JP2021173327A - Pulsation attenuation device - Google Patents

Pulsation attenuation device Download PDF

Info

Publication number
JP2021173327A
JP2021173327A JP2020077073A JP2020077073A JP2021173327A JP 2021173327 A JP2021173327 A JP 2021173327A JP 2020077073 A JP2020077073 A JP 2020077073A JP 2020077073 A JP2020077073 A JP 2020077073A JP 2021173327 A JP2021173327 A JP 2021173327A
Authority
JP
Japan
Prior art keywords
flow path
fluid pressure
fluid
chamber
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020077073A
Other languages
Japanese (ja)
Inventor
宣行 杉村
Nobuyuki Sugimura
登夢 杉村
Tomu Sugimura
健 杉村
Ken Sugimura
理人 齊藤
Masato Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020077073A priority Critical patent/JP2021173327A/en
Publication of JP2021173327A publication Critical patent/JP2021173327A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

To provide a pulsation attenuation device capable of increasing a surplus elastic energy capacity of an elastic body capable of being used in pulsation absorption.SOLUTION: A pulsation attenuation device 1 of a fluid pressure circuit comprises: an internal flow path 2 forming a part of the fluid pressure circuit; a fluid pressure chamber 3 provided at a position facing the internal flow path 2; and an elastic body 4 provided so as to separate the internal flow path 2 and the fluid pressure chamber 3, where the fluid pressure chamber 3 is provided so that pressurized fluid can be circulated between itself and the fluid pressure circuit; the elastic body 4 can receive fluid pressure from each of the internal flow path 2 and the fluid pressure chamber 3; and an area difference is provided between a flow path side pressure receiving area S1 and a flow path side pressure receiving area S2.SELECTED DRAWING: Figure 1

Description

本発明は、脈動減衰装置に関する。 The present invention relates to a pulsation damping device.

作動流体を用いて機械装置を駆動するフルードパワーシステムがある。この様なシステムにおいては、エネルギ密度を高めるために、例えば、容積ポンプ、のようなポンプを用いて、該作動流体の流体圧を高めている。一方、容積ポンプは、作動流体に圧力脈動を生じさせてしまい、流体圧が基準圧力から乱高下してしまうという欠点を有している。そのため、フルードパワーシステムには、その脈動を吸収し、作動流体の流体圧を基準圧力で保持するための脈動減衰装置が必要不可欠となっている。 There is a fluid power system that uses working fluid to drive mechanical devices. In such a system, in order to increase the energy density, a pump such as a positive displacement pump is used to increase the fluid pressure of the working fluid. On the other hand, the positive displacement pump has a drawback that the working fluid causes pressure pulsation and the fluid pressure fluctuates from the reference pressure. Therefore, a pulsation damping device for absorbing the pulsation and holding the fluid pressure of the working fluid at a reference pressure is indispensable for the fluid power system.

従来、脈動減衰装置としては、弾性体の弾性変形を利用するものがある(例えば、特許文献1並びに非特許文献1及び2を参照)。従来の脈動減衰装置は、大気圧開放部を有しており、作動流体の流路と該大気圧開放部を隔てる様に弾性体が配設されている。該弾性体の大気圧開放部側の受圧面積は、該流路側の受圧面積と比較して小さくなる様に設けられる。 Conventionally, as a pulsation damping device, there is a device that utilizes elastic deformation of an elastic body (see, for example, Patent Document 1 and Non-Patent Documents 1 and 2). The conventional pulsation damping device has an atmospheric pressure opening portion, and an elastic body is arranged so as to separate the flow path of the working fluid from the atmospheric pressure opening portion. The pressure receiving area on the atmospheric pressure opening side of the elastic body is provided so as to be smaller than the pressure receiving area on the flow path side.

作動流体の作動圧力が基準圧力よりも上昇した際には、弾性体が該大気圧開放部に入り込むように変形することで、上昇した流体圧を弾性エネルギとして保存し、該流体圧を低下させ、流体圧が基準圧力よりも低下した場合には、その変形が元に戻ることで、保存された弾性エネルギが該作動流体に開放されることで、低下した流体圧を補填する様になっており、その結果として、該作動流体の脈動を減衰できる様になっている。 When the working pressure of the working fluid rises above the reference pressure, the elastic body is deformed so as to enter the atmospheric pressure opening portion, so that the raised fluid pressure is stored as elastic energy and the fluid pressure is lowered. When the fluid pressure drops below the reference pressure, the deformation returns to the original state, and the stored elastic energy is released to the working fluid to compensate for the dropped fluid pressure. As a result, the pulsation of the working fluid can be dampened.

特開2011−133058号公報Japanese Unexamined Patent Publication No. 2011-133058

Yasuo SAKURAIら,“PROPOSAL OF A COMPONENT TO REDUCE PRESSEURE PULSATION IN OIL−HYDRAULIC SYSTEM”,The 10th JFPS International Symposium on Fluid Power 2017,日本フルードパワーシステム学会,2017年,2D01Yasuo SAKURAI et al., "PROPOSAL OF A COMPONENT TO REDUCE PRESSEURE PULSATION IN OIL-HYDRAULIC SYSTEM", The 10th JFPS International Symposium, Japan 20th JFPS International Symposium, 20th Year of Japan 橋本岬ら,“油圧システム用圧力脈動低減素子の改良と数学モデルの提案”,フルードパワーシステム講演会講演論文集,日本フルードパワーシステム学会,2019年,2019年秋季,p.43−45Misaki Hashimoto et al., "Improvement of Pressure Pulsation Reduction Element for Hydraulic Systems and Proposal of Mathematical Model", Proceedings of Fluid Power System Lecture, Japan Fluid Power Systems Society, 2019, Autumn 2019, p. 43-45

従来の脈動減衰装置は、通常、作動流体の作動圧力は大気圧よりも高いため、弾性体は、その差圧によって、初期より弾性変形していることとなる。そのため、フルードパワーシステムを駆動させるために要求される流体圧が高くなる程、即ち、基準圧力が高くなる程、流体圧と大気圧との差が広がることとなり、初期の弾性変形が大きくなってしまう。これによって、脈動吸収に利用できる弾性体の余剰弾性エネルギ容量が少なくなるという問題があった。 In the conventional pulsation damping device, the working pressure of the working fluid is usually higher than the atmospheric pressure, so that the elastic body is elastically deformed from the initial stage due to the differential pressure. Therefore, the higher the fluid pressure required to drive the fluid power system, that is, the higher the reference pressure, the wider the difference between the fluid pressure and the atmospheric pressure, and the larger the initial elastic deformation. It ends up. As a result, there is a problem that the excess elastic energy capacity of the elastic body that can be used for pulsation absorption is reduced.

