JP2021172560A - Surface-coated boehmite, resin film composite, and carbon material composite - Google Patents

Surface-coated boehmite, resin film composite, and carbon material composite Download PDF

Info

Publication number
JP2021172560A
JP2021172560A JP2020077973A JP2020077973A JP2021172560A JP 2021172560 A JP2021172560 A JP 2021172560A JP 2020077973 A JP2020077973 A JP 2020077973A JP 2020077973 A JP2020077973 A JP 2020077973A JP 2021172560 A JP2021172560 A JP 2021172560A
Authority
JP
Japan
Prior art keywords
boehmite
coated
resin film
carbon material
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020077973A
Other languages
Japanese (ja)
Other versions
JP7422397B2 (en
Inventor
颯汰 八木
Futa Yagi
康博 太田
Yasuhiro Ota
健二 木戸
Kenji Kido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Lime Industry Co Ltd
Original Assignee
Kawai Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Lime Industry Co Ltd filed Critical Kawai Lime Industry Co Ltd
Priority to JP2020077973A priority Critical patent/JP7422397B2/en
Publication of JP2021172560A publication Critical patent/JP2021172560A/en
Application granted granted Critical
Publication of JP7422397B2 publication Critical patent/JP7422397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a surface-coated boehmite having high adhesion to resin and having high dispersibility in a wide pH range.SOLUTION: A surface-coated boehmite is alternately coated with an anionic polymer electrolyte and a cationic polymer electrolyte so that the cationic polymer electrolyte is the outermost layer.SELECTED DRAWING: Figure 2

Description

本発明は、最外層がカチオン性高分子電解質となるように、アニオン性高分子電解質とカチオン性高分子電解質とによって交互に被覆された表面被覆ベーマイトに関する。また、本発明は、樹脂フィルムに当該表面被覆ベーマイトが付着した樹脂フィルム複合材料、及び炭素材に当該表面被覆ベーマイトが付着した炭素材複合材料にも関する。 The present invention relates to a surface-coated boehmite that is alternately coated with an anionic polyelectrolyte and a cationic polyelectrolyte so that the outermost layer becomes a cationic polyelectrolyte. The present invention also relates to a resin film composite material in which the surface coating boehmite is adhered to a resin film, and a carbon material composite material in which the surface coating boehmite is adhered to a carbon material.

ベーマイトは、AlOOH又はAl・HOで表される組成式を有し、樹脂添加剤や研磨材として利用されている(特許文献1)。 Boehmite has a composition formula represented by AlOOH or Al 2 O 3 · H 2 O , is used as a resin additive or abrasive (Patent Document 1).

特開2012−214337号公報Japanese Unexamined Patent Publication No. 2012-214337

発明者らは、ベーマイトは、樹脂に対する付着力が低いという問題を有することを見出した。また、発明者らは、ベーマイトは、pH4程度の水溶液中での分散性は高いものの、水溶液のpHが6〜8程度になると、凝集が起こり、分散性が悪化するという問題を有することを見出した。 The inventors have found that boehmite has a problem of low adhesion to a resin. Further, the inventors have found that although boehmite has high dispersibility in an aqueous solution having a pH of about 4, agglutination occurs when the pH of the aqueous solution reaches about 6 to 8, and the dispersibility deteriorates. rice field.

本発明は上記課題に鑑み、樹脂に対する付着性が高く、且つ、広いpH範囲にわたって高い分散性を有する表面被覆ベーマイトを提供することを目的とする。また、本発明は、樹脂フィルムに当該表面被覆ベーマイトが付着した樹脂フィルム複合材料、及び炭素材に当該表面被覆ベーマイトが付着した炭素材複合材料を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a surface-coated boehmite having high adhesiveness to a resin and high dispersibility over a wide pH range. Another object of the present invention is to provide a resin film composite material in which the surface-coated boehmite is adhered to a resin film, and a carbon material composite material in which the surface-coated boehmite is adhered to a carbon material.

本発明は、以下に掲げる態様の発明を提供する。
(項目1)
最外層がカチオン性高分子電解質となるように、アニオン性高分子電解質とカチオン性高分子電解質とによって交互に被覆されている、表面被覆ベーマイト。
The present invention provides the inventions of the following aspects.
(Item 1)
A surface-coated boehmite in which an anionic polyelectrolyte and a cationic polyelectrolyte are alternately coated so that the outermost layer becomes a cationic polyelectrolyte.

