JP2021172730A - Heat storage material - Google Patents

Heat storage material Download PDF

Info

Publication number
JP2021172730A
JP2021172730A JP2020077327A JP2020077327A JP2021172730A JP 2021172730 A JP2021172730 A JP 2021172730A JP 2020077327 A JP2020077327 A JP 2020077327A JP 2020077327 A JP2020077327 A JP 2020077327A JP 2021172730 A JP2021172730 A JP 2021172730A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
carbon chain
ion
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020077327A
Other languages
Japanese (ja)
Inventor
桂樹 外崎
Keiki Sotozaki
和佳 多々良
Kazuyoshi Tatara
雄悟 西山
Yugo Nishiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2020077327A priority Critical patent/JP2021172730A/en
Publication of JP2021172730A publication Critical patent/JP2021172730A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a heat storage material containing an organic ion-pair compound and having a high heat storage density.SOLUTION: The heat storage material contains a nitrogen-containing ion-pair compound represented by the following formula (1). R1 represents a C1-12 carbon chain CCA, -H, -OH, -NH2, or a substituted carbon chain SCA obtained by substituting one or more H atoms constituting the carbon chain CCA with one or more selected from -OH, -OMe and -NH2; R2-R4 each represent a C1-12 carbon chain CCB, -OH, -NH2, or a substituted carbon chain SCB obtained by substituting one or more H atoms constituting the carbon chain CCB with one or more selected from -OH, -OMe and -NH2; and X- represents Br-, Cl- or the like.SELECTED DRAWING: Figure 1

Description

本発明は、蓄熱材に関する。 The present invention relates to a heat storage material.

従来、材料の相変化に伴う吸発熱現象を用いた潜熱蓄熱材が知られている。なお、以下、潜熱蓄熱材を、単に「蓄熱材」という。 Conventionally, a latent heat storage material using a heat absorption phenomenon accompanying a phase change of a material is known. Hereinafter, the latent heat storage material is simply referred to as a "heat storage material".

蓄熱材は、結晶性固体の加熱時に融解して等方性液体になる温度である融点Tと、等方性液体の冷却時に等方性液体が凝固する温度である凝固点Tと、を有する。なお、蓄熱材は、その種類によっては、冷却時に凝固点Tよりも低い温度で凝固する過冷却現象を生じる。 The heat storage material has a melting point T m , which is the temperature at which the crystalline solid melts when heated to become an isotropic liquid, and a freezing point T s , which is the temperature at which the isotropic liquid solidifies when the isotropic liquid is cooled. Have. Incidentally, the heat storage material, depending on the type, resulting in supercooling phenomenon solidifies at a temperature lower than the freezing point T s during cooling.

蓄熱材は、蓄熱材が使用される対象の温度領域に、融点Tが存在することが好ましい。例えば、蓄熱材が自動車排熱又は工場排熱等を利用する場合、これらの排熱の有効利用の観点から40〜200℃に融点Tが存在する蓄熱材が求められている。また、蓄熱材は、蓄熱材の小型化の観点から、蓄熱密度(蓄熱量)が大きいことが好ましい。 The heat storage material preferably has a melting point T m in the temperature range of the target in which the heat storage material is used. For example, when the heat storage material utilizes automobile waste heat, factory waste heat, or the like, a heat storage material having a melting point T m at 40 to 200 ° C. is required from the viewpoint of effective utilization of these waste heats. Further, the heat storage material preferably has a high heat storage density (heat storage amount) from the viewpoint of miniaturization of the heat storage material.

さらに、蓄熱材においては、過冷却が生じないか又はその度合いが小さいと、温度変化に対する相変化が速やかに生じるため好ましい。 Further, in the heat storage material, if supercooling does not occur or the degree thereof is small, a phase change with respect to a temperature change occurs rapidly, which is preferable.

従来、蓄熱材の過冷却の度合を小さくする技術が提案されている。特許文献1には、特定のアンモニウム塩(A)を含有する蓄熱材が開示されている。 Conventionally, a technique for reducing the degree of supercooling of a heat storage material has been proposed. Patent Document 1 discloses a heat storage material containing a specific ammonium salt (A).

特開2008−120871号公報Japanese Unexamined Patent Publication No. 2008-120871

しかしながら、特許文献1の蓄熱材は、シェルを除いた、蓄熱材主成分である有機イオン対化合物自体の蓄熱密度が低いという問題があった。 However, the heat storage material of Patent Document 1 has a problem that the heat storage density of the organic ion pair compound itself, which is the main component of the heat storage material, excluding the shell is low.

