JP2021173428A - Evaluation method, evaluation device and evaluation program of heat exchanger core for air conditioning - Google Patents

Evaluation method, evaluation device and evaluation program of heat exchanger core for air conditioning Download PDF

Info

Publication number
JP2021173428A
JP2021173428A JP2020074975A JP2020074975A JP2021173428A JP 2021173428 A JP2021173428 A JP 2021173428A JP 2020074975 A JP2020074975 A JP 2020074975A JP 2020074975 A JP2020074975 A JP 2020074975A JP 2021173428 A JP2021173428 A JP 2021173428A
Authority
JP
Japan
Prior art keywords
air
temperature
heat exchanger
fin
exchanger core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020074975A
Other languages
Japanese (ja)
Inventor
兼一 谷口
Kenichi Taniguchi
直人 碓井
Naoto Usui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2020074975A priority Critical patent/JP2021173428A/en
Publication of JP2021173428A publication Critical patent/JP2021173428A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

To provide a technology for calculation estimation of temperature changes and pressure losses of refrigerant and passing air from the shape of heat exchanger core for air conditioning and test conditions.SOLUTION: The present invention is a method for evaluating the performance of a heat exchanger core for air conditioning, which is provided with a plurality of fins and tubes, and air is circulated between the fins and the tubes to exchange heat between the medium and the fins. An air pressure loss and an average heat transfer rate are obtained. Under an assumption that a fin temperature distribution has a uniform average temperature, a fin temperature distribution is obtained from fin efficiency, fin root temperature, and outside air temperature. The temperature of the air is obtained by the difference method for each of divided regions of the fin in the air flow direction under a recognition that the tubes are one straight tube. Under an assumption that a relational expression that air wind speed×total fin area×input/output air temperature difference×specific heat=amount of medium×specific heat×input/output air temperature difference is reasonable, the amount of medium is obtained by solving the relational expression, and the air outlet temperature and the water outlet temperature are obtained.SELECTED DRAWING: Figure 1

Description

本発明は、空調用熱交換器コアの評価方法と評価装置および評価プログラムに関するものである。 The present invention relates to an evaluation method, an evaluation device, and an evaluation program for an air conditioning heat exchanger core.

空調用の熱交換器は、所定の冷却された冷媒あるいは加熱された冷媒を通した熱交換器に所定条件の湿潤空気あるいは乾燥空気を通過させる試験を行い、圧力損失、空気の入と出のΔT、冷媒のΔTを求め、所定の性能を発揮する熱交換器であるか否かの評価がなされている。
熱交換器の性能を向上させる手段として、熱交換器の構造変更やフィンの表面処理が行われており、ラボスケールの試験を行い、性能を評価している。
熱交換器の試験は通常、採集されるデータにバラツキがあるため、試験を複数回行って結果を比較するが、現状ではどのような条件が良いのかを判断することが難しい問題がある。
A heat exchanger for air conditioning is tested by passing wet air or dry air under predetermined conditions through a heat exchanger through which a predetermined cooled refrigerant or heated refrigerant has passed, and pressure loss, air inflow and outflow. ΔT and ΔT of the refrigerant are obtained, and it is evaluated whether or not the heat exchanger exhibits a predetermined performance.
As a means to improve the performance of the heat exchanger, the structure of the heat exchanger has been changed and the surface treatment of the fins has been performed, and lab-scale tests are conducted to evaluate the performance.
Since the data collected in the heat exchanger test usually varies, the test is performed multiple times and the results are compared, but there is a problem that it is difficult to judge what kind of conditions are good at present.

例えば、以下の特許文献1では、プレートフィンチューブセットを含む空調用室外機を設計する場合、送風機のプロペラファンとプレートフィンとの関係を把握し、プロペラファンの回転軸線上における吸い込み側での測定流量と、異なる2箇所以上の流量測定位置での平均流速を基に、プレートフィンチューブセットの設置位置および前面面積を決定する設計方法が開示されている。 For example, in Patent Document 1 below, when designing an outdoor unit for air conditioning including a plate fin tube set, the relationship between the propeller fan of the fan and the plate fin is grasped, and the measurement on the suction side on the rotation axis of the propeller fan is performed. A design method for determining the installation position and front area of the plate fin tube set based on the flow rate and the average flow rate at two or more different flow rate measurement positions is disclosed.

特開2004−053044号公報Japanese Unexamined Patent Publication No. 2004-053044

特許文献1に記載されている技術は、プレートフィンチューブセットにおける強制対流の流れ強さの分布を詳細に調べ、ファン特性を考慮した流れ場の長さスケールと速度スケールとを定義し、熱交換器の伝熱・流動損失性能を予測し得る強制対流モデルを提供するとしている。
特許文献1に記載の技術では、室外機の構造計算、流れ予測を実施できるとしているが、この技術においては、構造設計が主体であり、フィンの間を流れる冷媒の温度の影響や湿度の影響は考慮していない。
The technique described in Patent Document 1 investigates the distribution of the flow strength of forced convection in a plate fin tube set in detail, defines a flow field length scale and a velocity scale in consideration of fan characteristics, and heat exchange. It is said that it will provide a forced convection model that can predict the heat transfer and flow loss performance of the vessel.
The technique described in Patent Document 1 states that structural calculation and flow prediction of an outdoor unit can be performed. However, in this technique, structural design is the main component, and the influence of temperature and humidity of the refrigerant flowing between fins is the main subject. Is not considered.

熱交換器においては、性能向上のため、フィン材表面に親水性や撥水性を付与するための表面処理がなされている。
熱交換器の性能試験は、それぞれの熱交換器製造会社が指定した方法により行われ、冷媒(水)あるいは空気の入出のそれぞれについて、温度、熱交換器コアによる圧力損失等が測定されている。
また、熱交換器において除霜性能の評価には、試験装置の制約上、小型の熱交換器コアで評価できることが要望されている。
In the heat exchanger, in order to improve the performance, the surface of the fin material is surface-treated to impart hydrophilicity and water repellency.
The performance test of the heat exchanger is performed by the method specified by each heat exchanger manufacturer, and the temperature, pressure loss due to the heat exchanger core, etc. are measured for each of the inflow and outflow of the refrigerant (water) or air. ..
Further, in order to evaluate the defrosting performance of a heat exchanger, it is required that a small heat exchanger core can be used for evaluation due to the restrictions of the test equipment.

現状技術において、熱交換器コアの各種測定そのものの技術は種々確立されているが、予め温度や圧力損失を見積もることができる手法が無く、小型の熱交換器コアにおいて評価が成立するか否かを検討する手段が提供されていないのが実情である。 In the current technology, various techniques for measuring the heat exchanger core itself have been established, but there is no method that can estimate the temperature and pressure loss in advance, and whether or not the evaluation is valid for the small heat exchanger core. The reality is that there is no way to consider.

本願発明は、これらの背景に鑑み、空調用熱交換器コアの形状や試験条件から、媒体、通過空気の温度変化および圧力損失を計算で見積もることができる空調用熱交換器コアの評価方法と評価装置および評価プログラムの提供を目的とする。 In view of these backgrounds, the present invention provides an evaluation method for an air conditioning heat exchanger core that can calculate temperature changes and pressure losses of a medium and passing air from the shape and test conditions of the air conditioning heat exchanger core. The purpose is to provide an evaluation device and an evaluation program.

「1」本発明に係る空調用熱交換器コアの評価方法は、所定の間隔をあけて並設された複数のフィンと、前記複数のフィンに接するように接合されたチューブを備え、前記複数のフィンと前記チューブの間に空気を流通させて前記チューブ内の媒体と前記フィンとの間で熱交換を行う空調用熱交換器コアの性能評価方法であって、前記空調用熱交換器コアの前記フィンに沿って空気が流れる場合の圧力損失と平均熱伝達率を求め、前記フィンの温度分布が一様な平均温度を有すると仮定し、フィン効率とフィン根元温度と外気温度から前記フィンの温度分布を求め、前記媒体と前記チューブとの熱伝達が乱流熱伝達率の関係を有すると仮定し、前記フィンを前記空気の流れ方向に沿って複数に分割し、前記空気の分割領域毎に差分法によって前記空気の温度を求め、前記チューブを1本の直管と見立てて前記空気の分割領域と同じ数に分割して前記チューブの分割領域毎に前記媒体の温度を求め、空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出水温度差の関係式が成立すると仮定し、この関係式を解いて前記媒体の量を求め、更に空気出口温度と、水出口温度を求めることを特徴とする。 "1" The method for evaluating the heat exchanger core for air conditioning according to the present invention includes a plurality of fins arranged side by side at predetermined intervals and a tube joined so as to be in contact with the plurality of fins. This is a performance evaluation method for an air-conditioning heat exchanger core in which air is circulated between the fins and the tube to exchange heat between the medium in the tube and the fins. The pressure loss and the average heat transfer rate when air flows along the fins are obtained, and it is assumed that the temperature distribution of the fins has a uniform average temperature, and the fins are obtained from the fin efficiency, the fin root temperature, and the outside air temperature. Assuming that the heat transfer between the medium and the tube has a turbulent heat transfer rate relationship, the fins are divided into a plurality of parts along the air flow direction, and the air division region is obtained. The temperature of the air is obtained by the difference method for each time, the tube is regarded as one straight tube, divided into the same number as the divided regions of the air, and the temperature of the medium is obtained for each divided region of the tube, and the air is obtained. Wind speed x total fin area x inlet / outlet air temperature difference x specific heat = medium amount x specific heat x inlet / outlet temperature difference It is characterized in that the water outlet temperature is obtained.

「2」本発明に係る性能評価方法において、前記空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出媒体温度差の関係式が成立すると仮定し、この関係式を解く場合、前記媒体の熱伝達率に係数を乗算して前記関係式の左辺の計算結果と右辺の計算結果を合わせることが好ましい。 "2" In the performance evaluation method according to the present invention, it is assumed that the relational expression of the air velocity × total fin area × inlet / outlet air temperature difference × specific heat = amount of medium × specific heat × inlet / output medium temperature difference is established, and this relational expression is established. When solving, it is preferable to multiply the heat transfer coefficient of the medium by a coefficient to match the calculation result on the left side and the calculation result on the right side of the relational expression.

「3」本発明に係る性能評価方法において、前記空調用熱交換器コアに空気を流通させた場合の圧力損失計算モデルとして、前記空調用熱交換器コアの圧力損失Pcが以下の(1)式、(2)式、(3)式で表わされると仮定することが好ましい。
ただし、(1)式、(2)式において、Pc:空調用熱交換器コアの圧力損失、C:流動損失係数、ρ:密度(kg/m)、U:空調熱交換器コアを空気が通過する風速(m/sec)、Dec:(代表寸法:濡れ縁長さ:m)、L:空調熱交換器コアの空気流れ方向長さ(m)、Re:レイノルズ数であり、(3)式において、A:自由通過面積(空調熱交換器コアを空気流れ方向に沿って見た場合にフィンとチューブが存在しない領域の総面積)、A:全伝熱面積である。
"3" In the performance evaluation method according to the present invention, as a pressure loss calculation model when air is circulated through the air conditioning heat exchanger core, the pressure loss Pc of the air conditioning heat exchanger core is as follows (1). It is preferable to assume that it is represented by the equation, the equation (2), and the equation (3).
However, in (1), (2), Pc: pressure loss in the heat exchanger core for air conditioning, C D: flow loss coefficient, [rho: density (kg / m 3), U c: air conditioning heat exchanger core the wind passing through the air (m / sec), D ec :( typical dimension: wetted perimeter: m), L t: air conditioning heat exchanger core of the air flow direction length (m), Re: Yes Reynolds number , (3), Ac : Free passage area (total area where fins and tubes do not exist when the air conditioning heat exchanger core is viewed along the air flow direction), A o : Total heat transfer area be.

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

「4」本発明に係る性能評価方法において、温度の計算モデルとして、前記空調用熱交換器コアの平均熱伝達が以下の(4)式で表されるヌセルト数Nuとして求められ、前記ヌセルト数が熱伝達率hとの関係で以下の(5)式で表される関係を有することが好ましい。
ただし、(4)式において、Pr:プランドル数、Ipt:フィン間隔(m)であり、ヌセルト数:Nu(無次元数)=hL/λの関係であり、(5)式においてhは熱伝導率、λ:フィン材の熱伝導率(W/mK)、Lは代表長さまたは前記Dec(濡れ縁長さ)である。
"4" In the performance evaluation method according to the present invention, as a temperature calculation model, the average heat transfer of the heat exchanger core for air conditioning is obtained as the Nusselt number Nu represented by the following equation (4), and the Nusselt number. Has a relationship expressed by the following equation (5) in relation to the heat transfer coefficient h.
However, in Eq. (4), Pr: Prandle number, Ipt : Fin spacing (m), Nusselt number: Nu (non-dimensional number) = hL / λ, and h in Eq. (5) thermal conductivity, lambda: the thermal conductivity of the fin material (W / mK), L is the characteristic length or the D ec (wetted perimeter).

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

「5」本発明に係る性能評価方法において、前記フィンの温度が以下の(6)式と(7)式で表される関係を有し、熱伝達率から熱伝導量を求めるために、通過する空気の温度と前記フィンの温度が必要であると仮定し、前記(7)式において前記フィンの温度分布は一様な平均温度θmを有し、θmは、フィン効率ηf、フィン根元温度θ、外気温度tから求めることができる。
ただし、(7)式においてdfはチューブ高さピッチ、dcはチューブ奥行きピッチ(1本チューブの場合、奥行き寸法(m)、Fはフィンの厚さ(m)である。
"5" In the performance evaluation method according to the present invention, the temperature of the fin has a relationship represented by the following equations (6) and (7), and is passed through in order to obtain the heat conduction amount from the heat transfer rate. Assuming that the temperature of the air to be heated and the temperature of the fins are required, the temperature distribution of the fins has a uniform average temperature θm in the above equation (7), where θm is the fin efficiency ηf and the fin root temperature θ. It can be obtained from 0 and the outside air temperature t 0.
However, in the equation (7), df is the tube height pitch, dc is the tube depth pitch (in the case of one tube, the depth dimension (m), and F 1 is the fin thickness (m).

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

「6」本発明に係る性能評価方法において、前記媒体と前記チューブの熱伝達は以下の(8)式に示す乱流熱伝達率の関係を有する。 "6" In the performance evaluation method according to the present invention, the heat transfer between the medium and the tube has a relationship of the turbulent heat transfer coefficient shown in the following equation (8).

Figure 2021173428
Figure 2021173428

「7」本発明に係る性能評価方法において、前記熱交換器通過風速Uは、前記空調用熱交換器コアに対する前面風速Uに対し、前面投影面積Aと前記自由通過面積Aの比を乗算し、U=(A/A)の関係を用いて算出することが好ましい。 In the performance evaluation method according to "7" the present invention, the heat exchanger passing wind velocity U c, compared face velocity U 0 to the heat exchanger core the air conditioning, the free passage area A c the frontal projected area A f It is preferable to multiply the ratio and calculate using the relationship of U c = ( Ac / A f).

「8」本発明に係る性能評価装置は、所定の間隔をあけて並設された複数のフィンと、前記複数のフィンに接するように接合されたチューブを備え、前記複数のフィンと前記チューブの間に空気を流通させて前記チューブ内の媒体と前記フィンとの間で熱交換を行う空調用熱交換器コアの性能評価装置であって、前記空調用熱交換器コアの前記フィンに沿って空気が流れる場合の圧力損失と平均熱伝達率を求める第1の計算手段と、前記フィンの温度分布が一様な平均温度を有すると仮定し、フィン効率とフィン根元温度と外気温度から前記フィンの温度分布を求める第2の計算手段と、前記媒体と前記チューブとの熱伝達が乱流熱伝達率の関係を有すると仮定し、前記フィンを前記空気の流れ方向に沿って複数に分割し、前記空気の分割領域毎に差分法によって前記空気の温度を求める第3の計算手段と、前記チューブを1本の直管と見立てて前記空気の分割領域と同じ数に分割して前記チューブの分割領域毎に前記媒体の温度を求める第4の計算手段と、空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出水温度差の関係式が成立すると仮定し、この関係式を解いて前記媒体の量を求め、更に空気出口温度と、水出口温度を求める第5の計算手段を有することを特徴とする。 "8" The performance evaluation device according to the present invention includes a plurality of fins arranged side by side at predetermined intervals and a tube joined so as to be in contact with the plurality of fins, and the plurality of fins and the tube. A performance evaluation device for an air-conditioning heat exchanger core that exchanges heat between the medium in the tube and the fins by allowing air to flow between them, along the fins of the air-conditioning heat exchanger core. The fins are calculated from the fin efficiency, the root temperature of the fins, and the outside air temperature, assuming that the first calculation means for obtaining the pressure loss and the average heat transfer coefficient when air flows and the temperature distribution of the fins have a uniform average temperature. Assuming that the second calculation means for obtaining the temperature distribution of the above and the heat transfer between the medium and the tube have a turbulent heat transfer coefficient relationship, the fins are divided into a plurality of parts along the air flow direction. A third calculation means for obtaining the temperature of the air by the difference method for each divided region of the air, and the tube is divided into the same number as the divided region of the air by regarding the tube as one straight pipe. It is assumed that the fourth calculation means for obtaining the temperature of the medium for each divided region and the relational expression of air wind velocity × total fin area × inlet / outlet air temperature difference × specific heat = medium amount × specific heat × inlet / outlet temperature difference are established. It is characterized by having a fifth calculation means for obtaining the amount of the medium by solving this relational expression, and further obtaining the air outlet temperature and the water outlet temperature.