(項目2)
前記カチオン性高分子電解質は、ポリ(塩化ジアリルジメチルアンモニウム)、及びポリエチレンイミンの少なくとも一種である、
項目1に記載の表面被覆ベーマイト。
(Item 2)
The cationic polyelectrolyte is at least one of poly (diallyldimethylammonium chloride) and polyethyleneimine.
The surface-coated boehmite according to item 1.

(項目3)
前記アニオン性高分子電解質は、ポリ(4−スチレンスルホン酸)ナトリウム、ポリアクリル酸、及びポリビニル硫酸の少なくとも一種である、
項目1又は2に記載の表面被覆ベーマイト。
(Item 3)
The anionic polyelectrolyte is at least one of poly (4-styrene sulfonic acid) sodium, polyacrylic acid, and polyvinyl sulfuric acid.
The surface-coated boehmite according to item 1 or 2.

(項目4)
樹脂フィルムに、項目1から3のいずれか1項に記載の表面被覆ベーマイトが付着した樹脂フィルム複合材料。
(Item 4)
A resin film composite material in which the surface-coated boehmite according to any one of items 1 to 3 is attached to the resin film.

(項目5)
炭素材に、項目1から3のいずれか1項に記載の表面被覆ベーマイトが付着した炭素材複合材料。
(Item 5)
A carbon material composite material in which the surface coating boehmite according to any one of items 1 to 3 is attached to the carbon material.

(項目6)
項目4に記載の樹脂フィルム複合材料、又は、項目5に記載の炭素材複合材料を使用した二次電池材料。
(Item 6)
A secondary battery material using the resin film composite material according to item 4 or the carbon material composite material according to item 5.

本発明の表面被覆ベーマイトは、樹脂に対する付着性が高く、且つ、広いpH範囲にわたって高い分散性を有する。 The surface-coated boehmite of the present invention has high adhesion to a resin and high dispersibility over a wide pH range.

(a)板状の長径及び短径を説明する図、(b)鱗片状ベーマイトの長径及び短径を説明する図、(c)針状ベーマイトの長径及び短径を説明する図である。It is a figure explaining (a) the major axis and the minor axis of a plate shape, (b) the figure explaining the major axis and the minor axis of the scaly boehmite, and (c) the figure explaining the major axis and the minor axis of the needle-shaped boehmite. (a)実施例1のベーマイト試料の、PVDFフィルムに対する付着状態を示すSEM画像、(b)実施例1のベーマイト試料の、PEフィルムに対する付着状態を示すSEM画像、(c)比較例1のベーマイト試料の、PVDFフィルムに対する付着状態を示すSEM画像、(d)比較例1のベーマイト試料の、PEフィルムに対する付着状態を示すSEM画像である。(A) SEM image showing the adhesion state of the boehmite sample of Example 1 to the PVDF film, (b) SEM image showing the adhesion state of the boehmite sample of Example 1 to the PE film, (c) boehmite of Comparative Example 1. It is an SEM image which shows the adhesion state of a sample to a PVDF film, and (d) SEM image which shows the adhesion state of the boehmite sample of Comparative Example 1 to a PE film. ベーマイト試料の分散性を示す写真であり、(a)実施例1の写真、(b)比較例1の写真、(c)比較例2の写真である。It is a photograph showing the dispersibility of a boehmite sample, and is (a) a photograph of Example 1, (b) a photograph of Comparative Example 1, and (c) a photograph of Comparative Example 2.

本発明の表面被覆ベーマイト、樹脂フィルム複合材料、及び炭素材複合材料について説明する。 The surface coating boehmite, the resin film composite material, and the carbon material composite material of the present invention will be described.

本発明は、ベーマイトの表面を、最外層がカチオン性高分子電解質となるように、アニオン性高分子電解質とカチオン性高分子電解質とによって交互に被覆した、表面被覆ベーマイトに関する。 The present invention relates to a surface-coated boehmite in which the surface of boehmite is alternately coated with an anionic polyelectrolyte and a cationic polyelectrolyte so that the outermost layer becomes a cationic polyelectrolyte.

被覆対象であるベーマイトの形状は特に限定されず、例えば、鱗片状、板状又は針状ベーマイトを使用することができる。 The shape of the boehmite to be covered is not particularly limited, and for example, scaly, plate-shaped or needle-shaped boehmite can be used.