本発明は、このような従来技術が有する課題に鑑みてなされたものである。本発明の目的は、有機イオン対化合物を含みかつ蓄熱密度が高い蓄熱材を提供することにある。 The present invention has been made in view of the problems of the prior art. An object of the present invention is to provide a heat storage material containing an organic ion pair compound and having a high heat storage density.

本発明の態様に係る蓄熱材は、下記式(1)で表され、芳香族化合物でない窒素含有イオン対化合物を含む。

Figure 2021172730
(式中、
は、炭素数1〜12の炭素鎖CC、−H、−OH、−NH、又は、前記炭素鎖CCを構成するHの1個以上が−OH、−OMe及び−NHから選ばれる1種以上で置換された置換炭素鎖SCであり;
〜Rは、炭素数1〜12の炭素鎖CC、−OH、−NH、又は、前記炭素鎖CCを構成するHの1個以上が−OH、−OMe及び−NHから選ばれる1種以上で置換された置換炭素鎖SCであり;
は、Br、Cl、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロリン酸イオン、トリフルオロメタンスルホン酸イオン、メタンスルホン酸イオン、テトラフェニルホウ酸イオン、又はテトラフルオロホウ酸イオンである。) The heat storage material according to the aspect of the present invention is represented by the following formula (1) and contains a nitrogen-containing ion pair compound that is not an aromatic compound.
Figure 2021172730
(During the ceremony,
In R 1 , one or more of carbon chains CC A , -H, -OH, -NH 2 having 1 to 12 carbon atoms, or H constituting the carbon chain CC A are -OH, -OMe and -NH 2 Substituent carbon chain SC A substituted with one or more selected from;
R 2 to R 4 is a carbon chain CC B of 1 to 12 carbon atoms, -OH, -NH 2, or, one or more -OH of H constituting the carbon chain CC B, -OMe and -NH 2 a substituted carbon chain SC B substituted with one or more selected from;
X is Br , Cl , bis (trifluoromethanesulfonyl) imide ion, hexafluorophosphate ion, trifluoromethanesulfonic acid ion, methanesulfonic acid ion, tetraphenylborate ion, or tetrafluoroborate ion. )

前記R〜Rがそれぞれ直鎖状であることが好ましい。 It is preferable that R 1 to R 4 are linear, respectively.

前記R〜Rのうち1個以上が−OHを含むことが好ましい。 It is preferable that at least one of R 1 to R 4 contains -OH.

前記窒素含有イオン対化合物は、下記式(1La)で表されることが好ましい。

Figure 2021172730
The nitrogen-containing ion pair compound is preferably represented by the following formula (1La).
Figure 2021172730

蓄熱材は、過冷却抑制剤を含まないことが好ましい。 The heat storage material preferably does not contain a supercooling inhibitor.

本発明によれば、有機イオン対化合物を含みかつ蓄熱密度が高い蓄熱材を提供することができる。 According to the present invention, it is possible to provide a heat storage material containing an organic ion pair compound and having a high heat storage density.

融解熱のピークPと凝固熱のピークPとを含むDSC(示差走査熱量測定)曲線の一例である。This is an example of a DSC (differential scanning calorimetry) curve including a peak P m of heat of fusion and a peak P s of heat of solidification.

以下、図面を用いて本発明の実施形態に係る蓄熱材について詳細に説明する。 Hereinafter, the heat storage material according to the embodiment of the present invention will be described in detail with reference to the drawings.

[蓄熱材]
本実施形態に係る蓄熱材は、下記式(1)で表され、芳香族化合物でない窒素含有イオン対化合物を含む。
[Heat storage material]
The heat storage material according to the present embodiment is represented by the following formula (1) and contains a nitrogen-containing ion pair compound that is not an aromatic compound.