本発明に係る性能評価プログラムは、所定の間隔をあけて並設された複数のフィンと、前記複数のフィンに接するように接合されたチューブを備え、前記複数のフィンと前記チューブの間に空気を流通させて前記チューブ内の媒体と前記フィンとの間で熱交換を行う空調用熱交換器コアの性能評価プログラムであって、コンピューターを、
前記空調用熱交換器コアの前記フィンに沿って空気が流れる場合の圧力損失と平均熱伝達率を求める第1の計算手段と、前記フィンの温度分布が一様な平均温度を有すると仮定し、フィン効率とフィン根元温度と外気温度から前記フィンの温度分布を求める第2の計算手段と、前記媒体と前記チューブとの熱伝達が乱流熱伝達率の関係を有すると仮定し、前記フィンを前記空気の流れ方向に沿って複数に分割し、前記空気の分割領域毎に差分法によって前記空気の温度を求める第3の計算手段と、前記チューブを1本の直管と見立てて前記空気の分割領域と同じ数に分割して前記チューブの分割領域毎に前記媒体の温度を求める第4の計算手段と、空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出水温度差の関係式が成立すると仮定し、この関係式を解いて前記媒体の量を求め、更に空気出口温度と、水出口温度を求める第5の計算手段として機能させることを特徴とする。
The performance evaluation program according to the present invention includes a plurality of fins arranged side by side at predetermined intervals and a tube joined so as to be in contact with the plurality of fins, and air is provided between the plurality of fins and the tube. This is a performance evaluation program for an air-conditioning heat exchanger core that exchanges heat between the medium in the tube and the fins by circulating a computer.
It is assumed that the first calculation means for obtaining the pressure loss and the average heat transfer capacity when air flows along the fins of the heat exchanger core for air conditioning and the temperature distribution of the fins have a uniform average temperature. Assuming that the second calculation means for obtaining the temperature distribution of the fin from the fin efficiency, the fin root temperature, and the outside air temperature, and the heat transfer between the medium and the tube have a turbulent heat transfer rate relationship, the fin Is divided into a plurality of parts along the flow direction of the air, and the temperature of the air is obtained by the difference method for each divided region of the air. A fourth calculation means for obtaining the temperature of the medium for each divided region of the tube by dividing into the same number as the divided regions of the above, and air wind velocity × total fin area × inlet / outlet air temperature difference × specific heat = amount of medium × specific heat × Assuming that the relational expression of the temperature difference between inflow and outflow is established, it is characterized by solving this relational expression to obtain the amount of the medium, and further functioning as a fifth calculation means for obtaining the air outlet temperature and the water outlet temperature. do.

本発明によれば、模型実験などを行わなくとも空調用熱交換器コアの形状や試験条件の見積もりから、冷媒と通過空気の温度変化と圧力損失を見積もることができ、空調用熱交換器コアの性能を評価する手法を構築できる。 According to the present invention, it is possible to estimate the temperature change and pressure loss of the refrigerant and passing air from the estimation of the shape and test conditions of the heat exchanger core for air conditioning without conducting a model experiment or the like, and the heat exchanger core for air conditioning can be estimated. You can build a method to evaluate the performance of.

本発明に係る第1実施形態の性能評価方法において適用する空調用熱交換器コアの一例を示すもので、(A)は正面図、(B)は側面図。An example of the heat exchanger core for air conditioning applied in the performance evaluation method of the first embodiment according to the present invention is shown, where (A) is a front view and (B) is a side view. 本発明に係る第1実施形態の性能評価方法において空調用熱交換器コアに空気を送りつつ通水して試験を行う状態を示すための説明図。The explanatory view for demonstrating the state which carries out the test by passing water while sending air to the heat exchanger core for air conditioning in the performance evaluation method of 1st Embodiment which concerns on this invention. 水の粘度を温度の関数として示すグラフ。A graph showing the viscosity of water as a function of temperature. 本発明に係る第1実施形態の性能評価方法を実施するために用いる性能評価装置の要部を示す構成図。The block diagram which shows the main part of the performance evaluation apparatus used for carrying out the performance evaluation method of 1st Embodiment which concerns on this invention. 熱交換器コアのチューブを1本の直管と見立て、直管の長さ方向に20分割して解析する場合の説明図。Explanatory drawing in the case where the tube of the heat exchanger core is regarded as one straight tube and divided into 20 in the length direction of the straight tube for analysis. 第1実施形態において入力ステップ〜第5のステップまでをステップ順に示すフローチャート。A flowchart showing the input step to the fifth step in step order in the first embodiment.

「第1実施形態(凝縮なしの場合の実施形態)」
以下、本発明に係る空調用熱交換器コアの性能評価方法の第1実施形態について、添付図面に示す実施形態に基づき詳細に説明する。
図1は、本発明に係る第1実施形態の性能評価方法について、適用対象とする空調用熱交換器コアの一例を示す。この空調用熱交換器コア1は、所定の間隔をあけて並設された矩形板状の複数のフィン2と、複数のフィン2を貫通して個々に接するように接合されたチューブ3を備え、複数のフィン2とチューブ3の間に空気を流通させてチューブ3内を流動する媒体(冷媒)との間で熱交換を行う機器である。
"First Embodiment (Embodiment in the case of no condensation)"
Hereinafter, the first embodiment of the performance evaluation method for the heat exchanger core for air conditioning according to the present invention will be described in detail based on the embodiment shown in the attached drawings.
FIG. 1 shows an example of an air conditioning heat exchanger core to which the performance evaluation method of the first embodiment according to the present invention is applied. The air-conditioning heat exchanger core 1 includes a plurality of rectangular plate-shaped fins 2 arranged side by side at predetermined intervals, and a tube 3 that penetrates the plurality of fins 2 and is joined so as to be in contact with each other. This is a device that allows air to flow between a plurality of fins 2 and the tube 3 to exchange heat with a medium (refrigerant) that flows in the tube 3.

フィン2は例えばアルミニウム合金製の縦長の長方形状のフィン材からなり、チューブ3は銅合金あるいはアルミニウム合金製の管材からなる。図1(A)の状態において、フィン2は数分の1mm〜数mm程度の間隔(フィンピッチ)をあけて数10枚〜数100枚、個々に垂直に配置され、フィン群2Aが構成されている。チューブ3はこれら垂直に隣接配置された複数のフィン2に対し、これら全てのフィン2を貫通するように配置されている。 The fin 2 is made of, for example, a vertically long rectangular fin material made of an aluminum alloy, and the tube 3 is made of a pipe material made of a copper alloy or an aluminum alloy. In the state of FIG. 1A, tens to hundreds of fins 2 are individually arranged vertically with an interval (fin pitch) of about 1/1 mm to several mm to form a fin group 2A. ing. The tube 3 is arranged so as to penetrate all of the fins 2 arranged vertically adjacent to each other.

一例として図1のチューブ3は、複数の直管部3Aと複数のU字状のエルボ管3Bとからなる。複数の直管部3Aが図1(A)の上下方向(フィン2の長さ方向)に所定間隔離間して各フィン2を直角向きに貫通するように水平に配置されている。また、フィン群2Aの外側に突出されている直管部3Aにおいて上下に隣接する端部どうしがエルボ管3Bにより接続されている。この構造によりチューブ3は全体として蛇行状態で複数のフィン2をそれらの上部側から下部側まで繰り返し貫通するように配置されている。フィン群2Aの最上部に位置するチューブ3の一端部に媒体(水)の入口部3aが形成され、フィン群2Aの最下部に位置するチューブ3の他端部に媒体(水)の出口部3bが形成されている。
なお、チューブ3の直管部3Aがフィン2を貫通する部分の周囲にはフィン2を切り起こして構成した図示略のカラー部が形成されている。
As an example, the tube 3 of FIG. 1 is composed of a plurality of straight pipe portions 3A and a plurality of U-shaped elbow pipes 3B. A plurality of straight pipe portions 3A are horizontally arranged so as to penetrate each fin 2 in a right angle direction at a predetermined interval in the vertical direction (length direction of the fin 2) of FIG. 1 (A). Further, in the straight pipe portion 3A protruding to the outside of the fin group 2A, the vertically adjacent ends are connected by the elbow pipe 3B. Due to this structure, the tube 3 is arranged so as to repeatedly penetrate the plurality of fins 2 from the upper side to the lower side thereof in a meandering state as a whole. An inlet portion 3a of a medium (water) is formed at one end of a tube 3 located at the uppermost portion of the fin group 2A, and an outlet portion of the medium (water) is formed at the other end of the tube 3 located at the lowermost portion of the fin group 2A. 3b is formed.
A collar portion (not shown) formed by cutting up the fin 2 is formed around the portion where the straight pipe portion 3A of the tube 3 penetrates the fin 2.

図1(A)、(B)に示す空調用熱交換器コア1において、フィンピッチをFと表記し、個々のフィン2の厚みをFと表記し、フィンカラー部の外径をFDと表記し、複数のフィン2が配置されている方向に沿う幅(フィン群2Aの幅)をコア横幅(L)と表記し、フィン群2Aの高さをコア高さ(L)と表記し、フィン群2Aの幅をコア奥行き(L)と表記する。 In FIG. 1 (A), the air-conditioning heat exchanger core 1 (B), the fin pitch is denoted by F P, it denoted the individual thickness of the fins 2 and F 1, the outer diameter of the fin collar portion FD The width along the direction in which the plurality of fins 2 are arranged (the width of the fin group 2A) is described as the core width (L 3 ), and the height of the fin group 2A is referred to as the core height (L 1 ). Notated, and the width of the fin group 2A is referred to as the core depth (L 2 ).

また、チューブ3の外径を素管直径と表記し、チューブ内径を素管内径と表記することがあり、チューブ段ピッチを素管段ピッチ(素管の中心間距離:S:図1(B)参照)と表記することがあり、フィン枚数を(コア横幅/フィンピッチ)で計算することができ、チューブ本数を(コア高さ÷素管ピッチ)で計算することができる。なお、後述する表計算ソフトウエアのプログラムに、フィン枚数=コア横幅/フィンピッチの関係式を記録させておき、この関係式から自動的にフィン枚数を自動算出し、後述の性能評価方法に用いることができる。 Further, the outer diameter of the tube 3 is referred to as raw tube diameter, the tube inside diameter may be referred to as a mother pipe inner diameter, the tube stage pitch base pipe stage pitch (center-to-center distance between the blank pipe: S 1: FIG. 1 (B )), The number of fins can be calculated by (core width / fin pitch), and the number of tubes can be calculated by (core height ÷ raw tube pitch). A spreadsheet software program to be described later records a relational expression of the number of fins = core width / fin pitch, and the number of fins is automatically calculated from this relational expression and used in the performance evaluation method described later. be able to.

図1に示す空調用熱交換器コア1の性能評価を行う場合、図2に示すように空調用熱交換器コア1の前面と背面を除く周面を通気ダクト等の周壁4で覆い、空調用熱交換器コア1の前面と背面を解放した状態として解析する。空調用熱交換器コア1の周囲を通気ダクトの周壁4で覆い、通気ダクトにファン等の送風機から空気を送風できるように構成することにより、送風機から目的の風速で冷却用の空気を空調用熱交換器コア1に送ることができると仮定する。
なお、図2では、空調用熱交換器コア1と周壁4と送風方向をいずれも1つの図に示して認識できるようにするため、空調用熱交換器コア1に対し斜め手前方向から送風するように描いているが、以下に説明する解析では各フィン2に対し空気を平行向きに送風し、図2に示す空調用熱交換器コア1の手前側から奥側に各フィン2と平行に空気が抜けるように送風することを前提とする。
When evaluating the performance of the heat exchanger core 1 for air conditioning shown in FIG. 1, as shown in FIG. 2, the peripheral surfaces of the heat exchanger core 1 for air conditioning except for the front surface and the back surface are covered with a peripheral wall 4 such as a ventilation duct for air conditioning. The analysis is performed assuming that the front and back surfaces of the heat exchanger core 1 are open. By covering the circumference of the heat exchanger core 1 for air conditioning with the peripheral wall 4 of the ventilation duct so that air can be blown from the blower such as a fan to the ventilation duct, the air for cooling is blown from the blower at the target wind speed for air conditioning. It is assumed that it can be sent to the heat exchanger core 1.
In FIG. 2, in order to show and recognize the air-conditioning heat exchanger core 1, the peripheral wall 4, and the air-blowing direction in one figure, the air-conditioning heat exchanger core 1 is blown from an obliquely front direction. However, in the analysis described below, air is blown parallel to each fin 2 and parallel to each fin 2 from the front side to the back side of the heat exchanger core 1 for air conditioning shown in FIG. It is assumed that the air is blown so that the air can escape.

本実施形態では、フィン群2Aの前面側から背面側に抜けるように所定の風速で空気を吹き込むとともに、チューブ3の入口部3aから媒体(冷媒)としての水をチューブ3に導入し、出口部3bから冷媒としての水を排出することにより空調用熱交換器コア1の性能を評価する。 In the present embodiment, air is blown at a predetermined wind speed so as to escape from the front side to the back side of the fin group 2A, and water as a medium (refrigerant) is introduced into the tube 3 from the inlet portion 3a of the tube 3 to enter the outlet portion. The performance of the heat exchanger core 1 for air conditioning is evaluated by discharging water as a refrigerant from 3b.

性能評価を行う場合、一例として、空気(大気)の物性値、水(冷媒)の物性値、アルミニウムの物性値については以下の通りに設定できる。
大気設定温度:21℃、大気設定相対湿度:70%、気圧:1atm(固定)、空気の密度:1.19289264kg/m、空気の粘度:1.81819×10−5Pa・sec、空気の比熱:1kJ/kgK、空気の熱伝導率:0.024702542W/mKに設定できる。
水の密度:1000kg/m、水の粘度:0.00052825Pa・sec、水の比熱:4.2kJ/kgK、水の熱伝導率:0.6W/mKに設定できる。
アルミニウムの密度:2700kg/m、アルミニウムの比熱:0.88kJ/kgK、アルミニウムの熱伝導率200W/mKに設定できる。
When performing performance evaluation, as an example, the physical characteristics of air (atmosphere), water (refrigerant), and aluminum can be set as follows.
Atmospheric set temperature: 21 ° C, Atmospheric set relative humidity: 70%, Atmospheric pressure: 1 atm (fixed), Air density: 1.19289264 kg / m 3 , Air viscosity: 1.81819 x 10-5 Pa · sec, Air The specific heat can be set to 1 kJ / kgK and the thermal conductivity of air can be set to 0.024702542 W / mK.
The density of water: 1000 kg / m 3 , the viscosity of water: 0.00052825 Pa · sec, the specific heat of water: 4.2 kJ / kgK, and the thermal conductivity of water: 0.6 W / mK can be set.
The density of aluminum can be set to 2700 kg / m 3 , the specific heat of aluminum can be set to 0.88 kJ / kgK, and the thermal conductivity of aluminum can be set to 200 W / mK.

なお、空気の密度と空気の粘度と空気の熱伝導率と水の粘性については必要に応じ、以下に説明するように温度の関数値として把握し、温度に応じた関数値を採用する。
空気の密度については、以下の(9)式と(10)式と(11)式(ティーティンスの近似式)による。
ただし、以下の式において、Pは(圧力:Pa)を示し、eは(実際の水蒸気圧:Pa)を示し、e(T)は(温度T:Kの関数とした水蒸気圧:Pa)、e(SAT)は飽和水蒸気圧:Paを示す。
If necessary, the density of air, the viscosity of air, the thermal conductivity of air, and the viscosity of water are grasped as function values of temperature as described below, and the function values according to temperature are adopted.
The air density is based on the following equations (9), (10) and (11) (approximate equation of tea tins).
However, in the following equation, P indicates (pressure: Pa), e indicates (actual water vapor pressure: Pa), and e (T) is (water vapor pressure: Pa as a function of temperature T: K). e (SAT) indicates saturated water vapor pressure: Pa.

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

空気の粘度(粘性係数)μについては、以下の(12)式で示されるサザランド(Sutherland)の式を適用し、空気の熱伝導率λについては以下の(13)式を適用する。
以下の式において、Tは絶対温度Kを示す。空気の他の物性値は湿度の影響が少ないので、無視し、温度のみの影響と仮定し、密度、比熱、熱伝導率は上述の一定値とする。なお、アルミニウムの物性値も上述の一定値とする。
For the viscosity (viscosity coefficient) μ of air, the formula of Sutherland represented by the following formula (12) is applied, and for the thermal conductivity λ of air, the following formula (13) is applied.
In the following equation, T represents absolute temperature K. Since other physical properties of air are less affected by humidity, they are ignored and assumed to be affected only by temperature, and the density, specific heat, and thermal conductivity are set to the above-mentioned constant values. The physical characteristic value of aluminum is also set to the above-mentioned constant value.

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

水の粘性については、図3に示す温度との関係が知られているので、図3に示す以下の近似式である(14)式を基に算出して使用する。 Since the relationship between the viscosity of water and the temperature shown in FIG. 3 is known, it is calculated and used based on the following approximate formula (14) shown in FIG.

Figure 2021173428
Figure 2021173428

概算では、水の粘性は、以下の関係となる。
0℃:1.792、5℃:1.52、10℃:1.307、15℃:1.138、20℃:1.002、25℃:0.89、30℃:0.797、35℃: 0.719、40℃:0.653、45℃:0.598、50℃:0.548、55℃:0.505、60℃:0.467、65℃:0.434、70℃:0.404、75℃:0.378、80℃:0.355、85℃: 0.334、90℃:0.315、95℃:0.298、100℃:0.282。
Approximately, the viscosity of water has the following relationship.
0 ° C: 1.792, 5 ° C: 1.52, 10 ° C: 1.307, 15 ° C: 1.138, 20 ° C: 1.002, 25 ° C: 0.89, 30 ° C: 0.797, 35 ℃: 0.719, 40 ℃: 0.653, 45 ℃: 0.598, 50 ℃: 0.548, 55 ℃: 0.505, 60 ℃: 0.467, 65 ℃: 0.434, 70 ℃ : 0.404, 75 ° C: 0.378, 80 ° C: 0.355, 85 ° C: 0.334, 90 ° C: 0.315, 95 ° C: 0.298, 100 ° C: 0.282.

図4は、以下に説明する性能評価方法を実施するために用いる空調用熱交換器コアの性能評価装置の一例を示す構成図である。
図4に示す性能評価装置23は、所謂コンピューターであって、主として入力手段24と、制御部25と、記憶手段26と、出力手段27を備える。
入力手段24は、例えば、文字や数字を入力するキーボードなどであり、これによって種々の情報を記憶手段26または制御部25に入力することができる。
制御部25は、所謂CPU(中央演算処理装置)やRAM(Random Access Memory)、ROM(Read Only Memory)などで構成されており、プログラムによって様々な数値計算や情報処理、機器制御などを行うことができる。
FIG. 4 is a configuration diagram showing an example of a performance evaluation device for an air conditioning heat exchanger core used to carry out the performance evaluation method described below.
The performance evaluation device 23 shown in FIG. 4 is a so-called computer, and mainly includes an input means 24, a control unit 25, a storage means 26, and an output means 27.
The input means 24 is, for example, a keyboard for inputting characters and numbers, whereby various information can be input to the storage means 26 or the control unit 25.
The control unit 25 is composed of a so-called CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), etc., and performs various numerical calculations, information processing, device control, etc. by a program. Can be done.

