0 pF assumes a state in which the amount of water does not exist.

図17において、パラメータは抵抗成分Rである。この周波数特性から、抵抗成分Rの低下によって出力信号eoのピークの電圧が低下することから、このピークの電圧を読み取ることで抵抗成分Rを得ることができる。しかし、抵抗成分Rの低下によって出力信号eoの電圧をとともに波形の鈍りが生じる。この例では、抵抗成分Rが1kΩ以下になると波形の鈍りによってピーク電圧の読み取りが困難となる。抵抗成分Rが100Ω以下ではピーク電圧が存在しない。 In FIG. 17, the parameter is the resistance component RL . From this frequency characteristic, since the voltage of the peak of the output signal eo is reduced by a decrease in the resistance component R L, it is possible to obtain the resistance component R L by reading the voltage of the peak. However, due to the decrease in the resistance component RL , the voltage of the output signal eo and the waveform become dull. In this example, when the resistance component RL becomes 1 kΩ or less, it becomes difficult to read the peak voltage due to the blunting of the waveform. When the resistance component RL is 100Ω or less, there is no peak voltage.

さらに、図17に示す周波数特性では容量成分Cが固定であるにもかかわらず、ピークの周波数が低い方向へシフトすることが分かる。この現象は、抵抗成分Rが十分高い範囲では共振回路による共振周波数に変化は少ないものの、抵抗成分Rが低くなるとインピーダンス回路網として支配的となり、直列共振が成り立たなくなるためである。
1kΩ以下の抵抗成分Rは、EC値としては0.1mS/cmから0.5mS/cm以上の値に相当するため、EC値の高い状況では水分量を計測できない、または正確な計測を行うことができないと考えられる。
Further, in the frequency characteristics shown in FIG. 17, it can be seen that the peak frequency shifts in the lower direction even though the capacitance component C 2 is fixed. This phenomenon is because the resonance frequency due to the resonance circuit does not change much in the range where the resistance component RL is sufficiently high, but when the resistance component RL becomes low, it becomes dominant as an impedance network and series resonance does not hold.
Since the resistance component RL of 1 kΩ or less corresponds to a value of 0.1 mS / cm to 0.5 mS / cm or more as an EC value, the water content cannot be measured or accurate measurement is performed in a situation where the EC value is high. It is thought that it cannot be done.

一方、本実施形態に係る測定装置1では、LC回路310(またはCL回路320)の入出力の位相差θを検出する方式である。位相差θが90°となる周波数を基準周波数fcとして、基準周波数fcを中心とした所定周波数範囲での検波電圧Vmの傾きは容量成分Cには影響を受けず、また基準周波数fcは抵抗成分Rには影響を受けない点を利用し、水分量とEC値とを互いに影響を受けることなく正確に測定することが可能となる。 On the other hand, the measuring device 1 according to the present embodiment is a method of detecting the input / output phase difference θ of the LC circuit 310 (or CL circuit 320). As the phase difference θ is 90 ° and becomes frequency reference frequency fc, the slope of the detection voltage Vm at a predetermined frequency range around the reference frequency fc is unaffected by the capacitance component C 2, also the reference frequency fc resistance Utilizing the fact that the component RL is not affected, it is possible to accurately measure the water content and the EC value without being affected by each other.

(測定方法)
本実施形態に係る測定方法は、測定対象物Wに一対の検知電極11、12を接触させて測定対象物Wの物理量を測定する方法であり、以下の工程を有する。
(Measuring method)
The measuring method according to the present embodiment is a method of measuring the physical quantity of the measurement target W by bringing the pair of detection electrodes 11 and 12 into contact with the measurement target W, and has the following steps.

(A1)所定周波数の検知用交流信号を発生し、検知用交流信号の周波数を所定範囲で可変する工程
(A2)一対の検知電極11、12の間の容量成分Cおよび抵抗成分R、並びに周波数に応じて検知用交流信号の位相をシフトさせる工程
(A3)検知用交流信号と、位相がシフトした信号との位相差が90°となる検知用交流信号の周波数を基準周波数fcとして、基準周波数fcを中心とした所定範囲で検知用交流信号の周波数を変化させた際の位相差の変化量に応じて一対の検知電極11、12の間の抵抗成分を求める工程
上記工程(A1)から(A3)を有することで、一対の検知電極11、12の間の容量成分Cに影響を受けずに抵抗成分Rを得ることができる。
(A1) A step of generating a detection AC signal of a predetermined frequency and changing the frequency of the detection AC signal within a predetermined range (A2) A capacitance component C 2 and a resistance component RL between the pair of detection electrodes 11 and 12. Further, a step of shifting the phase of the detection AC signal according to the frequency (A3) The frequency of the detection AC signal at which the phase difference between the detection AC signal and the phase-shifted signal is 90 ° is set as the reference frequency fc. Step of obtaining the resistance component between the pair of detection electrodes 11 and 12 according to the amount of change in the phase difference when the frequency of the detection AC signal is changed in a predetermined range centered on the reference frequency fc. By having (A3), the resistance component RL can be obtained without being affected by the capacitance component C 2 between the pair of detection electrodes 11 and 12.

