JP2021173508A - Fluid treatment device, fluid treatment method, skin lotion water, skin lotion, and cosmetic - Google Patents

Fluid treatment device, fluid treatment method, skin lotion water, skin lotion, and cosmetic Download PDF

Info

Publication number
JP2021173508A
JP2021173508A JP2020080158A JP2020080158A JP2021173508A JP 2021173508 A JP2021173508 A JP 2021173508A JP 2020080158 A JP2020080158 A JP 2020080158A JP 2020080158 A JP2020080158 A JP 2020080158A JP 2021173508 A JP2021173508 A JP 2021173508A
Authority
JP
Japan
Prior art keywords
sub
fluid
flow path
channel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020080158A
Other languages
Japanese (ja)
Other versions
JP7136482B2 (en
Inventor
雄二 古村
Yuji Furumura
晋治 西原
Shinji Nishihara
悟 今井
Satoru Imai
彩子 矢澤
Ayako Yazawa
英里 拝形
Hidesato Haigata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philtech Inc
Original Assignee
Philtech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philtech Inc filed Critical Philtech Inc
Priority to JP2020080158A priority Critical patent/JP7136482B2/en
Publication of JP2021173508A publication Critical patent/JP2021173508A/en
Application granted granted Critical
Publication of JP7136482B2 publication Critical patent/JP7136482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cosmetics (AREA)

Abstract

To provide a fluid treatment device and a fluid treatment method capable of continuously carrying out heating treatment and cooling treatment, and skin lotion water, skin lotion, and cosmetics produced by the same device and the method.SOLUTION: A fluid treatment device includes a first heat exchange part 10 for heating fluid introduced into a first flow passage P1 to a prescribed temperature, and a second heat exchange part 20 being directly connected to a downstream side of the first heat exchange part and cooling the fluid introduced into a second flow passage P2 from the prescribed temperature. The first heat exchange part includes a plurality of first auxiliary flow passages SP1 extending in a first direction and a plurality of second auxiliary flow passages SP2 extending in a second direction perpendicular to the first direction and communicating the first auxiliary flow passages adjacent with each other. The fluid introduced into the first auxiliary flow passage on one end flows to the first auxiliary flow passage on the other end through the first auxiliary flow passages and the second auxiliary flow passages, and vertically collides against a wall of the first auxiliary flow passage to carry out heat exchange. The second heat exchange part has a similar configuration.SELECTED DRAWING: Figure 1

Description

本発明は、流体を加熱処理及び冷却処理する流体処理装置、流体処理方法、それにより製造された化粧水用水、化粧水及び化粧品に関する。 The present invention relates to a fluid treatment apparatus for heat-treating and cooling a fluid, a fluid treatment method, and a lotion water, a lotion, and a cosmetic product produced thereby.

熱交換装置として流体を加熱する装置があり、例えば加熱したパイプにガスを通じて加熱する構造の熱交換装置が知られている。また、例えばフィンのついたパイプに加熱流体を流し、そのフィンの間に加熱しようとするガスを通じてガスを加熱する構造の熱交換装置が知られている。 As a heat exchange device, there is a device that heats a fluid, and for example, a heat exchange device having a structure in which a gas is passed through a heated pipe is known. Further, for example, a heat exchange device having a structure in which a heating fluid is passed through a pipe with fins and the gas is heated through a gas to be heated between the fins is known.

上記の熱交換装置は、ガスの加熱だけでなく、液体の加熱、あるいは液体の加熱による気化(例えば水から蒸気の作製)等にも使用される。 The above heat exchange device is used not only for heating gas, but also for heating liquid, vaporization by heating liquid (for example, preparation of steam from water), and the like.

特許文献1には、基体に形成された複数段の第1の流路と、第1の流路に連通する複数の第2の流路を有する熱交換器が記載されている。 Patent Document 1 describes a heat exchanger having a plurality of stages of a first flow path formed on a substrate and a plurality of second flow paths communicating with the first flow path.

特許文献2には、柱の側面に周溝を複数段設け、隣り合う周溝のそれぞれに周溝同士を連結する連結溝を複数設けた流体の加熱装置が記載されている。 Patent Document 2 describes a fluid heating device in which a plurality of peripheral grooves are provided on the side surface of a pillar, and a plurality of connecting grooves for connecting the peripheral grooves to each of the adjacent peripheral grooves are provided.

特許文献3には、プレートの表裏両面にタブを複数段設け、片面の一つのタブが反対面のタブと重なる部分があり、重なり部分で両面タブを連結する孔が設けられた流体熱交換装置が記載されている。 Patent Document 3 is a fluid heat exchange device in which a plurality of tabs are provided on both the front and back surfaces of a plate, one tab on one side overlaps with a tab on the opposite side, and a hole for connecting the tabs on both sides is provided at the overlapping portion. Is described.

特許第5932757号公報Japanese Patent No. 5923757 特許第5955089号公報Japanese Patent No. 5955089 特許第6115959号公報Japanese Patent No. 6115959

上記の熱交換装置を用いた流体処理装置及び流体処理方法において、加熱処理及び冷却処理を連続して行うことが望まれている。 In a fluid treatment apparatus and a fluid treatment method using the above heat exchange apparatus, it is desired to continuously perform heat treatment and cooling treatment.

本発明は、加熱処理及び冷却処理を連続して行うことが可能な流体処理装置及び流体処理方法、それによって製造された化粧水用水、化粧水及び化粧品を提供することを目的とする。 An object of the present invention is to provide a fluid treatment apparatus and a fluid treatment method capable of continuously performing heat treatment and cooling treatment, and a lotion water, a lotion water and a cosmetic product produced by the fluid treatment apparatus.

本発明の流体処理装置は、表面に第1基体凹部が設けられた第1基体と前記第1基体に積層された第1密閉板とを有し、前記第1基体の前記第1基体凹部の表面と前記第1密閉板の前記第1基体側の表面との間に、第1の方向に伸びる複数の第1副流路と前記第1の方向に対して垂直な第2の方向に伸びるとともに隣り合う前記第1副流路を連通する複数の第2副流路とを含み、一方の端にある第1副流路に導入された流体が前記第1副流路と前記第2副流路とを経由して他方の端にある第1副流路まで流れ、前記第1副流路の壁と垂直に衝突することにより熱交換を行い、前記第2副流路を流れる前記流体の流速が前記第1副流路を流れる前記流体の流速より早くなるように構成された第1流路が設けられており、前記第1流路に導入された前記流体を所定の温度に加熱する、第1熱交換部と、表面に第2基体凹部が設けられた第2基体と前記第2基体に積層された第2密閉板とを有し、前記第2基体の前記第2基体凹部の表面と前記第2密閉板の前記第2基体側の表面との間に、第3の方向に伸びる複数の第3副流路と前記第3の方向に対して垂直な第4の方向に伸びるとともに隣り合う前記第3副流路を連通する複数の第4副流路とを含み、一方の端にある第3副流路に導入された流体が前記第3副流路と前記第4副流路とを経由して他方の端にある第3副流路まで流れ、前記第3副流路の壁と垂直に衝突することにより熱交換を行い、前記第4副流路を流れる前記流体の流速が前記第3副流路を流れる前記流体の流速より早くなるように構成された第2流路が設けられており、前記第2流路に導入された前記流体を前記所定の温度から冷却する、前記第1熱交換部の下流側に直接接続された第2熱交換部とを備える。 The fluid treatment apparatus of the present invention has a first substrate provided with a recess of the first substrate on the surface and a first airtight plate laminated on the first substrate, and the recess of the first substrate of the first substrate. Between the surface and the surface of the first sealing plate on the first substrate side, a plurality of first sub-fluids extending in the first direction and extending in a second direction perpendicular to the first direction. The fluid introduced into the first sub-channel at one end includes the first sub-channel and the second sub-channel, which includes a plurality of second sub-channels communicating with the first sub-channel adjacent to the first sub-channel. The fluid that flows through the flow path to the first sub-flow path at the other end, exchanges heat by colliding perpendicularly with the wall of the first sub-flow path, and flows through the second sub-flow path. A first flow path is provided so that the flow velocity of the fluid is higher than the flow velocity of the fluid flowing through the first sub-channel, and the fluid introduced into the first flow path is heated to a predetermined temperature. It has a first heat exchange portion, a second substrate provided with a second substrate recess on the surface, and a second airtight plate laminated on the second substrate, and the second substrate recess of the second substrate. Between the surface of the second sealing plate and the surface of the second sealing plate on the second substrate side, a plurality of third sub-fluids extending in a third direction and a fourth direction perpendicular to the third direction. The fluid introduced into the third sub-channel at one end includes the plurality of fourth sub-channels that extend and communicate with the adjacent third sub-channel, and the third sub-channel and the fourth sub-channel. The fluid flows to the third sub-fluid at the other end via the sub-fluid, exchanges heat by colliding perpendicularly with the wall of the third sub-fluid, and flows through the fourth sub-fluid. A second flow path is provided so that the flow velocity of the fluid is faster than the flow velocity of the fluid flowing through the third sub-channel, and the fluid introduced into the second flow path is heated to the predetermined temperature. It is provided with a second heat exchange unit directly connected to the downstream side of the first heat exchange unit, which is cooled from the water.

本発明の流体処理方法は、表面に第1基体凹部が設けられた第1基体と前記第1基体に積層された第1密閉板とを有し、前記第1基体の前記第1基体凹部の表面と前記第1密閉板の前記第1基体側の表面との間に、第1の方向に伸びる複数の第1副流路と前記第1の方向に対して垂直な第2の方向に伸びるとともに隣り合う前記第1副流路を連通する複数の第2副流路とを含み、一方の端にある第1副流路に導入された流体が前記第1副流路と前記第2副流路とを経由して他方の端にある第1副流路まで流れる第1流路が設けられた第1熱交換部に、前記第2副流路を流れる前記流体の流速が前記第1副流路を流れる前記流体の流速より早くなるように前記流体を流し、前記流体を前記第1副流路の壁と垂直に衝突させることにより熱交換を行い、前記第1流路に導入された前記流体を所定の温度に加熱する第1熱交換工程と、表面に第2基体凹部が設けられた第2基体と前記第2基体に積層された第2密閉板とを有し、前記第2基体の前記第2基体凹部の表面と前記第2密閉板の前記第2基体側の表面との間に、第3の方向に伸びる複数の第3副流路と前記第3の方向に対して垂直な第4の方向に伸びるとともに隣り合う前記第3副流路を連通する複数の第4副流路とを含み、所定の温度に加熱された前記流体が一方の端にある第3副流路に導入されて前記第3副流路と前記第4副流路とを経由して他方の端にある第3副流路まで流れる第2流路が設けられた第2熱交換部に、前記第4副流路を流れる前記流体の流速が前記第3副流路を流れる前記流体の流速より早くなるように前記流体を流し、前記流体を前記第3副流路の壁と垂直に衝突させることにより熱交換を行い、前記第2流路に導入された前記流体を前記所定の温度から冷却する、前記第1熱交換工程の後に行われる第2熱交換工程とを備える。 The fluid treatment method of the present invention has a first substrate provided with a recess of the first substrate on the surface and a first airtight plate laminated on the first substrate, and the recess of the first substrate of the first substrate. Between the surface and the surface of the first sealing plate on the first substrate side, a plurality of first sub-fluids extending in the first direction and extending in a second direction perpendicular to the first direction. The fluid introduced into the first sub-channel at one end includes the first sub-channel and the second sub-channel, which includes a plurality of second sub-channels communicating with the first sub-channel adjacent to the first sub-channel. The flow velocity of the fluid flowing through the second sub-flow path is the first in the first heat exchange portion provided with the first flow path that flows to the first sub-flow path at the other end via the flow path. The fluid is flowed so as to be faster than the flow velocity of the fluid flowing through the subchannel, and the fluid is collided perpendicularly with the wall of the first subchannel to exchange heat and is introduced into the first channel. It has a first heat exchange step of heating the fluid to a predetermined temperature, a second substrate provided with a second substrate recess on the surface, and a second airtight plate laminated on the second substrate. With respect to a plurality of third sub-fluids extending in a third direction and the third direction between the surface of the second base recess of the two bases and the surface of the second sealing plate on the second base side. A third sub-channel in which the fluid heated to a predetermined temperature is at one end, including a plurality of fourth sub-channels extending in a vertical fourth direction and communicating with adjacent third sub-channels. In the second heat exchange section provided with a second flow path that is introduced into the flow path and flows through the third sub-flow path and the fourth sub-flow path to the third sub-flow path at the other end. The fluid is flowed so that the flow velocity of the fluid flowing through the fourth sub-channel is faster than the flow velocity of the fluid flowing through the third sub-channel, and the fluid is perpendicular to the wall of the third sub-channel. It includes a second heat exchange step performed after the first heat exchange step, which exchanges heat by colliding and cools the fluid introduced into the second flow path from the predetermined temperature.