記憶手段26は、例えば、HDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)などの情報記録媒体であり、必要なプログラムや、算出手段28、予測手段29の実行に必要な、例えば、表計算ソフトウエアによる処理や計算とそれらの結果などの各種情報、これらによって得られた結果などを必要に応じて記憶させ、読み出し、計算することができる。
出力手段27は、例えば、モニターやプリンターなどであり、必要なプログラムから得られる各種の情報を必要に応じて表示することができる。図4に示す性能評価装置23は出力手段27として表示モニター型の表示装置を有している。
The storage means 26 is, for example, an information recording medium such as an HDD (hard disk drive) or SSD (solid state drive), and is necessary for executing necessary programs, calculation means 28, and prediction means 29, for example, spreadsheet software. Various information such as processing and calculation by software and their results, and the results obtained by these can be stored, read, and calculated as needed.
The output means 27 is, for example, a monitor, a printer, or the like, and can display various information obtained from a necessary program as needed. The performance evaluation device 23 shown in FIG. 4 has a display monitor type display device as an output means 27.

なお、記憶手段26には、基本的なオペレーティングシステム(OS)に加え、表計算ソフトウェアが記憶され、更に後記する算出手段28、予測手段29の実行に必要な各種の情報が記憶され、表計算ソフトウェアに予め必要な各種の情報が記憶されている。性能評価装置23では、これら各種の情報を任意に読み出し、後述するように計算することができる。また、表計算ソフトウェアによって得られた算出結果などを必要に応じて記憶させたり読み出すことが可能である。 In addition to the basic operating system (OS), the storage means 26 stores table calculation software, and further stores various information necessary for executing the calculation means 28 and the prediction means 29, which will be described later, for table calculation. Various information required in advance is stored in the software. The performance evaluation device 23 can arbitrarily read out these various types of information and calculate as described later. In addition, it is possible to store and read the calculation results obtained by the spreadsheet software as needed.

表計算ソフトウェアは、例えば、Microsoft 社製Excel(商品名)を用いることができる。なお、ここで示した表計算ソフトウェアは本実施形態に適用可能な一つの例であって、この例で用いた表計算ソフトウェアに限るものでは無い。 For example, Microsoft Excel (trade name) can be used as the spreadsheet software. The spreadsheet software shown here is an example applicable to the present embodiment, and is not limited to the spreadsheet software used in this example.

上述の表計算ソフトウェアを用い、上述の空気の物性値と水の物性値とアルミニウムの物性値を基本条件に設定し、以下に示す空調用熱交換器コア1の各種パラメータを入力し、以下に説明する条件の基で表計算ソフトウェアに組み込まれている以下に説明する関係式に基づき演算することにより、空調用熱交換器コア1の性能を評価する。 Using the above-mentioned table calculation software, set the above-mentioned air property value, water property value, and aluminum property value as basic conditions, input various parameters of the heat exchanger core 1 for air conditioning shown below, and enter the following. The performance of the heat exchanger core 1 for air conditioning is evaluated by performing calculations based on the relational expressions described below, which are incorporated in the table calculation software under the conditions described below.

空調用熱交換器コア1の性能評価を行う場合、表計算ソフトウェアに入力するパラメータは、フィンピッチ:Fp(mm)と、フィン厚み:F(mm)と、フィンカラー径:(mm)と、コア横幅:L(mm)と、コア高さ(フィン高さ):L(mm)と、コア奥行き:L(mm)と、素管直径(冷媒が通るチューブ3の直径):(mm)と、素管内径:(mm:チューブ3の内径)と、素管段ピッチ(上下に配置されている直管部3A間の中心距離):S(mm)と、設定風速(m/sec)と、設定水量(L/min)と、設定温度(大気温度:℃)と、設定相対湿度(%)と、水温(℃)である。 When evaluating the performance of the heat exchanger core 1 for air conditioning, the parameters to be input to the table calculation software are fin pitch: Fp (mm), fin thickness: F 1 (mm), and fin collar diameter: (mm). , Core width: L 3 (mm), core height (fin height): L 1 (mm), core depth: L 2 (mm), raw tube diameter (diameter of tube 3 through which refrigerant passes): (Mm), inner diameter of raw pipe: (mm: inner diameter of tube 3), raw pipe step pitch (center distance between straight pipe portions 3A arranged above and below): S 1 (mm), set wind speed (m) / Sec), the set amount of water (L / min), the set temperature (atmospheric temperature: ° C.), the set relative humidity (%), and the water temperature (° C.).

空調用熱交換器コア1を評価する場合、表計算ソフトウェアに実際にパラメータを数値入力する場合の一例として、フィンピッチ(Fp):1.2mm、フィン厚み(F):0.1mm、フィンカラー径(カラー部の外径):7.7mm、コア横幅(L)150mm、コア高さ(L)300mm、コア奥行き(L)13mm、素管直径:7.7mm、素管内径:6.7mm、素管段ピッチ(S1):25mm、設定風速:1.5m/sec、設定水量:6L/min、設定温度:21℃、設定相対湿度:70%、水温:50℃などのように各数値を入力できる。
以上のように以降の計算に必要な種々のパラメータを表計算ソフトウエアに入力して記録するステップを本実施形態では入力ステップS0と称する。
When evaluating the heat exchanger core 1 for air conditioning, as an example of actually inputting parameters into the table calculation software, fin pitch (Fp): 1.2 mm, fin thickness (F 1 ): 0.1 mm, fins Collar diameter (outer diameter of collar part): 7.7 mm, core width (L 3 ) 150 mm, core height (L 1 ) 300 mm, core depth (L 2 ) 13 mm, raw tube diameter: 7.7 mm, raw tube inner diameter : 6.7 mm, raw pipe stage pitch (S1): 25 mm, set wind speed: 1.5 m / sec, set water volume: 6 L / min, set temperature: 21 ° C, set relative humidity: 70%, water temperature: 50 ° C, etc. You can enter each value in.
As described above, the step of inputting and recording various parameters necessary for the subsequent calculations into the spreadsheet software is referred to as input step S0 in the present embodiment.

更に、数値入力する場合の一例として、フィン枚数(コア横幅/フィンピッチ):125枚、チューブ本数(フィン高さ÷チューブ段ピッチ=本数):12本、自由通過断面積A:35339.66737mm、代表風速:1.910034956m/sec、全伝熱面積A:945064.549mm、代表寸法Dec:1.944483797mm、流動損失係数C:0.176308214などとして数値入力するか計算を行い、圧力損失:2.564871215Paを得ることができる。以下、それぞれの計算内容について説明する。
なお、記憶手段26に記憶されている表計算ソフトウエアの複数のセルに、これらの計算に必要な以下に説明する演算式が個々に組み込まれている。そして、上述の入力値の一例である、フィンピッチ(Fp)、フィン厚み(F)、フィンカラー径、コア横幅(L)、コア高さ(L)、コア奥行き(L)、素管直径、素管内径、素管段ピッチ(S)、設定風速、設定水量、設定温度、設定相対湿度、水温を入力することにより、以下に説明するように演算して以下の値を求めることができる。
Furthermore, as an example of a case of numerical value input, the fin sheets (core width / fin pitch): 125 sheets, the number of tubes (fin height ÷ tube stage pitch = Number): 12, free passage cross-sectional area A c: 35339.66737mm 2, the representative wind speed: 1.910034956m / sec, Zenden'netsu area a 0: 945064.549mm 2, the typical dimension D ec: 1.944483797mm, flow loss coefficient C D: perform numerical either calculation input as such 0.176308214 , Pressure loss: 2.564871215 Pa can be obtained. The contents of each calculation will be described below.
In addition, the calculation formulas described below necessary for these calculations are individually incorporated in a plurality of cells of the spreadsheet software stored in the storage means 26. Then, as an example of the above-mentioned input values, fin pitch (Fp), fin thickness (F 1 ), fin collar diameter, core width (L 3 ), core height (L 1 ), core depth (L 2 ), By inputting the raw pipe diameter, raw pipe inner diameter, raw pipe stage pitch (S 1 ), set wind speed, set water volume, set temperature, set relative humidity, and water temperature, calculate as described below to obtain the following values. be able to.

自由通過断面積とは、図1に示すフィン群2Aの前面側の面積からフィンが占める面積を除いた実質的に空気が通過する面積を意味する。換言すると、自由通過断面積とは、実際の通過体積/見かけの通過体積×前面断面積=(実際の隙間×実際のフィン通過表面積)/(見かけの隙間×見かけのフィン通過表面積)×前面断面積=(フィンピッチ−フィン厚み)×(チューブ段ピッチ×コア奥行き−π×(チューブ半径))/(チューブ段ピッチ×コア奥行き×フィンピッチ)×コア横幅×コア高さの関係を有する。
代表風速とは、設定風速2.0m/secで空気を吹き付けたとして、フィンとチューブにより遮られる分だけ速度が減少することを意味する。代表風速は、設定風速×前面断面積/自由通過断面積とする。
全伝熱面積とは、一枚あたりフィンの大きさ×枚数×(フィンの表面と裏面において、チューブ貫通分に対応する減少分の面積)+チューブの表面積を意味する。
The free-passing cross-sectional area means an area through which air substantially passes, excluding the area occupied by the fins from the area on the front surface side of the fin group 2A shown in FIG. In other words, the free-passing cross-sectional area is the actual passing volume / apparent passing volume x front cross-sectional area = (actual gap x actual fin passing surface area) / (apparent gap x apparent fin passing surface area) x front cutting Area = (fin pitch-fin thickness) x (tube step pitch x core depth-π x (tube radius) 2 ) / (tube step pitch x core depth x fin pitch) x core width x core height.
The typical wind speed means that even if air is blown at a set wind speed of 2.0 m / sec, the speed is reduced by the amount blocked by the fins and the tube. The representative wind speed is the set wind speed x front cross-sectional area / free passage cross-sectional area.
The total heat transfer area means the size of each fin × the number of fins × (the area of the reduction corresponding to the penetration of the tube on the front surface and the back surface of the fin) + the surface area of the tube.

代表寸法Dec(濡れ縁長さ)とは、流体寸法をとった場合にどこの寸法を取るべきかを意味するもので、等価直径(直径いくつの円管の集合と等価であるかを示す。)=4×流路断面積/濡れ縁長さ=4×自由通過体積/全伝熱面積=4×自由通過断面積×奥行き/全伝熱面積を意味する。フィンピッチと略同等オーダーの値となり、流体的に等しい隙間を求めることを意味する。
流動損失係数Cとは、単位長さ当たりどの程度損失を生じるかを示すもので、以下の(2)式により計算できる。ただし、(2)式において、C:流動損失係数、Dec:(代表寸法:濡れ縁長さ:m)、L:空調熱交換器コアの空気流れ方向長さ(m)、上述の空調用熱交換器コア1ではコア奥行:Lに相当する。
The representative dimension D ec (wet edge length) means which dimension should be taken when the fluid dimension is taken, and indicates the equivalent diameter (the number of circular tubes having a diameter equivalent to the set of tubes). ) = 4 × Flow path cross-sectional area / Wet edge length = 4 × Free-passing volume / Total heat transfer area = 4 × Free-passing cross-sectional area × Depth / Total heat transfer area. It is a value on the order of substantially the same as the fin pitch, which means that a fluidly equal gap is obtained.
The flow loss coefficient C D indicates how much loss is generated per unit length, and can be calculated by the following equation (2). However, in (2), C D: flow loss coefficient, D ec :( typical dimension: wetted perimeter: m), L t: air conditioning heat exchanger core of the air flow direction length (m), the above-mentioned air-conditioning in use heat exchanger core 1 core depth: corresponding to L 2.

Figure 2021173428
Figure 2021173428

(2)式においてLを上述の空調用熱交換器コア1ではLと仮定し、流動損失係数をここではCと表記すると以下の(15)式を導出できる。 (2) the L t in equation assuming L 2 In the air conditioning heat exchanger core 1 described above, in this case the flow loss coefficient can be derived the following equation (15) and is expressed as C D.

Figure 2021173428
Figure 2021173428

流動損失係数Cは、(15)式において、上述の一例では、(0.43+35.1×Re×Dec/13)−1.07×Dec/13となるので、代表寸法Dec:1.944483797mm、レイノルズ数Re:35974.58645を代入すると計算できる。上述の一例の入力値の場合は、0.176308214と計算できる。
摩擦による圧力損失Δpは、以下の(16)式で示すことができる。ただし、(16)式において摩擦による圧力損失Δpの単位はPa、ρ:流体の密度(水の密度)の単位はkg/mであり、fは流動損失係数を示し、Lはコアの奥行き(m)を示し、Decは濡れ縁長さ(m)を示し、Vは代表風速(m/sec)を示す。
なお、後述する各表を元に以下に説明する種々の計算例では、各サイズをmm表示しているが、計算ではmに換算して入力の上、計算するものとする。
Flow loss coefficient C D is the (15), in one example described above, since a (0.43 + 35.1 × Re × D ec / 13) -1.07 × D ec / 13, the typical dimension D ec: It can be calculated by substituting 1.944438977 mm and Reynolds number Re: 35974.58645. In the case of the input value of the above example, it can be calculated as 0.176308214.
The pressure loss Δp due to friction can be expressed by the following equation (16). However, in equation (16), the unit of pressure loss Δp due to friction is Pa, ρ: the unit of fluid density (water density) is kg / m 2 , f indicates the flow loss coefficient, and L 2 is the core. indicates the depth (m), D ec denotes wetted perimeter of (m), V represents a typical wind speed (m / sec).
In the various calculation examples described below based on each table described later, each size is displayed in mm, but in the calculation, it is calculated by converting it to m and inputting it.

Figure 2021173428
Figure 2021173428

空調用熱交換器コア1の圧力損失Pcについては、以下に示す圧力損失の計算モデルを設定できる。空調用熱交換器コア1の圧力損失Pcは以下の(1)式と前述の(2)式で与えられる。(1)式、(2)式において、Pc:空調用熱交換器コアの圧力損失、C:流動損失係数、ρ:密度(kg/m)、U:空調熱交換器コアを空気が通過する風速(m/sec)、Dec:(代表寸法:濡れ縁長さ:m)、L:空調熱交換器コアの空気流れ方向長さ(m)、Re:レイノルズ数である。また、Uは前面風速Uに対し、前面投影面積AとA(自由通過面積:空調熱交換器コアを空気流れ方向に沿って見た場合にフィンとチューブが存在しない領域の総面積)の比を乗算し、U=U(A/A)を用いることができる。 For the pressure loss Pc of the heat exchanger core 1 for air conditioning, the following pressure loss calculation model can be set. The pressure loss Pc of the heat exchanger core 1 for air conditioning is given by the following equation (1) and the above equation (2). (1) and (2), Pc: pressure loss in the heat exchanger core for air conditioning, C D: flow loss coefficient, [rho: density (kg / m 3), U c: air conditioning heat exchanger core There wind passing (m / sec), D ec :( typical dimension: wetted perimeter: m), L t: air conditioning heat exchanger core of the air flow direction length (m), Re: a Reynolds number. In addition, U c is the total area where fins and tubes do not exist when the front projected area A f and Ac (free passage area: air conditioning heat exchanger core is viewed along the air flow direction) with respect to the front wind velocity U 0. Area) can be multiplied and U c = U 0 ( Ac / A f ) can be used.

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

ここで、代表寸法Decは、濡れ縁長さであり、以下の(3)式で与えられる。(3)式において、A:自由通過面積、A:全伝熱面積である。 Here, the typical dimension D ec is wetted perimeter is the length given by the following equation (3). In equation (3), Ac : free passage area, A o : total heat transfer area.

Figure 2021173428
Figure 2021173428

前述の(1)式と(2)式と(3)式の関係において、空調用熱交換器コア1の各寸法と前面風速は容易に求まるため、圧力損失Pcはこれら(1)〜(3)式から求めることができる。
圧力損失Pcは、(1)式に示したように、流動損失係数(C)×{コア奥行き(L2)/代表寸法(Dec)}×(密度(ρ)×代表風速)/2となるので、上述の一例においては、2.564871215Paと計算できる。上述の関係式から表計算ソフトウェアにおいて圧力損失Pcを求めるまでの計算モデルによる計算の実施を本願明細書では第1の計算手段が行う第1のステップと称する。
In the relationship between the above equations (1), (2) and (3), the dimensions and the front wind speed of the heat exchanger core 1 for air conditioning can be easily obtained, so that the pressure loss Pc is these (1) to (3). ) Can be obtained from the equation.
As shown in Eq. (1), the pressure loss Pc is the flow loss coefficient ( CD ) × {core depth (L2) / representative dimension (D ec )} × (density (ρ) × representative wind speed 2 ) / 2. Therefore, in the above example, it can be calculated as 2.564871215Pa. In the present specification, the execution of the calculation by the calculation model from the above relational expression to the calculation of the pressure loss Pc in the spreadsheet software is referred to as the first step performed by the first calculation means.

次に、空調用熱交換器コア1のチューブ内平均熱伝達率(h)は、ヌセルト数Nuとして求めることができる。ヌセルト数Nuは、以下の(4)式、(5)式で表すことができる。
以下の(4)式において、Re:レイノルズ数、Pr:プランドル数、Ipt:フィン間隔(m)であり、ヌセルト数:Nu(無次元数)=hL/λの関係があり、(5)式においてhは熱伝導率、λ:フィン材の熱伝導率(W/mK)、Lは代表長さまたは前記代表寸法:Decである。
Next, the average heat transfer coefficient (h) in the tube of the heat exchanger core 1 for air conditioning can be obtained as the Nusselt number Nu. The Nusselt number Nu can be expressed by the following equations (4) and (5).
In the following equation (4), Re: Reynolds number, Pr: Prandle number, Ipt : Fin spacing (m), Nusselt number: Nu (dimensionless number) = hL / λ, and (5) ), H is the thermal conductivity, λ: the thermal conductivity of the fin material (W / mK), and L is the representative length or the representative dimension: Dec.

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

ヌセルト数Nuにおいてチューブ内の冷媒の流れが層流である場合は3.66を採用できるが、空調用熱交換器コア1の場合、チューブ3の内部を流れる冷媒(水)は乱流状態であると考えられ、乱流の場合は後述する(8)式に従う。
(8)式において、一例としてチューブ3のRe(素管Re)=35974.58645、水のPr=3.69775、コア大気のRe=243.6735586、大気のPr=0.73603242などの値を計算の上、採用できる。
3.66 can be adopted when the flow of the refrigerant in the tube is laminar in the Nusselt number Nu, but in the case of the heat exchanger core 1 for air conditioning, the refrigerant (water) flowing inside the tube 3 is in a turbulent state. In the case of turbulent flow, it is considered that there is, and the following equation (8) is followed.
In the equation (8), as an example, the values of Re (bare tube Re) of the tube 3 = 35974.58645, Pr of water = 3.679775, Re of the core atmosphere = 243.6735586, Pr of the atmosphere = 0.73603242, and the like are used. It can be adopted after calculation.