一見して、例えば、アキュムレータの様に、大気圧開放部を気圧室とし、気圧室内の圧力を作動液体の作動圧力に応じて大気圧よりも高くなる様に調整すれば、この問題は解決する様に思えるが、気体室内に高圧の気体を密閉する必要がある一方、気圧室からの気体の流出を避けることは困難であるため、その機能を維持するためには、気圧室の定期的なメンテナンスが必要となるという別の問題が生じることとなる。 At first glance, for example, if the atmospheric pressure opening is a pressure chamber and the pressure in the pressure chamber is adjusted to be higher than the atmospheric pressure according to the working pressure of the working liquid, this problem can be solved. It seems like, but while it is necessary to seal the high-pressure gas in the gas chamber, it is difficult to avoid the outflow of gas from the pressure chamber, so in order to maintain its function, the pressure chamber should be regularly used. Another problem arises that maintenance is required.

そこで、本発明は、脈動吸収に利用できる弾性体の余剰弾性エネルギ容量をより大きくすることが可能な脈動減衰装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a pulsation damping device capable of increasing the excess elastic energy capacity of an elastic body that can be used for pulsation absorption.

本発明は、流体圧回路の脈動減衰装置であって、該流体圧回路の一部を構成する内部流路と、該内部流路と対向する位置に設けられた流体圧室と、該内部流路と該流体圧室とを隔てる様に設けられた弾性体と、を備え、該流体圧室は、該流体圧回路との間で加圧流体が連通可能に設けられ、該弾性体は、該内部流路及び該流体圧室の各々から流体圧を受圧可能となっており、その流路側受圧面積と流体室側受圧面積との間には面積差が設けられていることを特徴とする脈動減衰装置である。 The present invention is a pulsation damping device for a fluid pressure circuit, wherein an internal flow path forming a part of the fluid pressure circuit, a fluid pressure chamber provided at a position facing the internal flow path, and the internal flow. An elastic body provided so as to separate the path from the fluid pressure chamber is provided, and the fluid pressure chamber is provided so that a pressurized fluid can communicate with the fluid pressure circuit, and the elastic body is provided. It is characterized in that fluid pressure can be received from each of the internal flow path and the fluid pressure chamber, and an area difference is provided between the flow path side pressure receiving area and the fluid chamber side pressure receiving area. It is a pulsation damping device.

又、本発明は、流体圧回路の脈動減衰装置であって、該流体圧回路の一部を構成する内部流路と、該内部流路と対向する位置に設けられた流体圧室と、該内部流路と該流体圧室とを隔てる様に設けられた弾性体と、を備え、該流体圧室は、加圧流体が流通する外部流路との間で該加圧流体が連通可能に設けられ、該弾性体は、該内部流路及び該流体圧室の各々から流体圧を受圧可能となっており、その流路側受圧面積と流体室側受圧面積との間には面積差が設けられていることを特徴とする脈動減衰装置である。 Further, the present invention is a pulsation damping device for a fluid pressure circuit, wherein an internal flow path forming a part of the fluid pressure circuit, a fluid pressure chamber provided at a position facing the internal flow path, and the like. An elastic body provided so as to separate the internal flow path and the fluid pressure chamber is provided, and the fluid pressure chamber allows the pressurized fluid to communicate with an external flow path through which the pressurized fluid flows. The elastic body is provided so that the fluid pressure can be received from each of the internal flow path and the fluid pressure chamber, and an area difference is provided between the flow path side pressure receiving area and the fluid chamber side pressure receiving area. It is a pulsation damping device characterized by being used.

そして、本発明は、流体圧回路の脈動減衰装置であって、該流体圧回路の一部を構成する内部流路と、該内部流路と対向する位置に設けられた流体圧室と、該内部流路と該流体圧室とを隔てる様に設けられた弾性体と、作動液体が貯留可能に設けられた貯留部と、を備え、該流体圧室は、該貯留部との間で該作動液体が連通可能に設けられており、
該貯留部は、該貯留部内の該作動液体の液位が該流体圧室内の該作動液体の液位より高くなる様に該作動液体が貯留されており、該弾性体は、該内部流路及び該流体圧室の各々から流体圧を受圧可能となっており、その流路側受圧面積と流路側受圧面積との間には面積差が設けられていることを特徴とする脈動減衰装置である。
The present invention is a pulsation damping device for a fluid pressure circuit, wherein an internal flow path forming a part of the fluid pressure circuit, a fluid pressure chamber provided at a position facing the internal flow path, and the like. It is provided with an elastic body provided so as to separate the internal flow path and the fluid pressure chamber, and a storage portion provided so as to be able to store the working liquid, and the fluid pressure chamber is provided between the storage portion. The working fluid is provided so that it can communicate with each other.
The storage unit stores the working liquid so that the liquid level of the working liquid in the storage part is higher than the liquid level of the working liquid in the fluid pressure chamber, and the elastic body is the internal flow path. The pulsation damping device is characterized in that the fluid pressure can be received from each of the fluid pressure chambers, and an area difference is provided between the flow path side pressure receiving area and the flow path side pressure receiving area. ..

尚、本発明は、側路を更に備えるものとし、前記流体圧室を、該側路を介して前記流体圧回路又は前記外部流路との間で前記作動流体又は前記加圧流体が連通可能に設けることが可能である。又、本発明は、前記側路を、前記内部流路の前記弾性体よりも下流側に設けることが可能である。又、本発明は、前記側路が、流体抵抗部を有しているものとすることが可能である。又、本発明は、前記流体抵抗部を、絞り管として設けることが可能である。又、本発明は、前記流路側受圧面積を、前記流路側受圧面積よりも大きくすることが可能である。 The present invention further includes a side passage, and the working fluid or the pressurized fluid can communicate with the fluid pressure chamber and the external flow path via the side passage. Can be provided in. Further, in the present invention, the side passage can be provided on the downstream side of the elastic body of the internal flow path. Further, in the present invention, it is possible that the side road has a fluid resistance portion. Further, in the present invention, the fluid resistance portion can be provided as a throttle tube. Further, in the present invention, the pressure receiving area on the flow path side can be made larger than the pressure receiving area on the flow path side.