本発明の化粧水用水は、表面に第1基体凹部が設けられた第1基体と前記第1基体に積層された第1密閉板とを有し、前記第1基体の前記第1基体凹部の表面と前記第1密閉板の前記第1基体側の表面との間に、第1の方向に伸びる複数の第1副流路と前記第1の方向に対して垂直な第2の方向に伸びるとともに隣り合う前記第1副流路を連通する複数の第2副流路とを含み、一方の端にある第1副流路に導入された水または水蒸気を含む原料流体が前記第1副流路と前記第2副流路とを経由して他方の端にある第1副流路まで流れる第1流路が設けられた第1熱交換部に、前記原料流体の前記第2副流路を流れる流速が前記第1副流路を流れる流速より早くなるように前記原料流体を流し、前記原料流体を前記第1副流路の壁と垂直に衝突させることにより熱交換を行い、前記第1流路に導入された前記原料流体を所定の温度に加熱した後、表面に第2基体凹部が設けられた第2基体と前記第2基体に積層された第2密閉板とを有し、前記第2基体の前記第2基体凹部の表面と前記第2密閉板の前記第2基体側の表面との間に、第3の方向に伸びる複数の第3副流路と前記第3の方向に対して垂直な第4の方向に伸びるとともに隣り合う前記第3副流路を連通する複数の第4副流路とを含み、所定の温度に加熱された前記原料流体が一方の端にある第3副流路に導入されて前記第3副流路と前記第4副流路とを経由して他方の端にある第3副流路まで流れる第2流路が設けられた第2熱交換部に、前記原料流体の前記第4副流路を流れる流速が前記第3副流路を流れる流速より早くなるように前記原料流体を流し、前記原料流体を前記第3副流路の壁と垂直に衝突させることにより熱交換を行い、前記第2流路に導入された前記原料流体を前記所定の温度から冷却して製造されたものである。 The water for lotion of the present invention has a first substrate provided with a recess of the first substrate on the surface and a first airtight plate laminated on the first substrate, and the recess of the first substrate of the first substrate. Between the surface and the surface of the first sealing plate on the first substrate side, a plurality of first sub-fluids extending in the first direction and extending in a second direction perpendicular to the first direction. The raw material fluid containing water or water vapor introduced into the first sub-flow path at one end of the first sub-flow path includes a plurality of second sub-flow paths communicating with the first sub-flow path adjacent to the first sub-flow path. The second sub-flow path of the raw material fluid is provided in a first heat exchange portion provided with a first flow path that flows to the first sub-flow path at the other end via the path and the second sub-flow path. The raw material fluid is flowed so that the flow velocity flowing through the first sub-channel is faster than the flow velocity flowing through the first sub-channel, and the raw material fluid is made to collide perpendicularly with the wall of the first sub-channel to exchange heat. After heating the raw material fluid introduced into one flow path to a predetermined temperature, it has a second substrate provided with a second substrate recess on the surface and a second airtight plate laminated on the second substrate. A plurality of third sub-fluids extending in a third direction and the third direction between the surface of the second base recess of the second base and the surface of the second sealing plate on the second base side. The raw material fluid is at one end, including a plurality of fourth subchannels extending in a fourth direction perpendicular to and communicating with adjacent third subchannels, and heated to a predetermined temperature. A second heat provided with a second flow path introduced into the third sub-flow path and flowing through the third sub-flow path and the fourth sub-flow path to the third sub-flow path at the other end. The raw material fluid is flowed through the exchange portion so that the flow velocity of the raw material fluid flowing through the fourth sub-channel is faster than the flow velocity flowing through the third sub-channel, and the raw material fluid is passed through the wall of the third sub-channel. The raw material fluid introduced into the second flow path is cooled from the predetermined temperature by performing heat exchange by colliding with the fluid vertically.

本発明の化粧水は、上記の化粧水用水と、抗菌物質とを含む。 The lotion of the present invention contains the above-mentioned lotion water and an antibacterial substance.

本発明の化粧品は、上記の化粧水用水又は上記の化粧水と、ビタミンCとを含み、ゲル状である。 The cosmetic product of the present invention contains the above-mentioned water for lotion or the above-mentioned lotion and vitamin C, and is in the form of a gel.

本発明によれば、第1流路に導入された流体を所定の温度に加熱する第1熱交換部と、第2流路に導入された流体を所定の温度から冷却する、第1熱交換部の下流側に直接接続された第2熱交換部とを有する構成の流体処理装置により、流体の加熱処理及び冷却処理を連続して行うことが可能である。 According to the present invention, a first heat exchange unit that heats the fluid introduced into the first flow path to a predetermined temperature and a first heat exchange unit that cools the fluid introduced into the second flow path from a predetermined temperature. It is possible to continuously perform the heat treatment and the cooling treatment of the fluid by the fluid treatment apparatus having the structure including the second heat exchange part directly connected to the downstream side of the part.

本発明によれば、第1流路に導入された流体を所定の温度に加熱する第1熱交換工程と、第2流路に導入された流体を前記所定の温度から冷却する、第1熱交換工程の後に行われる第2熱交換工程とを有する流体処理方法により、流体の加熱処理及び冷却処理を連続して行うことが可能である。 According to the present invention, there is a first heat exchange step of heating the fluid introduced into the first flow path to a predetermined temperature, and a first heat of cooling the fluid introduced into the second flow path from the predetermined temperature. By a fluid treatment method including a second heat exchange step performed after the exchange step, it is possible to continuously perform the heat treatment and the cooling treatment of the fluid.

本発明によれば、第1熱交換部の第1流路に導入された水または水蒸気を含む原料流体を所定の温度に加熱した後、第2熱交換部の第2流路に導入された原料流体を所定の温度から冷却して製造された化粧水用水を提供できる。加熱処理及び冷却処理を連続して行うことが可能な流体処理装置及び流体処理方法によって製造された化粧水用水を提供できる。この化粧水用水を用いて、化粧水並びに化粧品を提供できる。 According to the present invention, the raw material fluid containing water or water vapor introduced into the first flow path of the first heat exchange section is heated to a predetermined temperature and then introduced into the second flow path of the second heat exchange section. It is possible to provide water for lotion produced by cooling the raw material fluid from a predetermined temperature. It is possible to provide a fluid treatment apparatus capable of continuously performing heat treatment and cooling treatment and water for lotion produced by a fluid treatment method. This water for lotion can be used to provide lotion and cosmetics.

図1は本発明の実施形態に係る流体処理装置の構成を示す模式図である。FIG. 1 is a schematic view showing a configuration of a fluid processing apparatus according to an embodiment of the present invention. 図2は図1の流体処理装置の第1熱交換部の第1流路を示す模式図である。FIG. 2 is a schematic view showing a first flow path of the first heat exchange section of the fluid processing apparatus of FIG. 図3は図1の流体処理装置の第1熱交換部の第1副流路を示す模式図である。FIG. 3 is a schematic view showing a first subchannel of the first heat exchange section of the fluid processing apparatus of FIG. 図4は図1の流体処理装置の第1熱交換部の第2副流路を示す模式図である。FIG. 4 is a schematic view showing a second subchannel of the first heat exchange section of the fluid processing apparatus of FIG. 図5は図1の流体処理装置の第2熱交換部の第2流路を示す模式図である。FIG. 5 is a schematic view showing a second flow path of the second heat exchange section of the fluid processing apparatus of FIG. 図6は図1の流体処理装置の第2熱交換部の第3副流路を示す模式図である。FIG. 6 is a schematic view showing a third subchannel of the second heat exchange section of the fluid processing apparatus of FIG. 図7は図1の流体処理装置の第2熱交換部の第4副流路を示す模式図である。FIG. 7 is a schematic view showing a fourth sub-channel of the second heat exchange section of the fluid processing apparatus of FIG. 図8は第1実施例に係る流体処理装置の構成を示す模式図であり、図8(A)は第1熱交換部のZZ断面の平面図を示し、図8(B)は第1熱交換部のYY断面図を示し、図8(C)は第1熱交換部のXX断面図を示す。8A and 8B are schematic views showing the configuration of the fluid treatment apparatus according to the first embodiment, FIG. 8A shows a plan view of a ZZ cross section of the first heat exchange section, and FIG. 8B shows a first heat. The YY cross-sectional view of the exchange part is shown, and FIG. 8C shows the XX cross-sectional view of the first heat exchange part. 図9は第2実施例に係る流体処理装置の構成を示す模式図である。FIG. 9 is a schematic view showing the configuration of the fluid processing apparatus according to the second embodiment. 図10は第3実施例に係る流体処理装置の構成を示す模式断面図である。FIG. 10 is a schematic cross-sectional view showing the configuration of the fluid treatment apparatus according to the third embodiment. 図11は第4実施例に係る流体処理装置の構成を示す模式図である。FIG. 11 is a schematic view showing the configuration of the fluid processing apparatus according to the fourth embodiment.

以下、本発明の実施形態について説明する。以下に説明する形態はあくまで例示であり、当業者にとって自明な範囲で適宜修正することができる。 Hereinafter, embodiments of the present invention will be described. The forms described below are merely examples, and can be appropriately modified to the extent obvious to those skilled in the art.

<第1実施形態>
(流体処理装置の構成)
図1は本実施形態に係る流体処理装置の構成を示す模式図である。図1に示すように、流体処理装置1は、第1流路P1に導入された流体を所定の温度に加熱する第1熱交換部10と、第2流路P2に導入された流体を所定の温度から冷却する、第1熱交換部10の下流側に直接接続された第2熱交換部20とを有する。
<First Embodiment>
(Configuration of fluid processing equipment)
FIG. 1 is a schematic view showing a configuration of a fluid processing apparatus according to the present embodiment. As shown in FIG. 1, the fluid processing apparatus 1 determines the first heat exchange unit 10 that heats the fluid introduced into the first flow path P1 to a predetermined temperature, and the fluid introduced into the second flow path P2. It has a second heat exchange unit 20 directly connected to the downstream side of the first heat exchange unit 10 for cooling from the temperature of.

第1熱交換部10は、表面に第1基体凹部が設けられた第1基体と、第1基体に積層された第1密閉板とを有する。第1基体の第1基体凹部の表面と第1密閉板の第1基体側の表面との間に第1流路P1が設けられている。第1流路P1は、第1の方向に伸びる複数の第1副流路SP1と、第1の方向に対して垂直な第2の方向に伸びるとともに隣り合う第1副流路SP1を連通する複数の第2副流路SP2とを含む。流体F1が導入路30から一方の端にある第1副流路SP1に導入されると、第1副流路SP1と第2副流路SP2とを経由して他方の端にある第1副流路SP1まで流れる。第1基体は所定の温度に保持されており、流体F1が第1流路P1を流れる際に第1副流路SP1の壁と垂直に衝突することにより、流体F1と第1副流路SP1の壁との間で熱交換が行われる。垂直に衝突すると、熱伝達の抵抗となる淀み層ができない、あるいは薄くなる。流体F1と第1副流路SP1の壁との熱交換は複数回行われ、第1熱交換部10で熱交換処理がされて所定の温度に加熱された流体F2が導出路31Aから導出される。第2副流路SP2を流れる流体の流速は、第1副流路SP1を流れる流体の流速より早くなるように構成されている。 The first heat exchange unit 10 has a first substrate provided with a recess of the first substrate on the surface, and a first airtight plate laminated on the first substrate. A first flow path P1 is provided between the surface of the recess of the first base of the first base and the surface of the first sealing plate on the side of the first base. The first flow path P1 communicates with a plurality of first sub-flow paths SP1 extending in the first direction and a first sub-flow path SP1 extending in a second direction perpendicular to the first direction and adjacent to each other. Includes a plurality of second subchannels SP2. When the fluid F1 is introduced from the introduction path 30 into the first sub-channel SP1 at one end, it passes through the first sub-channel SP1 and the second sub-channel SP2 and is the first sub at the other end. It flows to the flow path SP1. The first substrate is held at a predetermined temperature, and when the fluid F1 flows through the first flow path P1, it collides perpendicularly with the wall of the first sub-flow path SP1 so that the fluid F1 and the first sub-flow path SP1 Heat exchange takes place with the wall. When colliding vertically, a stagnation layer that resists heat transfer is formed or thinned. Heat exchange between the fluid F1 and the wall of the first subchannel SP1 is performed a plurality of times, and the fluid F2 that has been heat-exchanged by the first heat exchange unit 10 and heated to a predetermined temperature is led out from the lead-out path 31A. NS. The flow velocity of the fluid flowing through the second subchannel SP2 is configured to be faster than the flow velocity of the fluid flowing through the first subchannel SP1.

第2熱交換部20は、上記の第1熱交換部10と同様な構成を有し、流体を所定の温度から冷却する。第2熱交換部20は、表面に第2基体凹部が設けられた第2基体と、第2基体に積層された第2密閉板とを有する。第2基体の第2基体凹部の表面と第2密閉板の第2基体側の表面との間に第2流路P2が設けられている。第2流路P2は、第3の方向に伸びる複数の第3副流路SP3と、第3の方向に対して垂直な第4の方向に伸びるとともに隣り合う第3副流路SP3を連通する複数の第4副流路SP4とを含む。第1熱交換部10の導出路31Aは、第2熱交換部20の導入路31Bに接続されている。流体F2が導入路31Bから一方の端にある第3副流路SP3に導入されると、第3副流路SP3と第4副流路SP4とを経由して他方の端にある第3副流路SP3まで流れる。第2基体は、流体が第1熱交換部10で加熱された温度より低い温度に保持されており、流体F2が第2流路P2を流れる際に第3副流路SP3の壁と垂直に衝突することにより、流体F2と第3副流路SP3の壁との間で熱交換が行われる。垂直に衝突すると、熱伝達の抵抗となる淀み層ができない、あるいは薄くなる。流体F2と第3副流路SP3の壁との熱交換は複数回行われ、第2熱交換部20で熱交換処理がされて所定の温度から冷却された流体F3が導出路32から導出される。冷却された流体F3は、例えばガスから凝縮して液体40となって回収される。第4副流路SP4を流れる流体の流速は、第3副流路SP3を流れる流体の流速より早くなるように構成されている。 The second heat exchange unit 20 has the same configuration as the first heat exchange unit 10 described above, and cools the fluid from a predetermined temperature. The second heat exchange unit 20 has a second substrate provided with a recessed portion of the second substrate on its surface, and a second sealing plate laminated on the second substrate. A second flow path P2 is provided between the surface of the recess of the second base of the second base and the surface of the second sealing plate on the side of the second base. The second flow path P2 communicates with a plurality of third sub-flow paths SP3 extending in the third direction and a third sub-flow path SP3 extending in the fourth direction perpendicular to the third direction and adjacent to each other. Includes a plurality of fourth subchannels SP4. The lead-out path 31A of the first heat exchange section 10 is connected to the introduction path 31B of the second heat exchange section 20. When the fluid F2 is introduced from the introduction path 31B into the third sub-flow path SP3 at one end, the third sub-channel at the other end passes through the third sub-flow path SP3 and the fourth sub-flow path SP4. It flows to the flow path SP3. The second substrate is held at a temperature lower than the temperature at which the fluid is heated by the first heat exchange unit 10, and when the fluid F2 flows through the second flow path P2, it is perpendicular to the wall of the third sub-flow path SP3. Due to the collision, heat exchange is performed between the fluid F2 and the wall of the third auxiliary flow path SP3. When colliding vertically, a stagnation layer that resists heat transfer is formed or thinned. Heat exchange between the fluid F2 and the wall of the third subchannel SP3 is performed a plurality of times, and the fluid F3 that has been heat-exchanged by the second heat exchange unit 20 and cooled from a predetermined temperature is led out from the lead-out path 32. NS. The cooled fluid F3 is, for example, condensed from a gas and recovered as a liquid 40. The flow velocity of the fluid flowing through the fourth subchannel SP4 is configured to be faster than the flow velocity of the fluid flowing through the third subchannel SP3.