Figure 2021172730
(式中、
は、炭素数1〜12の炭素鎖CC、−H、−OH、−NH、又は、前記炭素鎖CCを構成するHの1個以上が−OH、−OMe及び−NHから選ばれる1種以上で置換された置換炭素鎖SCであり;
〜Rは、炭素数1〜12の炭素鎖CC、−OH、−NH、又は、前記炭素鎖CCを構成するHの1個以上が−OH、−OMe及び−NHから選ばれる1種以上で置換された置換炭素鎖SCであり;
は、Br、Cl、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロリン酸イオン、トリフルオロメタンスルホン酸イオン、メタンスルホン酸イオン、テトラフェニルホウ酸イオン、又はテトラフルオロホウ酸イオンである。)
Figure 2021172730
(During the ceremony,
In R 1 , one or more of carbon chains CC A , -H, -OH, -NH 2 having 1 to 12 carbon atoms, or H constituting the carbon chain CC A are -OH, -OMe and -NH 2 Substituent carbon chain SC A substituted with one or more selected from;
R 2 to R 4 is a carbon chain CC B of 1 to 12 carbon atoms, -OH, -NH 2, or, one or more -OH of H constituting the carbon chain CC B, -OMe and -NH 2 a substituted carbon chain SC B substituted with one or more selected from;
X is Br , Cl , bis (trifluoromethanesulfonyl) imide ion, hexafluorophosphate ion, trifluoromethanesulfonic acid ion, methanesulfonic acid ion, tetraphenylborate ion, or tetrafluoroborate ion. )

式(1)で表される窒素含有イオン対化合物としては、直鎖結合窒素含有イオン対化合物が用いられる。ここで、直鎖結合窒素含有イオン対化合物とは、R〜Rがそれぞれ直鎖状である直鎖結合窒素含有イオン対化合物を意味する。式(1)で表される窒素含有イオン対化合物のR〜Rがそれぞれ直鎖状であると、蓄熱材の蓄熱密度が高くなりやすいため好ましい。 As the nitrogen-containing ion pair compound represented by the formula (1), a linearly bound nitrogen-containing ion pair compound is used. Here, the linearly bound nitrogen-containing ion pair compound means a linearly bound nitrogen-containing ion pair compound in which R 1 to R 4 are linear, respectively. It is preferable that R 1 to R 4 of the nitrogen-containing ion pair compound represented by the formula (1) are linear, because the heat storage density of the heat storage material tends to be high.

式(1)で表される窒素含有イオン対化合物は、R〜Rのうち1個以上が−OHを含むと、蓄熱材の蓄熱密度が高くなりやすいため好ましい。また、式(1)で表される窒素含有イオン対化合物中の−OH量が多いほど、蓄熱材の蓄熱密度がより高くなりやすいためより好ましい。 The nitrogen-containing ion pair compound represented by the formula (1) is preferable when one or more of R 1 to R 4 contains -OH because the heat storage density of the heat storage material tends to be high. Further, the larger the amount of −OH in the nitrogen-containing ion pair compound represented by the formula (1), the higher the heat storage density of the heat storage material is likely to be, which is more preferable.

(直鎖結合窒素含有イオン対化合物)
直鎖結合窒素含有イオン対化合物としては、例えば、以下に示すものが用いられる。
(Linear-bonded nitrogen-containing ion pair compound)
As the linearly bound nitrogen-containing ion pair compound, for example, those shown below are used.

Figure 2021172730
テトラ(デシル)アンモニウムブロミド
Figure 2021172730
Tetra (decyl) ammonium bromide

(A6)で表される物質は、融点での蓄熱密度が100J/gを超え、過冷却挙動がない点で好ましい。 The substance represented by (A6) is preferable in that the heat storage density at the melting point exceeds 100 J / g and there is no supercooling behavior.

Figure 2021172730
テトラペンチルアンモニウムブロミド
Figure 2021172730
Tetrapentyl ammonium bromide

(A13)で表される物質は、融点での蓄熱密度が100J/gを超え、過冷却挙動がない点で好ましい。 The substance represented by (A13) is preferable in that the heat storage density at the melting point exceeds 100 J / g and there is no supercooling behavior.

Figure 2021172730
臭化テトラエタノールアンモニウム
Figure 2021172730
Tetraethanol ammonium bromide

(A15)で表される物質は、融点での蓄熱密度が100J/gを超え、過冷却挙動がない点で好ましい。 The substance represented by (A15) is preferable in that the heat storage density at the melting point exceeds 100 J / g and there is no supercooling behavior.