カチオン性高分子電解質は、特に限定されないが、例えば、ポリ(塩化ジアリルジメチルアンモニウム)(PDDA)、及びポリエチレンイミン(PEI)の少なくとも一種を使用することができる。 The cationic polyelectrolyte is not particularly limited, and for example, at least one of poly (diallyldimethylammonium chloride) (PDDA) and polyethyleneimine (PEI) can be used.

アニオン性高分子電解質は、特に限定されないが、例えば、ポリ(4−スチレンスルホン酸)ナトリウム(PSS)、ポリアクリル酸(PAA)、及びポリビニル硫酸(PVS)の少なくとも一種を使用することができる。 The anionic polyelectrolyte is not particularly limited, and for example, at least one of poly (4-styrene sulfonic acid) sodium (PSS), polyacrylic acid (PAA), and polyvinyl sulfuric acid (PVS) can be used.

表面被覆ベーマイトを調製する際には、ベーマイトの表面を、まず、アニオン性高分子電解質で被覆する。次に、アニオン性高分子電荷質を、カチオン性高分子電解質で被覆する。なお、最外層がカチオン性高分子電解質となっていれば、被覆回数は、限定されない。したがって、例えば、カチオン性高分子電解質をさらにアニオン性高分子電解質で被覆した後、そのアニオン性高分子電解質をカチオン性高分子電解質でさらに被覆するようにしてもよい。また、アニオン性高分子電解質又はカチオン性高分子電解質を複数層設ける場合、それぞれ異なる種類のアニオン性高分子電解質又はカチオン性高分子電解質を使用してもよい。例えば、一層目のアニオン性高分子電解質と三層目のアニオン性高分子電解質とは、異なるアニオン性高分子電解質を使用してもよい。 When preparing the surface-coated boehmite, the surface of the boehmite is first coated with an anionic polyelectrolyte. The anionic polyelectrolyte is then coated with a cationic polyelectrolyte. As long as the outermost layer is a cationic polyelectrolyte, the number of coatings is not limited. Therefore, for example, the cationic polyelectrolyte may be further coated with the anionic polyelectrolyte, and then the anionic polyelectrolyte may be further coated with the cationic polyelectrolyte. Further, when a plurality of layers of anionic polyelectrolyte or cationic polyelectrolyte are provided, different types of anionic polyelectrolyte or cationic polyelectrolyte may be used. For example, different anionic polyelectrolytes may be used for the first-layer anionic polyelectrolyte and the third-layer anionic polyelectrolyte.

本発明は、樹脂フィルムの表面に、上記の表面被覆ベーマイトが付着した樹脂フィルム複合材料にも関する。樹脂フィルムとしては、例えば、ポリフッ化ビニリデン(PVDF)製のフィルムや、ポリエチレン(PE)製のフィルムが挙げられる。本発明の表面被覆ベーマイトを付着させることにより、樹脂フィルムの寸法を安定化させることができる。本発明の樹脂フィルム複合材料は、例えば、二次電池用のセパレータとして利用できる。 The present invention also relates to a resin film composite material in which the above-mentioned surface coating boehmite is adhered to the surface of the resin film. Examples of the resin film include a film made of polyvinylidene fluoride (PVDF) and a film made of polyethylene (PE). By adhering the surface coating boehmite of the present invention, the dimensions of the resin film can be stabilized. The resin film composite material of the present invention can be used, for example, as a separator for a secondary battery.

本発明は、炭素材の表面に、上記の表面被覆ベーマイトが付着した炭素材複合材料にも関する。炭素材としては、例えば、グラファイトが挙げられる。本発明の表面被覆ベーマイトを付着させることにより、炭素材の寸法を安定化させることができる。本発明の炭素材複合材料は、例えば、二次電池用の負極材として利用できる。 The present invention also relates to a carbon material composite material in which the above-mentioned surface coating boehmite is attached to the surface of the carbon material. Examples of the carbon material include graphite. By adhering the surface-coated boehmite of the present invention, the dimensions of the carbon material can be stabilized. The carbon material composite material of the present invention can be used, for example, as a negative electrode material for a secondary battery.

以下では、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

[ベーマイト試料の調製]
原料ベーマイトの特性、及び、最外層の高分子電解質の種類を表1に示す。図1は、原料ベーマイトの長径及び短径を説明する図であり、(長径/短径)はアスペクト比と呼ばれる。
[Preparation of boehmite sample]
Table 1 shows the characteristics of the raw material boehmite and the types of the polymer electrolyte in the outermost layer. FIG. 1 is a diagram for explaining the major axis and the minor axis of the raw material boehmite, and (major axis / minor axis) is called an aspect ratio.