更に、本発明は、脈動減衰室を更に備えるものとし、前記流体圧室を、該脈動減衰室に設け、前記弾性体を、該脈動減衰室内に嵌装されているものとすることが可能である。又、本発明は、前記内部流路を、少なくとも上流側流路と、減衰室内流路と、下流側流路と、から構成し、前記側路を、該下流側流路に設け、該減衰室内流路を、前記脈動減衰室内に設け、前記弾性体を、前記流体圧室と該減衰室内流路とを隔てる様に該脈動減衰室内に嵌装されているものとすることが可能である。 Further, the present invention further includes a pulsation damping chamber, the fluid pressure chamber can be provided in the pulsation damping chamber, and the elastic body can be fitted in the pulsation damping chamber. be. Further, in the present invention, the internal flow path is composed of at least an upstream side flow path, a damping chamber flow path, and a downstream side flow path, and the side path is provided in the downstream side flow path to provide the attenuation. It is possible that the indoor flow path is provided in the pulsation damping chamber, and the elastic body is fitted in the pulsation damping chamber so as to separate the fluid pressure chamber and the damping chamber flow path. ..

本発明は、流体圧回路、外部流路又は貯留部との間で加圧流体又は作動流体を連通可能に設けられた流体圧室を設け、弾性体が、該流体圧室及び該流路の各々から流体圧を受圧可能としたため、脈動吸収に利用できる弾性体の余剰弾性エネルギ容量をより大きくすることが可能である。 The present invention provides a fluid pressure chamber provided so that a pressurized fluid or a working fluid can communicate with a fluid pressure circuit, an external flow path or a storage portion, and an elastic body is formed of the fluid pressure chamber and the flow path. Since the fluid pressure can be received from each, it is possible to increase the excess elastic energy capacity of the elastic body that can be used for pulsation absorption.

本発明の第1実施形態の縦断面図である。It is a vertical sectional view of the 1st Embodiment of this invention. 作動流体の脈動の様子を示す概略図である。It is the schematic which shows the state of the pulsation of a working fluid. 本発明の第2実施形態の縦断面図である。It is a vertical sectional view of the 2nd Embodiment of this invention. 本発明の第3実施形態の縦断面図である。It is a vertical sectional view of the 3rd Embodiment of this invention.

本発明の第1実施形態を図1及び図2に基づき説明する。先ず、本実施形態の構成について説明する。脈動減衰装置1は、流体圧回路、例えば、加圧流体の一例である作動流体を用いて機械装置を駆動する各種フルードパワーシステムの流体圧システム、の脈動を減衰するために該流体圧回路内に組み込まれており、内部流路2と、流体圧室3と、弾性体4と、側路5と、を備えている。本実施形態においては、脈動減衰装置1は、脈動減衰室6を更に備えている。尚、該作動流体は、水や油等の液体や空気等の気体の何れであってもよい。 The first embodiment of the present invention will be described with reference to FIGS. 1 and 2. First, the configuration of this embodiment will be described. The pulsation damping device 1 is provided in the fluid pressure circuit to dampen the pulsation of a fluid pressure circuit, for example, a fluid pressure system of various fluid power systems that drives a mechanical device using a working fluid which is an example of a pressurized fluid. The internal flow path 2, the fluid pressure chamber 3, the elastic body 4, and the side passage 5 are provided. In the present embodiment, the pulsation damping device 1 further includes a pulsation damping chamber 6. The working fluid may be either a liquid such as water or oil or a gas such as air.

内部流路2は、前記流体圧回路の一部を構成しており、例えば、容積ポンプ(図示せず)等の加圧手段によって加圧された作動流体が流通可能に設けられており、本実施形態においては、上流側流路2A、減衰室内流路2B及び下流側流路2Cから構成されている。 The internal flow path 2 constitutes a part of the fluid pressure circuit, and for example, a working fluid pressurized by a pressurizing means such as a positive displacement pump (not shown) is provided so as to be able to flow. In the embodiment, it is composed of an upstream side flow path 2A, a damping chamber flow path 2B, and a downstream side flow path 2C.

流体圧室3は、内部流路2(本実施形態においては、減衰室内流路2B)と対向する位置に設けられていると共に前記流体圧回路との間で作動流体が連通可能に設けられている。本実施形態においては、流体圧室3は、側路5を介して内部流路2との間で該作動流体を流通可能に設けられている。尚、流体圧室3と該流体圧回路との接続位置は、必要に応じて適宜選択可能であり、後述の様に下流側流路2Cでもよいし、内部流路2の他の箇所(上流側流路2Aや減衰室内流路2B)でもよく、又、脈動減衰装置1外、例えば、上流側流路2Aや下流側流路2Cと直接的に接続されている流路(図示せず)や、該作動流体を該作動流体が貯留されているタンク(図示せず)等へ戻すための戻し流路(図示せず)等、であってもよい。 The fluid pressure chamber 3 is provided at a position facing the internal flow path 2 (in the present embodiment, the damping chamber flow path 2B) and is provided so that the working fluid can communicate with the fluid pressure circuit. There is. In the present embodiment, the fluid pressure chamber 3 is provided so that the working fluid can flow between the fluid pressure chamber 3 and the internal flow path 2 via the side passage 5. The connection position between the fluid pressure chamber 3 and the fluid pressure circuit can be appropriately selected as needed, and may be the downstream flow path 2C as described later, or another location (upstream) of the internal flow path 2. It may be a side flow path 2A or a damping chamber flow path 2B), or a flow path directly connected to the outside of the pulsation damping device 1, for example, the upstream side flow path 2A or the downstream side flow path 2C (not shown). Alternatively, it may be a return flow path (not shown) for returning the working fluid to a tank (not shown) or the like in which the working fluid is stored.