第1基体及び第1密閉板の少なくともいずれか一方には、流体と熱交換する上記の第1副流路SP1の壁が所定の温度となるように、ヒーター等の不図示の第1温度調節部が設けられている。第1温度調節部により、第1副流路SP1の壁を含む第1熱交換部10は、例えば100℃〜1000℃から適宜選択された所定の温度に設定可能となっている。同様に、第2基体及び第2密閉板の少なくともいずれか一方には、流体と熱交換する上記の第3副流路SP3の壁が第1副流路SP1の壁の温度より低い温度となるように、冷却器あるいはヒーター等の不図示の第2温度調節部が設けられている。第2温度調節部により、第3副流路SP3の壁を含む第2熱交換部20は、第2熱交換部20の温度が第1熱交換部10の温度より低くなる範囲で、例えば0℃〜100℃から選択された所定の温度に設定可能となっている。 A first temperature control (not shown) such as a heater is provided on at least one of the first substrate and the first airtight plate so that the wall of the first sub-flow path SP1 that exchanges heat with a fluid has a predetermined temperature. A part is provided. The first temperature control unit allows the first heat exchange unit 10 including the wall of the first subchannel SP1 to be set to a predetermined temperature appropriately selected from, for example, 100 ° C. to 1000 ° C. Similarly, on at least one of the second substrate and the second sealing plate, the temperature of the wall of the third sub-channel SP3 that exchanges heat with the fluid is lower than the temperature of the wall of the first sub-channel SP1. As described above, a second temperature control unit (not shown) such as a cooler or a heater is provided. By the second temperature control unit, the second heat exchange unit 20 including the wall of the third subchannel SP3 is set to, for example, 0 in the range where the temperature of the second heat exchange unit 20 is lower than the temperature of the first heat exchange unit 10. It is possible to set a predetermined temperature selected from ° C. to 100 ° C.

図2は図1の流体処理装置1の第1熱交換部10の第1流路P1を示す模式図である。第1流路P1は、複数の第1副流路SP1と、隣り合う第1副流路SP1を連通する複数の第2副流路SP2とを含む。流体F1は、第1流路P1を流れる際に、第1副流路SP1を流れ、第1副流路SP1から第2副流路SP2に流れ込み、第2副流路SP2から第1副流路SP1に流れ出る。このとき、流体F1が第1副流路SP1の壁と垂直に衝突し、流体F1と第1副流路SP1の壁との間で熱交換が行われる。第1副流路SP1は、上流側の第2副流路SP2から下流側の第2副流路SP2までの長さを第1副流路SP1の長さL1とし、幅W1で形成されている。また、第2副流路SP2は、上流側の第1副流路SP1から下流側の第1副流路SP1までの長さを第2副流路SP2の長さL2とし、幅W2で形成されている。隣り合う第1副流路SP1同士の距離は第2副流路SP2の長さL2に相当する。第2副流路SP2のピッチは(L1+W2)の2倍に相当する。 FIG. 2 is a schematic view showing a first flow path P1 of the first heat exchange unit 10 of the fluid processing apparatus 1 of FIG. The first flow path P1 includes a plurality of first sub-flow paths SP1 and a plurality of second sub-flow paths SP2 communicating with adjacent first sub-flow paths SP1. When the fluid F1 flows through the first sub-flow path P1, it flows through the first sub-flow path SP1, flows from the first sub-flow path SP1 into the second sub-flow path SP2, and flows from the second sub-flow path SP2 to the first side flow. It flows out to the road SP1. At this time, the fluid F1 collides perpendicularly with the wall of the first subchannel SP1, and heat exchange is performed between the fluid F1 and the wall of the first subchannel SP1. The first sub-flow path SP1 is formed with a width W1 and the length from the second sub-flow path SP2 on the upstream side to the second sub-flow path SP2 on the downstream side is the length L1 of the first sub-flow path SP1. There is. Further, the second sub-flow path SP2 is formed with a width W2, where the length from the first sub-flow path SP1 on the upstream side to the first sub-flow path SP1 on the downstream side is the length L2 of the second sub-flow path SP2. Has been done. The distance between adjacent first sub-channels SP1 corresponds to the length L2 of the second sub-channel SP2. The pitch of the second subchannel SP2 corresponds to twice that of (L1 + W2).

図3は図1の流体処理装置1の第1熱交換部10の第1副流路SP1を示す模式図である。第1副流路SP1は、例えば断面積がS1である断面形状が矩形の形状を有する。 FIG. 3 is a schematic view showing a first subchannel SP1 of the first heat exchange unit 10 of the fluid processing apparatus 1 of FIG. The first sub-channel SP1 has, for example, a rectangular shape having a cross-sectional area of S1.

図4は図1の流体処理装置1の第1熱交換部10の第2副流路SP2を示す模式図である。第2副流路SP2は、例えば断面積がS2である断面形状が矩形の形状を有する。 FIG. 4 is a schematic view showing a second subchannel SP2 of the first heat exchange unit 10 of the fluid processing apparatus 1 of FIG. The second subchannel SP2 has, for example, a rectangular shape having a cross-sectional area of S2.

本実施形態の流体処理装置1は、第1副流路SP1の断面積S1が第2副流路SP2の断面積S2の2倍より大きいこと、及び第2副流路SP2の長さL2が第1副流路のSP1幅W1より長いこと、及び第2副流路SP2の配置ピッチPT2が第2副流路SP2の幅W2の2倍より大きいことが、同時に満足されているか、またはいずれかの組み合わせが満足されていることが好ましい。 In the fluid processing apparatus 1 of the present embodiment, the cross-sectional area S1 of the first sub-flow path SP1 is larger than twice the cross-sectional area S2 of the second sub-flow path SP2, and the length L2 of the second sub-flow path SP2 is large. It is satisfied at the same time that it is longer than the SP1 width W1 of the first sub-flow path and that the arrangement pitch PT2 of the second sub-flow path SP2 is larger than twice the width W2 of the second sub-flow path SP2. It is preferable that the combination is satisfied.

図5は図1の流体処理装置1の第2熱交換部20の第2流路P2を示す模式図である。第2流路P2は、複数の第3副流路SP3と、隣り合う第3副流路SP3を連通する複数の第4副流路SP4とを含む。第1熱交換部10から流されてきた流体F2は、第2流路P2を流れる際に、第3副流路SP3を流れ、第3副流路SP3から第4副流路SP4に流れ込み、第4副流路SP4から第3副流路SP3に流れ出る。このとき、流体F2が第3副流路SP3の壁と垂直に衝突し、流体F2と第3副流路SP3の壁との間で熱交換が行われる。第3副流路SP3は、上流側の第4副流路SP4から下流側の第4副流路SP4までの長さを第3副流路SP3の長さL3とし、幅W3で形成されている。また、第4副流路SP4は、上流側の第3副流路SP3から下流側の第3副流路SP3までの長さを第4副流路SP4の長さL4とし、幅W4で形成されている。隣り合う第3副流路SP3同士の距離は第4副流路SP4の長さL4に相当する。第4副流路SP4のピッチは(L3+W4)の2倍に相当する。 FIG. 5 is a schematic view showing a second flow path P2 of the second heat exchange unit 20 of the fluid processing apparatus 1 of FIG. The second flow path P2 includes a plurality of third sub-flow paths SP3 and a plurality of fourth sub-flow paths SP4 communicating with adjacent third sub-flow paths SP3. When the fluid F2 flowing from the first heat exchange unit 10 flows through the second flow path P2, it flows through the third sub-flow path SP3 and flows from the third sub-flow path SP3 into the fourth sub-flow path SP4. It flows out from the fourth sub-flow path SP4 to the third sub-flow path SP3. At this time, the fluid F2 collides perpendicularly with the wall of the third subchannel SP3, and heat exchange is performed between the fluid F2 and the wall of the third subchannel SP3. The third sub-flow path SP3 is formed with a width W3, where the length from the fourth sub-flow path SP4 on the upstream side to the fourth sub-flow path SP4 on the downstream side is the length L3 of the third sub-flow path SP3. There is. Further, the fourth sub-flow path SP4 is formed with a width W4, where the length from the third sub-flow path SP3 on the upstream side to the third sub-flow path SP3 on the downstream side is the length L4 of the fourth sub-flow path SP4. Has been done. The distance between adjacent third sub-channels SP3 corresponds to the length L4 of the fourth sub-channel SP4. The pitch of the fourth subchannel SP4 corresponds to twice that of (L3 + W4).

図6は図1の流体処理装置1の第2熱交換部20の第3副流路SP3を示す模式図である。第3副流路SP3は、断面積がS3である断面形状が矩形の形状を有する。 FIG. 6 is a schematic view showing a third subchannel SP3 of the second heat exchange unit 20 of the fluid processing apparatus 1 of FIG. The third sub-channel SP3 has a rectangular cross-sectional shape with a cross-sectional area of S3.

図7は図1の流体処理装置1の第2熱交換部20の第4副流路SP4を示す模式図である。第4副流路SP4は、断面積がS4である断面形状が矩形の形状を有する。 FIG. 7 is a schematic view showing a fourth subchannel SP4 of the second heat exchange unit 20 of the fluid processing apparatus 1 of FIG. The fourth subchannel SP4 has a rectangular cross-sectional shape with a cross-sectional area of S4.

本実施形態の流体処理装置1は、第3副流路SP3の断面積S3が第4副流路SP4の断面積S4の2倍より大きいこと、及び第4副流路SP4の長さL4が第3副流路SP3の幅W3より長いこと、及び第4副流路SP4の配置ピッチPT4が第4副流路SP4の幅W4の2倍より大きいことが、同時に満足されているか、またはいずれかの組み合わせが満足されていることが好ましい。 In the fluid processing apparatus 1 of the present embodiment, the cross-sectional area S3 of the third sub-channel SP3 is larger than twice the cross-sectional area S4 of the fourth sub-channel SP4, and the length L4 of the fourth sub-channel SP4 is large. It is satisfied at the same time that the width W3 of the third sub-flow path SP3 and the arrangement pitch PT4 of the fourth sub-flow path SP4 are larger than twice the width W4 of the fourth sub-flow path SP4 are satisfied at the same time. It is preferable that the combination is satisfied.

流体処理装置1で処理される流体は、処理中に液体からガスにあるいはガスから液体に物質の状態の変化を行ってもよい。例えば、流体は水または水蒸気である。例えば、第1熱交換部10において熱交換処理により水から水蒸気に気化して所定の温度に加熱され、続いて第2熱交換部20において熱交換処理により水蒸気から水に凝縮して所定の温度から冷却される構成であってもよい。流体が水または水蒸気の場合、第1熱交換部10では、例えば100℃以上、好ましくは150℃以上、さらに好ましくは200℃以上、典型的には500℃以上の温度に加熱される。加熱に要する時間(流体が第1熱交換部を通過するのに要する時間)は例えば1000ms以下、典型的には200msである。また、第2熱交換部20では、例えば室温以下、典型的には20℃の温度に冷却する。冷却に要する時間(流体が第2熱交換部を通過するのに要する時間)は、例えば1000ms以下、典型的には200ms以下である。降温により水蒸気は凝縮して水になる。流体を水蒸気状態で利用する場合は、水蒸気状態を保てる温度への冷却であってもよい。 The fluid processed by the fluid processing apparatus 1 may change the state of matter from liquid to gas or from gas to liquid during processing. For example, the fluid is water or water vapor. For example, in the first heat exchange unit 10, water is vaporized into water vapor by heat exchange treatment and heated to a predetermined temperature, and then in the second heat exchange unit 20, the water vapor is condensed into water by heat exchange treatment to a predetermined temperature. It may be configured to be cooled from. When the fluid is water or steam, the first heat exchange unit 10 is heated to a temperature of, for example, 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and typically 500 ° C. or higher. The time required for heating (the time required for the fluid to pass through the first heat exchange section) is, for example, 1000 ms or less, typically 200 ms. Further, the second heat exchange unit 20 cools the temperature to, for example, room temperature or lower, typically 20 ° C. The time required for cooling (the time required for the fluid to pass through the second heat exchange section) is, for example, 1000 ms or less, typically 200 ms or less. Water vapor condenses into water as the temperature drops. When the fluid is used in a water vapor state, it may be cooled to a temperature at which the water vapor state can be maintained.

流体処理装置1で処理される流体は、処理中に物質の状態の変化を伴わない流体であってもよい。例えば水蒸気として第1熱交換部10及び第2熱交換部20により熱交換処理がなされてもよい。 The fluid processed by the fluid processing apparatus 1 may be a fluid that does not change the state of matter during the processing. For example, as water vapor, heat exchange treatment may be performed by the first heat exchange unit 10 and the second heat exchange unit 20.

流体処理装置1で処理される流体としては、上記の他、空気を含むガスであっても、水を含む液体であってもよい。酸素を含むガス、水素やギ酸を含むガスに適用可能である。 In addition to the above, the fluid processed by the fluid processing apparatus 1 may be a gas containing air or a liquid containing water. It is applicable to gases containing oxygen and gases containing hydrogen and formic acid.

本実施形態の流体処理装置1において、第1基体及び第2基体は、例えば、それぞれ、板状、円筒状、円柱状、及び角柱状のいずれかの形状である。第1基体及び第2基体の形状は、特に限定されるものではなく、様々な形状に適用可能である。 In the fluid processing apparatus 1 of the present embodiment, the first substrate and the second substrate have, for example, any shape of a plate, a cylinder, a cylinder, and a prism, respectively. The shapes of the first substrate and the second substrate are not particularly limited, and can be applied to various shapes.