上記窒素含有イオン対化合物は、下記式(1La)で表されると、融点での蓄熱密度が100J/gを超えて最も高く、過冷却挙動がないため好ましい。なお、下記式(1La)で表される物質は、上記式(A15)で表される物質と同じである。

Figure 2021172730
The nitrogen-containing ion pair compound is preferably represented by the following formula (1La) because it has the highest heat storage density at the melting point exceeding 100 J / g and does not have supercooling behavior. The substance represented by the following formula (1La) is the same as the substance represented by the above formula (A15).
Figure 2021172730

窒素含有イオン対化合物(A1)、(A3)、(A4)、(A6)、(A7)、(A9)〜(A17)、(A19)、及び(A22)は、過冷却現象が生じにくい。このため、これらの窒素含有イオン対化合物は、過冷却抑制剤を含まないことが可能である。 The supercooling phenomenon is unlikely to occur in the nitrogen-containing ion pair compounds (A1), (A3), (A4), (A6), (A7), (A9) to (A17), (A19), and (A22). Therefore, these nitrogen-containing ion pair compounds can be free of supercooling inhibitors.

(特性)
本実施形態に係る蓄熱材は、融点Tを40〜200℃の範囲内にすることができる。蓄熱材の融点Tが40〜200℃の範囲内にあると、自動車排熱又は工場排熱等の利用効率がよいため好ましい。
(Characteristic)
Heat storage material according to the present embodiment, it is possible to make the melting point T m in the range of 40 to 200 ° C.. When the melting point T m of a heat storage material is in the range of 40 to 200 ° C., preferably for a good efficiency of use of an automobile exhaust heat or factory waste heat.

本実施形態に係る蓄熱材は、融点Tでの蓄熱密度Hを100J/g以上にすることができる。蓄熱材の融点Tでの蓄熱密度Hが100J/g以上であると、蓄熱材の効果の持続性を高め、また蓄熱材を用いた機器の小型化等にも寄与するため好ましい。 The heat storage material according to the present embodiment can have a heat storage density H m at a melting point T m of 100 J / g or more. When the heat storage density H m at the melting point T m of a heat storage material is 100 J / g or more, increasing the persistence of the effect of the heat storage material, also preferred because it contributes to miniaturization of the apparatus using the heat storage material.

(効果)
本実施形態に係る蓄熱材によれば、有機イオン対化合物を含みかつ蓄熱密度が高い蓄熱材を提供することができる。
(effect)
According to the heat storage material according to the present embodiment, it is possible to provide a heat storage material containing an organic ion pair compound and having a high heat storage density.

また、本実施形態に係る蓄熱材によれば、式(1)で表される窒素含有イオン対化合物の分子構造を基本構造として有し、かつ全体の分子構造を調整することで、蓄熱密度を調整することが可能である。 Further, according to the heat storage material according to the present embodiment, the heat storage density is adjusted by having the molecular structure of the nitrogen-containing ion pair compound represented by the formula (1) as the basic structure and adjusting the entire molecular structure. It is possible to adjust.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例及び比較例]
(表1及び表2に示す物質の作製又は取得)
表1及び表2に示す物質を作製又は取得した(試料No.A1〜A23)。表1及び表2における構造式No.に対応した構造式については後述する。なお、表1及び表2に示す物質は公知の方法で得られるが、いくつかの物質の製造例については後述する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[Examples and Comparative Examples]
(Preparation or acquisition of substances shown in Tables 1 and 2)
The substances shown in Tables 1 and 2 were prepared or obtained (Sample Nos. A1 to A23). Structural formula No. in Tables 1 and 2. The structural formula corresponding to is described later. The substances shown in Tables 1 and 2 can be obtained by known methods, and production examples of some substances will be described later.

Figure 2021172730
Figure 2021172730

Figure 2021172730
Figure 2021172730

表1及び表2に示す試料No.A1〜A23の構造式は以下のとおりである。 Sample Nos. The structural formulas of A1 to A23 are as follows.

Figure 2021172730
酢酸コリン
Figure 2021172730
Choline acetate

Figure 2021172730
テトラメチルアンモニウムテトラフェニルホウ酸
Figure 2021172730
Tetramethylammonium tetraphenylborate

Figure 2021172730
テトラブチルアンモニウムテトラフェニルホウ酸
Figure 2021172730
Tetrabutylammonium tetraphenylborate

Figure 2021172730
テトラエチルアンモニウムテトラフェニルホウ酸
Figure 2021172730
Tetraethylammonium tetraphenylborate

Figure 2021172730
テトラメチルアンモニウムブロミド
Figure 2021172730
Tetramethylammonium bromide

Figure 2021172730
テトラ(デシル)アンモニウムブロミド
Figure 2021172730
Tetra (decyl) ammonium bromide