それによって、静圧時には、流体圧室3内の流体圧が前記流体圧回路の流体圧と略同圧になる様になっている。又、該流体圧回路(内部流路2)内を該作動流体が流通している際には、流体圧室3内の流体圧は、該作動液体が側路5等を流れることで圧力損失が発生するため、圧力損失の分、流体圧は減衰するものの、該流体圧回路内の流体圧と同調する様になっている。 As a result, at the time of static pressure, the fluid pressure in the fluid pressure chamber 3 becomes substantially the same as the fluid pressure of the fluid pressure circuit. Further, when the working fluid is flowing in the fluid pressure circuit (internal flow path 2), the fluid pressure in the fluid pressure chamber 3 is pressure loss due to the working liquid flowing through the side passage 5 and the like. Is generated, so that the fluid pressure is attenuated by the amount of the pressure loss, but is synchronized with the fluid pressure in the fluid pressure circuit.

本実施形態においては、側路5は、内部流路2の弾性体4よりも下流側、即ち、下流側流路2Cに設けられており、前記流体圧回路内の微小な流体圧の変動が流体圧室3に伝わることを防止するための流路抵抗部を有している、本実施形態において、該流路抵抗部は、絞り管7として設けられており、絞り管7は、側路5の内部流路2側の端部に設けられている。尚、該流体抵抗部は、必要に応じて適宜設けられるものである。 In the present embodiment, the side passage 5 is provided on the downstream side of the elastic body 4 of the internal flow path 2, that is, on the downstream side flow path 2C, and minute fluctuations in fluid pressure in the fluid pressure circuit are caused. In the present embodiment, which has a flow path resistance portion for preventing transmission to the fluid pressure chamber 3, the flow path resistance portion is provided as a throttle pipe 7, and the throttle pipe 7 is a side path. 5 is provided at the end of the internal flow path 2 on the side. The fluid resistance portion is appropriately provided as needed.

この様にすることで、本実施形態においては、内部流路2内を該作動流体が流通している際に、流体圧室3内の流体圧は、脈動が減衰された下流側流路2Cと同調する様になっており、更に、絞り管7によって、流体圧室3内の流体圧への下流側流路2Cの微小な圧力変化の影響が可能な限り小さいものとなっている。 By doing so, in the present embodiment, when the working fluid is flowing in the internal flow path 2, the fluid pressure in the fluid pressure chamber 3 is the downstream side flow path 2C in which the pulsation is attenuated. Further, the influence of a minute pressure change in the downstream flow path 2C on the fluid pressure in the fluid pressure chamber 3 is made as small as possible by the throttle tube 7.

弾性体4は、内部流路2と流体圧室3の両方から流体圧を受圧可能となる様に、内部流路2と流体圧室3とを隔てており、その内部流路2側の受圧面積S(以下、流路側受圧面積Sという)が、流体圧室3側の受圧面積S(以下、流体圧室側受圧面積Sという)との間で面積差が設けられており、本実施形態においては、流路側受圧面積S>流体圧室側受圧面積Sとなる様に設けられている。尚、流路側受圧面積Sと流体圧室側受圧面積Sとの比率は、必要に応じて適宜選択可能である。 The elastic body 4 separates the internal flow path 2 and the fluid pressure chamber 3 so that the fluid pressure can be received from both the internal flow path 2 and the fluid pressure chamber 3, and the pressure receiving on the internal flow path 2 side thereof. area S 1 (hereinafter, the flow of the roadside receiving area S 1) is pressure-receiving area S 2 of the fluid pressure chamber 3 side (hereinafter, referred to as the fluid pressure chamber side pressure-receiving area S 2) differential area is provided between the In this embodiment, the pressure receiving area S 1 on the flow path side> the pressure receiving area S 2 on the fluid pressure chamber side is provided. The ratio of the flow path side pressure-receiving area S 1 and the fluid pressure chamber side pressure-receiving area S 2 are suitably selected as required.

脈動減衰室6は、内部流路2に流れる前記作動液体の流体圧の脈動を減衰させるために設けられており、流体圧室3及び減衰室内流路2Bが設けられている。又、脈動減衰室6内には、流体圧室3と内部流路2(本実施形態においては、減衰室内流路2B)とを隔てる様に弾性体4が嵌装されている。即ち、本実施形態においては、側路5は、脈動減衰室6よりも下流側に設けられていることとなる。 The pulsation damping chamber 6 is provided to damp the pulsation of the fluid pressure of the working liquid flowing in the internal flow path 2, and the fluid pressure chamber 3 and the damping chamber flow path 2B are provided. Further, in the pulsation damping chamber 6, an elastic body 4 is fitted so as to separate the fluid pressure chamber 3 and the internal flow path 2 (in this embodiment, the damping chamber flow path 2B). That is, in the present embodiment, the side road 5 is provided on the downstream side of the pulsation damping chamber 6.

本実施形態において、脈動減衰室6は、首が内部流路2とは逆側に位置する断面略瓶形状の空間として形成されており、径が絞られた該首の部分に流体圧室3が設けられている。これによって、流路側受圧面積S>流体圧室側受圧面積Sとなる様になっている。又、脈動減衰室6は、接続路8,9を介して減衰室内流路2Bが上流側流路2A及び下流側流路2Cと接続されている。 In the present embodiment, the pulsation damping chamber 6 is formed as a space having a substantially bottle-shaped cross section in which the neck is located on the opposite side of the internal flow path 2, and the fluid pressure chamber 3 is located in the neck portion where the diameter is narrowed. Is provided. As a result, the pressure receiving area S 1 on the flow path side> the pressure receiving area S 2 on the fluid pressure chamber side. Further, in the pulsation damping chamber 6, the damping chamber flow path 2B is connected to the upstream side flow path 2A and the downstream side flow path 2C via the connection paths 8 and 9.

次に、本実施形態における脈動減衰工程について説明する。 Next, the pulsation damping step in this embodiment will be described.