本実施形態の流体処理装置1において、第1基体、第1密閉板、第2基体及び第2密閉板は、例えば、それぞれ、金属、グラファイト、セラミクス、プラスチック、複合材料、またはこれらの組み合わせで構成されている。複合材料は、例えば、金属、カーボンナノチューブ、グラフェン及びカーボンファイバーから選択された少なくとも1つと、プラスチックとが複合した材料である。上記の金属は、例えば繊維状金属である。このような材料で形成された第1熱交換部10及び第2熱交換部20により流体処理装置1が実現可能である。 In the fluid treatment apparatus 1 of the present embodiment, the first substrate, the first sealing plate, the second substrate and the second sealing plate are each composed of, for example, metal, graphite, ceramics, plastic, composite material, or a combination thereof. Has been done. The composite material is, for example, a material in which at least one selected from metals, carbon nanotubes, graphene and carbon fibers is composited with plastic. The above metal is, for example, a fibrous metal. The fluid processing apparatus 1 can be realized by the first heat exchange unit 10 and the second heat exchange unit 20 formed of such a material.

上記の第1基体、第1密閉板、第2基体及び第2密閉板は、板状の材料で形成されていてもよい。例えば、板状の材料を金型等で加工してチャネルやタブを整形し、複数枚張り合わせて接合して形成されていてもよい。材料として変形容易材料を選ぶと金型プレス加工による流路形成が可能である。金属板を選ぶと溶接や電気ウエルダーで接合させることが可能である。プラスチックであれば接着剤で接合させることが可能である。 The first base, the first sealing plate, the second base, and the second sealing plate may be made of a plate-like material. For example, a plate-shaped material may be processed with a mold or the like to form channels and tabs, and a plurality of sheets may be bonded and joined. If a deformable material is selected as the material, it is possible to form a flow path by die pressing. If a metal plate is selected, it can be joined by welding or electric welder. If it is plastic, it can be joined with an adhesive.

本実施形態の流体処理装置1と接触する周囲の材料や流体が腐食性であるとき、流体処理装置1の材料表面を樹脂でライニングすることや、塗装すること、またはめっきすることも可能である。また流体処理装置1の材料表面を酸化して酸化被膜で保護することも可能である。これらの材料から、流体や熱媒体との接触による腐食や減耗を防ぐ材料を選ぶことが可能であり、腐食性のある薬品や浸透性のある毒性ガスなどの流体の熱交換が可能である。 When the surrounding material or fluid in contact with the fluid treatment apparatus 1 of the present embodiment is corrosive, the material surface of the fluid treatment apparatus 1 can be lined with resin, painted, or plated. .. It is also possible to oxidize the material surface of the fluid treatment apparatus 1 and protect it with an oxide film. From these materials, it is possible to select a material that prevents corrosion and wear due to contact with a fluid or heat medium, and it is possible to exchange heat with a fluid such as a corrosive chemical or a permeable toxic gas.

板状の材料を接合する場合は、ネジ止めが可能である。板状の材料の接合には、ゴムパッキンやカーボンパッキン、その他のシールパッキンをいれることも可能である。また、板状の材料の接合には、接着剤を用いることも可能である。 When joining plate-shaped materials, screwing is possible. Rubber packing, carbon packing, and other seal packing can be used to join the plate-shaped materials. It is also possible to use an adhesive for joining the plate-shaped materials.

上記の第1熱交換部10及び第2熱交換部20は、例えば平面の形で示した単体である。あるいは、折り曲げて三角形や四角形、その他の多角形の筒の形状であってもよい。平面でなく丸い筒の形の板で作ることで円筒の形としてもよい。第1熱交換部10及び第2熱交換部20は、他の筒や板の表面に張り付けることも可能である。 The first heat exchange unit 10 and the second heat exchange unit 20 are, for example, simple substances shown in the form of a plane. Alternatively, it may be bent into the shape of a triangle, a quadrangle, or another polygonal cylinder. It may be formed into a cylindrical shape by making it from a plate in the shape of a round cylinder instead of a flat surface. The first heat exchange unit 10 and the second heat exchange unit 20 can be attached to the surface of another cylinder or plate.

第1熱交換部10の導入路30及び第2熱交換部20の導出路32は、数や形状、取り付ける位置について自由に設計できる。第1熱交換部10の導出路31A及び第2熱交換部20の導入路31Bは、互いに接続可能な数、形状、取り付ける位置で形成されている。 The number, shape, and mounting position of the introduction path 30 of the first heat exchange section 10 and the lead path 32 of the second heat exchange section 20 can be freely designed. The lead-out path 31A of the first heat exchange section 10 and the introduction path 31B of the second heat exchange section 20 are formed in a number, shape, and mounting position that can be connected to each other.

流体を加熱するために第1熱交換部10にヒーターを取り付けること、または加熱された媒体の中に置き加熱することも可能である。例えばボイラーの燃焼効率を高めるために高温加熱した空気を導入することが有効であることが分かっている。この目的のために、例えば第1熱交換部10をボイラーの燃焼室や排気配管に接触させるか、またはその中に置き加熱し、これを介して加熱空気を導入するとよい。 It is also possible to attach a heater to the first heat exchange section 10 to heat the fluid, or to place it in a heated medium to heat it. For example, it has been found that it is effective to introduce high-temperature heated air in order to increase the combustion efficiency of the boiler. For this purpose, for example, the first heat exchange unit 10 may be brought into contact with or placed in the combustion chamber or exhaust pipe of the boiler for heating, and heated air may be introduced through the first heat exchange unit 10.

また、第1熱交換部で加熱された温度よりも低い温度に流体を冷却するために、第2熱交換部20に冷却部またはヒーターを取り付けること、または冷却あるいは加熱された媒体の中に置き、冷却あるいは加熱することも可能である。流体を冷却するために、例えば第2熱交換部20に冷却媒体を接触させること、または低温の媒体の中に置き冷却することも可能である。例えば、第1熱交換部10からの高温ガスを流体として第1熱交換部10を通し、これを海水につけて冷却すると、効率よく高温ガスを冷却することが可能である。 Further, in order to cool the fluid to a temperature lower than the temperature heated by the first heat exchange unit, a cooling unit or a heater is attached to the second heat exchange unit 20, or the fluid is placed in a cooled or heated medium. It is also possible to cool or heat. In order to cool the fluid, for example, the cooling medium can be brought into contact with the second heat exchange unit 20, or the fluid can be cooled by placing it in a low temperature medium. For example, if the high temperature gas from the first heat exchange unit 10 is passed through the first heat exchange unit 10 as a fluid and immersed in seawater for cooling, the high temperature gas can be efficiently cooled.

本実施形態の流体処理装置1において、流路の壁に垂直に流体が衝突する構造の設計指針は、装置が大きくても小さくても、または形に依存せずに適用できる。 In the fluid processing apparatus 1 of the present embodiment, the design guideline of the structure in which the fluid collides perpendicularly with the wall of the flow path can be applied regardless of whether the apparatus is large or small, or regardless of the shape.

また、加工コストが許す範囲で高流速衝突が起きるように設計可能である。また流量を大きく設計するなら、関係を保ちながら流路断面積を加工コストに見合う範囲で大きくすると良い。 In addition, it can be designed so that high-velocity collision occurs within the range allowed by the processing cost. If the flow rate is designed to be large, it is advisable to increase the flow path cross-sectional area within a range commensurate with the processing cost while maintaining the relationship.

本実施形態の流体処理装置1において、使用する温度や熱媒体環境、基体の切削加工コストに応じて材料を選ぶことができる。 In the fluid processing apparatus 1 of the present embodiment, the material can be selected according to the temperature to be used, the heat medium environment, and the cutting cost of the substrate.

(流体処理方法)
次に、上記の流体処理装置1を用いた流体処理方法について説明する。まず、第1熱交換部10により第1流路P1に導入された流体を所定の温度に加熱する(第1熱交換工程)。
(Fluid processing method)
Next, a fluid processing method using the above fluid processing apparatus 1 will be described. First, the fluid introduced into the first flow path P1 by the first heat exchange unit 10 is heated to a predetermined temperature (first heat exchange step).

上記の第1熱交換部10は、表面に第1基体凹部が設けられた第1基体と第1基体に積層された第1密閉板とを有し、第1基体の第1基体凹部の表面と第1密閉板の第1基体側の表面との間に、第1の方向に伸びる複数の第1副流路SP1と第1の方向に対して垂直な第2の方向に伸びるとともに隣り合う第1副流路SP1を連通する複数の第2副流路SP2とを含む。 The first heat exchange unit 10 has a first substrate provided with a concave portion of the first substrate on the surface and a first airtight plate laminated on the first substrate, and the surface of the concave portion of the first substrate of the first substrate. Between the surface of the first sealing plate and the surface of the first sealing plate on the side of the first substrate, a plurality of first sub-flow passages SP1 extending in the first direction extend in a second direction perpendicular to the first direction and are adjacent to each other. It includes a plurality of second sub-channels SP2 that communicate with the first sub-channel SP1.

一方の端にある第1副流路SP1に導入された流体が第1副流路SP1と第2副流路SP2とを経由して他方の端にある第1副流路SP1まで流れる第1流路P1が設けられた第1熱交換部10に、第2副流路SP2を流れる流体の流速が第1副流路SP1を流れる流体の流速より早くなるように流体を流す。これにより、流体を第1副流路SP1の壁と垂直に衝突させることにより熱交換を行い、第1流路P1に導入された流体を所定の温度に加熱する。 The first that the fluid introduced into the first sub-flow path SP1 at one end flows to the first sub-flow path SP1 at the other end via the first sub-flow path SP1 and the second sub-flow path SP2. A fluid is flowed through the first heat exchange section 10 provided with the flow path P1 so that the flow velocity of the fluid flowing through the second sub-flow path SP2 is faster than the flow velocity of the fluid flowing through the first sub-flow path SP1. As a result, heat exchange is performed by causing the fluid to collide perpendicularly with the wall of the first secondary flow path SP1, and the fluid introduced into the first flow path P1 is heated to a predetermined temperature.

次に、第1熱交換工程の後に、第2熱交換部20により第2流路P2に導入された流体を所定の温度から冷却する(第2熱交換工程)。 Next, after the first heat exchange step, the fluid introduced into the second flow path P2 by the second heat exchange unit 20 is cooled from a predetermined temperature (second heat exchange step).

上記の第2熱交換部20は、表面に第2基体凹部が設けられた第2基体と第2基体に積層された第2密閉板とを有し、第2基体の第2基体凹部の表面と第2密閉板の第2基体側の表面との間に、第3の方向に伸びる複数の第3副流路SP3と第3の方向に対して垂直な第4の方向に伸びるとともに隣り合う第3副流路SP3を連通する複数の第4副流路SP4とを含む。 The second heat exchange unit 20 has a second base having a second base recess provided on its surface and a second sealing plate laminated on the second base, and has a surface of the second base recess of the second base. And the surface of the second sealing plate on the second substrate side, a plurality of third auxiliary flow paths SP3 extending in the third direction and extending in the fourth direction perpendicular to the third direction and adjacent to each other. It includes a plurality of fourth sub-channels SP4 that communicate with the third sub-channel SP3.

所定の温度に加熱された流体が一方の端にある第3副流路SP3に導入されて第3副流路SP3と第4副流路SP4とを経由して他方の端にある第3副流路SP3まで流れる第2流路P2が設けられた第2熱交換部に、第4副流路SP4を流れる流体の流速が第3副流路SP3を流れる流体の流速より早くなるように流体を流す。これにより、流体を第3副流路SP3の壁と垂直に衝突させることにより熱交換を行い、第2流路P2に導入された流体を所定の温度から冷却する。 A fluid heated to a predetermined temperature is introduced into the third sub-flow path SP3 at one end, passes through the third sub-flow path SP3 and the fourth sub-flow path SP4, and is the third sub at the other end. A fluid so that the flow velocity of the fluid flowing through the fourth subchannel SP4 is faster than the flow velocity of the fluid flowing through the third subchannel SP3 in the second heat exchange portion provided with the second flow path P2 flowing to the flow path SP3. Flow. As a result, heat exchange is performed by causing the fluid to collide perpendicularly with the wall of the third secondary flow path SP3, and the fluid introduced into the second flow path P2 is cooled from a predetermined temperature.

(流体処理装置及び流体処理方法の作用・効果)
本実施形態の流体処理装置及び流体処理方法によれば、加熱処理及び冷却処理を連続して行うことが可能である。例えば流体が水の場合、瞬時に加熱及び冷却を施すことで、通常の蒸留水等では得ることが困難であった小さいサイズの水分子集団を得ることができる。
(Action / effect of fluid treatment equipment and fluid treatment method)
According to the fluid treatment apparatus and the fluid treatment method of the present embodiment, the heat treatment and the cooling treatment can be continuously performed. For example, when the fluid is water, by instantly heating and cooling it, it is possible to obtain a small-sized water molecule population that was difficult to obtain with ordinary distilled water or the like.

ここでは1個の水分子を[HO]と表記し、1つの水分子集団を「[HO]」と表記することにする。nは1つの水分子集団の大きさの指標であり、ある瞬間n値とその分布は変化している。平衡状態下の水の分子集団のn値については様々な意見がある。実際の水ではn値が異なる成分が混在していると考えられる。ある平衡状態で存在する安定な水の分子集団のn値の確率分布は一定していると考えられる。しかし、急速に加熱または冷却したときの確率分布は異なる分布にあり、時間経過とともに安定な分布になり安定すると考えられる。 Here, one water molecule is referred to as [H 2 O], and one water molecule group is referred to as “[H 2 O] n ”. n is an index of the size of one water molecule population, and the n value and its distribution change at a certain moment. There are various opinions about the n value of the molecular population of water under equilibrium. It is considered that components having different n values are mixed in actual water. It is considered that the probability distribution of the n value of the stable water molecular population existing in a certain equilibrium state is constant. However, the probability distributions when heated or cooled rapidly are different, and it is considered that the distribution becomes stable and stable with the passage of time.

本実施形態の第1熱交換部では、n値の大きい水分子集団を第1副流路の壁に衝突させて第1副流路の壁との間で熱交換する。通常の飽和水蒸気の加熱では100℃より高い温度に加熱するには圧力をかける必要があるが、上記の第1熱交換部における熱交換では、圧力に依存することなく自在に温度設定が可能である。このような第1熱交換部で、例えば500℃に急速に加熱することで水分子集団のn値を小さくし、例えばnが1又は1に近い蒸気にすることができる。 In the first heat exchange section of the present embodiment, a group of water molecules having a large n value collides with the wall of the first subchannel and exchanges heat with the wall of the first subchannel. In normal saturated steam heating, it is necessary to apply pressure to heat to a temperature higher than 100 ° C, but in the heat exchange in the first heat exchange section described above, the temperature can be freely set without depending on the pressure. be. In such a first heat exchange unit, for example, by rapidly heating to 500 ° C., the n value of the water molecule population can be reduced, and for example, steam having n of 1 or close to 1 can be obtained.