Figure 2021172730
コリンブロミド
Figure 2021172730
Colin bromide

Figure 2021172730
テトラブチルアンモニウムブロミド
Figure 2021172730
Tetrabutylammonium bromide

Figure 2021172730
テトラヘキシルアンモニウムブロミド
Figure 2021172730
Tetrahexyl ammonium bromide

Figure 2021172730
テトラ−n−オクチルアンモニウムブロミド
Figure 2021172730
Tetra-n-octylammonium bromide

Figure 2021172730
テトラドデシルアンモニウムブロミド
Figure 2021172730
Tetradodecyl ammonium bromide

Figure 2021172730
テトラ−n−オクチルメチルアンモニウムブロミド
Figure 2021172730
Tetra-n-octylmethylammonium bromide

Figure 2021172730
テトラペンチルアンモニウムブロミド
Figure 2021172730
Tetrapentyl ammonium bromide

Figure 2021172730
テトラエチルアンモニウムブロミド
Figure 2021172730
Tetraethylammonium bromide

Figure 2021172730
臭化テトラエタノールアンモニウム
Figure 2021172730
Tetraethanol ammonium bromide

Figure 2021172730
ビス(2−ヒドロキシエチル)ジメチルアンモニウムクロリド
Figure 2021172730
Bis (2-hydroxyethyl) dimethylammonium chloride

Figure 2021172730
コリンクロリド
Figure 2021172730
Choline chloride

Figure 2021172730
メチルトリオクチルアンモニウムヘキサフルオロリン酸塩
Figure 2021172730
Methyltrioctyl ammonium hexafluorophosphate

Figure 2021172730
ヘキサフルオロリン酸テトラブチルアンモニウム
Figure 2021172730
Tetrabutylammonium hexafluorophosphate

Figure 2021172730
トリブチルメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド
Figure 2021172730
Tributylmethylammonium = bis (trifluoromethanesulfonyl) imide

Figure 2021172730
ブチルトリメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド
Figure 2021172730
Butyltrimethylammonium = bis (trifluoromethanesulfonyl) imide

Figure 2021172730
トリメチルプロピルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド
Figure 2021172730
Trimethylpropylammonium = bis (trifluoromethanesulfonyl) imide

Figure 2021172730
トリメチルヘキシルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド
Figure 2021172730
Trimethylhexylammonium = bis (trifluoromethanesulfonyl) imide

以下、いくつかの物質の製造例を示す。 Hereinafter, production examples of some substances will be shown.

(A15:臭化テトラエタノールアンモニウムの製造例)
100ml丸底フラスコに酢酸メチル40ml、トリス(ヒドロキシエチル)アミン2.95gを入れ、5分間室温で混合した。この混合物に2−ブロモエチノール2.05mlを滴下した。滴下後、さらに酢酸エチル27mlを加え、17時間、加熱還流し、室温まで冷却したところ結晶を含んだ反応液が得られた。この反応液にメタノールを加え、約5mlになるまで溶媒を留去し、再度酢酸エチル10ml、メタノール50mlを加えた。この混合液を濾紙でろ過した後、約5mlになるまで溶媒を留去したところ、混合液中に結晶が生じた。この混合液を濾紙でろ過することにより、結晶を得、この結晶を酢酸エチル5mlで洗浄し、乾燥させたところ、白色粉体が得られた。
(A15: Production example of tetraethanolammonium bromide)
40 ml of methyl acetate and 2.95 g of tris (hydroxyethyl) amine were placed in a 100 ml round bottom flask and mixed at room temperature for 5 minutes. 2.05 ml of 2-bromoethinol was added dropwise to this mixture. After the dropwise addition, 27 ml of ethyl acetate was further added, and the mixture was heated under reflux for 17 hours and cooled to room temperature to obtain a reaction solution containing crystals. Methanol was added to this reaction solution, the solvent was distilled off until it became about 5 ml, and 10 ml of ethyl acetate and 50 ml of methanol were added again. After filtering this mixed solution with a filter paper, the solvent was distilled off until it became about 5 ml, and crystals were formed in the mixed solution. Crystals were obtained by filtering this mixed solution with a filter paper, and the crystals were washed with 5 ml of ethyl acetate and dried to obtain a white powder.