(1)はじめに、脈動減衰装置1は、その内部流路2及び流体圧室3が作動流体により充填された状態で静置されている。この際、内部流路2と流体圧室3とは、基準圧力Pと略同圧となっており、流路側受圧面積Sと流体圧室側受圧面積Sとの間に差がある分、弾性体4は、流体圧室3側に弾性変形して入り込んでいる。 (1) First, the pulsation damping device 1 is stationary with its internal flow path 2 and fluid pressure chamber 3 filled with a working fluid. At this time, the internal flow path 2 and the fluid pressure chamber 3 have substantially the same pressure as the reference pressure P 0, and there is a difference between the flow path side pressure receiving area S 1 and the fluid pressure chamber side pressure receiving area S 2. The elastic body 4 is elastically deformed and enters the fluid pressure chamber 3 side.

(2)前記加圧手段を駆動させると前記作動液体は加圧されると共に流動し、流体圧室3内の流体圧は、理論上、作動液体の基準圧力Pから側路5等を該作動流体が流動することで生じる圧力損失を減じた圧力と略同程度の圧力で保持されることとなり、圧力損失の分、弾性体4は、更に流体圧室3側に弾性変形して入り込んでいることとなる。 (2) When the pressurizing means is driven, the working liquid is pressurized and flows, and the fluid pressure in the fluid pressure chamber 3 theoretically changes from the reference pressure P0 of the working liquid to the side road 5 and the like. The pressure loss caused by the flow of the working fluid is held at a pressure approximately equal to the reduced pressure, and the elastic body 4 further elastically deforms and enters the fluid pressure chamber 3 side by the amount of the pressure loss. Will be there.

(3)前記加圧手段の駆動等の要因で、作動流体の流体圧は、上側脈動圧力Pと下側脈動圧力Pとの間で脈動することとなる(図2中のHpを参照)。作動流体の流体圧が、基準圧力Pより上側脈動圧力Pへと向かって上昇すると、内部流路2(本実施形態においては減衰室内流路2B)内の流体圧が流体圧室3内の流体圧よりも高くなるため、弾性体4は、更に流体圧室3側に変形して入り込む。この際、作動流体の流体圧の一部は、弾性体4に弾性エネルギに変換され貯蔵され、作動流体の流体圧は、基準圧力Pに近づくこととなる。 (3) The fluid pressure of the working fluid pulsates between the upper pulsating pressure P 1 and the lower pulsating pressure P 2 due to factors such as the driving of the pressurizing means (Hp 1 in FIG. 2). reference). When the fluid pressure of the working fluid rises from the reference pressure P 0 toward the upper pulsating pressure P 1 , the fluid pressure in the internal flow path 2 (in the present embodiment, the damping chamber flow path 2B) becomes in the fluid pressure chamber 3. Since the pressure is higher than the fluid pressure of the above, the elastic body 4 is further deformed and enters the fluid pressure chamber 3. At this time, part of the fluid pressure of the working fluid is converted into elastic energy in the elastic body 4 storage, the fluid pressure of the working fluid, so that the closer to the reference pressure P 0.

逆に、作動流体の流体圧が、基準圧力Pより下側脈動圧力Pへと向かって降下すると、内部流路2(本実施形態においては減衰室内流路2B)内の流体圧が流体圧室3内の流体圧よりも低くなるため、弾性体4には元の形に復元しようとする復元力が働き、弾性体4に貯蔵されていた弾性エネルギは、流体圧へと再変換され、作動流体の流体圧は、基準圧力Pに近づくこととなる。これが繰り返されることで、作動流体の流体圧は、基準圧力P近傍で保持され、脈動が減衰されることとなる(図2中のHpを参照)。 On the contrary, when the fluid pressure of the working fluid drops from the reference pressure P 0 toward the lower pulsating pressure P 2 , the fluid pressure in the internal flow path 2 (in the present embodiment, the dampening chamber flow path 2B) becomes fluid. Since the pressure becomes lower than the fluid pressure in the pressure chamber 3, the elastic body 4 exerts a restoring force to restore the original shape, and the elastic energy stored in the elastic body 4 is reconverted into the fluid pressure. , The fluid pressure of the working fluid approaches the reference pressure P 0. By repeating this, the fluid pressure of the working fluid is maintained near the reference pressure P 0 , and the pulsation is attenuated ( see Hp 2 in FIG. 2).

この際、流路側受圧面積Sと流体圧室側受圧面積Sとの間に面積差が設けられていることで、内部流路2内の微小な圧力変化に対して、弾性体4が迅速に応答することが可能となっている。 At this time, since the area difference is provided between the flow path side pressure receiving area S 1 and the fluid pressure chamber side pressure receiving area S 2 , the elastic body 4 responds to a minute pressure change in the internal flow path 2. It is possible to respond quickly.

従って、本実施形態においては、従来の脈動減衰装置の流路と大気圧開放部とは異なり、求められる作動流体の流体圧、即ち、基準圧力Pが高くなったとしても、理論上、静圧時における内部流路2と流体圧室3との間で流体圧の差は生じないため、基準圧力Pの上昇に伴う初期の弾性体4の弾性変形への影響を小さくすることが可能である。このため、脈動吸収に利用できる弾性体の余剰弾性エネルギ容量をより大きくすることが可能となる。 Therefore, in the present embodiment, unlike the flow path and the atmospheric pressure opening portion of the conventional pulsation damping device, even if the required fluid pressure of the working fluid, that is, the reference pressure P 0 becomes high, it is theoretically static. Since there is no difference in fluid pressure between the internal flow path 2 and the fluid pressure chamber 3 at the time of pressure, it is possible to reduce the influence on the elastic deformation of the initial elastic body 4 due to the rise of the reference pressure P 0. Is. Therefore, it is possible to increase the excess elastic energy capacity of the elastic body that can be used for pulsation absorption.

本発明の第2実施形態を図3に基づき説明する。本実施形態と第1実施形態との相違は、流体圧室3の代わりに流体圧室10を設けたことである。第1実施形態と同符号で示した構成は、同実施形態と同様であるので説明を省略する。 A second embodiment of the present invention will be described with reference to FIG. The difference between the present embodiment and the first embodiment is that the fluid pressure chamber 10 is provided instead of the fluid pressure chamber 3. The configuration shown by the same reference numerals as those of the first embodiment is the same as that of the first embodiment, and thus the description thereof will be omitted.