<実施例1>
(1)イオン交換水にPSS(シグマアルドリッチ製)を加え、PSSの濃度が1wt%であるPSS水溶液を調製した。同様に、イオン交換水にPDDA(シグマアルドリッチ製)を加え、PDDAの濃度が1wt%であるPDDA水溶液を調製した。
(2)PSS水溶液、及び、PDDA水溶液に、0.5Mとなるように塩化ナトリウム(ナイカイ塩業株式会社製)を加えた。
(3)50mLの遠沈管に、一次粒子の中心粒子径が2μmの板状ベーマイト(河合石灰工業株式会社製、アスペクト比:5)を1.0g入れ、その遠沈管にPSS水溶液30mLを加えて懸濁液とした。
(4)ホモジナイザー(Sonic&Materials inc.製「VCX−400」)を用いて、懸濁液内のベーマイト凝集物を超音波解砕した。
(5)懸濁液の入った遠沈管をチューブローテータ(TAITEC製「RT−50」)にセットし、30分振とうした。
(6)遠沈管を遠心分離機(KUBOTA製、高速冷却遠心分離機「6200」)にセットし、回転数8000rpmで10分間遠心分離を行い、スラリー中のベーマイトを沈降させた。
(7)遠沈管内の上澄みを捨て、新たにイオン交換水30mLを加えた。
(8)ボルテックスミキサー(TAITEC「Se−08」)を用いて遠沈管内を攪拌し、沈降していたベーマイトを分散させた。
(9)上記(6)から(8)を2回繰り返し、余分なPSSを洗い流した。これにより、原料ベーマイトの表面がPSSで被覆されたベーマイトが得られた。
(10)遠沈管内の上澄みを捨て、ベーマイトが残った遠沈管にPDDA水溶液30mLを加えて再び懸濁液とした。
(11)上記懸濁液をボルテックスミキサーで攪拌し、ベーマイトを均一分散させた。
(12)懸濁液の入った遠沈管をチューブローテータにセットし、30分振とうした。
(13)遠沈管を遠心分離機にセットし、回転数8000rpmで10分間遠心分離を行い、スラリー中のベーマイトを沈降させた。
(14)遠沈管内の上澄みを捨て、新たにイオン交換水30mLを加えた。
(15)ボルテックスミキサーを用いて遠沈管内を攪拌し、沈降していたベーマイトを分散させた。
(16)上記(13)から(15)を2回繰り返し、余分なPDDAを洗い流した。
(17)洗浄工程後の沈降したベーマイトを回収し、60℃の乾燥機で24時間乾燥させた。このようにして、最外層がPDDAである表面被覆ベーマイトが得られた。
<Example 1>
(1) PSS (manufactured by Sigma-Aldrich) was added to ion-exchanged water to prepare a PSS aqueous solution having a PSS concentration of 1 wt%. Similarly, PDDA (manufactured by Sigma-Aldrich) was added to ion-exchanged water to prepare a PDDA aqueous solution having a PDDA concentration of 1 wt%.
(2) Sodium chloride (manufactured by Naikai Salt Industries Co., Ltd.) was added to the PSS aqueous solution and the PDDA aqueous solution so as to have a concentration of 0.5 M.
(3) Put 1.0 g of plate-shaped boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 5) having a central particle diameter of 2 μm into a 50 mL centrifuge tube, and add 30 mL of PSS aqueous solution to the centrifuge tube. It was made into a suspension.
(4) Using a homogenizer (“VCX-400” manufactured by Sonic & Materials Inc.), boehmite agglutination in the suspension was ultrasonically crushed.
(5) The centrifuge tube containing the suspension was set in a tube rotator (“RT-50” manufactured by TAITEC) and shaken for 30 minutes.
(6) The centrifuge tube was set in a centrifuge (manufactured by KUBOTA, high-speed cooling centrifuge "6200"), and centrifugation was performed at a rotation speed of 8000 rpm for 10 minutes to settle boehmite in the slurry.
(7) The supernatant in the centrifuge tube was discarded, and 30 mL of ion-exchanged water was newly added.
(8) The inside of the centrifuge tube was stirred using a vortex mixer (TAITEC "Se-08") to disperse the sedimented boehmite.
(9) The above (6) to (8) were repeated twice to wash away excess PSS. As a result, boehmite in which the surface of the raw material boehmite was coated with PSS was obtained.
(10) The supernatant in the centrifuge tube was discarded, and 30 mL of the PDDA aqueous solution was added to the centrifuge tube in which boehmite remained to make a suspension again.
(11) The suspension was stirred with a vortex mixer to uniformly disperse boehmite.
(12) The centrifuge tube containing the suspension was set in a tube rotator and shaken for 30 minutes.
(13) The centrifuge tube was set in a centrifuge, and centrifugation was performed at a rotation speed of 8000 rpm for 10 minutes to settle boehmite in the slurry.
(14) The supernatant in the centrifuge tube was discarded, and 30 mL of ion-exchanged water was newly added.
(15) The inside of the centrifuge tube was stirred using a vortex mixer to disperse the sedimented boehmite.
(16) The above (13) to (15) were repeated twice to wash away excess PDDA.
(17) The precipitated boehmite after the washing step was collected and dried in a dryer at 60 ° C. for 24 hours. In this way, a surface-coated boehmite having an outermost layer of PDDA was obtained.