反応式を、以下に示す。

Figure 2021172730
The reaction formula is shown below.
Figure 2021172730

(A2:テトラメチルアンモニウムテトラフェニルホウ酸の製造例)
50ml丸底フラスコに臭化テトラメチルアンモニウム0.31gを入れ、メタノール20mlとテトラフェニルホウ酸ナトリウム0.63gとを加えて溶解させた。室温で18時間攪拌したところ、懸濁液が得られた。この懸濁液をメタノール50mlで洗浄したところ、白色粉体0.71gが得られた。収率は92%であった。
(A2: Example of production of tetramethylammonium tetraphenylborate)
0.31 g of tetramethylammonium bromide was placed in a 50 ml round bottom flask, and 20 ml of methanol and 0.63 g of sodium tetraphenylborate were added and dissolved. Stirring at room temperature for 18 hours gave a suspension. When this suspension was washed with 50 ml of methanol, 0.71 g of white powder was obtained. The yield was 92%.

反応式を、以下に示す。

Figure 2021172730
The reaction formula is shown below.
Figure 2021172730

(A4:テトラメチルアンモニウムテトラフェニルホウ酸の製造例)
50ml丸底フラスコに臭化テトラエチルアンモニウム0.31gを入れ、メタノール15mlとテトラフェニルホウ酸ナトリウム0.46gとを加えて溶解させた。室温で18時間攪拌したところ、懸濁液が得られた。この懸濁液をメタノール50mlで洗浄したところ、白色粉体0.59gが得られた。収率は92%であった。
(A4: Production example of tetramethylammonium tetraphenylborate)
0.31 g of tetraethylammonium bromide was placed in a 50 ml round bottom flask, and 15 ml of methanol and 0.46 g of sodium tetraphenylborate were added and dissolved. Stirring at room temperature for 18 hours gave a suspension. When this suspension was washed with 50 ml of methanol, 0.59 g of white powder was obtained. The yield was 92%.

反応式を、以下に示す。

Figure 2021172730
The reaction formula is shown below.
Figure 2021172730

(評価)
各試料について、下記DSC測定により、融点T、融点Tでの蓄熱密度H(J/g)、全蓄熱密度H(J/g)を測定した。全蓄熱密度Hとは、DSCの測定範囲全体における蓄熱密度とした。なお、DSCの測定範囲は下記のとおり−80℃〜250℃であるため、全蓄熱密度Hは、−80℃〜250℃における蓄熱密度である。具体的なDSC測定は以下のとおりである。
(evaluation)
For each sample, the following DSC measurement, the melting point T m, the thermal storage density H m (J / g) at the melting point T m, was measured total thermal storage density H T (J / g). The total thermal storage density H T, and the thermal storage density in the entire measurement range of the DSC. Since the measurement range of the DSC is -80 ° C. to 250 DEG ° C. as follows, all heat storage density H T is the thermal storage density at -80 ° C. to 250 DEG ° C.. The specific DSC measurement is as follows.

(DSC測定)
試料5mgをアルミニウムパン上に載置した。この試料を載置したアルミニウムパンと、試料を載置していないブランクのアルミニウムパンとを、メトラー(Mettler)株式会社製DSC装置 DSC3+の測定部位に載置した。次に、窒素雰囲気下、−80℃〜250℃の範囲で10℃/分での加熱及び−10℃/分での冷却を繰り返した。
図1は、融解熱のピークPと凝固熱のピークPとを含むDSC(示差走査熱量測定)曲線の一例である。具体的には、図1は、試料No.A15のDSC曲線である。
融解熱のピークPの温度を融点T、凝固熱のピークPの温度を凝固点Tとした。なお、凝固点Tは表に記載していない。また、融解熱のピークPの面積と、融点Tとを用い、融点Tでの蓄熱密度H、及び全蓄熱密度Hを測定した。
これらの結果を表1及び表2に示す。
(DSC measurement)
5 mg of sample was placed on an aluminum pan. The aluminum pan on which this sample was placed and the blank aluminum pan on which the sample was not placed were placed on the measurement site of the DSC device DSC3 + manufactured by METTLER TOKRY CORPORATION. Next, under a nitrogen atmosphere, heating at 10 ° C./min and cooling at −10 ° C./min were repeated in the range of −80 ° C. to 250 ° C.
FIG. 1 is an example of a DSC (differential scanning calorimetry) curve including a peak P m of heat of fusion and a peak P s of heat of solidification. Specifically, FIG. 1 shows the sample No. It is a DSC curve of A15.
The temperature of the peak P m of the heat of fusion was defined as the melting point T m , and the temperature of the peak P s of the heat of fusion was defined as the freezing point T s . The freezing point T s is not shown in the table. Also, the area of the peak P m of heat of fusion, using a melting point T m, was measured thermal storage density H m, and the total thermal storage density H T at the melting point T m.
These results are shown in Tables 1 and 2.