本実施形態の第2熱交換部では水蒸気が第3副流路の壁に衝突し、第3副流路の壁との間で熱交換する。水蒸気は低温の壁に衝突すると熱エネルギーを奪われて水になる。このような第2熱交換部で、例えば500℃以上の温度から室温程度にまで急速に冷却することで、水分子が通常の水の安定状態に戻りきらないうちに、非平衡状態の液体の水とすることができる。このようにして得られる水のn値の分布は、通常の安定状態の水と異なる。上記の水分子集団のn値の確率分布が異なる水は、放置すると時間とともにn値の分布が変化し、通常の水になる。 In the second heat exchange section of the present embodiment, water vapor collides with the wall of the third subchannel and exchanges heat with the wall of the third subchannel. When water vapor collides with a cold wall, it is deprived of heat energy and becomes water. In such a second heat exchange section, for example, by rapidly cooling from a temperature of 500 ° C. or higher to about room temperature, the liquid in the non-equilibrium state before the water molecules return to the normal stable state of water. Can be water. The distribution of n-values of water thus obtained is different from that of normal stable water. If the water having a different probability distribution of n values in the above water molecule population is left unattended, the distribution of n values changes with time and becomes normal water.

n値の小さい水分子集団を含むと推定される急速冷却された水は、人間の皮膚の表面の細胞、表皮、真皮、皮下組織に浸透しやすい。n値の小さい水分子集団を含む水を利用した化粧水や化粧品は、肌への浸透力が高くなり、肌質改善の効果が期待できる。 Rapidly cooled water, which is presumed to contain a population of water molecules with a small n-value, easily penetrates into cells, epidermis, dermis, and subcutaneous tissue on the surface of human skin. Toners and cosmetics using water containing a group of water molecules having a small n value have high penetrating power into the skin and can be expected to have an effect of improving skin quality.

<第1実施例>
(第1熱交換部及び第2熱交換部の構成例)
図8は第1実施例に係る流体処理装置の構成を示す模式図であり、図8(A)は第1熱交換部のZZ断面の平面図を示し、図8(B)は第1熱交換部のYY断面図を示し、図8(C)は第1熱交換部のXX断面図を示す。
<First Example>
(Structure example of the first heat exchange section and the second heat exchange section)
8A and 8B are schematic views showing the configuration of the fluid treatment apparatus according to the first embodiment, FIG. 8A shows a plan view of a ZZ cross section of the first heat exchange section, and FIG. 8B shows a first heat. The YY cross-sectional view of the exchange part is shown, and FIG. 8C shows the XX cross-sectional view of the first heat exchange part.

第1熱交換部300は、第1流路となる溝が形成された基体301と、溝を密閉して流路を形成する密閉板302とを有する。基体301及び密閉板302の少なくともいずれか一方が加熱され、流体が流路を流れて基体301の壁と熱交換を行う。図8(A)の流路の両端には流体の集合する横溝流路としてのバッファータブ305、306が備えられ、それらに接続して流体の導入路303と流体の導出路304が備えられてある。 The first heat exchange unit 300 has a substrate 301 on which a groove serving as a first flow path is formed, and a sealing plate 302 that seals the groove to form a flow path. At least one of the substrate 301 and the sealing plate 302 is heated, and the fluid flows through the flow path to exchange heat with the wall of the substrate 301. Buffer tabs 305 and 306 as lateral groove flow paths for collecting fluids are provided at both ends of the flow path of FIG. 8 (A), and a fluid introduction path 303 and a fluid lead-out path 304 are provided connected to them. be.

第1流路を構成する第1副流路として、タブT1、T2、T3、T4、T5が形成されている。タブT1〜T5は、幅W1、深さDDを有する。タブT1〜T5を代表してタブTと表記する。 Tabs T1, T2, T3, T4, and T5 are formed as the first sub-flow path constituting the first flow path. The tabs T1 to T5 have a width W1 and a depth DD. Tabs T1 to T5 are represented by tab T.

第1流路を構成する第2副流路としてチャネル流路が形成されている。同じタブ流路に接続するチャネル流路をチャネル列と呼び、チャネル列は順番に番号を付けてチャネル列CH1、CH2、CH3、CH4、CH5、CH6と表記する。同じチャネル列にあるチャネルに番号を付けて、チャネル列CH2のチャネルはチャネルCH21、CH22、CH23、CH24、CH25、CH26と表記する(図8(B)参照)。チャネル列CH1のチャネルはチャネルCH11、CH12、CH13、CH14、CH15、CH16、CH17と表記する(図8(C)参照)。チャネル列CH1、CH2、CH3、CH4、CH5、CH6(チャネルCH21、CH22、CH23、CH24、CH25、CH26、CH11、CH12、CH13、CH14、CH15、CH16、CH17・・・)を代表してチャネルCHと表記する。 A channel flow path is formed as a second sub-flow path constituting the first flow path. Channel channels connected to the same tab channel are referred to as channel sequences, and the channel sequences are numbered in order and are referred to as channel sequences CH1, CH2, CH3, CH4, CH5, and CH6. Channels in the same channel sequence are numbered and the channels in channel sequence CH2 are designated as channels CH21, CH22, CH23, CH24, CH25, CH26 (see FIG. 8B). The channels of the channel sequence CH1 are referred to as channels CH11, CH12, CH13, CH14, CH15, CH16, and CH17 (see FIG. 8C). Channel CH on behalf of channel sequences CH1, CH2, CH3, CH4, CH5, CH6 (channels CH21, CH22, CH23, CH24, CH25, CH26, CH11, CH12, CH13, CH14, CH15, CH16, CH17 ...) Notated as.

第2副流路の配置ピッチPT2は、同一チャネル列のチャネル配置のピッチとなる。チャネルCHは、幅W2、深さD、長さL2を有する。 The arrangement pitch PT2 of the second subchannel is the pitch of the channel arrangement of the same channel row. The channel CH has a width W2, a depth D, and a length L2.

流体は、第1副流路であるタブTと第2副流路であるチャネルCHを通る。 The fluid passes through the tab T, which is the first subchannel, and the channel CH, which is the second subchannel.

タブTの断面積(以下Stと表す)とチャネルCHの断面積(以下Scと表す)の関係について説明する。チャネルCHから出た流体が2方向に分かれて流れる構造であるので、単純に2Sc=Stのとき流体の速度変化がなく溜まりができない。即ち乱れのない同じ速度の流れが形成される寸法と考えられる。 The relationship between the cross-sectional area of the tab T (hereinafter referred to as St) and the cross-sectional area of the channel CH (hereinafter referred to as Sc) will be described. Since the structure is such that the fluid discharged from the channel CH flows separately in two directions, there is no change in the velocity of the fluid when 2Sc = St, and the fluid cannot be accumulated. That is, it is considered to be a dimension in which a flow having the same velocity without turbulence is formed.

2Sc>Stのとき、即ちチャネルCHの流体速度がタブTの流体速度より遅いとき、流体はタブTの壁に衝突しない、または流体は層流となる。流体が乱れることなくタブTの壁に沿って流れる層流を形成すると、壁との熱交換の効率は著しく低下する。流体が壁と衝突するのは、層流のできる条件を除く条件となり、2Sc<Stである。 When 2Sc> St, that is, when the fluid velocity of the channel CH is slower than the fluid velocity of the tab T, the fluid does not collide with the wall of the tab T, or the fluid becomes laminar. Forming a laminar flow along the wall of the tab T without turbulence of the fluid significantly reduces the efficiency of heat exchange with the wall. The fluid collides with the wall except for the condition where laminar flow is possible, and 2Sc <St.

チャネルCHの長さL2とタブTの幅W1は、以下のようにして決められる。チャネルCHで高流速を得た流れがタブTの壁まで到達して壁に衝突するには、少なくともタブTの幅W1はチャネルCHの長さL2より短いことが望ましい。チャネルCHを出た流れの高流速が壁に伝わる距離はチャネルCHの長さL2に相当するとすれば、L2>W1のとき、流体が壁に衝突を起こすことになる。 The length L2 of the channel CH and the width W1 of the tab T are determined as follows. In order for the flow obtained with the high flow velocity in the channel CH to reach the wall of the tab T and collide with the wall, it is desirable that at least the width W1 of the tab T is shorter than the length L2 of the channel CH. Assuming that the distance at which the high flow velocity of the flow leaving the channel CH is transmitted to the wall corresponds to the length L2 of the channel CH, the fluid will collide with the wall when L2> W1.

タブTを挟んで隣り合うチャネル列にあるチャネルCHの配置の関係は、以下のようにして決められる。隣り合うチャネル列のチャネルCHの中心軸が一致しているとチャネルCHを通過する流体は、挟まれたタブTを一軸の層流として横切り通過する。即ち、タブTの壁と衝突することはない。完全に一致しなくても、隣接する列のチャネルCHを重ねたとき、重なる部分があると、流体は流れやすい流路を優先して流れるので、タブTの壁と衝突しない流が形成される。従って、隣り合うチャネル列のチャネルCHが重ならない配置が必須である。 The relationship between the arrangement of the channel CHs in the channel rows adjacent to each other with the tab T in between is determined as follows. When the central axes of the channel CHs of the adjacent channel rows are aligned, the fluid passing through the channel CH crosses the sandwiched tab T as a uniaxial laminar flow. That is, it does not collide with the wall of the tab T. Even if they do not exactly match, when the channel CHs of adjacent rows are overlapped, if there is an overlapping part, the fluid will flow preferentially to the flow path that is easy to flow, so a flow that does not collide with the wall of the tab T is formed. .. Therefore, it is essential that the channel CHs of adjacent channel rows do not overlap.

チャネルCHの配置ピッチPT2及びチャネルCHの幅W2を使って表すと、PT2≦2W2のとき、隣接する列のチャネルCHに重なる部分が発生する。従って隣の列のチャネル同士が重ならないように、PT2>2W2とする。 Expressed using the arrangement pitch PT2 of the channel CH and the width W2 of the channel CH, when PT2 ≦ 2W2, a portion overlapping the channel CH of the adjacent row is generated. Therefore, PT2> 2W2 is set so that the channels in the adjacent rows do not overlap each other.

本実施例では上記のように第1熱交換部300が構成されている。第2熱交換部は、第1熱交換部300と同様の構成により実現されており、図示及び説明を省略する。但し、第2熱交換部は、流体を第1熱交換部300より低い温度に冷却可能に設けられている。上記のような第1熱交換部及び第2熱交換部を有して、流体熱処理装置が構成されている。 In this embodiment, the first heat exchange unit 300 is configured as described above. The second heat exchange unit is realized by the same configuration as the first heat exchange unit 300, and illustration and description thereof will be omitted. However, the second heat exchange unit is provided so that the fluid can be cooled to a temperature lower than that of the first heat exchange unit 300. A fluid heat treatment apparatus is configured by having a first heat exchange unit and a second heat exchange unit as described above.

<第2実施例>
(第1熱交換部及び第2熱交換部の構成例)
図9は第2実施例に係る流体処理装置の構成を示す模式図である。
<Second Example>
(Structure example of the first heat exchange section and the second heat exchange section)
FIG. 9 is a schematic view showing the configuration of the fluid processing apparatus according to the second embodiment.

第1熱交換部300は、円柱状の基体301とそれを収納するシリンダー状の密閉板302とが組み込まれてなる。密閉板302の内壁に基体301の表面が密着する。外部に流体が漏れないように接続部は溶接されている。 The first heat exchange unit 300 incorporates a cylindrical substrate 301 and a cylinder-shaped sealing plate 302 for accommodating the cylindrical substrate 301. The surface of the substrate 301 is in close contact with the inner wall of the sealing plate 302. The connections are welded to prevent fluid leakage to the outside.

導入路303から加圧して導入された流体は、第1副流路である円周溝G1〜G6を通り、第2副流路である連結溝C1A、C2B、C3A、C4B、C5A、C6Bを通過するときに高速流体となる。高速流体は円周溝G1〜G6の壁に高速で垂直に衝突する。垂直に衝突すると、熱伝達の抵抗となる淀み層ができない、あるいは薄くなる。 The fluid introduced by pressurizing from the introduction path 303 passes through the circumferential grooves G1 to G6 which are the first auxiliary flow paths, and passes through the connecting grooves C1A, C2B, C3A, C4B, C5A, and C6B which are the second auxiliary flow paths. It becomes a high-speed fluid as it passes. The high-speed fluid collides vertically with the walls of the circumferential grooves G1 to G6 at high speed. When colliding vertically, a stagnation layer that resists heat transfer is formed or thinned.

基体301はヒーター給電線401から給電されたヒーター400で加熱される。ヒーター400はシリコンカーバイド製であり、1000℃までの加熱が可能である。 The substrate 301 is heated by the heater 400 fed from the heater feeder line 401. The heater 400 is made of silicon carbide and can be heated up to 1000 ° C.

密閉板302及び基体301はSUS310Sで形成されており、1000℃までの加熱に耐性を有する。 The sealing plate 302 and the base 301 are made of SUS310S and are resistant to heating up to 1000 ° C.

本実施例では上記のように第1熱交換部300が構成されている。第2熱交換部は、第1熱交換部300と同様の構成により実現されており、図示及び説明を省略する。但し、第2熱交換部は、流体を第1熱交換部300より低い温度に冷却可能に設けられている。上記のような第1熱交換部及び第2熱交換部を有して、流体熱処理装置が構成されている。 In this embodiment, the first heat exchange unit 300 is configured as described above. The second heat exchange unit is realized by the same configuration as the first heat exchange unit 300, and illustration and description thereof will be omitted. However, the second heat exchange unit is provided so that the fluid can be cooled to a temperature lower than that of the first heat exchange unit 300. A fluid heat treatment apparatus is configured by having a first heat exchange unit and a second heat exchange unit as described above.