Reは以下の(17)式により求めることができ、Prは以下の(18)式により求めることができる。
ただし、(17)式において、ρは密度(kg/m)を示し、vは平均速度(m/sec)を示し、Lは特性長さ(m)を示し、μは空気の粘度(粘性係数)を示す。
(18)式において、vは平均速度(m/sec)を示し、αは熱拡散率(m/sec)を示し、ηは粘度(Pa・s)を示し、Cpは比熱(J/kg)を示し、kは空気の熱伝導率(W/mK)を示す。
Re can be obtained by the following formula (17), and Pr can be obtained by the following formula (18).
However, in equation (17), ρ indicates the density (kg / m 3 ), v indicates the average velocity (m 2 / sec), L indicates the characteristic length (m), and μ indicates the viscosity of the air (m). Viscosity coefficient) is shown.
In equation (18), v indicates the average velocity (m 2 / sec), α indicates the thermal diffusivity (m 2 / sec), η indicates the viscosity (Pa · s), and Cp indicates the specific heat (J / sec). kg), where k represents the thermal conductivity of air (W / mK).

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

また、フィン2の根元温度に関し、フィン2とチューブ3の接合による熱抵抗は無いものと仮定し、フィン2の根元温度はチューブ3の表面温度と同一であると仮定する。
上述の関係式から表計算ソフトウェアにおいて平均熱伝達率hを求めるまでの計算モデルによる計算の実施を本願明細書では第2の計算手段が行う第2のステップと称する。
Further, regarding the root temperature of the fin 2, it is assumed that there is no thermal resistance due to the joining of the fin 2 and the tube 3, and the root temperature of the fin 2 is the same as the surface temperature of the tube 3.
In the present specification, the execution of the calculation by the calculation model from the above relational expression to the calculation of the average heat transfer coefficient h in the spreadsheet software is referred to as a second step performed by the second calculation means.

次に、フィン2と空気の熱伝達に関し、フィン2を空気の流れ方向に20分割し、空気の温度が徐々に上昇すると仮定して差分法で求める。 Next, regarding the heat transfer between the fin 2 and the air, the fin 2 is divided into 20 in the air flow direction, and the difference method is used on the assumption that the temperature of the air gradually rises.

Figure 2021173428
Figure 2021173428

一例として、前記(8)式に上述のReとPrを代入すると、冷媒(水)とチューブ3の熱伝達において、ヌセルト数Nu=156.9705096、チューブ内熱伝達率h=14057.06056を得ることができる。
フィン2と空気の熱伝達において、前記(4)式に対し、ヌセルト数Nu=7.329502525、コア熱伝達率h=93.11332245を得ることができる。
なお、チューブ3の内部を流れる冷媒について、流れが層流の場合は3.66を適用できるが、本実施形態では明らかに乱流と想定できるので、上述の(8)式を利用して計算する。
As an example, when the above-mentioned Re and Pr are substituted into the above equation (8), the Nusselt number Nu = 156.9705096 and the heat transfer coefficient in the tube h = 14057.06056 are obtained in the heat transfer between the refrigerant (water) and the tube 3. be able to.
In the heat transfer between the fins 2 and the air, the Nusselt number Nu = 7.329502525 and the core heat transfer coefficient h = 93.11332245 can be obtained with respect to the above equation (4).
As for the refrigerant flowing inside the tube 3, 3.66 can be applied when the flow is a laminar flow, but since it can be clearly assumed to be a turbulent flow in this embodiment, the calculation is performed using the above equation (8). do.

次に、フィン効率ηfについて説明する。
フィン効率ηfが1の場合は理想的な効率のフィンとなるが、フィン効率ηfが低下するとフィンの一端と他端において、例えば、100:1などのように温度差を生じる。フィン効率ηfについては、以下の(6)式と(7)式で示す関係を有する。
(6)式において前記フィンの温度分布は一様な平均温度θmを有し、θmはフィン効率ηfであり、フィン根元温度θ、外気温度tから求めることができる。なお、フィンの根元温度については、フィン2とチューブ3の接合による熱抵抗はないものと仮定し、チューブ3の表面温度とフィン2の根元温度は同一温度と仮定する。
(7)式においてdfはチューブ高さピッチ、dcはチューブ奥行きピッチ(1本チューブの場合、奥行き寸法(m)、Fはフィンの厚さ(mm)である。
Next, the fin efficiency ηf will be described.
When the fin efficiency ηf is 1, the fin has an ideal efficiency, but when the fin efficiency ηf decreases, a temperature difference occurs between one end and the other end of the fin, for example, 100: 1. The fin efficiency ηf has the relationship shown by the following equations (6) and (7).
In the equation (6), the temperature distribution of the fin has a uniform average temperature θm, and θm is the fin efficiency ηf, which can be obtained from the fin root temperature θ 0 and the outside air temperature t 0. Regarding the root temperature of the fins, it is assumed that there is no thermal resistance due to the joining of the fins 2 and the tube 3, and the surface temperature of the tube 3 and the root temperature of the fins 2 are assumed to be the same temperature.
In the equation (7), df is the tube height pitch, dc is the tube depth pitch (in the case of one tube, the depth dimension (m), and F 1 is the fin thickness (mm).

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

次に、空気通過時間:0.006806158sec、単位時間通過空気重量:0.080520253Kg/sec、水経路長さ(コア横幅×本数):1800mm、水通過時間(水経路長さ÷流速):0.634617424sec、素管内水量:0.010576957kg、ΔT通過水量(要素1つあたりなので20で割る) 0.003173087とする。
空気通過時間は風速に応じてどの程度の時間でフィン群2Aを空気が通過するかを示し、水経路長さでチューブ3の湾曲したエルボ管3Bの部分は除き、直管部3Aの長さのみを使用し、素管内水量はチューブ3の全体に存在する水量を示す。
Next, air passage time: 0.006806158 sec, unit time passage air weight: 0.080520253 kg / sec, water path length (core width x number): 1800 mm, water passage time (water path length ÷ flow velocity): 0. The amount of water in the raw pipe is 634617424 sec, 0.010576957 kg, and the amount of water passing through ΔT (divided by 20 because it is per element) 0.003173087.
The air passage time indicates how long the air passes through the fin group 2A according to the wind speed, and is the length of the straight pipe portion 3A except for the curved elbow pipe 3B portion of the tube 3 due to the water path length. Only used is used, and the amount of water in the raw tube indicates the amount of water present in the entire tube 3.

次に、図1、図2に示す空調用熱交換器コア1の性能を評価する場合、空気の流れの上流側から下流側に空気の流れる領域を入口領域と出口領域を除いて20分割して評価すること、水の流れの上流側から下流側に水の流れる領域を入口領域と出口領域を除いて20分割して評価することについて説明する。
前述の一例としての各パラメータを用いる場合、空気の流れる領域を入口領域と出口領域を除いて20分割して評価する。空気の流れる領域と水の流れる領域を入口領域と出口領域を除いて20分割して解析する場合、チューブ3が蛇行状態でフィン群2Aを貫通しているので、計算と解析を単純化するため、図5に示すようにチューブ3がその長さ方向に1本の直管3Cであると仮定し、この直管3Cを長さ方向に入口領域と出口領域を除いて20分割して解析する。
図5に示すように直管3Cを20分割すると、直管3Cの入口部3aからTW1(℃)の水が流入した場合、特定の分割領域での水温Tは、次の領域ではT+ΔT(℃)となる。これに対し、空気の流れは水の流れ方向に直角な方向に向いてフィン2に沿ってその幅方向に流動する。
Next, when evaluating the performance of the heat exchanger core 1 for air conditioning shown in FIGS. 1 and 2, the region where the air flows from the upstream side to the downstream side of the air flow is divided into 20 regions excluding the inlet region and the outlet region. It will be described that the evaluation is performed by dividing the region where the water flows from the upstream side to the downstream side of the water flow into 20 parts excluding the inlet region and the outlet region.
When each parameter as an example described above is used, the region where the air flows is divided into 20 parts excluding the inlet region and the outlet region for evaluation. When analyzing the air flow region and the water flow region by dividing them into 20 parts excluding the inlet region and the outlet region, the tube 3 penetrates the fin group 2A in a meandering state, so that the calculation and analysis are simplified. As shown in FIG. 5, assuming that the tube 3 is one straight pipe 3C in the length direction, the straight pipe 3C is divided into 20 parts in the length direction excluding the inlet region and the outlet region for analysis. ..
If the straight pipe 3C 20 divides, as shown in FIG. 5, if the water T W1 (° C.) from the inlet end 3a of the straight tube 3C has flowed, the water temperature T W in a particular division region, T is in the following areas W + ΔT W (° C). On the other hand, the air flow is directed in the direction perpendicular to the water flow direction and flows along the fin 2 in the width direction thereof.

入口領域と20分割した領域毎に、上述の条件に対する空気の温度Tfと、空気のフィン通過後温度Teと、水の温度T(℃)と、1分割領域を通過する時間(time:sec)と、抜熱量q(W)と、水温(℃)と、分割領域通過後の水の温度)Tを差分法により求めた結果を以下の表1に記載する。 For each of the inlet region and the 20-divided region, the temperature Tf of the air, the temperature Te after passing through the fins of the air, the temperature T (° C.) of the water, and the time (time: sec) of passing through the 1-divided region for each of the above-mentioned conditions. Table 1 below shows the results of determining the heat removal amount q (W), the water temperature (° C.), and the temperature T c of the water after passing through the divided region by the difference method.

Figure 2021173428
Figure 2021173428

表1に示す各領域毎の温度Tfは、フィン効率×(表1の水温−入口大気温度)+入口大気温度で求められる。これは、前記(6)式で説明したように、フィンの温度分布が一様な平均温度θmを有し、θmはフィン効率ηfの関数であり、フィン根元温度θ、外気温度tから求めることができるためである。
なお、水はチューブ3に沿って流れるのに対し、空気はフィン2に沿って流れるので、水の流れる方向と空気の流れる方向は90°異なる。よって、水の場合は、チューブ3を1本の直管と見立てて、その直管を20分割した各領域に対し、空気が通過する場合のことを考慮して差分法で計算する。フィン2については空気の流動する方向に20分割した各領域について差分法で計算する。
The temperature Tf for each region shown in Table 1 is obtained by fin efficiency × (water temperature in Table 1 − inlet atmospheric temperature) + inlet atmospheric temperature. As explained in the above equation (6), the fin temperature distribution has a uniform average temperature θm, and θm is a function of the fin efficiency ηf, from the fin root temperature θ 0 and the outside air temperature t 0. This is because it can be obtained.
Since water flows along the tube 3 while air flows along the fins 2, the direction in which water flows and the direction in which air flows differ by 90 °. Therefore, in the case of water, the tube 3 is regarded as one straight pipe, and the difference method is used in consideration of the case where air passes through each region of the straight pipe divided into 20. The fin 2 is calculated by the difference method for each region divided into 20 in the direction of air flow.

チューブ3の温度が領域毎に異なること、チューブ3の温度に空気の温度が影響を受ける。このことを考慮すると、チューブ3を直管と見立てて20分割した各領域において、チューブ3から受ける温度の影響を受けた後の補正後温度(空気のフィン通過後温度)Teは、表1に記載した通りとなる。チューブ3から受ける温度の影響を加味する場合、以下の(19)式を用いることができる。
ただし、以下の(19)式において、入口領域と20分割した各領域のうち、aは1領域あたりのフィン伝熱面積を示し、aは1領域あたりのチューブ伝熱面積を示し、Tsはフィンの表面温度を示し、Tはフィンの根元温度を示し、aは(a+a)を示す。
The temperature of the tube 3 is different for each region, and the temperature of the air is affected by the temperature of the tube 3. Taking this into consideration, Table 1 shows the corrected temperature (temperature after passing through the fins of air) Te after being affected by the temperature received from the tube 3 in each region divided into 20 by regarding the tube 3 as a straight pipe. It will be as described. When the influence of the temperature received from the tube 3 is taken into consideration, the following equation (19) can be used.
However, in the following equation (19), of the inlet region and each of the 20-divided regions, a f indicates the fin heat transfer area per region, a p indicates the tube heat transfer area per region, and Ts. Indicates the surface temperature of the fin, T c indicates the root temperature of the fin, and a indicates ( af + a p ).

Figure 2021173428
Figure 2021173428

表1において水の温度Tは、以下の(20)式で示す関係を有する。ただし、以下の(20)式において、Tは入口の温度、Tは出口の温度、Tは20分割した領域のうち、e番目の領域の温度を示し、hは管内の水とチューブとの熱伝達率を示し、aは(a+a)を示し、gは単位時間に通過する空気の重量を示し、Cは空気の比熱を示す。
表1に示す水温は、50℃で入ってきた水が直管の中で徐々に下がってゆくことを意味している。20分割した領域毎に水温をまず求め、それらに対して1つの領域毎の空気の温度変化を求め、領域毎の空気の温度が変わると水との温度のやりとりも変わるので、順次繰り返し求めた結果が表1の結果である。表1の結果については、後に計算例として示す表2〜表5に示す例と関連付けて表5を用いて再度説明する。
In Table 1, the temperature T of water has the relationship shown by the following equation (20). However, in the following (20), T 1 is the inlet temperature, T 2 is the temperature of the outlet, T e is out of the 20 divided regions, showing temperature e th region, h is the water pipe tube Indicates the heat transfer coefficient with, a indicates ( af + a p ), g indicates the weight of air passing through in a unit time, and C p indicates the specific heat of air.
The water temperature shown in Table 1 means that the water entering at 50 ° C. gradually decreases in the straight pipe. The water temperature was first obtained for each of the 20 divided regions, and then the temperature change of the air for each region was obtained. The results are the results in Table 1. The results in Table 1 will be described again with reference to Table 5 in association with the examples shown in Tables 2 to 5 which will be shown later as calculation examples.

Figure 2021173428
Figure 2021173428

表1において、timeと記載した欄は、20分割の領域のうち、1つの領域を水が通過する時間:Δtを求めたこととなる。
水温と温度差と先ほど求めた熱交換器コアの熱伝達率でもって、Δt×面積×時間を乗算したものが抜熱量となる。空気の方の計算も、先の(19)式に従い、20分割した領域のうち、1つの領域毎にどれだけ抜熱されるのかを求めている。
各領域に流入する空気に関し、領域毎に水温が異なるので空気温度は変化してゆくこととなる。このため、平均を出すと空気が何℃低下したのかがわかる。
上述の関係式から表計算ソフトウェアにおいて表1に示すように空気の分割領域毎に差分法によって空気の温度を求めるまでの計算モデルによる計算の実施を本願明細書では第3の計算手段が行う第3のステップと称する。
上述の関係式から表計算ソフトウェアにおいて表1に示すように水の分割領域毎に差分法によって水の温度を求めるまでの計算モデルによる計算の実施を本願明細書では第4の計算手段が行う第4のステップと称する。
In Table 1, the column described as time is the time required for water to pass through one of the 20 divided regions: Δt.
The amount of heat removed is calculated by multiplying the water temperature, the temperature difference, and the heat transfer coefficient of the heat exchanger core obtained earlier by Δt × area × time. The calculation for air also obtains how much heat is removed from each of the 20 divided regions according to the above equation (19).
Regarding the air flowing into each region, the water temperature is different for each region, so the air temperature will change. Therefore, if you take the average, you can see how much the air has dropped.
As shown in Table 1 in the spreadsheet software from the above relational expression, the third calculation means in the present specification performs the calculation by the calculation model until the temperature of the air is obtained by the difference method for each divided region of the air. It is called step 3.
In the present specification, the fourth calculation means performs the calculation by the calculation model from the above relational expression to the calculation of the water temperature by the difference method for each division region of the water as shown in Table 1 in the spreadsheet software. It is called step 4.

表1に示す結果において、37℃の空気が53℃になったとすると、温度が16℃上昇したこととなり、空気の奪った熱量が求められる。
表1に示す水温の平均(ave.)は37.03069261℃となる。
表1に示す関係から、
空気ΔT=16.03069261、→空気吸熱:1290.795428W
水のΔT=−2.406538483、→水吸熱:−1010.746163W
と計算することができる。
表1に示す場合は、空気温度差:20℃、熱量:1610.405064J、水温度差:5.2℃、熱量:2184Jとなる。
In the results shown in Table 1, if the temperature of the air at 37 ° C. becomes 53 ° C., the temperature rises by 16 ° C., and the amount of heat taken by the air can be obtained.
The average (ave.) Of the water temperatures shown in Table 1 is 37.03069261 ° C.
From the relationships shown in Table 1,
Air ΔT = 16.03069261, → Air endothermic: 1290.795428W
ΔT of water = -2.406538843, → Endothermic water: -1010.746163W
Can be calculated.
In the case shown in Table 1, the air temperature difference is 20 ° C., the calorific value is 1610.405604J, the water temperature difference is 5.2 ° C., and the calorific value is 2184J.

空気ΔTは、平均(ave.):37.03069261℃−21℃(設定温度)で16.03069となる。ここから、空気吸熱は、熱交換器コアを通過する空気の単位時間重量(後述する計算例、表2の第D列第26行に示す値)×空気ΔT(16.03069)×空気比熱×1000(mm)となる。
熱交換器コアを通過する空気の単位時間重量(表2、第D列第26行に示す値)は、設定された風速における熱交換器コアを通過する空気の単位時間重量を意味し、この単位時間重量の値は、後述する表2の計算例に示すように0.080520253kg/secなどの値となる。
このため、上述の計算を行うと、空気ΔTは、後述する表2の計算例のように1290.785428Wなどの値となる。
The air ΔT becomes 16.03069 on average (ave.): 37.03069261 ° C.-21 ° C. (set temperature). From here, the endothermic air is the unit time weight of the air passing through the heat exchanger core (calculation example described later, the value shown in the 26th row of the D column of Table 2) × air ΔT (16.03069) × specific heat of air × It becomes 1000 (mm).
The unit-time weight of air passing through the heat exchanger core (values shown in Table 2, column D, row 26) means the unit-time weight of air passing through the heat exchanger core at a set wind speed. The value of the unit time weight is a value such as 0.080520253 kg / sec as shown in the calculation example of Table 2 described later.
Therefore, when the above calculation is performed, the air ΔT becomes a value such as 1290.785428W as in the calculation example of Table 2 described later.