(過冷却挙動)
以下のようにして、過冷却挙動を測定した。
DSC曲線で、冷却時には図1の様なPsが現れず、その後の加熱時に初めて凝固し、凝固熱のピークPsが現れ、更に温度が上昇した時に融解し、融解熱のピークPmが現れるものを過冷却挙動が「あり」と判定した。また、図1の様に冷却時に凝固熱のピークPsが現れ、加熱時に融解熱のピークPmが現れるものを過冷却挙動が「なし」と判定した。
(Supercooling behavior)
The supercooling behavior was measured as follows.
In the DSC curve, Ps as shown in FIG. 1 does not appear at the time of cooling, solidifies for the first time at the time of subsequent heating, the peak Ps of the heat of solidification appears, and when the temperature rises further, it melts and the peak Pm of the heat of fusion appears. It was determined that the supercooling behavior was "yes". Further, as shown in FIG. 1, the supercooling behavior was judged to be "none" when the peak Ps of the heat of solidification appeared at the time of cooling and the peak Pm of the heat of fusion appeared at the time of heating.

表1及び表2より、以下のことが分かった。
試料No.A1、A6〜A15、A17、A18は、融点Tが40〜200℃の範囲内にある。
試料No.A6、A13、及びA15は、融点Tでの蓄熱密度Hが100J/g以上である。
試料No.A1、A3、A4、A6、A7、A9〜A17、A19、A22は、過冷却挙動なしである。
From Table 1 and Table 2, the following was found.
Sample No. A1, A6~A15, A17, A18 has a melting point T m is in the range of 40 to 200 ° C..
Sample No. A6, A13, and A15 have a heat storage density H m at a melting point T m of 100 J / g or more.
Sample No. A1, A3, A4, A6, A7, A9 to A17, A19, and A22 have no supercooling behavior.

以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。 Although the present embodiment has been described above, the present embodiment is not limited to these, and various modifications can be made within the scope of the gist of the present embodiment.

本実施形態に係る蓄熱材は、例えば、建築材料、冷凍冷蔵庫、保冷剤、保温材、自動車、貯湯設備、工場等に使用することができる。本実施形態に係る蓄熱材は、具体的には、自動車排熱又は工場排熱等を利用する蓄熱材として使用することができ、より具体的には、40〜200℃の自動車排熱又は工場排熱等を利用する蓄熱材として使用することができる。 The heat storage material according to the present embodiment can be used, for example, in building materials, refrigerators / freezers, ice packs, heat insulating materials, automobiles, hot water storage equipment, factories, and the like. Specifically, the heat storage material according to the present embodiment can be used as a heat storage material that utilizes waste heat from automobiles or waste heat from factories, and more specifically, waste heat from automobiles at 40 to 200 ° C. or factories. It can be used as a heat storage material that utilizes waste heat and the like.

融解熱のピーク
凝固熱のピーク
P m heat of fusion peak P s solidification heat peak

Claims (5)