また、上記工程(A3)において、予め求められた位相差θの変化量と測定対象物Wの電気伝導度との関係に基づき、位相差θに対応する電気伝導度を出力するようにしてもよい。これにより、一対の検知電極11、12の間の容量成分Cに影響を受けずに測定対象物Wの電気伝導度を得ることができる。 Further, in the above step (A3), the electric conductivity corresponding to the phase difference θ may be output based on the relationship between the amount of change in the phase difference θ obtained in advance and the electric conductivity of the object W to be measured. good. As a result, the electrical conductivity of the object to be measured W can be obtained without being affected by the capacitance component C 2 between the pair of detection electrodes 11 and 12.

また、本実施形態に係る測定方法は、以下の工程を有する。
(B1)所定周波数の検知用交流信号を発生し、検知用交流信号の周波数を所定範囲で可変する工程
(B2)一対の検知電極11、12の間の容量成分Cおよび抵抗成分R、並びに周波数に応じて検知用交流信号の位相をシフトさせる工程
(B3)検知用交流信号と、位相がシフトした信号との位相差が90°となる検知用交流信号の周波数を基準周波数fcとして、基準周波数fcに応じて一対の検知電極間の容量成分Cを求める工程
上記工程(B1)から(B3)を有することで、一対の検知電極11、12の間の抵抗成分Rに影響を受けずに容量成分Cを得ることができる。
In addition, the measurement method according to this embodiment has the following steps.
(B1) A step of generating a detection AC signal of a predetermined frequency and changing the frequency of the detection AC signal within a predetermined range (B2) A capacitance component C 2 and a resistance component RL between the pair of detection electrodes 11 and 12. Further, the step of shifting the phase of the detection AC signal according to the frequency (B3) The frequency of the detection AC signal at which the phase difference between the detection AC signal and the phase-shifted signal is 90 ° is set as the reference frequency fc. Step of obtaining the capacitance component C 2 between the pair of detection electrodes according to the reference frequency fc By having the above steps (B1) to (B3), the resistance component RL between the pair of detection electrodes 11 and 12 is affected. The volume component C 2 can be obtained without receiving it.

また、上記工程(B3)において、予め求められた基準周波数fcと測定対象物Wの水分量との関係に基づき、基準周波数fcに対応する水分量を出力するようにしてもよい。これにより、一対の検知電極11、12の間の抵抗成分Rに影響を受けずに水分量を得ることができる。 Further, in the above step (B3), the water content corresponding to the reference frequency fc may be output based on the relationship between the reference frequency fc obtained in advance and the water content of the measurement object W. As a result, the amount of water can be obtained without being affected by the resistance component RL between the pair of detection electrodes 11 and 12.

上記の測定方法において、検知用交流信号の周波数は1MHz以下であることが好ましい。このように、1MHz以下の信号によって測定できるため、回路の複雑化が抑制され、過度な高周波対策が不要となる。 In the above measurement method, the frequency of the detection AC signal is preferably 1 MHz or less. As described above, since the measurement can be performed by a signal of 1 MHz or less, the complexity of the circuit is suppressed, and excessive high frequency countermeasures are not required.

以上説明したように、実施形態に係る測定装置1および測定方法によれば、構成の簡素化とともに正確な測定を行うことができる測定装置および測定方法を提供することが可能となる。 As described above, according to the measuring device 1 and the measuring method according to the embodiment, it is possible to provide a measuring device and a measuring method capable of performing accurate measurement while simplifying the configuration.