<第3実施例>
(第1熱交換部及び第2熱交換部の構成例)
図10は第3実施例に係る流体処理装置の構成を示す模式断面図である。第1熱交換部300は、基体301、及び密閉板302A、302Bを有する。基体301の上面にはタブG11、G21が形成されており、下面にはタブG12、G22が形成されている。タブG11、G21、G12、G22を代表してタブGとも称する。基体301の上面と下面に密閉板302A、302Bが設けられ、タブGと密閉板302A、302Bにより流路の一部が構成されている。
<Third Example>
(Structure example of the first heat exchange section and the second heat exchange section)
FIG. 10 is a schematic cross-sectional view showing the configuration of the fluid treatment apparatus according to the third embodiment. The first heat exchange unit 300 has a base 301 and sealing plates 302A and 302B. Tabs G11 and G21 are formed on the upper surface of the substrate 301, and tabs G12 and G22 are formed on the lower surface. The tabs G11, G21, G12, and G22 are also referred to as tabs G on behalf of the tabs G11, G21, G12, and G22. Sealing plates 302A and 302B are provided on the upper surface and the lower surface of the substrate 301, and a part of the flow path is formed by the tab G and the sealing plates 302A and 302B.

タブG12はタブG11、G21をまたぐ平面配置であり、連結孔H12、H21でタブG11、G21と連結されている。タブG21はタブG12、G22をまたぐ平面配置であり、連結孔H21、H22でタブG12、G22に連結されている。連結孔H12、H21、H22を代表して連結孔Hとも称する。 The tab G12 is arranged in a plane straddling the tabs G11 and G21, and is connected to the tabs G11 and G21 by the connecting holes H12 and H21. The tab G21 is arranged in a plane straddling the tabs G12 and G22, and is connected to the tabs G12 and G22 by the connecting holes H21 and H22. The connecting holes H12, H21, and H22 are also referred to as the connecting holes H on behalf of the connecting holes H12, H21, and H22.

タブ配列の上流端のタブG11には流体の導入路303が連結されている。タブ配列の下流端のタブG22には流体の導出路304が連結されている。導入路303から導入される流体F1は密閉された上記タブG11、G12,G21、G22と連結孔H12、H21、H22を経由して導出路304より流体F2として放出される。 A fluid introduction path 303 is connected to the tab G11 at the upstream end of the tab arrangement. A fluid lead-out path 304 is connected to the tab G22 at the downstream end of the tab arrangement. The fluid F1 introduced from the introduction path 303 is discharged as the fluid F2 from the lead-out path 304 via the closed tabs G11, G12, G21, G22 and the connecting holes H12, H21, H22.

密閉板302A、302Bにはヒーター400A、400Bが備えられ、加熱可能に設けられている。ヒーターの本数は所望される温度と使用可能な電力に応じて自由に調整できる。 The sealing plates 302A and 302B are provided with heaters 400A and 400B so that they can be heated. The number of heaters can be freely adjusted according to the desired temperature and available power.

細い連結孔H12を通過した流体は速度を増して垂直に密閉板302Bに高速で衝突する。この垂直高速衝突を起こさせるために、タブG12を囲む密閉板302Bと連結孔H12の出口の距離は当該連結孔H12の長さより短い。このような構造とすると垂直高速流体と密閉板302Bの壁の間の淀み層ができない、あるいは薄くなる。流体と密閉板302Bとの間で熱交換が瞬時になされ、流体が加熱される。 The fluid that has passed through the narrow connecting hole H12 increases in speed and collides vertically with the sealing plate 302B at high speed. In order to cause this vertical high-speed collision, the distance between the sealing plate 302B surrounding the tab G12 and the outlet of the connecting hole H12 is shorter than the length of the connecting hole H12. With such a structure, a stagnation layer between the vertical high-speed fluid and the wall of the sealing plate 302B cannot be formed or becomes thin. Heat exchange is instantaneously performed between the fluid and the sealing plate 302B, and the fluid is heated.

同じことが連結孔H21、H22で起きる。このように垂直高速衝突を繰り返すと、ヒーター400A,400Bで加熱された密閉板302A、302Bの熱は高い効率で流体に伝えられる。結果として流体F2の温度は密閉板302A、302Bの温度に近い温度になる。当該高速衝突の垂直度は、淀み層ができない、あるいは薄くなればよいだけなので、厳密である必要はない。このようにして、図10に示した第1熱交換部300では瞬時に熱交換が行われ、加熱された流体を得ることができる。 The same thing happens in the connecting holes H21, H22. When the vertical high-speed collision is repeated in this way, the heat of the sealing plates 302A and 302B heated by the heaters 400A and 400B is transferred to the fluid with high efficiency. As a result, the temperature of the fluid F2 becomes close to the temperature of the sealing plates 302A and 302B. The verticality of the high-speed collision does not have to be strict, as it is only necessary that the stagnation layer is not formed or thinned. In this way, heat exchange is instantaneously performed in the first heat exchange unit 300 shown in FIG. 10, and a heated fluid can be obtained.

本実施例では上記のように第1熱交換部300が構成されている。第2熱交換部は、第1熱交換部300と同様の構成により実現されており、図示及び説明を省略する。但し、第2熱交換部は、流体を第1熱交換部300より低い温度に冷却可能に設けられている。上記のような第1熱交換部及び第2熱交換部を有して、流体熱処理装置が構成されている。 In this embodiment, the first heat exchange unit 300 is configured as described above. The second heat exchange unit is realized by the same configuration as the first heat exchange unit 300, and illustration and description thereof will be omitted. However, the second heat exchange unit is provided so that the fluid can be cooled to a temperature lower than that of the first heat exchange unit 300. A fluid heat treatment apparatus is configured by having a first heat exchange unit and a second heat exchange unit as described above.

<第4実施例>
(第1熱交換部及び第2熱交換部の構成例)
図11は第4実施例に係る流体処理装置の構成を示す模式図である。第1熱交換部300は、基体301を密閉板302A、302Bで挟んで流路が形成されている。密閉板302A、302Bにはヒーター401A、401Bが備えてある。
<Fourth Example>
(Structure example of the first heat exchange section and the second heat exchange section)
FIG. 11 is a schematic view showing the configuration of the fluid processing apparatus according to the fourth embodiment. In the first heat exchange section 300, a flow path is formed by sandwiching the substrate 301 between the sealing plates 302A and 302B. The sealing plates 302A and 302B are provided with heaters 401A and 401B.

基体301と密閉板302A、302Bはステンレス鋼であり、規格SUS316Lを用いた。基体301の両面を加工してタブG11、G12、G21、G22、G31、G32、G41、G42、G51、G52、G61を2mmのスペースで設けた。タブ深さは1mm、面積は4mm×30mmである。タブを連結する連結孔H12、H21、H22、H31、H32、H41、H42、H51、H52、H61をタブ当たり5個の連結孔をドリルであけた。連結孔は2mm直径で長さは3mmである。 The base 301 and the sealing plates 302A and 302B were made of stainless steel, and the standard SUS316L was used. Both sides of the substrate 301 were processed to provide tabs G11, G12, G21, G22, G31, G32, G41, G42, G51, G52, and G61 in a space of 2 mm. The tab depth is 1 mm and the area is 4 mm × 30 mm. Five connecting holes H12, H21, H22, H31, H32, H41, H42, H51, H52, and H61 for connecting the tabs were drilled per tab. The connecting hole has a diameter of 2 mm and a length of 3 mm.

連結孔の出口から流体が高速で出て、タブを囲む壁に高速で衝突するように、当該出口から衝突する壁の距離は連結孔の長さより短く設けられている。当該距離と連結孔の長さのこの関係は効率よく熱交換を起こさせるのに有効な関係である。 The distance of the wall colliding from the outlet is shorter than the length of the connecting hole so that the fluid exits the connecting hole at high speed and collides with the wall surrounding the tab at high speed. This relationship between the distance and the length of the connecting hole is an effective relationship for efficiently causing heat exchange.

流体の導入路303、流体の導出路304とタブをつなぐ連結孔H11、H62はドリルであけた。導入路303を溶接したあと洗浄して、密閉板302A、302Bと基体301を周辺で溶接した。これで流体の流路が形成された。 The connecting holes H11 and H62 connecting the fluid introduction path 303 and the fluid lead-out path 304 and the tab were drilled. The introduction path 303 was welded and then washed, and the sealing plates 302A and 302B and the base 301 were welded in the periphery. This formed a fluid flow path.

密閉板302A、302Bにはヒーター401A、401Bが挿入されている。ヒーターが分かるように密閉板からとびださせて描いてある。ヒーターは実際には内部にあってもよい。 Heaters 401A and 401B are inserted into the sealing plates 302A and 302B. It is drawn so that the heater can be seen by protruding from the sealing plate. The heater may actually be inside.

ヒーターは密閉版の中央にあってもよい。4本の例を示したがヒーター本数は1本でもよく設計は自由である。 The heater may be in the center of the sealed plate. Although four examples are shown, the number of heaters may be one and the design is free.

本実施例では上記のように第1熱交換部300が構成されている。第2熱交換部は、第1熱交換部300と同様の構成により実現されており、図示及び説明を省略する。但し、第2熱交換部は、流体を第1熱交換部300より低い温度に冷却可能に設けられている。上記のような第1熱交換部及び第2熱交換部を有して、流体熱処理装置が構成されている。 In this embodiment, the first heat exchange unit 300 is configured as described above. The second heat exchange unit is realized by the same configuration as the first heat exchange unit 300, and illustration and description thereof will be omitted. However, the second heat exchange unit is provided so that the fluid can be cooled to a temperature lower than that of the first heat exchange unit 300. A fluid heat treatment apparatus is configured by having a first heat exchange unit and a second heat exchange unit as described above.

<適用例>
(化粧水用水への適用)
上記の流体処理装置及び流体処理方法により、化粧水用水を製造することができる。化粧水用水は、第1流路が設けられた第1熱交換部により原料流体を所定の温度に加熱した後、第2熱交換部により原料流体を上記の所定の温度から冷却して製造されたものであり、原料流体としては水が用いられる。
<Application example>
(Application to lotion water)
Water for lotion can be produced by the above-mentioned fluid treatment apparatus and fluid treatment method. The lotion water is produced by heating the raw material fluid to a predetermined temperature by the first heat exchange section provided with the first flow path, and then cooling the raw material fluid from the above predetermined temperature by the second heat exchange section. Water is used as the raw material fluid.

第1熱交換部は、表面に第1基体凹部が設けられた第1基体と第1基体に積層された第1密閉板とを有する。第1基体の第1基体凹部の表面と第1密閉板の第1基体側の表面との間に第1流路が設けられている。第1流路は、第1の方向に伸びる複数の第1副流路と第1の方向に対して垂直な第2の方向に伸びるとともに隣り合う第1副流路を連通する複数の第2副流路とを含む。一方の端にある第1副流路に導入された水または水蒸気を含む原料流体が第1副流路と第2副流路とを経由して他方の端にある第1副流路まで流れる。ここで、原料流体の第2副流路を流れる流速が第1副流路を流れる流速より早くなるように原料流体を流す。これにより、原料流体を第1副流路の壁と垂直に衝突させることにより熱交換を行い、第1流路に導入された原料流体を所定の温度に加熱する。 The first heat exchange unit has a first substrate provided with a recess of the first substrate on the surface and a first airtight plate laminated on the first substrate. A first flow path is provided between the surface of the recess of the first substrate of the first substrate and the surface of the first sealing plate on the side of the first substrate. The first flow path is a plurality of first sub-channels extending in the first direction and a plurality of second channels extending in a second direction perpendicular to the first direction and communicating with adjacent first sub-channels. Includes a secondary flow path. The raw material fluid containing water or water vapor introduced into the first sub-channel at one end flows through the first sub-channel and the second sub-channel to the first sub-channel at the other end. .. Here, the raw material fluid is flowed so that the flow velocity flowing through the second subchannel of the raw material fluid is faster than the flow velocity flowing through the first subchannel. As a result, heat exchange is performed by causing the raw material fluid to collide perpendicularly with the wall of the first secondary flow path, and the raw material fluid introduced into the first flow path is heated to a predetermined temperature.

第2熱交換部は、表面に第2基体凹部が設けられた第2基体と第2基体に積層された第2密閉板とを有する。第2基体の第2基体凹部の表面と第2密閉板の第2基体側の表面との間に第2流路が設けられている。第2流路は、第3の方向に伸びる複数の第3副流路と第3の方向に対して垂直な第4の方向に伸びるとともに隣り合う第3副流路を連通する複数の第4副流路とを含む。所定の温度に加熱された原料流体が一方の端にある第3副流路に導入されて第3副流路と第4副流路とを経由して他方の端にある第3副流路まで流れる。ここで、原料流体の第4副流路を流れる流速が第3副流路を流れる流速より早くなるように原料流体を流す。これにより、原料流体を第3副流路の壁と垂直に衝突させることにより熱交換を行い、第2流路に導入された原料流体を所定の温度から冷却する。 The second heat exchange unit has a second base having a recess on the surface of the second base and a second sealing plate laminated on the second base. A second flow path is provided between the surface of the recess of the second base of the second base and the surface of the second sealing plate on the side of the second base. The second flow path is a plurality of third sub-channels extending in the third direction and a plurality of fourth channels extending in a fourth direction perpendicular to the third direction and communicating with adjacent third sub-channels. Includes a secondary flow path. The raw material fluid heated to a predetermined temperature is introduced into the third sub-channel at one end, passes through the third sub-channel and the fourth sub-channel, and is the third sub-channel at the other end. Flow up to. Here, the raw material fluid is flowed so that the flow velocity flowing through the fourth subchannel of the raw material fluid is faster than the flow velocity flowing through the third subchannel. As a result, heat exchange is performed by causing the raw material fluid to collide perpendicularly with the wall of the third secondary flow path, and the raw material fluid introduced into the second flow path is cooled from a predetermined temperature.