下記式(1)で表され、芳香族化合物でない窒素含有イオン対化合物を含む、蓄熱材。
Figure 2021172730
(式中、
は、炭素数1〜12の炭素鎖CC、−H、−OH、−NH、又は、前記炭素鎖CCを構成するHの1個以上が−OH、−OMe及び−NHから選ばれる1種以上で置換された置換炭素鎖SCであり;
〜Rは、炭素数1〜12の炭素鎖CC、−OH、−NH、又は、前記炭素鎖CCを構成するHの1個以上が−OH、−OMe及び−NHから選ばれる1種以上で置換された置換炭素鎖SCであり;
は、Br、Cl、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロリン酸イオン、トリフルオロメタンスルホン酸イオン、メタンスルホン酸イオン、テトラフェニルホウ酸イオン、又はテトラフルオロホウ酸イオンである。)
A heat storage material represented by the following formula (1) and containing a nitrogen-containing ion pair compound that is not an aromatic compound.
Figure 2021172730
(During the ceremony,
In R 1 , one or more of carbon chains CC A , -H, -OH, -NH 2 having 1 to 12 carbon atoms, or H constituting the carbon chain CC A are -OH, -OMe and -NH 2 Substituent carbon chain SC A substituted with one or more selected from;
R 2 to R 4 is a carbon chain CC B of 1 to 12 carbon atoms, -OH, -NH 2, or, one or more -OH of H constituting the carbon chain CC B, -OMe and -NH 2 a substituted carbon chain SC B substituted with one or more selected from;
X is Br , Cl , bis (trifluoromethanesulfonyl) imide ion, hexafluorophosphate ion, trifluoromethanesulfonic acid ion, methanesulfonic acid ion, tetraphenylborate ion, or tetrafluoroborate ion. )
前記R〜Rがそれぞれ直鎖状である、請求項1に記載の蓄熱材。 The heat storage material according to claim 1, wherein each of R 1 to R 4 is linear. 前記R〜Rのうち1個以上が−OHを含む、請求項1又は2に記載の蓄熱材。 The heat storage material according to claim 1 or 2, wherein one or more of R 1 to R 4 contains -OH. 前記窒素含有イオン対化合物は、下記式(1La)で表される、請求項1から3のいずれか一項に記載の蓄熱材。
Figure 2021172730
The heat storage material according to any one of claims 1 to 3, wherein the nitrogen-containing ion pair compound is represented by the following formula (1La).
Figure 2021172730
過冷却抑制剤を含まない、請求項1から4のいずれか一項に記載の蓄熱材。
The heat storage material according to any one of claims 1 to 4, which does not contain a supercooling inhibitor.
JP2020077327A 2020-04-24 2020-04-24 Heat storage material Pending JP2021172730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020077327A JP2021172730A (en) 2020-04-24 2020-04-24 Heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020077327A JP2021172730A (en) 2020-04-24 2020-04-24 Heat storage material

Publications (1)

Publication Number Publication Date
JP2021172730A true JP2021172730A (en) 2021-11-01

Family

ID=78278926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077327A Pending JP2021172730A (en) 2020-04-24 2020-04-24 Heat storage material

Country Status (1)

Country Link
JP (1) JP2021172730A (en)

Similar Documents

Publication Publication Date Title
JP2010132690A (en) Method for producing 2-(6-substituted-1,3-dioxan-4-yl) acetic acid derivative
KR20190003659A (en) Aromatic fluorination method
L'Esperance et al. in-Cyclophanes containing second-row elements poised above aromatic rings
JP2021172730A (en) Heat storage material
JP2544609B2 (en) TCNQ complex
EP0805791B1 (en) Process for the production of 2-(substituted benzoyl)-1,3 cyclohexanediones
JP2004533483A (en) Process for the preparation of nitrile compounds
Toyota et al. Dynamic NMR as a Nondestructive Method for the Determination of Rates of Dissociation. XX. Secondary Isotope Effect on Kinetic Basicity of Amine Ligands in Boronate-Amine Complexes and Ammonium Salts.
JPH029854A (en) Production of 3-amino-acrylonitrile
JP5443095B2 (en) Pyridinium salt derivative, production method thereof, and liquid crystal material
WO2023176209A1 (en) Tosylic acid anionic ionic liquid
WO2023220034A1 (en) Alkali metal pf 6 salt stabilization in carbonate solutions
RU98112016A (en) METHOD FOR PRODUCING DIOXOAZABICYCLOHEXANES
JPS5913750A (en) Manufacture of halogenated aniline
US4297510A (en) Unsymmetrical diphosphatetraazacyclooctatetraenes
EP1824806A1 (en) Chemical compounds
EP3950675A1 (en) Fluorescent compound, preparation method therefor, and use thereof
JP2007513949A5 (en)
JPS61215372A (en) Liquid crystal compound
JPS6117557A (en) Manufacture of amine derivative
Brand et al. Salts and ionic liquids of resonance stabilized amides
US7754101B2 (en) Substituted alkylmetal compositions and methods of preparing the same
JPS60204769A (en) Halogenopyrimidine derivative
JP2019099537A (en) Method for producing nitrogen-containing heterocyclic compound
Yaya et al. New amidines from intramolecular cyclization in triflic acid of nitroketene aminals with a tethered phenyl ring