なお、上記に本実施形態およびその変形例を説明したが、本発明はこれらの例に限定されるものではない。例えば、位相シフト部30の回路構成や、他の部分の回路構成については同様な機能を有するものであれば上記説明した構成に限定されない。また、前述の各実施形態またはその適用例に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に包含される。 Although the present embodiment and its modifications have been described above, the present invention is not limited to these examples. For example, the circuit configuration of the phase shift unit 30 and the circuit configurations of other parts are not limited to the configurations described above as long as they have the same functions. In addition, those skilled in the art appropriately adding, deleting, or changing the design of each of the above-described embodiments or application examples thereof, and those in which the features of each embodiment are appropriately combined are also included in the present invention. As long as it has a gist, it is included in the scope of the present invention.

本発明は、測定の対象物として、土壌のほか、食品(パン生地など)、粘土、コンクリート、肌、紙(コピー機)などへの適用が可能である。また、本発明は、測定装置1は、農業分野のほか、土砂災害分野における土中に埋設して使用される土壌水分センサとしても適用可能である。 The present invention can be applied to foods (bread dough, etc.), clay, concrete, skin, paper (copier), etc., as well as soil, as objects to be measured. Further, the present invention can be applied to the measuring device 1 as a soil moisture sensor used by burying it in the soil in the field of sediment-related disasters as well as in the field of agriculture.

1…測定装置
10…検知部
11,12…検知電極
20…信号発生部
30…位相シフト部
40…位相比較部
41…乗算器
42…積分回路
45…第1コンパレータ
46…第2コンパレータ
47…論理演算部
50…計算部
60…制御部
70…記憶部
310…LC回路
311…コイル
312…コンデンサ
320…CL回路
A…実部
B…虚部
…キャパシタンス
…容量成分
,e,e…電圧
L…リアクタンス
…抵抗成分
…内部抵抗
V1,V2,Vm…検波電圧
W…測定対象物
Wf…周波数範囲
fc…基準周波数
θ…位相差
1 ... Measuring device 10 ... Detection units 11, 12 ... Detection electrode 20 ... Signal generation unit 30 ... Phase shift unit 40 ... Phase comparison unit 41 ... Multiplier 42 ... Integrator circuit 45 ... First comparator 46 ... Second comparator 47 ... Logic Calculation unit 50 ... Calculation unit 60 ... Control unit 70 ... Storage unit 310 ... LC circuit 311 ... Coil 312 ... Capacitor 320 ... CL circuit A ... Real part B ... Imaginary part C 1 ... Capacitance C 2 ... Capacitance component e S , e i , E o ... Voltage L ... Reactance RL ... Resistance component RS ... Internal resistance V1, V2, Vm ... Detection voltage W ... Measurement target Wf ... Frequency range fc ... Reference frequency θ ... Phase difference

Claims (10)