水のΔTは、表1の20番目の領域の温度47.593462と最初の50℃との温度差−2.40645となる。水の吸熱は、水のΔT×比熱×1000×(設定された水の流量を流速から単位時間の水量に直した値)となる。
設定された水の流量を流速から単位時間の水量に直した値として、後述する表2の計算例では、0.1kg/secなどの値となる。
このため、上述の計算を行うと、水のΔTの値は、後述する表2の計算例に示すように−1010.746163Wとなる。
The ΔT of water is the temperature difference of 2.40645 between the temperature of the 20th region in Table 1 and the temperature of the first 50 ° C. The endothermic process of water is ΔT of water × specific heat × 1000 × (value obtained by converting the set flow rate of water from the flow velocity to the amount of water per unit time).
As a value obtained by converting the set flow rate of water from the flow velocity to the amount of water per unit time, it is a value such as 0.1 kg / sec in the calculation example of Table 2 described later.
Therefore, when the above calculation is performed, the value of ΔT of water becomes −1010.746163W as shown in the calculation example of Table 2 described later.

本来ならば、空気吸熱と水吸熱の値が合致するはずであるが、これらの値が合致しないのが通常である。フィン2とチューブ3の熱抵抗の関係、チューブ3の厚さ不均一、あるいは、ここまで設定した種々の係数や理論に多少の誤差成分を含むからであると考えられる。
このため、本実施形態では、種々設定した係数や理論の中で、配管内熱伝達に誤差が含まれやすいことやフィンとチューブの接触熱抵抗を加味していないことから、これらから求まる抜熱量(温度によっては吸熱)に係数を設定し、この係数増減することで空気吸熱と水吸熱とをバランスさせることを、Microsoft 社製Excel(商品名)に付属されているソルバーをVBA(Visual Basic for Applications)内部で実行することにより実施でき、水の配管内伝達率を手動で増減し、空気吸熱と水吸熱の値が最も少なくなった場合が正解として求められる。
Originally, the values of air endothermic and water endothermic should match, but these values usually do not match. It is considered that this is because the relationship between the thermal resistance of the fin 2 and the tube 3, the thickness of the tube 3 is not uniform, or the various coefficients and theories set up to this point include some error components.
Therefore, in the present embodiment, among the variously set coefficients and theories, the heat transfer in the pipe is likely to include an error and the contact heat resistance between the fin and the tube is not taken into consideration. VBA (Visual Basic for) is a solver that comes with Microsoft Excel (trade name) to balance air heat absorption and water heat absorption by setting a coefficient for (heat absorption depending on the temperature) and increasing or decreasing this coefficient. Applications) It can be carried out by executing it internally, and the correct answer is obtained when the endothermic and water endothermic values are minimized by manually increasing or decreasing the water transfer coefficient in the pipe.

空気吸熱と水吸熱の値が合致するように後述する表2に示す計算例の条件で調整することにより、
空気出口温度:37.03069261℃、dt:16.03069261、
水出口温度:47.59346152℃、dt:−2.406538483、
圧力損失:2.564871215を求めることができる。これらにより、水が何℃になって出てくるか、空気が何℃になってフィン2を通過するかが分かる。また、その前後の熱交換器コア1の圧力損失がどの値となったのかが分かる。
上述の関係式から表計算ソフトウェアにおいて水の配管内伝達率を増減し、空気吸熱と水吸熱の値が合致するように数値調整するまでの計算モデルの計算の実施を本願明細書では第5の計算手段が行う第5のステップと称する。
By adjusting under the conditions of the calculation example shown in Table 2 described later so that the values of air endothermic and water endothermic match.
Air outlet temperature: 37.03069261 ° C., dt: 16.03069261,
Water outlet temperature: 47.59346152 ° C., dt: -2.4565384883,
Pressure loss: 2.564871215 can be determined. From these, it is possible to know at what temperature the water comes out and at what temperature the air passes through the fin 2. In addition, it is possible to know what value the pressure loss of the heat exchanger core 1 before and after that is.
In the specification of the present application, the calculation of the calculation model is carried out from the above relational expression to increasing or decreasing the transmission rate in the pipe of water in the spreadsheet software and adjusting the numerical values so that the values of air endothermic and water endothermic match. This is referred to as a fifth step performed by the calculation means.

以上説明したように空調用熱交換器コア1の空気出口温度と水出口温度を計算できることは、最初に入力しておいた、フィンピッチ(Fp)、フィン厚み(F)、フィンカラー径、コア横幅(L)、コア高さ(L)、コア奥行き(L)、素管(チューブ)直径、素管(チューブ)内径、素管(チューブ)段ピッチ(S)、設定風速、設定水量、設定温度、設定相対湿度、水温の値に応じ、空気出口温度と水出口温度がどのような影響を受けるのか計算し、把握できることと等価となる。即ち、空調用熱交換器コア1の各部のサイズや風速、水量、温度などの影響により、空調用熱交換器コア1において冷媒の温度変化、通過空気の温度変化および圧力損失を見積もり、評価することができる。 As described above, the fact that the air outlet temperature and the water outlet temperature of the heat exchanger core 1 for air conditioning can be calculated means that the fin pitch (Fp), fin thickness (F 1 ), fin collar diameter, which were input at the beginning, Core width (L 3 ), core height (L 1 ), core depth (L 2 ), raw tube (tube) diameter, raw tube (tube) inner diameter, raw tube (tube) step pitch (S 1 ), set wind speed , It is equivalent to being able to calculate and understand how the air outlet temperature and the water outlet temperature are affected according to the set water volume, set temperature, set relative humidity, and water temperature value. That is, the temperature change of the refrigerant, the temperature change of the passing air, and the pressure loss are estimated and evaluated in the heat exchanger core 1 for air conditioning due to the influence of the size, wind speed, water volume, temperature, etc. of each part of the heat exchanger core 1 for air conditioning. be able to.

本実施形態において、空調用熱交換器コア1の性能評価装置23は、記憶手段26に上述した各計算式と各種の基礎データ、計算パラメータなどが記憶され、入力手段24から入力されたこれらの基礎データ、計算パラメータに応じ制御部25が上述の表計算ソフトウェア上で計算を行い、圧力損失、空気出口温度と水出口温度を計算する機能を有する。
上述の如く行う計算は例えばパーソナルコンピューター用一般市販の表計算ソフトウェアを用いて実施することができるので。用いる表計算ソフトウェアは上述のものに限らない。
In the present embodiment, the performance evaluation device 23 of the heat exchanger core 1 for air conditioning stores the above-mentioned calculation formulas, various basic data, calculation parameters, and the like in the storage means 26, and these are input from the input means 24. The control unit 25 has a function of performing calculations on the above-mentioned table calculation software according to basic data and calculation parameters, and calculating pressure loss, air outlet temperature, and water outlet temperature.
The calculation performed as described above can be performed using, for example, general commercially available spreadsheet software for personal computers. The spreadsheet software used is not limited to the above.

表計算ソフトウェアは、各セルに計算式を当てはめることができ、各セルで計算した結果を必要に応じて更に別のセルの計算式に当てはめて更に別の計算を行うことができる。
また、それぞれのセルで求めた結果を対照し、前述のソルバー機能をVBAで実行することにより特定の計算結果と特定の計算結果の数値が極めて0に近くなるように再計算する機能を有する。
性能評価装置23は、前述の機能を利用することで、空気吸熱と水吸熱の値が合致するように計算することができ、その結果、空気吸熱と水吸熱の値が合致した場合の全ての入力条件と必要なパラメータを出力手段27に表示し、使用者が把握できるようになる。
The spreadsheet software can apply a calculation formula to each cell, and can apply the calculation result in each cell to a calculation formula in another cell as needed to perform another calculation.
In addition, it has a function of comparing the results obtained in each cell and recalculating the specific calculation result and the numerical value of the specific calculation result so as to be extremely close to 0 by executing the above-mentioned solver function with VBA.
By using the above-mentioned function, the performance evaluation device 23 can calculate so that the values of air endothermic and water endothermic match, and as a result, all the cases where the values of air endothermic process and water endothermic process match. The input conditions and necessary parameters are displayed on the output means 27 so that the user can grasp them.

以下、表2〜表5に表計算ソフトウェアの行列で示される各セルに上述の一例としての各種の数値と各種の計算式を代入し、レイアウトした結果の一例を示す。
表2は表計算ソフトウェアの、第A列〜第F列、第1行〜第43行までの各セルに上述の一例としての各数値を記入した状態を示す。
Hereinafter, Tables 2 to 5 show an example of the result of laying out by substituting various numerical values and various calculation formulas as an example of the above into each cell shown by a matrix of spreadsheet software.
Table 2 shows a state in which each numerical value as an example described above is entered in each cell of the A column to the F column and the first row to the 43rd row of the spreadsheet software.

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

表2に示すように、第A列〜第C列、第1行〜第43行に、コア寸法として、フィンピッチFp:1.2mm、フィン厚みF:0.1 mm、フィンカラー径7.7mm、コア横幅L:150mm、コア高さL:300mm、コア奥行きL:13mm、素管直径(素管:冷媒が通る管)7.7mm、素管内径6.7mm、素管段ピッチ(素管の中心間距離)S:25mm、フィン枚数125枚、素管本数(高さ÷素管ピッチ=本数)12本、自由通過断面積35339.66737mm、代表風速1.910034956 m/sec、全伝熱面積945064.549mm、代表寸法1.944483797mm、流動損失係数0.176308214、圧力損失2.564871215Paを記入している。 As shown in Table 2, the A column, second row C, the first row to the 43 row, as the core size, the fin pitch Fp: 1.2 mm, the fin thickness F 1: 0.1 mm, fin collar diameter 7 .7 mm, core width L 3 : 150 mm, core height L 1 : 300 mm, core depth L 2 : 13 mm, raw pipe diameter (raw pipe: pipe through which refrigerant passes) 7.7 mm, raw pipe inner diameter 6.7 mm, raw pipe stage Pitch (distance between centers of raw pipes) S 1 : 25 mm, number of fins 125, number of raw pipes (height ÷ raw pipe pitch = number), free passage cross-sectional area 35339.66737 mm 2 , representative wind speed 1.910034956 m / Sec, total heat transfer area 945064.549 mm 2 , representative dimensions 1.944438977 mm, flow loss coefficient 0.176308214, pressure loss 2.564871215 Pa are entered.

表2に示すように、第D列〜第F列、第1行〜第16行に、大気条件として、設定温度21℃、設定相対湿度70%、気圧1atm(固定)、水:水温50℃と記入している。
第A列〜第D列、第26行〜第43行に、設定風速1.5m/sec→0.080520253kg/sec、設定水量6L/min→0.1kg/sec、水量を管内流速に変換→2.836354522m/sec、空気/水熱容量0.191714889、H11×B33/(B10/1000)×3、面積、k考慮0.19005911、配管内熱伝達、Nu(実際は乱流なので使用せず)3.66、層流(Re<2300)、Nu156.9705096乱流、h;右の式ではα14057.06056W/mK、コア熱伝達、Nu7.329502525、h;右の式ではα、93.11332245W/mK 、フィン効率ηfに関し、φ、df=0.015976683、φl、ηf=0.928878624と記入している。
As shown in Table 2, in columns D to F and rows 1 to 16, the atmospheric conditions are set temperature 21 ° C, set relative humidity 70%, atmospheric pressure 1 atm (fixed), water: water temperature 50 ° C. Is written.
In columns A to D, rows 26 to 43, set wind speed 1.5 m / sec → 0.080520253 kg / sec, set water volume 6 L / min → 0.1 kg / sec, convert water volume to in-pipe flow velocity → 2.833545522m / sec, air / water heat capacity 0.191714889, H11 × B33 / (B10 / 1000) × 3, area, k consideration 0.19008171, heat transfer in piping, Nu (not used because it is actually turbulent flow) 3 .66, flow layers (Re <2300), Nu156.9705096 turbulence, h; right in formula α14057.06056W / m 2 K, the core heat transfer, Nu7.329502525, h; the right expression alpha, 93.11332245W Regarding / m 2 K and fin efficiency ηf, φ, df = 0.015796683, φl, ηf = 0.928878624 are entered.

また、表2に示すように、第D列〜第F列、第18行〜第23行にかけて計算を実施するための計算ボタンを配置している。この計算ボタンを、表計算ソフトウエアを実行しているパーソナルコンピューターの画面上でマウス操作によりクリックすると、前述のソルバーがVBAで稼働し、以下に説明する表3に示されている空気出口温度と水出口温度と圧力損失を計算し、表示するようになっている。 Further, as shown in Table 2, calculation buttons for performing calculations are arranged in columns D to F and rows 18 to 23. When this calculation button is clicked by mouse operation on the screen of a personal computer running spreadsheet software, the above-mentioned solver operates in VBA, and the air outlet temperature shown in Table 3 described below is displayed. The water outlet temperature and pressure loss are calculated and displayed.

表3は表計算ソフトウェアの第A列〜第C列、第47行〜第72行までの各セルに上述の一例としての各数値を記入した状態を示す。
空気通過時間0.006806158sec、単位時間通過空気重量0.080520253 kg/sec、ΔT通過空気量(B47×B48を要素数20で割る)使用せず、2.74017E−05kg、水経路長さ(コア横幅×本数)1800mm、水通過時間(水経路長さ÷流速)0.634617424sec、素管内水量 0.010576957 kg、ΔT通過水量(要素1つあたりなので20で割る)0.003173087、空気出口温度34.50516463℃、dt13.50516463、水出口温度44.94311509℃、dt −5.056884914、圧力損失2.564871215Pa、空気温度差20、熱量1610.405064 J、水温度差 5.2、2184 Jと記入している。
Table 3 shows a state in which each numerical value as an example described above is entered in each cell of the A column to the C column and the 47th row to the 72nd row of the spreadsheet software.
Air passage time 0.006806158 sec, unit time passage air weight 0.080520253 kg / sec, ΔT passage air volume (B47 x B48 divided by 20 elements), 2.74017E-05 kg, water path length (core) Width x number) 1800 mm, water passage time (water path length ÷ flow velocity) 0.634617424 sec, water volume in raw pipe 0.0105676957 kg, ΔT passage water volume (divided by 20 because it is per element) 0.003173087, air outlet temperature 34 Enter .50516463 ° C, dt13.50516463, water outlet temperature 44.9431159 ° C, dt-5.56884914, pressure loss 2.564871215Pa, air temperature difference 20, calorific value 1610.405604J, water temperature difference 5.2,2184J. doing.

表3の第A列第54行に記載のΔT通過水量は、第D列第27行に記載の0.1kg/secに、表5の第H列第55行に記載の0.031730871を乗算して求めることができる。
表3の第A列第58行に記載の空気のdtは、第B列第57行に記載の37.03069261と、表2の第E列第2行に記載の大気設定温度21℃との温度差として把握することができる。
表3の第A列第60行に記載水のdtは、第B列第59行に記載の47.59346152と、表2の第E列第16行に記載の水温50℃との温度差として把握することができる。
The amount of water passing through ΔT described in the 54th row of the A column of Table 3 is obtained by multiplying 0.1 kg / sec described in the 27th row of the D column by 0.031730871 described in the 55th row of the H column of Table 5. Can be obtained.
The dt of the air described in the 58th row of the A column of Table 3 is 37.03069261 described in the 57th row of the B column and the atmospheric set temperature of 21 ° C. described in the 2nd row of the E column of the table 2. It can be grasped as a temperature difference.
The dt of the water described in the 60th row of the A column of Table 3 is the temperature difference between 47.59346152 described in the 59th row of the B column and the water temperature of 50 ° C. described in the 16th row of the E column of Table 2. Can be grasped.

表4は表計算ソフトウェアの第G列〜第I列、第1行〜第27行までの各セルに上述の一例としての各数値を記入した状態を示す。
空気物性値として、密度 1.19289264kg/m、粘度1.81819E−05Pa・sec、比熱1:kJ/kgK、熱伝導率0.024702542W/mK、水(冷媒)物性値、密度1000kg/m、粘度0.00052825Pa・sec、比熱4.2kJ/kgK、熱伝導率0.6W/mK、Al物性値、密度2700kg/m、比熱0.88kJ/kgK、熱伝導率200W/mKと記入している。
更に、無次元数、Re(素管)35974.58645、Pr(水)3.69775、Re(コア大気)243.6735586、Pr(大気)0.73603242と表示している。
Table 4 shows a state in which each numerical value as an example described above is entered in each cell of the G column to the I column and the first row to the 27th row of the spreadsheet software.
As air physical characteristics, density 1.19289264 kg / m 3 , viscosity 1.81819E-05Pa · sec, specific heat 1: kJ / kgK, thermal conductivity 0.024702542 W / mK, water (refrigerator) physical properties, density 1000 kg / m 3 , Viscosity 0.00052825 Pa · sec, Specific heat 4.2 kJ / kgK, Thermal conductivity 0.6 W / mK, Al physical characteristics, Density 2700 kg / m 3 , Specific heat 0.88 kJ / kgK, Thermal conductivity 200 W / mK ing.
Further, the dimensionless numbers are displayed as Re (bare tube) 35974.58645, Pr (water) 3.69775, Re (core atmosphere) 243.6735586, and Pr (atmosphere) 0.73603242.