本適用例の化粧水用水は、上記の流体処理装置及び流体処理方法により製造されたものである。第1熱交換部では、水または蒸気を第1副流路の壁に衝突させて第1副流路の壁との間で熱交換する。第1熱交換部においては、液相と気相が接しない状態、即ち液相と気相が平衡状態を保たない状態で、気相を独立に加熱することができる。また、通常の水の加熱では100℃より高い温度に加熱するには圧力をかける必要があるが、上記の第1熱交換部における熱交換では、圧力に依存することなく自在に温度設定が可能である。このような第1熱交換部で、例えば500℃以上に急速に加熱することでn値が1又は1に近い水蒸気にすることができる。 The lotion water of this application example is produced by the above-mentioned fluid treatment apparatus and fluid treatment method. In the first heat exchange unit, water or steam is made to collide with the wall of the first subchannel to exchange heat with the wall of the first subchannel. In the first heat exchange unit, the gas phase can be independently heated in a state where the liquid phase and the gas phase are not in contact with each other, that is, in a state where the liquid phase and the gas phase do not maintain an equilibrium state. Further, in normal water heating, it is necessary to apply pressure to heat to a temperature higher than 100 ° C., but in the heat exchange in the first heat exchange section described above, the temperature can be freely set without depending on the pressure. Is. In such a first heat exchange unit, for example, by rapidly heating to 500 ° C. or higher, steam having an n value of 1 or close to 1 can be obtained.

第2熱交換部では、水蒸気を水にする。水蒸気の分子を第3副流路の壁に衝突させて水分子と第3副流路の壁との間で熱交換させ急速に冷却するこのような第2熱交換部で、例えば500℃以上の温度から室温程度にまで、1秒以内に冷却する。このことで、水分子が通常の水の安定状態に戻りきらないうちに、非平衡状態で水とすることができる。このようにして得られる水は通常の安定な水よりn値が小さい水分子集団の成分を多く含むと考えられ、化粧水に好適に用いられる化粧水用水である。この水を、ここではSA(Single Active)水と称する。SA水は非平衡で生成した水であるので、安定ではない。時間経過とともに安定な平衡状態の通常の水へと、水分子集団のn値の確率分布は変化していくと考えられる。 In the second heat exchange section, water vapor is converted into water. In such a second heat exchange section where water vapor molecules collide with the wall of the third subchannel to exchange heat between the water molecules and the wall of the third subchannel and rapidly cool, for example, 500 ° C. or higher. Cool from the temperature of 1 to about room temperature within 1 second. As a result, water can be converted into water in a non-equilibrium state before the water molecules return to the normal stable state of water. The water thus obtained is considered to contain a large amount of components of a water molecule group having an n value smaller than that of ordinary stable water, and is a water for lotion preferably used for a lotion. This water is referred to as SA (Single Active) water here. SA water is not stable because it is produced in a non-equilibrium manner. It is considered that the probability distribution of the n value of the water molecule population changes with the passage of time to normal water in a stable equilibrium state.

n値が小さい水分子集団を含む水は、細胞、例えば人間の皮膚の表面の細胞、表皮、真皮、皮下組織等に浸透しやすい。nが小さい水分子集団を含む水(SA水)を利用した化粧水や化粧品は肌への浸透力が高くなり、肌質改善の効果が期待できる。 Water containing a population of water molecules having a small n value easily permeates cells, for example, cells on the surface of human skin, epidermis, dermis, subcutaneous tissue, and the like. Toners and cosmetics using water (SA water) containing a group of water molecules having a small n have a high penetrating power to the skin and can be expected to have an effect of improving skin quality.

(化粧品への適用)
上記のSA水そのものは、肌や植物に浸透しやすい特性があるので、化粧品(化粧水)としても使用可能であるが、抗菌能力の程度は不明である。抗菌剤(ベンジルグリコール)等の抗菌能力のある抗菌物質を添加したSA水は、抗菌能力を有する化粧品(化粧水)として使用可能である。
(Application to cosmetics)
Since the above SA water itself has the property of easily penetrating into the skin and plants, it can be used as cosmetics (toner), but the degree of antibacterial ability is unknown. SA water to which an antibacterial substance having an antibacterial ability such as an antibacterial agent (benzyl glycol) is added can be used as a cosmetic (toner) having an antibacterial ability.

また、SA水又は上記の抗菌能力を有する化粧品(化粧水)にビタミンCを添加したゲル状の化粧品は、ビタミンCによる美白効果を有する化粧品である。上記の化粧水用水は、乳化剤を含まないゲル状化粧品を実現できる。 Further, the gel-like cosmetics obtained by adding vitamin C to SA water or the above-mentioned cosmetics having antibacterial ability (cosmetic water) are cosmetics having a whitening effect by vitamin C. The above-mentioned water for lotion can realize a gel-like cosmetic product containing no emulsifier.

(水蒸気ガスの適用)
水を100℃超のスチーム(過熱スチームという)にすると、無酸素状態で加熱または乾燥させることが可能になる。例えば300℃程度の高温スチームを肉に接触させると肉の筋が変化して噛みやすい柔らかい肉に変化する効果がある。これは炎を使用しない安全なバーベキューに応用できる。
(Application of steam gas)
When water is steamed above 100 ° C. (called superheated steam), it can be heated or dried in an oxygen-free state. For example, when high-temperature steam of about 300 ° C. is brought into contact with the meat, the muscles of the meat are changed to have the effect of changing to a soft meat that is easy to chew. This can be applied to safe barbecues that do not use flames.

上記高温スチームと廃棄物または有機物を含むガスと接触させて取り出したケミカルポテンシャルの高い上記ガスはエネルギー資源として再利用ができる。従って、これを行う流体処理装置は、有機物の処理装置に応用できる。 The gas having a high chemical potential taken out by contacting the high temperature steam with a gas containing waste or organic matter can be reused as an energy resource. Therefore, a fluid processing apparatus that does this can be applied to an organic matter processing apparatus.

<第5実施例>
(化粧水官能試験1)
SA水を人間の肌に浸み込ませる試験を行った。SA水は、流体熱交換装置である「ヒートビームシリンダー(フィルテック社製)」を第1熱交換部及び第2熱交換部のそれぞれに適用した流体処理装置により製造した。被験者は顔に老人班のある66歳の男性であった。毎日朝6時頃及び夜23時頃にスプレイで5〜10回SA水を顔全体に吹き付け、手のひらで顔の皮膚にこすりつけてマッサージをした。SA水は、毎回製造後1か月以内のものを使用した。2016年11月から試験を開始したところ、2019年11月には、以前あった老人班のうちで、消えたもの、小さくなったもの、色が薄くなったものがあった。SA水は、細胞、例えば人間の皮膚の表面の細胞、表皮、真皮、皮下組織等に浸透しやすく、肌への浸透力が高くなり、肌質改善につながったものと考えられる。
<Fifth Example>
(Toner sensory test 1)
A test was conducted in which SA water was impregnated into human skin. SA water was produced by a fluid treatment device in which a fluid heat exchange device "heat beam cylinder (manufactured by Filtech)" was applied to each of the first heat exchange section and the second heat exchange section. The subject was a 66-year-old man with an amyloid plaque on his face. Every day around 6 am and 23:00 pm, SA water was sprayed 5 to 10 times on the entire face and rubbed against the skin of the face with the palm of the hand for massage. SA water used within one month after each production. When the test started in November 2016, in November 2019, some of the former amyloid plaques had disappeared, became smaller, and became lighter in color. It is considered that SA water easily permeates cells, for example, cells on the surface of human skin, epidermis, dermis, subcutaneous tissue, etc., and has high penetrating power to the skin, leading to improvement of skin quality.

(化粧水官能試験2)
上記の化粧水官能試験1を複数の被験者が1年以上続けたときの効果をまとめると以下のようになった。期間は2017年12月から2019年3月まで、被験者は、年齢が20〜76歳であり、男女を含む100人の構成であった。
(Toner sensory test 2)
The effects of the above-mentioned lotion sensory test 1 when a plurality of subjects continued for one year or more are summarized as follows. The period was from December 2017 to March 2019, and the subjects were 20 to 76 years old and consisted of 100 subjects including men and women.

効果を複数回答可として集計すると、以下の結果が得られた。
(1)肌がさっぱり、しっとり、つや、柔らか、うるおい(55件)
(2)シミ・老人班・くすみ・日焼けが薄くなる、しわがうすくなる(21件)
(3)肌荒れ修復、アトピー肌改善、トラブル解消、かゆみ解消(16件)
(4)化粧水の浸透加速、メイクののり改善(11件)
(5)肌が明るくなる、透明になる(10件)
以上のように、SA水の適用により、被験者による官能評価として化粧水としての効果が得られた。SA水は、n値の小さい水分子集団を多く含む水であり、細胞、例えば人間の皮膚の表面の細胞、表皮、真皮、皮下組織等に浸透しやすく、肌への浸透力が高くなり、肌質改善につながったものと考えられる。
The following results were obtained when the effects were aggregated assuming that multiple answers were possible.
(1) The skin is refreshing, moist, glossy, soft, and moisturized (55 cases).
(2) Spots, amyloid plaques, dullness, sunburn become lighter, wrinkles become lighter (21 cases)
(3) Repair of rough skin, improvement of atopic skin, elimination of troubles, elimination of itch (16 cases)
(4) Accelerate penetration of lotion and improve make-up glue (11 cases)
(5) The skin becomes bright and transparent (10 cases)
As described above, by applying SA water, the effect as a lotion was obtained as a sensory evaluation by the subject. SA water is water containing a large number of water molecules having a small n value, and easily penetrates into cells, for example, cells on the surface of human skin, epidermis, dermis, subcutaneous tissue, etc., and has high penetrating power to the skin. It is thought that this led to the improvement of skin quality.

1 流体処理装置
10 第1熱交換部
20 第2熱交換部
30 導入路
31A 導出路
31B 導入路
32 導出路
40 液体
P1 第1流路
P2 第2流路
SP1 第1副流路
SP2 第2副流路
SP3 第3副流路
SP4 第4副流路

1 Fluid processing device 10 1st heat exchange unit 20 2nd heat exchange unit 30 Introduction path 31A Outlet path 31B Introduction path 32 Outlet path 40 Liquid P1 1st flow path P2 2nd flow path SP1 1st sub flow path SP2 2nd sub Flow path SP3 3rd sub-flow path SP4 4th sub-flow path

Claims (10)