一対の検知電極を有する検知部と、
所定周波数の検知用交流信号を発生し、前記検知用交流信号の周波数を所定範囲で可変する信号発生部と、
コイルおよびコンデンサによるLC回路を有し、前記一対の検知電極と接続され、前記周波数に応じて前記検知用交流信号の位相をシフトさせる位相シフト部と、
前記検知用交流信号と、前記位相シフト部で位相シフトした信号との位相差を求める位相比較部と、
前記位相比較部で求めた前記位相差が90°となる前記検知用交流信号の周波数を基準周波数として、前記基準周波数を中心とした所定範囲で前記検知用交流信号の周波数を変化させた際の前記位相比較部で求めた前記位相差の変化量に応じて前記一対の検知電極間の抵抗成分を求める計算部と、
を備えた測定装置。
A detection unit having a pair of detection electrodes and
A signal generator that generates a detection AC signal of a predetermined frequency and changes the frequency of the detection AC signal within a predetermined range.
A phase shift unit having an LC circuit consisting of a coil and a capacitor, connected to the pair of detection electrodes, and shifting the phase of the detection AC signal according to the frequency.
A phase comparison unit for obtaining the phase difference between the detection AC signal and the signal phase-shifted by the phase shift unit.
When the frequency of the detection AC signal is changed within a predetermined range centered on the reference frequency with the frequency of the detection AC signal at which the phase difference is 90 ° obtained by the phase comparison unit as a reference frequency. A calculation unit that obtains a resistance component between the pair of detection electrodes according to the amount of change in the phase difference obtained by the phase comparison unit, and a calculation unit.
A measuring device equipped with.
前記位相差の変化量と測定対象物の電気伝導度との関係を示す電気伝導度データを記憶する記憶部をさらに備え、
前記計算部は、前記記憶部に記憶された前記電気伝導度データを参照して、前記位相差に対応する前記電気伝導度を出力する、請求項1記載の測定装置。
Further, a storage unit for storing electrical conductivity data indicating the relationship between the amount of change in the phase difference and the electrical conductivity of the object to be measured is provided.
The measuring device according to claim 1, wherein the calculation unit refers to the electric conductivity data stored in the storage unit and outputs the electric conductivity corresponding to the phase difference.
一対の検知電極を有する検知部と、
所定周波数の検知用交流信号を発生し、前記検知用交流信号の周波数を所定範囲で可変する信号発生部と、
コイルおよびコンデンサによるLC回路を有し、前記一対の検知電極と接続され、前記周波数に応じて前記検知用交流信号の位相をシフトさせる位相シフト部と、
前記検知用交流信号と、前記位相シフト部で位相シフトした信号との位相差を求める位相比較部と、
前記位相比較部で求めた前記位相差が90°となる前記検知用交流信号の周波数を基準周波数として、前記基準周波数に応じて前記一対の検知電極間の容量成分を求める計算部と、
を備えた測定装置。
A detection unit having a pair of detection electrodes and
A signal generator that generates a detection AC signal of a predetermined frequency and changes the frequency of the detection AC signal within a predetermined range.
A phase shift unit having an LC circuit consisting of a coil and a capacitor, connected to the pair of detection electrodes, and shifting the phase of the detection AC signal according to the frequency.
A phase comparison unit for obtaining the phase difference between the detection AC signal and the signal phase-shifted by the phase shift unit.
A calculation unit for obtaining a capacitance component between the pair of detection electrodes according to the reference frequency, with the frequency of the detection AC signal having a phase difference of 90 ° obtained by the phase comparison unit as a reference frequency.
A measuring device equipped with.
前記基準周波数と測定対象物の水分量との関係を示す水分量データを記憶する記憶部をさらに備え、
前記計算部は、前記記憶部に記憶された前記水分量データを参照して、求めた前記基準周波数に対応する前記水分量を出力する、請求項3記載の測定装置。
A storage unit for storing water content data indicating the relationship between the reference frequency and the water content of the object to be measured is further provided.
The measuring device according to claim 3, wherein the calculation unit outputs the water content corresponding to the obtained reference frequency with reference to the water content data stored in the storage unit.
前記信号発生部は、1メガヘルツ以下で周波数を変えながら前記検知用交流信号を前記位相シフト部へ供給する、請求項1から請求項4のいずれか1項に記載の測定装置。 The measuring device according to any one of claims 1 to 4, wherein the signal generation unit supplies the detection AC signal to the phase shift unit while changing the frequency at 1 MHz or less. 測定対象物に一対の検知電極を接触させて前記測定対象物の物理量を測定する方法であって、
所定周波数の検知用交流信号を発生し、前記検知用交流信号の周波数を所定範囲で可変する工程と、
前記一対の検知電極間の容量成分および抵抗成分、並びに前記周波数に応じて前記検知用交流信号の位相をシフトさせる工程と、
前記検知用交流信号と、前記位相がシフトした信号との位相差が90°となる前記検知用交流信号の周波数を基準周波数として、前記基準周波数を中心とした所定範囲で前記検知用交流信号の周波数を変化させた際の前記位相差の変化量に応じて前記一対の検知電極間の抵抗成分を求める工程と、
を備えた測定方法。
A method of measuring a physical quantity of a measurement object by bringing a pair of detection electrodes into contact with the measurement object.
A process of generating a detection AC signal of a predetermined frequency and changing the frequency of the detection AC signal within a predetermined range.
A step of shifting the phase of the detection AC signal according to the capacitance component and the resistance component between the pair of detection electrodes and the frequency, and
The detection AC signal has a phase difference of 90 ° between the detection AC signal and the phase-shifted signal, and the detection AC signal has a frequency within a predetermined range centered on the reference frequency. A step of obtaining a resistance component between the pair of detection electrodes according to the amount of change in the phase difference when the frequency is changed, and a step of obtaining the resistance component between the pair of detection electrodes.
Measurement method with.
前記抵抗成分を求める工程は、予め求められた前記位相差の変化量と測定対象物の電気伝導度との関係に基づき、前記位相差に対応する前記電気伝導度を出力することを含む、請求項6記載の測定方法。 The step of obtaining the resistance component includes outputting the electric conductivity corresponding to the phase difference based on the relationship between the amount of change in the phase difference obtained in advance and the electric conductivity of the object to be measured. Item 6. The measuring method according to Item 6. 測定対象物に一対の検知電極を接触させて前記測定対象物の物理量を測定する方法であって、
所定周波数の検知用交流信号を発生し、前記検知用交流信号の周波数を所定範囲で可変する工程と、
前記一対の検知電極間の容量成分および抵抗成分、並びに前記周波数に応じて前記検知用交流信号の位相をシフトさせる工程と、
前記検知用交流信号と、前記位相がシフトした信号との位相差が90°となる前記検知用交流信号の周波数を基準周波数として、前記基準周波数に応じて前記一対の検知電極間の容量成分を求める工程と、
を備えた測定方法。
A method of measuring a physical quantity of a measurement object by bringing a pair of detection electrodes into contact with the measurement object.
A process of generating a detection AC signal of a predetermined frequency and changing the frequency of the detection AC signal within a predetermined range.
A step of shifting the phase of the detection AC signal according to the capacitance component and the resistance component between the pair of detection electrodes and the frequency, and
The capacitance component between the pair of detection electrodes is set according to the reference frequency, with the frequency of the detection AC signal at which the phase difference between the detection AC signal and the phase-shifted signal is 90 ° as a reference frequency. The desired process and
Measurement method with.
前記容量成分を求める工程は、予め求められた前記基準周波数と測定対象物の水分量との関係に基づき、前記基準周波数に対応する前記水分量を出力することを含む、請求項8記載の測定方法。 The measurement according to claim 8, wherein the step of obtaining the volume component includes outputting the water content corresponding to the reference frequency based on the relationship between the reference frequency and the water content of the measurement object obtained in advance. Method. 前記検知用交流信号の周波数は1メガヘルツ以下である、請求項6から請求項9のいずれか1項に記載の測定方法。
The measuring method according to any one of claims 6 to 9, wherein the frequency of the detection AC signal is 1 MHz or less.
JP2020076261A 2020-04-22 2020-04-22 Measurement device and measurement method Pending JP2021173585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020076261A JP2021173585A (en) 2020-04-22 2020-04-22 Measurement device and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020076261A JP2021173585A (en) 2020-04-22 2020-04-22 Measurement device and measurement method