表5に示すように、表計算ソフトウェアのセルにおいて、第D列〜第K列、第52行〜第76行、までの各セルに上述の一例としての表1に示す各数値を記入した状態を示す。
これらの行と列に記入した数値は、表1で示した差分法による空気の温度分布(Tf、Te)と差分法による水の温度分布(T2、time、抜熱量、水温、カラー部温度:Tc)と同等である。Tfは「((フィン効率×(水温−入口大気温度))−入口大気温度 )」を示し、Teは20分割した領域のうち、e番目の領域の温度(空気のフィン通過後温度)、Tは入口温度、Tは出口の温度、timeは20分割の領域のうち、1つの領域を水が通過する時間を示す。
表5に示すように、表計算ソフトウェアのセルにおいて、第D列〜第K列、第78行〜第88行までの各セルに上述の一例としての計算結果を示す各数値を表記した状態を示す。
これらの行と列に表記されているのは、Ave37.03069261、空気ΔT:16.03069261→空気吸熱1290.79543W、↓↑和 280.049652、係数→1、水のΔT:−2.406538483→水吸熱、−1010.746163W、検大気QfromCP−1290.795428W、検水Qfromh、1010.746163W、af0.045257531、ap0.001995697である。
As shown in Table 5, in the cells of the spreadsheet software, the numerical values shown in Table 1 as an example of the above are entered in the cells of columns D to K and rows 52 to 76. Is shown.
The numerical values entered in these rows and columns are the temperature distribution of air by the difference method (Tf, Te) shown in Table 1 and the temperature distribution of water by the difference method (T2, time, heat removal amount, water temperature, color part temperature: It is equivalent to Tc). Tf indicates "((fin efficiency × (water temperature-inlet air temperature))-inlet air temperature)", and Te is the temperature of the e-th region (temperature after passing through the fins of air) in the 20-divided regions, T. 1 is the inlet temperature, T 2 is the outlet temperature, and time is the time for water to pass through one of the 20 divided regions.
As shown in Table 5, in the cells of the spreadsheet software, the states in which the numerical values indicating the calculation results as an example of the above are described in the cells from the D column to the K column and the 78th row to the 88th row are shown. show.
In these rows and columns are Ave37.03069261, Air ΔT: 16.03069261 → Air endothermic 1290.79543W, ↓↑ Sum 280.049652, Coefficient → 1, Water ΔT: -2.406538 Water endothermic, -1010.746163W, air test QfromCP-1290.795428W, water test Qfrom, 1010.746163W, af0.045257531, ap0.0019995697.

表5に示す上述のセルに表示されている値が示すのは、空気吸熱(空気ΔT)と水吸熱(水のΔT)の数値がずれていることである。
このため、表2に示す、第B列第34行に記載されている水の熱量に若干の係数を乗算して空気吸熱と水吸熱の差異が無くなるように、あるいは最小となるように再計算することで、空調用熱交換器コア1の性能評価を実施できたこととなる。
本実施形態において、例えば、0.000001以下となった場合に計算完了とすることができる。
The values displayed in the above cells shown in Table 5 indicate that the values of air endothermic (air ΔT) and water endothermic (water ΔT) are different.
Therefore, it is recalculated so that the difference between air endothermic process and water endothermic process is eliminated or minimized by multiplying the calorific value of water described in column B, row 34, shown in Table 2 by a slight coefficient. By doing so, it is possible to evaluate the performance of the heat exchanger core 1 for air conditioning.
In the present embodiment, for example, the calculation can be completed when it becomes 0.000001 or less.

以上説明した各ステップの計算の結果、表3の第A列〜第C列、第57行〜第61行に示すように、空気出口温度:37.03069261℃、水出口温度47.59346152℃、圧力損失:2.564871215Paを求めることができる。
以上説明の計算は、空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出水温度差の関係式が成立すると仮定し、上式の左辺の値と右辺の値がずれている場合に、計算過程の中で大きく影響する条件(例えば水の熱量)を選択して微調整し、再計算するという手法を繰り返し、左辺の値と右辺の値が最も小さくなる場合の条件で計算完了としたことを意味する。
As a result of the calculation of each step described above, as shown in columns A to C and 57th to 61st rows of Table 3, the air outlet temperature: 37.03069261 ° C., the water outlet temperature 47.59346152 ° C., Pressure loss: 2.564871215 Pa can be determined.
The calculation described above assumes that the relational expression of air velocity x total fin area x inlet / outlet air temperature difference x specific heat = amount of medium x specific heat x inlet / outlet temperature difference holds, and the values on the left and right sides of the above equation When the value on the left side and the value on the right side are the smallest by repeating the method of selecting a condition that has a large effect in the calculation process (for example, the amount of heat of water), making fine adjustments, and recalculating when there is a deviation. It means that the calculation is completed under the condition of.

図6は、これまで説明した手順に従い、各種パラメータの入力ステップS0から始まり、第1の計算手段による第1のステップS1〜第5の計算手段による第5のステップS5において、それぞれ行った概要について示すフローチャートである。
本実施形態では、先に示した第1の計算手段で採用した計算モデルによる第1のステップS1において空気が流れる場合の圧力損失を求め、平均熱伝達率を求め、第2の計算手段で採用した計算モデルによる第2のステップS2においてフィンの温度分布を求め、第3の計算手段で採用した計算モデルによる第3のステップS3において分割領域毎の空気の温度を求め、第4の計算手段で採用した計算モデルによる第4のステップS4において分割領域毎の水の温度を求め、第5の計算手段で採用した計算モデルによる第5のステップS5において媒体の量と空気出口温度と水出口温度を求め、圧力損失を見積もりすることができた。
FIG. 6 shows the outlines performed in the first step S1 to the fifth calculation means by the first calculation means and the fifth step S5 by the fifth calculation means, starting from the input step S0 of various parameters according to the procedure described so far. It is a flowchart which shows.
In the present embodiment, the pressure loss when air flows is obtained in the first step S1 by the calculation model adopted in the first calculation means shown above, the average heat transfer rate is obtained, and the calculation means is adopted in the second calculation means. The temperature distribution of the fins was obtained in the second step S2 by the calculated calculation model, the temperature of the air in each divided region was obtained in the third step S3 by the calculation model adopted in the third calculation means, and the fourth calculation means was used. In the fourth step S4 of the adopted calculation model, the temperature of water for each divided region is obtained, and in the fifth step S5 of the calculation model adopted in the fifth calculation means, the amount of the medium, the air outlet temperature, and the water outlet temperature are determined. I was able to calculate and estimate the pressure loss.

「計算例2」
表6〜表10は、第1実施形態における入力ステップS0、第1のステップS1〜第5のステップS5を実施する場合、空調用熱交換器コア1の各部寸法とその他入力条件を適宜変更して計算した場合の計算例2を示す。
"Calculation example 2"
In Tables 6 to 10, when the input step S0 and the first steps S1 to 5 in the first embodiment are carried out, the dimensions of each part of the heat exchanger core 1 for air conditioning and other input conditions are appropriately changed. The calculation example 2 in the case of the calculation is shown.

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

Figure 2021173428
Figure 2021173428

表6に示す第D列〜第I列、第1行〜第16行のセルに記載されている設定温度、設定相対湿度、気圧、水温は先の例と同等であり、空気密度、空気粘度、空気比熱、空気熱伝導率、水密度、水粘度、水比熱、水の熱伝導率、アルミニウムの密度、比熱、熱伝達率は先の例と同等である。
この例では、第A列〜第C列、第1行〜第27行に記載のフィンピッチ、フィン厚み、コア横幅、コア高さ、コア奥行き、フィン枚数、素管本数、素管直径、素管内径、素管段ピッチは先の例と同一であるが、設定風速2m/sec、設定水量16L/minの入力値が異なる。
無次元数のうち、Re(素管)95932.23055、Pr(水)3.69775、Re(コア大気)326.2028897。Pr(大気)0.73603242と計算できる。
The set temperature, set relative humidity, atmospheric pressure, and water temperature described in the cells of columns D to I and rows 1 to 16 shown in Table 6 are the same as in the previous example, and the air density and air viscosity are the same. , Air specific heat, air heat conductivity, water density, water viscosity, water specific heat, water heat conductivity, aluminum density, specific heat, heat transfer rate are the same as the previous example.
In this example, the fin pitch, fin thickness, core width, core height, core depth, number of fins, number of raw pipes, raw pipe diameter, and raw material described in columns A to C and 1st to 27th rows. The inner diameter of the pipe and the pitch of the raw pipe are the same as in the previous example, but the input values of the set wind speed of 2 m / sec and the set water volume of 16 L / min are different.
Among the dimensionless numbers, Re (bare tube) 95932.23055, Pr (water) 3.69775, Re (core atmosphere) 326.2028897. It can be calculated as Pr (atmosphere) 0.73603242.

これらの数値を入力した場合、自由通過断面積35339.66737mm、代表風速2.546713274m/sec、全伝熱面積945064.549mm、代表寸法1.944483797mm、流動損失係数0.146636033、圧力損失3.792374293Paと計算できる。
これらの数値を入力した場合、配管内熱伝達のヌセルト数Nu:344.0274164、h:1940930.797W/mK、コア熱伝達のヌセルト数:Nu8.201138032、h:30808.42535W/mK、フィン効率ηfに関し、φ:144.1316205、φl:0.814343656、ηf:0.825179227と計算できる。
When these values are entered, the free passage cross-sectional area is 35339.66737 mm 2 , the representative wind speed is 2.546713274 m / sec, the total heat transfer area is 945064.549 mm 2 , the representative dimensions are 1.944438977 mm, the flow loss coefficient is 0.146636033, and the pressure loss is 3. It can be calculated as .792374293Pa.
When these values are input, the number of Nusselt numbers for heat transfer in the pipe Nu: 344.0274164, h: 1940930.797 W / m 2 K, the number of Nusselt numbers for core heat transfer: Nu 8.201138032, h: 30808.42535 W / m 2 With respect to K and fin efficiency ηf, it can be calculated as φ: 144.11316205, φl: 0.814343656, ηf: 0.825179927.

これらから、表7に示すように根元温度(θ)、平均温度(θm)、空気通過時間()、単位時間通過空気重量、ΔT通過空気量、水経路長さ、水通過時間、素管内水量、ΔT通過水量を求めることができる。
また、表9の第D列〜第G列、第52行〜第76行に示すように20分割した場合の領域毎にフィンを通過する空気の温度を差分法で求め、表9の第H列〜第I列、第52行〜第76行に示すように20分割した場合の領域毎に直管のチューブを通過する水の温度を差分法で求めることができる。
From these, as shown in Table 7, the root temperature (θ 0 ), average temperature (θm), air passage time (), unit time passing air weight, ΔT passing air amount, water path length, water passing time, inside the pipe. The amount of water and the amount of water passing through ΔT can be obtained.
Further, as shown in columns D to G and rows 52 to 76 of Table 9, the temperature of the air passing through the fins is obtained for each region when divided into 20 regions, and the temperature of the air passing through the fins is obtained by the difference method, and the H in Table 9 is obtained. As shown in columns to columns I and 52 to 76, the temperature of water passing through a straight tube can be obtained by the difference method for each region when divided into 20 regions.

これら各ステップの計算により、空気ΔT:−19.0085823→空気吸熱:−2040.76814Wと算出でき、水のΔT:−1.82211382→水吸熱2040.76748Wと算出できる。
空気水吸熱と水吸熱の値がほぼ同一となったので、表7に示すように、空気出口温度:40.0085823℃、dt:19.0085823、水出口温度48.1778862℃、dt:−1.8221138、圧力損失:3.79237429Paを求めることができた。
By the calculation of each of these steps, it can be calculated that air ΔT: -19.085823 → air endothermic: −2040.76814W, and water ΔT: −1.82211382 → water endothermic 2040.76748W.
Since the values of endothermic air and water and water absorption were almost the same, as shown in Table 7, the air outlet temperature: 40.585823 ° C., dt: 19.805823, the water outlet temperature 48.17787862 ° C., dt: -1. .822118, pressure loss: 3.79237429Pa could be determined.

表1〜表5を基に説明した第1の計算例と、表6〜表9を基に説明した第2の計算例を比較すると、適用した熱交換器コア1のサイズは同等であるが、設定風速を1.5m/sec→2.0m/secに変更し、設定水量を6L/min→16L/minに変更している。
その結果、第1の計算例では、表3に示すように、空気出口温度:37.03069261℃、水出口温度47.59346152℃、圧力損失:2.564871215Paを求めることができ、第2の計算例では、表7に示すように、空気出口温度:40.0085823℃、水出口温度48.1778862℃、圧力損失:3.79237429Paを求めることができた。
Comparing the first calculation example described based on Tables 1 to 5 and the second calculation example described based on Tables 6 to 9, the size of the applied heat exchanger core 1 is the same. , The set wind speed is changed from 1.5 m / sec to 2.0 m / sec, and the set water volume is changed from 6 L / min to 16 L / min.
As a result, in the first calculation example, as shown in Table 3, the air outlet temperature: 37.03069261 ° C., the water outlet temperature: 47.59346152 ° C., and the pressure loss: 2.564871215Pa can be obtained, and the second calculation. In the example, as shown in Table 7, the air outlet temperature: 40.585823 ° C., the water outlet temperature: 48.17787862 ° C., and the pressure loss: 3.79237429Pa could be obtained.

これらの対比から、違う条件で空気温度と水温度、そのものを求めることができる特徴がある。これらのように求めた空気温度と水温度の値が性能評価の指標となる。また、上述のように計算に用いた各パラメータを変更することで、影響がどの程度生じるものか、考察することができる。
即ち、本実施形態の技術を用いて熱交換器コア1の種々の条件のどの条件をどのように変更すると、熱交換器コア1のいずれの特性に影響が出るか否か、シュミュレーションできることがわかる。
From these contrasts, there is a feature that the air temperature and water temperature itself can be obtained under different conditions. The values of air temperature and water temperature obtained in this way are indicators of performance evaluation. In addition, it is possible to consider how much the influence will occur by changing each parameter used in the calculation as described above.
That is, it is possible to simulate which of the various conditions of the heat exchanger core 1 is changed and how the characteristics of the heat exchanger core 1 are affected by using the technique of the present embodiment. Recognize.

また、これまで説明した第1〜第5ステップに従う性能評価方法によれば、例えば、空調用熱交換器コアに付加する風速、冷媒(水)の条件を替えることなく空調用熱交換器コアのサイズのみを変更して計算し、空気出口温度と水出口温度と圧力損失のみの相違を計算することができる。
例えば、空調用熱交換器コアのサイズを150mm(コア横幅)×300mm(コア高さ)×13mm(コア奥行き)として計算した場合と、空調用熱交換器コアのサイズを50mm(コア横幅)×100mm(コア高さ)×13mm(コア奥行き)として計算した場合において、空気出口温度と水出口温度と圧力損失のみの相違を計算して対比することができる。
Further, according to the performance evaluation method according to the first to fifth steps described so far, for example, the heat exchanger core for air conditioning does not change the conditions of the wind speed and the refrigerant (water) added to the heat exchanger core for air conditioning. Only the size can be changed and calculated, and only the difference between the air outlet temperature, the water outlet temperature and the pressure loss can be calculated.
For example, when the size of the heat exchanger core for air conditioning is calculated as 150 mm (core width) x 300 mm (core height) x 13 mm (core depth), and the size of the heat exchanger core for air conditioning is 50 mm (core width) x When calculated as 100 mm (core height) × 13 mm (core depth), the difference between the air outlet temperature, the water outlet temperature, and the pressure loss alone can be calculated and compared.

第2の計算例において150×300×13mmのサイズの熱交換器コアで計算した結果として、表7に示すように、空気出口温度:40.0085823℃、水出口温度48.1778862℃、圧力損失:3.79237429Paを求めることができた。
これに対し、50×100×13mmのサイズの熱交換器コアで計算すると、コア寸法として、フィンピッチFp:1.2mm、フィン厚みF:0.1mm、フィンカラー径1mm、コア横幅L:100mm、コア高さL:50mm、コア奥行きL:13mm、素管直径(素管:冷媒が通る管)7.7mm、素管内径6.7mm、素管段ピッチ(素管の中心間距離)S:25mm、フィン枚数84枚、素管本数(高さ÷素管ピッチ=本数)2本、自由通過断面積3926.629707mm、代表風速2.546713274m/sec、全伝熱面積104587.1434mm、代表寸法1.952292969mm、流動損失係数0.146519069、圧力損失3.774191922Pa、設定風速2m/sec、設定水量16L/minとなる。
この計算を行うと、空気出口温度:41.23052979℃、dt:20.23052979、水出口温度49.78452812℃、dt:−0.215471876、圧力損失:3.774191922Paと計算できる。
As a result of calculation with a heat exchanger core having a size of 150 × 300 × 13 mm in the second calculation example, as shown in Table 7, the air outlet temperature: 40.585823 ° C., the water outlet temperature: 48.177882 ° C., and the pressure loss. : 3.79237429Pa could be obtained.
On the other hand, when calculated with a heat exchanger core having a size of 50 × 100 × 13 mm, the core dimensions are fin pitch Fp: 1.2 mm, fin thickness F 1 : 0.1 mm, fin collar diameter 1 mm, and core width L 3. : 100 mm, core height L 1 : 50 mm, core depth L 2 : 13 mm, raw pipe diameter (raw pipe: pipe through which refrigerant passes) 7.7 mm, raw pipe inner diameter 6.7 mm, raw pipe step pitch (between the centers of the raw pipe) Distance) S 1 : 25 mm, number of fins 84, number of raw pipes (height ÷ raw pipe pitch = number), free passage cross-sectional area 3926.629707 mm 2 , representative wind speed 2.546713274 m / sec, total heat transfer area 104587 .1434 mm 2 , representative dimensions 1.95222969 mm, flow loss coefficient 0.146519069, pressure loss 3.774191922 Pa, set wind speed 2 m / sec, set water volume 16 L / min.
By performing this calculation, it can be calculated that the air outlet temperature: 41.23052979 ° C., dt: 20.23059279, the water outlet temperature: 49.78452812 ° C., dt: −0.215471876, and the pressure loss: 3.774419922Pa.

この結果からわかることは、空調用熱交換器コアとしての大きさが、150×300×13mmのサイズから50×100×13mmのサイズになった場合でも、類似の空気出口温度、水出口温度を計算でき、設定水量と設定風速も同様にできることがわかる。
以上説明のように、本実施形態を実施することで、空調用熱交換器コアのサイズ変更とその他試験条件の変更により、空調用熱交換器コアを通過する空気の温度と水の温度がどの程度変化するのか、圧力損失がどの程度発生するのかが分かり、空調用熱交換器コアを通過する空気の温度と水温を見積もることができるようになる。
From this result, it can be seen that even when the size of the heat exchanger core for air conditioning is changed from the size of 150 × 300 × 13 mm to the size of 50 × 100 × 13 mm, the similar air outlet temperature and water outlet temperature can be obtained. It can be calculated, and it can be seen that the set water volume and the set wind speed can be calculated in the same way.
As described above, by implementing this embodiment, the temperature of the air and the temperature of the water passing through the heat exchanger core for air conditioning are changed by changing the size of the heat exchanger core for air conditioning and other test conditions. It will be possible to understand how much the temperature will change and how much pressure loss will occur, and to estimate the temperature and water temperature of the air passing through the heat exchanger core for air conditioning.