表面に第1基体凹部が設けられた第1基体と前記第1基体に積層された第1密閉板とを有し、前記第1基体の前記第1基体凹部の表面と前記第1密閉板の前記第1基体側の表面との間に、第1の方向に伸びる複数の第1副流路と前記第1の方向に対して垂直な第2の方向に伸びるとともに隣り合う前記第1副流路を連通する複数の第2副流路とを含み、一方の端にある第1副流路に導入された流体が前記第1副流路と前記第2副流路とを経由して他方の端にある第1副流路まで流れ、前記第1副流路の壁と垂直に衝突することにより熱交換を行い、前記第2副流路を流れる前記流体の流速が前記第1副流路を流れる前記流体の流速より早くなるように構成された第1流路が設けられており、前記第1流路に導入された前記流体を所定の温度に加熱する、第1熱交換部と、
表面に第2基体凹部が設けられた第2基体と前記第2基体に積層された第2密閉板とを有し、前記第2基体の前記第2基体凹部の表面と前記第2密閉板の前記第2基体側の表面との間に、第3の方向に伸びる複数の第3副流路と前記第3の方向に対して垂直な第4の方向に伸びるとともに隣り合う前記第3副流路を連通する複数の第4副流路とを含み、一方の端にある第3副流路に導入された流体が前記第3副流路と前記第4副流路とを経由して他方の端にある第3副流路まで流れ、前記第3副流路の壁と垂直に衝突することにより熱交換を行い、前記第4副流路を流れる前記流体の流速が前記第3副流路を流れる前記流体の流速より早くなるように構成された第2流路が設けられており、前記第2流路に導入された前記流体を前記所定の温度から冷却する、前記第1熱交換部の下流側に直接接続された第2熱交換部と
を備える流体処理装置。
It has a first substrate provided with a first substrate recess on the surface and a first sealing plate laminated on the first substrate, and the surface of the first substrate recess of the first substrate and the first sealing plate A plurality of first sub-fluids extending in the first direction and the first side flow extending in a second direction perpendicular to the first direction and adjacent to the surface on the first substrate side. A fluid introduced into the first sub-channel at one end includes a plurality of second sub-channels communicating with the path, and the fluid introduced into the first sub-channel passes through the first sub-channel and the second sub-channel to the other. Heat exchange is performed by flowing to the first sub-flow path at the end of the first sub-flow path and colliding perpendicularly with the wall of the first sub-flow path, and the flow velocity of the fluid flowing through the second sub-flow path is the first side flow. A first heat exchange unit is provided with a first flow path configured to be faster than the flow velocity of the fluid flowing through the path, and heats the fluid introduced into the first flow path to a predetermined temperature. ,
It has a second substrate provided with a second substrate recess on its surface and a second sealing plate laminated on the second substrate, and the surface of the second substrate recess of the second substrate and the second sealing plate A plurality of third sub-fluids extending in the third direction and the third side flow extending in the fourth direction perpendicular to the third direction and adjacent to the surface on the second substrate side. A fluid introduced into a third sub-channel at one end, including a plurality of fourth sub-channels communicating with the path, passes through the third sub-channel and the fourth sub-channel to the other. The fluid flows to the third sub-flow path at the end of the water and collides perpendicularly with the wall of the third sub-flow path to exchange heat, and the flow velocity of the fluid flowing through the fourth sub-flow path is the third side flow. The first heat exchange is provided with a second flow path configured to be faster than the flow velocity of the fluid flowing through the path, and cools the fluid introduced into the second flow path from the predetermined temperature. A fluid processing apparatus including a second heat exchange unit directly connected to the downstream side of the unit.
前記第1副流路の断面積S1が前記第2副流路の断面積S2の2倍より大きいこと、及び前記第2副流路の長さL2が前記第1副流路の幅W1より長いこと、及び前記第2副流路の配置ピッチがその幅の2倍より大きいことが、同時に満足されているか、またはいずれかの組み合わせが満足されており、
前記第3副流路の断面積S3が前記第4副流路の断面積S4の2倍より大きいこと、及び前記第4副流路の長さL4が前記第3副流路の幅W3より長いこと、及び前記第4副流路の配置ピッチがその幅の2倍より大きいことが、同時に満足されているか、またはいずれかの組み合わせが満足されている
請求項1に記載の流体処理装置。
The cross-sectional area S1 of the first sub-channel is larger than twice the cross-sectional area S2 of the second sub-channel, and the length L2 of the second sub-channel is larger than the width W1 of the first sub-channel. It is satisfied at the same time that it is long and the arrangement pitch of the second sub-channel is larger than twice the width thereof, or a combination of either of them is satisfied.
The cross-sectional area S3 of the third sub-flow path is larger than twice the cross-sectional area S4 of the fourth sub-flow path, and the length L4 of the fourth sub-flow path is larger than the width W3 of the third sub-flow path. The fluid processing apparatus according to claim 1, wherein it is satisfied at the same time that the length and the arrangement pitch of the fourth subchannel are larger than twice the width thereof, or a combination of either of them is satisfied.
前記第1基体及び前記第2基体は、それぞれ、板状、円筒状、円柱状、及び角柱状のいずれかの形状である請求項1または2に記載の流体処理装置。 The fluid treatment apparatus according to claim 1 or 2, wherein the first substrate and the second substrate have any shape of a plate, a cylinder, a cylinder, and a prism, respectively. 前記第1基体、前記第1密閉板、前記第2基体及び前記第2密閉板は、それぞれ、金属、グラファイト、セラミクス、プラスチック、複合材料、またはこれらの組み合わせで構成されている請求項1〜3のいずれか1項に記載の流体処理装置。 Claims 1 to 3 wherein the first substrate, the first sealing plate, the second substrate, and the second sealing plate are each composed of metal, graphite, ceramics, plastic, a composite material, or a combination thereof. The fluid processing apparatus according to any one of the above items. 前記複合材料は、金属、カーボンナノチューブ、グラフェン及びカーボンファイバーから選択された少なくとも1つと、プラスチックとが複合した材料である請求項4に記載の流体処理装置。 The fluid treatment apparatus according to claim 4, wherein the composite material is a material in which at least one selected from metal, carbon nanotubes, graphene and carbon fiber is composited with plastic. 前記金属は、繊維状金属である請求項5に記載の流体処理装置。 The fluid treatment apparatus according to claim 5, wherein the metal is a fibrous metal. 表面に第1基体凹部が設けられた第1基体と前記第1基体に積層された第1密閉板とを有し、前記第1基体の前記第1基体凹部の表面と前記第1密閉板の前記第1基体側の表面との間に、第1の方向に伸びる複数の第1副流路と前記第1の方向に対して垂直な第2の方向に伸びるとともに隣り合う前記第1副流路を連通する複数の第2副流路とを含み、一方の端にある第1副流路に導入された流体が前記第1副流路と前記第2副流路とを経由して他方の端にある第1副流路まで流れる第1流路が設けられた第1熱交換部に、前記第2副流路を流れる前記流体の流速が前記第1副流路を流れる前記流体の流速より早くなるように前記流体を流し、前記流体を前記第1副流路の壁と垂直に衝突させることにより熱交換を行い、前記第1流路に導入された前記流体を所定の温度に加熱する第1熱交換工程と、
表面に第2基体凹部が設けられた第2基体と前記第2基体に積層された第2密閉板とを有し、前記第2基体の前記第2基体凹部の表面と前記第2密閉板の前記第2基体側の表面との間に、第3の方向に伸びる複数の第3副流路と前記第3の方向に対して垂直な第4の方向に伸びるとともに隣り合う前記第3副流路を連通する複数の第4副流路とを含み、所定の温度に加熱された前記流体が一方の端にある第3副流路に導入されて前記第3副流路と前記第4副流路とを経由して他方の端にある第3副流路まで流れる第2流路が設けられた第2熱交換部に、前記第4副流路を流れる前記流体の流速が前記第3副流路を流れる前記流体の流速より早くなるように前記流体を流し、前記流体を前記第3副流路の壁と垂直に衝突させることにより熱交換を行い、前記第2流路に導入された前記流体を前記所定の温度から冷却する、前記第1熱交換工程の後に行われる第2熱交換工程と
を備える流体処理方法。
It has a first substrate provided with a first substrate recess on the surface and a first sealing plate laminated on the first substrate, and the surface of the first substrate recess of the first substrate and the first sealing plate A plurality of first sub-fluids extending in the first direction and the first side flow extending in a second direction perpendicular to the first direction and adjacent to the surface on the first substrate side. A fluid introduced into the first sub-channel at one end includes a plurality of second sub-channels communicating with the path, and the fluid introduced into the first sub-channel passes through the first sub-channel and the second sub-channel to the other. In the first heat exchange section provided with the first flow path that flows to the first sub-flow path at the end of the The fluid is flowed so as to be faster than the flow velocity, and heat exchange is performed by causing the fluid to collide perpendicularly with the wall of the first secondary flow path, and the fluid introduced into the first flow path is brought to a predetermined temperature. The first heat exchange process to heat and
It has a second substrate provided with a second substrate recess on its surface and a second sealing plate laminated on the second substrate, and the surface of the second substrate recess of the second substrate and the second sealing plate A plurality of third sub-fluids extending in the third direction and the third side flow extending in the fourth direction perpendicular to the third direction and adjacent to the surface on the second substrate side. A plurality of fourth sub-channels communicating with the path are included, and the fluid heated to a predetermined temperature is introduced into a third sub-channel at one end, and the third sub-channel and the fourth sub-channel are introduced. In the second heat exchange section provided with the second flow path that flows to the third sub-flow path at the other end via the flow path, the flow velocity of the fluid flowing through the fourth sub-flow path is the third. The fluid is flowed so as to be faster than the flow velocity of the fluid flowing through the subchannel, and the fluid is collided perpendicularly with the wall of the third subchannel to exchange heat and is introduced into the second channel. A fluid treatment method comprising a second heat exchange step performed after the first heat exchange step, which cools the fluid from the predetermined temperature.
表面に第1基体凹部が設けられた第1基体と前記第1基体に積層された第1密閉板とを有し、前記第1基体の前記第1基体凹部の表面と前記第1密閉板の前記第1基体側の表面との間に、第1の方向に伸びる複数の第1副流路と前記第1の方向に対して垂直な第2の方向に伸びるとともに隣り合う前記第1副流路を連通する複数の第2副流路とを含み、一方の端にある第1副流路に導入された水または水蒸気を含む原料流体が前記第1副流路と前記第2副流路とを経由して他方の端にある第1副流路まで流れる第1流路が設けられた第1熱交換部に、前記原料流体の前記第2副流路を流れる流速が前記第1副流路を流れる流速より早くなるように前記原料流体を流し、前記原料流体を前記第1副流路の壁と垂直に衝突させることにより熱交換を行い、前記第1流路に導入された前記原料流体を所定の温度に加熱した後、
表面に第2基体凹部が設けられた第2基体と前記第2基体に積層された第2密閉板とを有し、前記第2基体の前記第2基体凹部の表面と前記第2密閉板の前記第2基体側の表面との間に、第3の方向に伸びる複数の第3副流路と前記第3の方向に対して垂直な第4の方向に伸びるとともに隣り合う前記第3副流路を連通する複数の第4副流路とを含み、所定の温度に加熱された前記原料流体が一方の端にある第3副流路に導入されて前記第3副流路と前記第4副流路とを経由して他方の端にある第3副流路まで流れる第2流路が設けられた第2熱交換部に、前記原料流体の前記第4副流路を流れる流速が前記第3副流路を流れる流速より早くなるように前記原料流体を流し、前記原料流体を前記第3副流路の壁と垂直に衝突させることにより熱交換を行い、前記第2流路に導入された前記原料流体を前記所定の温度から冷却して製造された、
化粧水用水。
It has a first substrate provided with a first substrate recess on the surface and a first sealing plate laminated on the first substrate, and the surface of the first substrate recess of the first substrate and the first sealing plate A plurality of first sub-fluids extending in the first direction and the first side flow extending in a second direction perpendicular to the first direction and adjacent to the surface on the first substrate side. The raw material fluid containing water or water vapor introduced into the first sub-channel at one end, including a plurality of second sub-channels communicating with the path, is the first sub-channel and the second sub-channel. The flow velocity of the raw material fluid flowing through the second sub-channel is the first sub-passage in the first heat exchange section provided with the first sub-channel that flows to the first sub-channel at the other end via The raw material fluid was flowed so as to be faster than the flow velocity flowing through the flow path, and heat exchange was performed by causing the raw material fluid to collide perpendicularly with the wall of the first sub-flow path, and the raw material fluid was introduced into the first flow path. After heating the raw material fluid to a predetermined temperature,
It has a second substrate provided with a second substrate recess on its surface and a second sealing plate laminated on the second substrate, and the surface of the second substrate recess of the second substrate and the second sealing plate A plurality of third sub-fluids extending in the third direction and the third side flow extending in the fourth direction perpendicular to the third direction and adjacent to the surface on the second substrate side. The raw material fluid, which includes a plurality of fourth sub-channels communicating with the path and is heated to a predetermined temperature, is introduced into the third sub-channel at one end, and the third sub-channel and the fourth sub-channel are introduced. The flow velocity of the raw material fluid flowing through the fourth sub-channel is the flow velocity of the raw material fluid in the second heat exchange portion provided with the second flow path that flows to the third sub-channel at the other end via the sub-channel. The raw material fluid is flowed so as to be faster than the flow velocity flowing through the third secondary flow path, and heat exchange is performed by causing the raw material fluid to collide perpendicularly with the wall of the third secondary flow path and introduced into the second flow path. Manufactured by cooling the raw material fluid produced from the predetermined temperature.
Water for lotion.
請求項8に記載の化粧水用水と、
抗菌物質と
を含む化粧水。
The lotion water according to claim 8 and
Toner containing antibacterial substances.
請求項8に記載の化粧水用水又は請求項9に記載の化粧水と、
ビタミンCとを含み、
ゲル状である
化粧品。

The lotion water according to claim 8 or the lotion according to claim 9 and
Contains Vitamin C
Cosmetics that are gel-like.

JP2020080158A 2020-04-30 2020-04-30 Fluid treatment device, fluid treatment method, lotion water, lotion and cosmetics Active JP7136482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020080158A JP7136482B2 (en) 2020-04-30 2020-04-30 Fluid treatment device, fluid treatment method, lotion water, lotion and cosmetics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020080158A JP7136482B2 (en) 2020-04-30 2020-04-30 Fluid treatment device, fluid treatment method, lotion water, lotion and cosmetics

Publications (2)

Publication Number Publication Date
JP2021173508A true JP2021173508A (en) 2021-11-01
JP7136482B2 JP7136482B2 (en) 2022-09-13

Family

ID=78281543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020080158A Active JP7136482B2 (en) 2020-04-30 2020-04-30 Fluid treatment device, fluid treatment method, lotion water, lotion and cosmetics

Country Status (1)

Country Link
JP (1) JP7136482B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187301B1 (en) * 2000-05-17 2001-02-13 The Procter & Gamble Company Antiperspirant and deodorant sticks containing triglyceride gellants having improved high temperature texture and phase stability
JP2013235945A (en) * 2012-05-08 2013-11-21 Philtech Inc Fluid heating and cooling cylinder device
US20140120042A1 (en) * 2012-10-30 2014-05-01 The Procter & Gamble Company Personal Care Compositions Comprising Self-Assembling Peptides
JP2015096792A (en) * 2013-11-15 2015-05-21 株式会社フィルテック Fluid heat transfer equipment
JP2015114033A (en) * 2013-12-11 2015-06-22 株式会社フィルテック Liquid heat transfer equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187301B1 (en) * 2000-05-17 2001-02-13 The Procter & Gamble Company Antiperspirant and deodorant sticks containing triglyceride gellants having improved high temperature texture and phase stability
JP2013235945A (en) * 2012-05-08 2013-11-21 Philtech Inc Fluid heating and cooling cylinder device
US20140120042A1 (en) * 2012-10-30 2014-05-01 The Procter & Gamble Company Personal Care Compositions Comprising Self-Assembling Peptides
JP2015096792A (en) * 2013-11-15 2015-05-21 株式会社フィルテック Fluid heat transfer equipment
JP2015114033A (en) * 2013-12-11 2015-06-22 株式会社フィルテック Liquid heat transfer equipment

Also Published As

Publication number Publication date
JP7136482B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
RU2011942C1 (en) Tubular heat exchanger
AR013189A1 (en) HEAT EXCHANGER, PROCEDURE TO CARRY OUT THE HEAT EXCHANGE IN SUCH HEAT EXCHANGER AND THERMAL EXCHANGE DEVICE CONTAINING SUCH HEAT EXCHANGER
ATE245792T1 (en) HEAT EXCHANGER
SE9302136D0 (en) PLATTVAERMEVAEXLARE
BR8102653A (en) DEVICE FOR PERFORMING HEAT EXCHANGE BETWEEN WATER AND A GAS IN CIRCULATION WHEN IT EMERGES FROM AN NH3 CONVERTER
BR8202869A (en) DEVICE FOR LIQUID COOLING FOR INDUSTRY OVEN PIECES
US3444926A (en) Arrangement in heat exchangers of the plate type
JP3998592B2 (en) Fluid temperature control device
JPH02275292A (en) Heat exchanger
KR980005292A (en) Substrate Processing Equipment
JP2021173508A (en) Fluid treatment device, fluid treatment method, skin lotion water, skin lotion, and cosmetic
US2572972A (en) Press platen
JPS5841440B2 (en) Tube group heat exchanger
GB1558575A (en) Plate heat exchanger
BR9001667A (en) BUILT-IN IRRIGATION ELEMENT FOR HEAT TRANSFER AND / OR SUBSTANCES BETWEEN GAS AND LIQUID
SE9700518L (en) Ways of producing heat exchange plates; assortment of heat exchange plates; and a plate heat exchanger comprising heat exchange plates included in the range
JP3863116B2 (en) Fluid temperature control device
DE50013408D1 (en) EVAPORATORS IN MICROSTRUCTURE TECHNOLOGY AND FUEL CELL SYSTEM
KR0128254B1 (en) Reverse heat exchanger with count current laminar estabushement heat exchange surface
US4010797A (en) Heat exchanger
US20040234432A1 (en) Heat exchanger and method of performing chemical processes
EP2183539A1 (en) Flow moderator
US3318375A (en) Block-type heat exchanger
JPS6382713A (en) Formwork and manufacture thereof
DK1000292T3 (en) Process and apparatus for cooling a product using a condensed gas

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7136482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150