本実施形態の流体圧室10は、前記流体圧回路外に設けられた加圧流体が流通する外部流路D、例えば、加圧された水が流通する上水道や加圧された空気等の気体が流通する工場内のエアライン、との間で、該加圧流体を連通可能に設けられている。本実施形態において、流体圧室10は、側路11を介して外部流路Dと該加圧流体を連通可能に設けられている。尚、側路11は、第1実施形態の側路5と同様の構成を採用可能であり、絞り管7の様な流体抵抗部を有するものであってもよい。 The fluid pressure chamber 10 of the present embodiment is provided outside the fluid pressure circuit and has an external flow path D through which a pressurized fluid flows, for example, a gas such as a water supply or a pressurized air through which pressurized water flows. The pressurized fluid is provided so as to be able to communicate with the airline in the factory where the pressurized fluid is distributed. In the present embodiment, the fluid pressure chamber 10 is provided so that the external flow path D and the pressurized fluid can communicate with each other via the side passage 11. The side road 11 can adopt the same configuration as the side road 5 of the first embodiment, and may have a fluid resistance portion such as the throttle pipe 7.

本実施形態においては、流体圧室10内の流体圧は、前記加圧流体が側路11等を通る際等の圧力損失があるものの外部流路D内の流体圧と同程度となっている。外部流路D内の流体圧は、流通する流体が加圧されている分、大気圧と比較して高くなっているため、従来の脈動減衰装置と比較して内部流路2と流体圧室10との間で流体圧の差が小さくなることとなり、初期の弾性体4の弾性変形を抑えることが可能である。このため、脈動吸収に利用できる弾性体の余剰弾性エネルギ容量をより大きくすることが可能となる。 In the present embodiment, the fluid pressure in the fluid pressure chamber 10 is about the same as the fluid pressure in the external flow path D, although there is a pressure loss when the pressurized fluid passes through the side passage 11 or the like. .. Since the fluid pressure in the external flow path D is higher than that of the atmospheric pressure due to the pressure of the flowing fluid, the internal flow path 2 and the fluid pressure chamber are higher than those of the conventional pulsation damping device. The difference in fluid pressure from that of 10 becomes small, and it is possible to suppress the elastic deformation of the initial elastic body 4. Therefore, it is possible to increase the excess elastic energy capacity of the elastic body that can be used for pulsation absorption.

本発明の第3実施形態について、図4に基づき説明する。本実施形態と第1実施形態との相違は、流体圧室3の代わりに流体圧室12を設けたことである。第1実施形態と同符号で示した構成は、同実施形態と同様であるので説明を省略する。 A third embodiment of the present invention will be described with reference to FIG. The difference between the present embodiment and the first embodiment is that the fluid pressure chamber 12 is provided instead of the fluid pressure chamber 3. The configuration shown by the same reference numerals as those of the first embodiment is the same as that of the first embodiment, and thus the description thereof will be omitted.

本実施形態において、脈動減衰装置1は、貯留部13を更に備えている。本実施形態の流体圧室12は、貯留部13との間で貯留部13に貯留された作動液体Fが連通可能に設けられている。貯留部13には、流体圧室12内の作動液体Fの液位Lよりも液位Lが高くなる様に作動液体Fが貯留されている。 In the present embodiment, the pulsation damping device 1 further includes a storage unit 13. The fluid pressure chamber 12 of the present embodiment is provided so that the working liquid F stored in the storage unit 13 can communicate with the storage unit 13. The working liquid F is stored in the storage unit 13 so that the liquid level L 2 is higher than the liquid level L 1 of the working liquid F in the fluid pressure chamber 12.

これによって、本実施形態においては、貯留部13と流体圧室12との間の作動液体Fの液位L,Lの差ΔLの分、流体圧室12内の作動液体Fの液圧は、大気圧よりも高くなっており、そのため、従来の脈動減衰装置と比較して内部流路2と流体圧室12との間で流体圧の差が小さくなるため、初期の弾性体4の弾性変形を抑えることが可能である。このため、脈動吸収に利用できる弾性体の余剰弾性エネルギ容量をより大きくすることが可能となる。 As a result, in the present embodiment, the hydraulic pressure of the working liquid F in the fluid pressure chamber 12 is equal to the difference ΔL between the liquid levels L 1 and L 2 of the working liquid F between the storage unit 13 and the fluid pressure chamber 12. Is higher than the atmospheric pressure, and therefore, the difference in fluid pressure between the internal flow path 2 and the fluid pressure chamber 12 is smaller than that of the conventional pulsation damping device. It is possible to suppress elastic deformation. Therefore, it is possible to increase the excess elastic energy capacity of the elastic body that can be used for pulsation absorption.

本発明を、上記実施形態に基づき説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で適宜変更可能である。 Although the present invention has been described based on the above-described embodiment, the present invention is not limited to the above-described embodiment and can be appropriately modified without changing the gist of the present invention.

(1)脈動減衰室6を設けずに、内部流路2内に弾性体4を配設してもよい。又、内部流路2の形状は適宜選択可能であり、上流側流路2A、減衰室内流路2B及び下流側流路2Cに分けずに一の直管として設けることも可能である。 (1) The elastic body 4 may be arranged in the internal flow path 2 without providing the pulsation damping chamber 6. Further, the shape of the internal flow path 2 can be appropriately selected, and the internal flow path 2A, the attenuation chamber flow path 2B, and the downstream side flow path 2C can be provided as one straight pipe without being divided.

(2)流路側受圧面積S<流体圧室側受圧面積Sにすることも可能である。この場合、静圧時における流体圧室3,10内の流体圧を内部流路2内の流体圧よりも小さくすることも可能である。又、流体圧室3,10と前記流体圧回路又は外部流路Dとの間に減圧手段を設けることも可能である。 (2) It is also possible to set the flow path side pressure receiving area S 1 <fluid pressure chamber side pressure receiving area S 2. In this case, the fluid pressure in the fluid pressure chambers 3 and 10 at the time of static pressure can be made smaller than the fluid pressure in the internal flow path 2. It is also possible to provide a depressurizing means between the fluid pressure chambers 3 and 10 and the fluid pressure circuit or the external flow path D.