以下、計算例2の統括説明のために、表6〜表9に記載の計算例において、各セルに記載の主要なパラメータは、以下の簡略記載の関係式から求めることができる。
以下の簡略記載の関係式において、一例としてB2は、第B列第2行のセルに記入されている数値、B11は第B列第11行に記載されている数値を意味する。なお、以下の各式においてPI()は表計算ソフトウエアにおける円周率の関数を示し、実質的に3.141592を示す。
自由通過断面積=(B2−B3)×(B11×B8−PI()×(B9/2))/(B2×B8×B11)×B6×B7
代表風速=B6×B7/B17×B26
全伝熱面積=B7×B8×B14×2−PI()×(B9/2)×B14×B15+PI()×B9×(B2−B3)×B14×B15
代表寸法=4×B17×B8/B19
流動損失係数=(0.43+35.1×(H26×B21/B8)−1.07)*B21/B8
圧力損失=B22×B8/B21×H2×B18/2
Hereinafter, for the purpose of general explanation of the calculation example 2, in the calculation examples shown in Tables 6 to 9, the main parameters described in each cell can be obtained from the following simplified relational expressions.
In the following simplified relational expression, as an example, B2 means the numerical value written in the cell of the second row of the B column, and B11 means the numerical value written in the eleventh row of the B column. In each of the following equations, PI () indicates a function of pi in spreadsheet software, and substantially indicates 3.141592.
Free passage cross-sectional area = (B2-B3) x (B11 x B8-PI () x (B9 / 2) 2 ) / (B2 x B8 x B11) x B6 x B7
Representative wind speed = B6 x B7 / B17 x B26
Total heat transfer area = B7 x B8 x B14 x 2-PI () x (B9 / 2) 2 x B14 x B15 + PI () x B9 x (B2-B3) x B14 x B15
Representative dimensions = 4 x B17 x B8 / B19
Flow loss coefficient = (0.43 + 35.1 × (H26 × B21 / B8) -1.07 ) * B21 / B8
Pressure loss = B22 × B8 / B21 × H2 × B18 2/2

(配管内熱伝達)Nu=0.023×H230.8×H240.3333
h=H11×B33/(B10/1000)
(コア熱伝達)Nu=2.1×(H26×H27×B21/B8)0.38
h=H5×B37/(B21/1000)×2
φ=(2×B38/(H16×(B3/1000)))0.5
φ1=B41×((B8−B9)/2+(B11−B9)/2)/2/1000
ηf=1/B42×(EXP(B42)−EXP(−B42))/(EXP(B42)+EXP(−B42))
平均温度=B43×(E45−E2)+E2
空気通過時間=B8/B18/1000
単位時間通過空気量=B17/1000/1000×B18×H2
ΔT通過空気量=B48×E55
水経路長さ=B6×B15
水通過時間=B51/D28/1000
素管内水量=PI()×(B10/2)/1000/1000×B6×2/1000×H8
ΔT通過水量=D27×H55
(Heat transfer in piping) Nu = 0.023 x H23 0.8 x H24 0.3333
h = H11 × B33 / (B10 / 1000)
(Core heat transfer) Nu = 2.1 × (H26 × H27 × B21 / B8) 0.38
h = H5 x B37 / (B21 / 1000) x 2
φ = (2 × B38 / (H16 × (B3 / 1000))) 0.5
φ1 = B41 × ((B8-B9) / 2+ (B11-B9) / 2) / 2/1000
ηf = 1 / B42 × (EXP (B42) -EXP (-B42)) / (EXP (B42) + EXP (-B42))
Average temperature = B43 x (E45-E2) + E2
Air passage time = B8 / B18 / 1000
Air volume passing per unit time = B17 / 1000/1000 x B18 x H2
Amount of air passing through ΔT = B48 × E55
Water path length = B6 x B15
Water transit time = B51 / D28 / 1000
Containing tube water = PI () × (B10 / 2) 2/1000/1000 × B6 × 2/1000 × H8
Amount of water passing through ΔT = D27 × H55

空気出口温度=G78
dt=B57−E2
水出口温度=J74
dt=B59−E16
圧力損失=B23
熱量=D26×B68×H4×1000
水温度差(W)=D27×H10×B71×1000
Air outlet temperature = G78
dt = B57-E2
Water outlet temperature = J74
dt = B59-E16
Pressure loss = B23
Calorific value = D26 x B68 x H4 x 1000
Water temperature difference (W) = D27 x H10 x B71 x 1000

空気ΔT=−E2+G80
水ΔT=−K54+K74
検大気QfromCP=(E2−B57)×B48×H4×1000
検水Qfromh=(E16−B59)×D27×H10×1000
空気吸熱=D26×G80×H4×1000
水吸熱=G83×H10×1000×D27
和=I80+I83
Air ΔT = −E2 + G80
Water ΔT = −K54 + K74
Atmosphere QfromCP = (E2-B57) x B48 x H4 x 1000
Water test Qfromh = (E16-B59) x D27 x H10 x 1000
Air endothermic = D26 x G80 x H4 x 1000
Water endothermic = G83 x H10 x 1000 x D27
Sum = I80 + I83

1…空調用熱交換器コア、2…フィン、3…チューブ(素管)、3A…直管部、3a…入口部、3B…エルボ管、3b…出口部、23…性能評価装置、24…入力手段、25…制御部、26…記憶手段、27…出力手段、28…算出手段、29…予測手段、
S0…入力ステップ、S1…第1の計算手段による第1のステップ、S2…第2の計算手段による第2のステップ、S3…第3の計算手段による第3のステップ、S4…第4の計算手段による第4のステップ、S5…第5の計算手段による第5のステップ。
1 ... Heat exchanger core for air conditioning, 2 ... Fins, 3 ... Tubes (bare pipes), 3A ... Straight pipes, 3a ... Inlets, 3B ... Elbow pipes, 3b ... Outlets, 23 ... Performance evaluation devices, 24 ... Input means, 25 ... Control unit, 26 ... Storage means, 27 ... Output means, 28 ... Calculation means, 29 ... Prediction means,
S0 ... Input step, S1 ... First step by the first calculation means, S2 ... Second step by the second calculation means, S3 ... Third step by the third calculation means, S4 ... Fourth calculation Fourth step by means, S5 ... Fifth step by means of fifth calculation means.

Claims (21)