Publications (1)

Publication Number Publication Date
JP2021173585A true JP2021173585A (en) 2021-11-01

Family

ID=78281517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076261A Pending JP2021173585A (en) 2020-04-22 2020-04-22 Measurement device and measurement method

Country Status (1)

Country Link
JP (1) JP2021173585A (en)

Similar Documents

Publication Publication Date Title
TW442655B (en) Laplace transform impedance spectrometer and its measurement method
EP3145292B1 (en) Soil moisture sensor
KR101147607B1 (en) Apparatus for human body touch dection using resonance
CA2858527C (en) System, controller, and method for determining conductance of an object
US9846024B1 (en) Solid-state electric-field sensor
US20120007615A1 (en) Analysis of a Dielectric Medium
CN101084432A (en) Measuring device and method for recognizing foreign bodies in a product, particularly in tobacco, cotton or another fiber product
US10620081B2 (en) Method for operating a magnetic-inductive flowmeter and magnetic-inductive flowmeter
US20210239641A1 (en) Soil moisture sensor and operating method thereof
EP2551643B1 (en) Capacitive measuring circuit insensitive to high-frequency interference
JP2021173585A (en) Measurement device and measurement method
JPH11142451A (en) Measuring terminal contact detection method for capacitor
US8044669B2 (en) Admittance meter for monitoring a medium
US4238726A (en) Method of measuring low impedance for obtaining unknown capacitance and/or resistance
JP2005121428A (en) Liquid concentration sensor
US10866133B2 (en) Capacitive limit level switch
US20210389494A1 (en) Proximity sensing system with component compatibility testing
JP2011089873A (en) Impedance matching device and impedance measurement device with the same
RU2260809C2 (en) Method for determination of two-terminal network parameters
RU2051476C1 (en) Method of and device for plasma diagnostics
CN115902372B (en) Direct-current voltage measurement method and device, electronic equipment and storage medium
RU2350899C1 (en) Method for detection of dielectric coat thickness
JPH1114433A (en) Object detector and liquid level detector
RU2316113C2 (en) Method for measuring parameters of an underlying environment and device for realization of the method
RU2757759C1 (en) Method for measuring the position of the interface between two dielectric media in a container