(3)流路側受圧面積Sと流体圧室側受圧面積Sとの間に面積差を設ける手段は、適宜選択可能であり、上記実施形態の様に内部流路2や流体圧室3,10の形状を絞ってもよいが、弾性体4の形状を、例えば、円錐台の様に上底面と下底面の形状や面積を変えてもよい。 (3) A means for providing an area difference between the flow path side pressure receiving area S 1 and the fluid pressure chamber side pressure receiving area S 2 can be appropriately selected, and the internal flow path 2 and the fluid pressure chamber 3 as in the above embodiment can be appropriately selected. , 10 may be narrowed down, but the shape of the elastic body 4 may be changed in shape and area of the upper bottom surface and the lower bottom surface, for example, like a truncated cone.

1 脈動減衰装置 2 内部流路 2A 上流側流路
2B 減衰室内流路 2C 下流側流路 3 流体圧室
4 弾性体 5 側路 6 脈動減衰室
7 絞り管 8 接続路 9 接続路
10 流体圧室 11 側路 12 流体圧室
13 貯留部 D 外部流路 F 作動液体
Hp 流体圧 L 液位 P 圧力
S 受圧面積
1 Pulsation damping device 2 Internal flow path 2A Upstream side flow path
2B Damping chamber flow path 2C Downstream side flow path 3 Fluid pressure chamber 4 Elastic body 5 Side road 6 Pulsation damping chamber 7 Squeezing pipe 8 Connecting path 9 Connecting path 10 Fluid pressure chamber 11 Side road 12 Fluid pressure chamber 13 Storage section D External flow Road F Working liquid Hp Fluid pressure L Liquid level P Pressure S Pressure receiving area

Claims (10)

流体圧回路の脈動減衰装置であって、
該流体圧回路の一部を構成する内部流路と、
該内部流路と対向する位置に設けられた流体圧室と、
該内部流路と該流体圧室とを隔てる様に設けられた弾性体と、を備え、
該流体圧室は、該流体圧回路との間で加圧流体が連通可能に設けられ、
該弾性体は、該内部流路及び該流体圧室の各々から流体圧を受圧可能となっており、その流路側受圧面積と流路側受圧面積との間には面積差が設けられていることを特徴とする脈動減衰装置。
A pulsation damping device for fluid pressure circuits
An internal flow path that forms part of the fluid pressure circuit,
A fluid pressure chamber provided at a position facing the internal flow path,
An elastic body provided so as to separate the internal flow path and the fluid pressure chamber is provided.
The fluid pressure chamber is provided so that the pressurized fluid can communicate with the fluid pressure circuit.
The elastic body can receive fluid pressure from each of the internal flow path and the fluid pressure chamber, and an area difference is provided between the flow path side pressure receiving area and the flow path side pressure receiving area. A pulsation damping device characterized by.
流体圧回路の脈動減衰装置であって、
該流体圧回路の一部を構成する内部流路と、
該内部流路と対向する位置に設けられた流体圧室と、
該内部流路と該流体圧室とを隔てる様に設けられた弾性体と、を備え、
該流体圧室は、加圧流体が流通する外部流路との間で該加圧流体が連通可能に設けられ、
該弾性体は、該内部流路及び該流体圧室の各々から流体圧を受圧可能となっており、その流路側受圧面積と流路側受圧面積との間には面積差が設けられていることを特徴とする脈動減衰装置。
A pulsation damping device for fluid pressure circuits
An internal flow path that forms part of the fluid pressure circuit,
A fluid pressure chamber provided at a position facing the internal flow path,
An elastic body provided so as to separate the internal flow path and the fluid pressure chamber is provided.
The fluid pressure chamber is provided so that the pressurized fluid can communicate with an external flow path through which the pressurized fluid flows.
The elastic body can receive fluid pressure from each of the internal flow path and the fluid pressure chamber, and an area difference is provided between the flow path side pressure receiving area and the flow path side pressure receiving area. A pulsation damping device characterized by.
流体圧回路の脈動減衰装置であって、
該流体圧回路の一部を構成する内部流路と、
該内部流路と対向する位置に設けられた流体圧室と、
該内部流路と該流体圧室とを隔てる様に設けられた弾性体と、
作動液体が貯留可能に設けられた貯留部と、を備え、
該流体圧室は、該貯留部との間で該作動液体が連通可能に設けられており、
該貯留部は、該貯留部内の該作動液体の液位が該流体圧室内の該作動液体の液位より高くなる様に該作動液体が貯留されており、
該弾性体は、該内部流路及び該流体圧室の各々から流体圧を受圧可能となっており、その流路側受圧面積と流路側受圧面積との間には面積差が設けられていることを特徴とする脈動減衰装置。
A pulsation damping device for fluid pressure circuits
An internal flow path that forms part of the fluid pressure circuit,
A fluid pressure chamber provided at a position facing the internal flow path,
An elastic body provided so as to separate the internal flow path and the fluid pressure chamber,
It is equipped with a storage unit provided so that the working liquid can be stored.
The fluid pressure chamber is provided so that the working liquid can communicate with the storage portion.
The storage unit stores the working liquid so that the liquid level of the working liquid in the storage unit is higher than the liquid level of the working liquid in the fluid pressure chamber.
The elastic body can receive fluid pressure from each of the internal flow path and the fluid pressure chamber, and an area difference is provided between the flow path side pressure receiving area and the flow path side pressure receiving area. A pulsation damping device characterized by.
側路を更に備え、
前記流体圧室は、該側路を介して前記流体圧回路又は前記外部流路との間で前記作動流体又は前記加圧流体が連通可能に設けられていることを特徴とする請求項1又は2に記載の脈動減衰装置。
With more side roads
The fluid pressure chamber is provided with the working fluid or the pressurized fluid so as to communicate with the fluid pressure circuit or the external flow path via the side path. 2. The pulsation damping device according to 2.
前記側路は、前記流体圧回路の前記弾性体よりも下流側に設けられていることを特徴とする請求項1を引用する請求項4に記載の脈動減衰装置。 The pulsation damping device according to claim 4, wherein the side path is provided on the downstream side of the elastic body of the fluid pressure circuit. 前記側路は、流体抵抗部を有していることを特徴とする請求項4又は5に記載の脈動減衰装置。 The pulsation damping device according to claim 4 or 5, wherein the side road has a fluid resistance portion. 前記流体抵抗部は、絞り管として設けられていることを特徴とする請求項6に記載の脈動減衰装置。 The pulsation damping device according to claim 6, wherein the fluid resistance portion is provided as a throttle tube. 前記流路側受圧面積は、前記流路側受圧面積よりも大きくなっていることを特徴とする請求項1乃至7の何れかに記載の脈動減衰装置。 The pulsation damping device according to any one of claims 1 to 7, wherein the pressure receiving area on the flow path side is larger than the pressure receiving area on the flow path side. 脈動減衰室を更に備え、
前記流体圧室は、該脈動減衰室に設けられ、
前記弾性体は、該脈動減衰室内に嵌装されていることを特徴とする請求項1乃至8の何れかに記載の脈動減衰装置。
Further equipped with a pulsation damping chamber,
The fluid pressure chamber is provided in the pulsation damping chamber.
The pulsation damping device according to any one of claims 1 to 8, wherein the elastic body is fitted in the pulsation damping chamber.
前記内部流路は、少なくとも上流側流路と、減衰室内流路と、下流側流路と、から構成されており、
前記側路は、該下流側流路に設けられ、
該減衰室内流路は、前記脈動減衰室内に設けられており、
前記弾性体は、前記流体圧室と該減衰室内流路とを隔てる様に該脈動減衰室内に嵌装されていることを特徴とする請求項5を引用する請求項9に記載の脈動減衰装置。
The internal flow path is composed of at least an upstream side flow path, a damping chamber flow path, and a downstream side flow path.
The side road is provided in the downstream side flow path, and is provided.
The damping chamber flow path is provided in the pulsation damping chamber.
The pulsating damping device according to claim 9, wherein the elastic body is fitted in the pulsating damping chamber so as to separate the fluid pressure chamber from the damping chamber flow path. ..
JP2020077073A 2020-04-24 2020-04-24 Pulsation attenuation device Pending JP2021173327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020077073A JP2021173327A (en) 2020-04-24 2020-04-24 Pulsation attenuation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020077073A JP2021173327A (en) 2020-04-24 2020-04-24 Pulsation attenuation device