所定の間隔をあけて並設された複数のフィンと、前記複数のフィンに接するように接合されたチューブを備え、前記複数のフィンと前記チューブの間に空気を流通させて前記チューブ内の媒体と前記フィンとの間で熱交換を行う空調用熱交換器コアの性能評価方法であって、
前記空調用熱交換器コアの前記フィンに沿って空気が流れる場合の圧力損失と平均熱伝達率を求め、前記フィンの温度分布が一様な平均温度を有すると仮定し、フィン効率とフィン根元温度と外気温度から前記フィンの温度分布を求め、
前記媒体と前記チューブとの熱伝達が乱流熱伝達率の関係を有すると仮定し、
前記フィンを前記空気の流れ方向に沿って複数に分割し、前記空気の分割領域毎に差分法によって前記空気の温度を求め、
前記チューブを1本の直管と見立てて前記空気の分割領域と同じ数に分割して前記チューブの分割領域毎に前記媒体の温度を求め、
空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出水温度差の関係式が成立すると仮定し、この関係式を解いて前記媒体の量を求め、更に空気出口温度と、水出口温度を求めることを特徴とする空調用熱交換器コアの性能評価方法。
A plurality of fins arranged side by side at predetermined intervals and a tube joined so as to be in contact with the plurality of fins are provided, and air is circulated between the plurality of fins and the tube to allow air to flow between the plurality of fins and the medium in the tube. This is a performance evaluation method for an air-conditioning heat exchanger core that exchanges heat between the fins and the fins.
Obtain the pressure loss and average heat transfer coefficient when air flows along the fins of the heat exchanger core for air conditioning, and assume that the temperature distribution of the fins has a uniform average temperature, and fin efficiency and fin roots. Obtain the temperature distribution of the fins from the temperature and the outside air temperature,
Assuming that the heat transfer between the medium and the tube has a turbulent heat transfer coefficient relationship,
The fin is divided into a plurality of parts along the flow direction of the air, and the temperature of the air is obtained by a difference method for each divided region of the air.
The tube was regarded as one straight pipe and divided into the same number as the divided regions of the air, and the temperature of the medium was obtained for each divided region of the tube.
Assuming that the relational expression of air wind velocity x total fin area x inlet / outlet air temperature difference x specific heat = medium amount x specific heat x inlet / water temperature difference holds, the amount of the medium is obtained by solving this relational expression, and the air outlet is further obtained. A method for evaluating the performance of an air conditioner core, which is characterized by obtaining the temperature and the water outlet temperature.
前記空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出媒体温度差の関係式が成立すると仮定し、この関係式を解く場合、前記媒体の熱伝達率に係数を乗算して前記式の左辺の計算結果と右辺の計算結果を合わせることを特徴とする請求項1に記載の空調用熱交換器コアの性能評価方法。 Assuming that the relational expression of air velocity x total fin area x inlet / outlet air temperature difference x specific heat = amount of medium x specific heat x inlet / output medium temperature difference holds, when solving this relational expression, a coefficient is added to the heat transfer coefficient of the medium. The method for evaluating the performance of the heat exchanger core for air conditioning according to claim 1, wherein the calculation result on the left side and the calculation result on the right side of the above equation are combined by multiplying by. 前記空調用熱交換器コアに空気を流通させた場合の圧力損失計算モデルとして、前記空調用熱交換器コアの圧力損失Pcが以下の(1)式、(2)式、(3)式で表わされると仮定することを特徴とする請求項1または請求項2に記載の空調用熱交換器コアの性能評価方法。
ただし、(1)式、(2)式において、Pc:空調用熱交換器コアの圧力損失、C:流動損失係数、ρ:密度(kg/m)、U:空調熱交換器コアを空気が通過する風速(熱交換器通過風速:m/sec)、Dec:(代表寸法:濡れ縁長さ:m)、L:空調熱交換器コアの空気流れ方向長さ(m)、Re:レイノルズ数であり、(3)式において、A:自由通過面積(空調熱交換器コアを空気流れ方向に沿って見た場合にフィンとチューブが存在しない領域の総面積)、A:全伝熱面積である。
Figure 2021173428
Figure 2021173428
Figure 2021173428
As a pressure loss calculation model when air is circulated through the air conditioning heat exchanger core, the pressure loss Pc of the air conditioning heat exchanger core is expressed by the following equations (1), (2), and (3). The method for evaluating the performance of an air conditioning heat exchanger core according to claim 1 or 2, wherein it is assumed to be represented.
However, in (1), (2), Pc: pressure loss in the heat exchanger core for air conditioning, C D: flow loss coefficient, [rho: density (kg / m 3), U c: air conditioning heat exchanger core the wind passing through the air (heat exchanger passes wind speed: m / sec), D ec :( typical dimension: wetted perimeter: m), L t: air conditioning heat exchanger core of the air flow direction length (m), Re: Reynolds number, in equation (3), Ac : free passage area (total area where fins and tubes do not exist when the air conditioning heat exchanger core is viewed along the air flow direction), A o : Total heat transfer area.
Figure 2021173428
Figure 2021173428
Figure 2021173428
温度の計算モデルとして、前記空調用熱交換器コアの平均熱伝達が以下の(4)式で表されるヌセルト数Nuに関係して求められ、前記ヌセルト数が熱伝達率hとの関係で以下の(5)式で表される関係を有することを特徴とする請求項1〜請求項3のいずれか一項に記載の空調用熱交換器コアの性能評価方法。
ただし、(4)式において、Pr:プランドル数、Ipt:フィン間隔(m)であり、ヌセルト数:Nu(無次元数)=hL/λの関係であり、(5)式においてhは熱伝達率、λ:フィン材の熱伝導率(W/mK)、Lは代表長さまたは前記Decである。
Figure 2021173428
Figure 2021173428
As a temperature calculation model, the average heat transfer of the heat exchanger core for air conditioning is obtained in relation to the Nusselt number Nu represented by the following equation (4), and the Nusselt number is related to the heat transfer coefficient h. The method for evaluating the performance of a heat exchanger core for air conditioning according to any one of claims 1 to 3, wherein the method has a relationship represented by the following equation (5).
However, in Eq. (4), Pr: Prandle number, Ipt : Fin spacing (m), Nusselt number: Nu (non-dimensional number) = hL / λ, and h in Eq. (5) Heat transfer coefficient, λ: Thermal conductivity of fin material (W / mK), L is a representative length or the Dec.
Figure 2021173428
Figure 2021173428
前記フィンの温度が以下の(6)式と(7)式で表される関係を有し、熱伝達率から熱伝導量を求めるために、通過する空気の温度と前記フィンの温度が必要であると仮定し、前記(7)式において前記フィンの温度分布は一様な平均温度θmを有し、θmは、フィン効率ηf、フィン根元温度θ、外気温度tから求めることができることを特徴とする請求項1〜請求項4のいずれか一項に記載の空調用熱交換器コアの性能評価方法。
ただし、(7)式においてdfはチューブ高さピッチ、dcはチューブ奥行きピッチ(1本チューブの場合、奥行き寸法(m)、Fはフィンの厚さ(m)である。
Figure 2021173428
Figure 2021173428
The temperature of the fin has a relationship represented by the following equations (6) and (7), and the temperature of the passing air and the temperature of the fin are required in order to obtain the heat conduction amount from the heat transfer rate. Assuming that there is, in the above equation (7), the temperature distribution of the fin has a uniform average temperature θm, and θm can be obtained from the fin efficiency ηf, the fin root temperature θ 0 , and the outside air temperature t 0. The method for evaluating the performance of a heat exchanger core for air conditioning according to any one of claims 1 to 4, which is characterized.
However, in the equation (7), df is the tube height pitch, dc is the tube depth pitch (in the case of one tube, the depth dimension (m), and F 1 is the fin thickness (m).
Figure 2021173428
Figure 2021173428
前記媒体と前記チューブの熱伝達は以下の(8)式に示す乱流熱伝達率の関係を有することを特徴とする請求項1〜請求項5のいずれか一項に記載の空調用熱交換器コアの性能評価方法。
Figure 2021173428
The heat exchange for air conditioning according to any one of claims 1 to 5, wherein the heat transfer between the medium and the tube has a turbulent heat transfer coefficient relationship shown in the following equation (8). How to evaluate the performance of the vessel core.
Figure 2021173428
前記熱交換器通過風速Uは、前記空調用熱交換器コアに対する前面風速Uに対し、前面投影面積Aと前記自由通過面積Aの比を乗算し、U=(A/A)の関係を用いて算出することを特徴とする請求項3〜請求項6のいずれか一項に記載の空調用熱交換器コアの性能評価方法。 The heat exchanger passes through the wind velocity U c, compared face velocity U 0 to the heat exchanger core the air conditioner, by multiplying the ratio of the free passage area A c the frontal projected area A f, U c = (A c / The performance evaluation method for an air conditioning heat exchanger core according to any one of claims 3 to 6, wherein the calculation is performed using the relationship of A f). 所定の間隔をあけて並設された複数のフィンと、前記複数のフィンに接するように接合されたチューブを備え、前記複数のフィンと前記チューブの間に空気を流通させて前記チューブ内の媒体と前記フィンとの間で熱交換を行う空調用熱交換器コアの性能評価装置であって、
前記空調用熱交換器コアの前記フィンに沿って空気が流れる場合の圧力損失と平均熱伝達率を求める第1の計算手段と、前記フィンの温度分布が一様な平均温度を有すると仮定し、フィン効率とフィン根元温度と外気温度から前記フィンの温度分布を求める第2の計算手段と、
前記媒体と前記チューブとの熱伝達が乱流熱伝達率の関係を有すると仮定し、
前記フィンを前記空気の流れ方向に沿って複数に分割し、前記空気の分割領域毎に差分法によって前記空気の温度を求める第3の計算手段と、
前記チューブを1本の直管と見立てて前記空気の分割領域と同じ数に分割して前記チューブの分割領域毎に前記媒体の温度を求める第4の計算手段と、
空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出水温度差の関係式が成立すると仮定し、この関係式を解いて前記媒体の量を求め、更に空気出口温度と、水出口温度を求める第5の計算手段を有することを特徴とする空調用熱交換器コアの性能評価装置。
A plurality of fins arranged side by side at predetermined intervals and a tube joined so as to be in contact with the plurality of fins are provided, and air is circulated between the plurality of fins and the tube to allow air to flow between the plurality of fins and the medium in the tube. A performance evaluation device for an air-conditioning heat exchanger core that exchanges heat between the fins and the fins.
It is assumed that the first calculation means for obtaining the pressure loss and the average heat transfer coefficient when air flows along the fins of the heat exchanger core for air conditioning and the temperature distribution of the fins have a uniform average temperature. , A second calculation means for obtaining the temperature distribution of the fin from the fin efficiency, the fin root temperature, and the outside air temperature.
Assuming that the heat transfer between the medium and the tube has a turbulent heat transfer coefficient relationship,
A third calculation means for dividing the fin into a plurality of parts along the air flow direction and obtaining the temperature of the air by a difference method for each divided region of the air.
A fourth calculation means for obtaining the temperature of the medium for each of the divided regions of the tube by dividing the tube into the same number as the divided regions of the air, assuming that the tube is a straight pipe.
Assuming that the relational expression of air wind velocity x total fin area x inlet / outlet air temperature difference x specific heat = medium amount x specific heat x inlet / water temperature difference holds, the amount of the medium is obtained by solving this relational expression, and the air outlet is further obtained. A performance evaluation device for an air conditioner heat exchanger core, which comprises a fifth calculation means for obtaining a temperature and a water outlet temperature.
前記空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出媒体温度差の関係式が成立すると仮定し、この関係式を解く場合、前記媒体の熱伝達率に係数を乗算して前記関係式の左辺の計算結果と右辺の計算結果を合わせる機能を有することを特徴とする請求項8に記載の空調用熱交換器コアの性能評価装置。 Assuming that the relational expression of air velocity x total fin area x inlet / outlet air temperature difference x specific heat = amount of medium x specific heat x inlet / output medium temperature difference holds, when solving this relational expression, a coefficient is added to the heat transfer coefficient of the medium. The performance evaluation device for the heat exchanger core for air conditioning according to claim 8, further comprising a function of multiplying by and matching the calculation result on the left side and the calculation result on the right side of the relational expression. 前記空調用熱交換器コアに空気を流通させた場合の圧力損失計算モデルとして、前記空調用熱交換器コアの圧力損失Pcが以下の(1)式、(2)式、(3)式で表わされる関係を具備することを特徴とする請求項8または請求項9に記載の空調用熱交換器コアの性能評価装置。
ただし、(1)式、(2)式において、Pc:空調用熱交換器コアの圧力損失、C:流動損失係数、ρ:密度(kg/m)、U:空調熱交換器コアを空気が通過する風速(熱交換器通過風速:m/sec)、Dec:(代表寸法:濡れ縁長さ:m)、L:空調熱交換器コアの空気流れ方向長さ(m)、Re:レイノルズ数であり、(3)式において、A:自由通過面積(空調熱交換器コアを空気流れ方向に沿って見た場合にフィンとチューブが存在しない領域の総面積)、A:全伝熱面積である。
Figure 2021173428
Figure 2021173428
Figure 2021173428
As a pressure loss calculation model when air is circulated through the air conditioning heat exchanger core, the pressure loss Pc of the air conditioning heat exchanger core is expressed by the following equations (1), (2), and (3). The performance evaluation device for an air conditioning heat exchanger core according to claim 8 or 9, wherein the relationship represented is provided.
However, in (1), (2), Pc: pressure loss in the heat exchanger core for air conditioning, C D: flow loss coefficient, [rho: density (kg / m 3), U c: air conditioning heat exchanger core the wind passing through the air (heat exchanger passes wind speed: m / sec), D ec :( typical dimension: wetted perimeter: m), L t: air conditioning heat exchanger core of the air flow direction length (m), Re: Reynolds number, in equation (3), Ac : free passage area (total area where fins and tubes do not exist when the air conditioning heat exchanger core is viewed along the air flow direction), A o : Total heat transfer area.
Figure 2021173428
Figure 2021173428
Figure 2021173428
温度の計算モデルに関し、前記空調用熱交換器コアの平均熱伝達が以下の(4)式で表されるヌセルト数Nuに関係して求められ、前記ヌセルト数が熱伝達率hとの関係で以下の(5)式で表される関係を有することを特徴とする請求項8〜請求項10のいずれか一項に記載の空調用熱交換器コアの性能評価装置。
ただし、(4)式において、Re:レイノルズ数、Pr:プランドル数、Ipt:フィン間隔(m)であり、ヌセルト数:Nu(無次元数)=hL/λの関係であり、(5)式においてhは熱伝達率、λ:フィン材の熱伝導率(W/mK)、Lは代表長さまたは前記Decである。
Figure 2021173428
Figure 2021173428
Regarding the temperature calculation model, the average heat transfer of the heat exchanger core for air conditioning is obtained in relation to the Nusselt number Nu represented by the following equation (4), and the Nusselt number is related to the heat transfer coefficient h. The performance evaluation device for the heat exchanger core for air conditioning according to any one of claims 8 to 10, which has a relationship represented by the following equation (5).
However, in equation (4), Re: Reynolds number, Pr: Prandle number, Ipt : Fin spacing (m), Nusselt number: Nu (dimensionless number) = hL / λ, and (5). ), H is the heat transfer coefficient, λ: the thermal conductivity of the fin material (W / mK), and L is the representative length or the Dec.
Figure 2021173428
Figure 2021173428
前記フィンの温度に関し、以下の(6)式と(7)式で表される関係を有し、熱伝達率から熱伝導量を求めるために、通過する空気の温度と前記フィンの温度が必要であると仮定し、前記(7)式において前記フィンの温度分布は一様な平均温度θmを有し、θmは、フィン効率ηf、フィン根元温度θ、外気温度tから求めることができる機能を備えたことを特徴とする請求項8〜請求項11のいずれか一項に記載の空調用熱交換器コアの性能評価装置。
ただし、(7)式においてdfはチューブ高さピッチ、dcはチューブ奥行きピッチ(1本チューブの場合、奥行き寸法(m)、Fはフィンの厚さ(m)である。
Figure 2021173428
Figure 2021173428
The fin temperature has a relationship expressed by the following equations (6) and (7), and the temperature of the passing air and the temperature of the fin are required to obtain the heat conduction amount from the heat transfer rate. In the above equation (7), the temperature distribution of the fin has a uniform average temperature θm, and θm can be obtained from the fin efficiency ηf, the fin root temperature θ 0 , and the outside air temperature t 0. The performance evaluation device for a heat exchanger core for air conditioning according to any one of claims 8 to 11, further comprising a function.
However, in the equation (7), df is the tube height pitch, dc is the tube depth pitch (in the case of one tube, the depth dimension (m), and F 1 is the fin thickness (m).
Figure 2021173428
Figure 2021173428
前記媒体と前記チューブの熱伝達は以下の(8)式に示す乱流熱伝達率の関係を備えることを特徴とする請求項8〜請求項12のいずれか一項に記載の空調用熱交換器コアの性能評価装置。
Figure 2021173428
The heat exchange for air conditioning according to any one of claims 8 to 12, wherein the heat transfer between the medium and the tube has a turbulent heat transfer coefficient relationship shown in the following equation (8). Instrument core performance evaluation device.
Figure 2021173428
前記熱交換器通過風速Uに関し、前記空調用熱交換器コアに対する前面風速Uに対し、前面投影面積Aと前記自由通過面積Aの比を乗算し、U=(A/A)の関係を用いて算出する機能を有することを特徴とする請求項8〜請求項13のいずれか一項に記載の空調用熱交換器コアの性能評価装置。 Relates to the aforementioned heat exchanger passing wind velocity U c, relative face velocity U 0 to the heat exchanger core the air conditioner, by multiplying the ratio of the free passage area A c the frontal projected area A f, U c = (A c / The performance evaluation device for an air conditioning heat exchanger core according to any one of claims 8 to 13, characterized in that it has a function of calculating using the relationship of A f). 所定の間隔をあけて並設された複数のフィンと、前記複数のフィンに接するように接合されたチューブを備え、前記複数のフィンと前記チューブの間に空気を流通させて前記チューブ内の媒体と前記フィンとの間で熱交換を行う空調用熱交換器コアの性能評価プログラムであって、コンピューターを、
前記空調用熱交換器コアの前記フィンに沿って空気が流れる場合の圧力損失と平均熱伝達率を求める第1の計算手段と、
前記フィンの温度分布が一様な平均温度を有すると仮定し、フィン効率とフィン根元温度と外気温度から前記フィンの温度分布を求める第2の計算手段と、
前記媒体と前記チューブとの熱伝達が乱流熱伝達率の関係を有すると仮定し、
前記フィンを前記空気の流れ方向に沿って複数に分割し、前記空気の分割領域毎に差分法によって前記空気の温度を求める第3の計算手段と、
前記チューブを1本の直管と見立てて前記空気の分割領域と同じ数に分割して前記チューブの分割領域毎に前記媒体の温度を求める第4の計算手段と、
空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出水温度差の関係式が成立すると仮定し、この関係式を解いて前記媒体の量を求め、更に空気出口温度と、水出口温度を求める第5の計算手段として機能させることを特徴とする空調用熱交換器コアの性能評価プログラム。
A plurality of fins arranged side by side at predetermined intervals and a tube joined so as to be in contact with the plurality of fins are provided, and air is circulated between the plurality of fins and the tube to allow air to flow between the plurality of fins and a medium in the tube. This is a performance evaluation program for the heat exchanger core for air conditioning that exchanges heat between the fins and the fins.
A first calculation means for obtaining a pressure loss and an average heat transfer coefficient when air flows along the fins of the heat exchanger core for air conditioning.
Assuming that the temperature distribution of the fins has a uniform average temperature, a second calculation means for obtaining the temperature distribution of the fins from the fin efficiency, the fin root temperature, and the outside air temperature,
Assuming that the heat transfer between the medium and the tube has a turbulent heat transfer coefficient relationship,
A third calculation means for dividing the fin into a plurality of parts along the air flow direction and obtaining the temperature of the air by a difference method for each divided region of the air.
A fourth calculation means for obtaining the temperature of the medium for each of the divided regions of the tube by dividing the tube into the same number as the divided regions of the air, assuming that the tube is a straight pipe.
Assuming that the relational expression of air wind velocity x total fin area x inlet / outlet air temperature difference x specific heat = medium amount x specific heat x inlet / water temperature difference holds, the amount of the medium is obtained by solving this relational expression, and the air outlet is further obtained. A performance evaluation program for an air conditioner core, which is characterized by functioning as a fifth calculation means for determining the temperature and the water outlet temperature.
前記空気の風速×フィン総面積×入出空気温度差×比熱=媒体の量×比熱×入出媒体温度差の関係式が成立すると仮定し、この関係式を解く場合、前記媒体の熱伝達率に係数を乗算して前記関係式の左辺の計算結果と右辺の計算結果を合わせる機能を有することを特徴とする請求項15に記載の空調用熱交換器コアの性能評価プログラム。 Assuming that the relational expression of air velocity x total fin area x inlet / outlet air temperature difference x specific heat = amount of medium x specific heat x inlet / output medium temperature difference holds, when solving this relational expression, a coefficient is added to the heat transfer coefficient of the medium. The performance evaluation program for the heat exchanger core for air conditioning according to claim 15, further comprising a function of multiplying by and matching the calculation result on the left side and the calculation result on the right side of the relational expression. 前記空調用熱交換器コアに空気を流通させた場合の圧力損失計算モデルとして、前記空調用熱交換器コアの圧力損失Pcが以下の(1)式、(2)式、(3)式で表わされる関係を具備することを特徴とする請求項15または請求項16に記載の空調用熱交換器コアの性能評価プログラム。
ただし、(1)式、(2)式において、Pc:空調用熱交換器コアの圧力損失、C:流動損失係数、ρ:密度(kg/m)、U:空調熱交換器コアを空気が通過する風速(熱交換器通過風速:m/sec)、Dec:(代表寸法:濡れ縁長さ:m)、L:空調熱交換器コアの空気流れ方向長さ(m)、Re:レイノルズ数であり、(3)式において、A:自由通過面積(空調熱交換器コアを空気流れ方向に沿って見た場合にフィンとチューブが存在しない領域の総面積)、A:全伝熱面積である。
Figure 2021173428
Figure 2021173428
Figure 2021173428
As a pressure loss calculation model when air is circulated through the air conditioning heat exchanger core, the pressure loss Pc of the air conditioning heat exchanger core is expressed by the following equations (1), (2), and (3). The performance evaluation program for an air conditioning heat exchanger core according to claim 15 or 16, characterized in that the relationships represented are provided.
However, in (1), (2), Pc: pressure loss in the heat exchanger core for air conditioning, C D: flow loss coefficient, [rho: density (kg / m 3), U c: air conditioning heat exchanger core the wind passing through the air (heat exchanger passes wind speed: m / sec), D ec :( typical dimension: wetted perimeter: m), L t: air conditioning heat exchanger core of the air flow direction length (m), Re: Reynolds number, in equation (3), Ac : free passage area (total area where fins and tubes do not exist when the air conditioning heat exchanger core is viewed along the air flow direction), A o : Total heat transfer area.
Figure 2021173428
Figure 2021173428
Figure 2021173428
温度の計算モデルとして、前記空調用熱交換器コアの平均熱伝達が以下の(4)式で表されるヌセルト数Nuに関係して求められ、前記ヌセルト数が熱伝達率hとの関係で以下の(5)式で表される関係を有することを特徴とする請求項15〜請求項17のいずれか一項に記載の空調用熱交換器コアの性能評価プログラム。
ただし、(4)式において、Pr:プランドル数、Ipt:フィン間隔(m)であり、ヌセルト数:Nu(無次元数)=hL/λの関係であり、(5)式においてhは熱伝達率、λ:フィン材の熱伝導率(W/mK)、Lは代表長さまたは前記Decである。
Figure 2021173428
Figure 2021173428
As a temperature calculation model, the average heat transfer of the heat exchanger core for air conditioning is obtained in relation to the Nusselt number Nu represented by the following equation (4), and the Nusselt number is related to the heat transfer coefficient h. The performance evaluation program for the heat exchanger core for air conditioning according to any one of claims 15 to 17, which has a relationship represented by the following equation (5).
However, in Eq. (4), Pr: Prandle number, Ipt : Fin spacing (m), Nusselt number: Nu (non-dimensional number) = hL / λ, and h in Eq. (5) Heat transfer coefficient, λ: Thermal conductivity of fin material (W / mK), L is a representative length or the Dec.
Figure 2021173428
Figure 2021173428
前記フィンの温度が以下の(6)式と(7)式で表される関係を有し、熱伝達率から熱伝導量を求めるために、通過する空気の温度と前記フィンの温度が必要であると仮定し、前記(7)式において前記フィンの温度分布は一様な平均温度θmを有し、θmは、フィン効率ηf、フィン根元温度θ、外気温度tから求めることができる機能を備えたことを特徴とする請求項15〜請求項18のいずれか一項に記載の空調用熱交換器コアの性能評価プログラム。
ただし、(7)式においてdfはチューブ高さピッチ、dcはチューブ奥行きピッチ(1本チューブの場合、奥行き寸法(m)、Fはフィンの厚さ(m)である。
Figure 2021173428
Figure 2021173428
The temperature of the fin has a relationship represented by the following equations (6) and (7), and the temperature of the passing air and the temperature of the fin are required in order to obtain the heat conduction amount from the heat transfer rate. Assuming that there is, in the above equation (7), the temperature distribution of the fin has a uniform average temperature θm, and θm is a function that can be obtained from the fin efficiency ηf, the fin root temperature θ 0 , and the outside air temperature t 0. The performance evaluation program for the heat exchanger core for air conditioning according to any one of claims 15 to 18, wherein the heat exchanger core is provided.
However, in the equation (7), df is the tube height pitch, dc is the tube depth pitch (in the case of one tube, the depth dimension (m), and F 1 is the fin thickness (m).
Figure 2021173428
Figure 2021173428
前記媒体と前記チューブの熱伝達は以下の(8)式に示す乱流熱伝達率の関係を備えることを特徴とする請求項15〜請求項19のいずれか一項に記載の空調用熱交換器コアの性能評価プログラム。
Figure 2021173428
The heat exchange for air conditioning according to any one of claims 15 to 19, wherein the heat transfer between the medium and the tube has a turbulent heat transfer coefficient relationship shown in the following equation (8). Instrument core performance evaluation program.
Figure 2021173428
前記熱交換器通過風速Uに関し、前記空調用熱交換器コアに対する前面風速Uに対し、前面投影面積Aと前記自由通過面積Aの比を乗算し、U=(A/A)の関係を用いて算出する機能を有することを特徴とする請求項15〜請求項20のいずれか一項に記載の空調用熱交換器コアの性能評価プログラム。 Relates to the aforementioned heat exchanger passing wind velocity U c, relative face velocity U 0 to the heat exchanger core the air conditioner, by multiplying the ratio of the free passage area A c the frontal projected area A f, U c = (A c / The performance evaluation program for an air conditioning heat exchanger core according to any one of claims 15 to 20, wherein it has a function of calculating using the relationship of A f).
JP2020074975A 2020-04-20 2020-04-20 Evaluation method, evaluation device and evaluation program of heat exchanger core for air conditioning Pending JP2021173428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020074975A JP2021173428A (en) 2020-04-20 2020-04-20 Evaluation method, evaluation device and evaluation program of heat exchanger core for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020074975A JP2021173428A (en) 2020-04-20 2020-04-20 Evaluation method, evaluation device and evaluation program of heat exchanger core for air conditioning

Publications (1)

Publication Number Publication Date
JP2021173428A true JP2021173428A (en) 2021-11-01

Family

ID=78279673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020074975A Pending JP2021173428A (en) 2020-04-20 2020-04-20 Evaluation method, evaluation device and evaluation program of heat exchanger core for air conditioning

Country Status (1)

Country Link
JP (1) JP2021173428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114154262B (en) * 2021-12-01 2023-08-15 西安交通大学 Forward design method for cross-flow printed circuit board type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114154262B (en) * 2021-12-01 2023-08-15 西安交通大学 Forward design method for cross-flow printed circuit board type heat exchanger

Similar Documents

Publication Publication Date Title
Zhou et al. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators
Bhuiyan et al. Thermal and hydraulic performance of finned-tube heat exchangers under different flow ranges: A review on modeling and experiment
Wang et al. Data reduction for air-side performance of fin-and-tube heat exchangers
Yun et al. Investigation of heat transfer characteristics on various kinds of fin-and-tube heat exchangers with interrupted surfaces
Bošnjaković et al. Experimental testing of the heat exchanger with star-shaped fins
Martínez-Ballester et al. Numerical model for microchannel condensers and gas coolers: Part I–Model description and validation
Tang et al. Air inlet angle influence on the air-side heat transfer and flow friction characteristics of a finned oval tube heat exchanger
Lin et al. Performance of the herringbone wavy fin under dehumidifying conditions
Huisseune et al. Performance analysis of a compound heat exchanger by screening its design parameters
Kurian et al. Experimental investigation of near compact wire mesh heat exchangers
CN110309591A (en) It exchanges heat under a kind of flat finned heat exchanger air side laminar condition and drag computation method
Liu et al. Air-side surface wettability effects on the performance of slit-fin-and-tube heat exchangers operating under wet-surface conditions
Youn et al. An experimental investigation on the airside performance of fin-and-tube heat exchangers having sinusoidal wave fins
JP2021173428A (en) Evaluation method, evaluation device and evaluation program of heat exchanger core for air conditioning
Zhang et al. Air-side heat transfer characteristics under wet conditions at lower ambient pressure of fin-and-tube heat exchanger
Siddiqui et al. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger
Otto et al. Heat transfer in a rib turbulated pin fin array for trailing edge cooling
Ricklick et al. Determination of a local bulk temperature based heat transfer coefficient for the wetted surfaces in a single inline row impingement channel
Zhang et al. Performance evaluation of fin-and-tube heat exchangers in an outdoor unit considering air flow mal-distribution
Zhuang et al. Condensing droplet behaviors on fin surface under dehumidifying condition. Part II: Experimental validation
Alsaleem et al. Heat Transfer and Friction in a Rectangular Channel With Varying Numbers of Walls Roughened With 90-Deg Transverse or 45-Deg V-Shaped Ribs
Bury Impact of a medium flow maldistribution on a cross-flow heat exchanger performance
JP2021196130A (en) Method and device for evaluating air-conditioning heat exchanger core and evaluation program
Pirompugd et al. A fully wet and fully dry tiny circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under dehumidifying conditions
Pirompugd et al. The new mathematical models for plain fin-and-tube heat exchangers with dehumidification

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220630