Publications (1)

Publication Number Publication Date
JP2021173327A true JP2021173327A (en) 2021-11-01

Family

ID=78281426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077073A Pending JP2021173327A (en) 2020-04-24 2020-04-24 Pulsation attenuation device

Country Status (1)

Country Link
JP (1) JP2021173327A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576182A (en) * 1980-06-16 1982-01-13 Mitsubishi Electric Corp Pulsation damping device of liquid system
JPS5852428U (en) * 1981-09-29 1983-04-09 バブコツク日立株式会社 Mixed coal heavy oil combustion equipment
JPS6111091U (en) * 1984-06-25 1986-01-22 浦 清純 air chamber
JPS63303294A (en) * 1987-06-04 1988-12-09 日機装株式会社 Air chamber for absorbing pulsation
JPH0861524A (en) * 1994-04-26 1996-03-08 Luethin Heinz Reducing device for pressure pulsation in hydraulic conduit
JPH11230103A (en) * 1998-02-17 1999-08-27 Hitachi Constr Mach Co Ltd Piston accumulator type pulsation reducing device
JP2003534500A (en) * 1999-09-06 2003-11-18 ハインツ リューティン アクチエンゲゼルシャフト Apparatus for damping pressure pulsations in hydraulic conduits
JP2006002847A (en) * 2004-06-17 2006-01-05 Air Liquide Japan Ltd Accumulator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576182A (en) * 1980-06-16 1982-01-13 Mitsubishi Electric Corp Pulsation damping device of liquid system
JPS5852428U (en) * 1981-09-29 1983-04-09 バブコツク日立株式会社 Mixed coal heavy oil combustion equipment
JPS6111091U (en) * 1984-06-25 1986-01-22 浦 清純 air chamber
JPS63303294A (en) * 1987-06-04 1988-12-09 日機装株式会社 Air chamber for absorbing pulsation
JPH0861524A (en) * 1994-04-26 1996-03-08 Luethin Heinz Reducing device for pressure pulsation in hydraulic conduit
JPH11230103A (en) * 1998-02-17 1999-08-27 Hitachi Constr Mach Co Ltd Piston accumulator type pulsation reducing device
JP2003534500A (en) * 1999-09-06 2003-11-18 ハインツ リューティン アクチエンゲゼルシャフト Apparatus for damping pressure pulsations in hydraulic conduits
JP2006002847A (en) * 2004-06-17 2006-01-05 Air Liquide Japan Ltd Accumulator

Similar Documents

Publication Publication Date Title
NO850648L (en) VIBRASJONSISOLERINGS SYSTEM
AU2018363539B2 (en) Pulsation damping system
JP2011158019A (en) Shock absorber
US9360133B2 (en) Cushioned check valve
US9566856B2 (en) Fluid-filled vibration damping device
JP5097732B2 (en) Hydraulic valve for hydraulic damper and hydraulic damper
US20090194921A1 (en) High force civil engineering damper
JP2019516919A (en) Device for reducing pressure surges
AU2023204415A1 (en) Pulsation Damping System
JP2021173327A (en) Pulsation attenuation device
US4279268A (en) Multi-level pressure regulating valve
JP5116451B2 (en) Hydraulic shock absorber
JP2008082382A (en) Vibration transmission restraining device
JP2007192266A (en) Fluid pressure damper
US9599106B2 (en) Apparatus employing pressure transients for transporting fluids
JP2013194820A (en) Damper in which viscoelastic fluid is sealed
CN216895526U (en) Vibration damper and vibration damping system
KR20160141730A (en) Damping device and slip-controllable vehicle brake system
JP2018071769A (en) Valve block
CN209026088U (en) Hydro-pneumatic spring device, damping means, suspension frame structure and vehicle
ITUD990181A1 (en) PASSIVE PUMPING CONTROL PROCEDURE FOR COMPRESSION SYSTEMS AND RELATED DEVICE
KR0164645B1 (en) Water hammer arrestor
JP4856024B2 (en) Air spring
JP6657688B2 (en) Pressure regulating valve and oil damper
JP2005127478A (en) Hydraulic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240507