<実施例2>
カチオン性高分子電解質をPDDAからPEIに変更した以外は、実施例1と同じ方法により、表面被覆ベーマイトを調製した。
<Example 2>
Surface-coated boehmite was prepared by the same method as in Example 1 except that the cationic polyelectrolyte was changed from PDDA to PEI.

<実施例3>
原料ベーマイトを、一次粒子の中心粒子径が5μmの鱗片状ベーマイト(河合石灰工業株式会社製、アスペクト比:20)に変更した以外は、実施例1と同じ方法により、表面被覆ベーマイトを調製した。
<Example 3>
A surface-coated boehmite was prepared by the same method as in Example 1 except that the raw material boehmite was changed to scaly boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 20) having a central particle diameter of 5 μm.

<実施例4>
原料ベーマイトを、一次粒子の中心粒子径が2μmの鱗片状ベーマイト(河合石灰工業株式会社製、アスペクト比:40)に変更した以外は、実施例1と同じ方法により、表面被覆ベーマイトを調製した。
<Example 4>
A surface-coated boehmite was prepared by the same method as in Example 1 except that the raw material boehmite was changed to scaly boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 40) having a central particle diameter of 2 μm.

<実施例5>
原料ベーマイトを、一次粒子の中心粒子径が3.5μmの針状ベーマイト(河合石灰工業株式会社製、アスペクト比:30)に変更した以外は、実施例1と同じ方法により、表面被覆ベーマイトを調製した。
<Example 5>
Surface-coated boehmite was prepared by the same method as in Example 1 except that the raw material boehmite was changed to needle-shaped boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 30) having a central particle diameter of 3.5 μm. bottom.

<比較例1>
(1)50mLの遠沈管に、一次粒子の中心粒子径が2μmの板状ベーマイト(河合石灰工業株式会社製、アスペクト比:5)を1.0g入れ、その遠沈管にイオン交換水30mLを加えて懸濁液とした。
(2)ホモジナイザーを用いて、懸濁液内のベーマイト凝集物を超音波解砕した。
(3)遠沈管を遠心分離機にセットし、回転数8000rpmで10分間遠心分離を行い、スラリー中のベーマイトを沈降させた。なお、比較例1では、この遠心分離処理は1回だけしか行っていない。
(4)遠沈管内の上澄みを捨て、沈降したベーマイトを回収し、60℃で24時間乾燥した。
(5)上記手順により、表面が高分子電解質で被覆されていないベーマイトを得た。
<Comparative example 1>
(1) Put 1.0 g of plate-shaped boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 5) having a central particle diameter of 2 μm into a 50 mL centrifuge tube, and add 30 mL of ion-exchanged water to the centrifuge tube. To make a suspension.
(2) Using a homogenizer, the boehmite agglutination in the suspension was ultrasonically crushed.
(3) The centrifuge tube was set in a centrifuge and centrifuged at a rotation speed of 8000 rpm for 10 minutes to settle boehmite in the slurry. In Comparative Example 1, this centrifugation treatment was performed only once.
(4) The supernatant in the centrifuge tube was discarded, and the settled boehmite was collected and dried at 60 ° C. for 24 hours.
(5) By the above procedure, boehmite whose surface was not coated with a polymer electrolyte was obtained.

<比較例2>
(1)50mLの遠沈管に、一次粒子の中心粒子径が2μmの板状ベーマイト(河合石灰工業株式会社製、アスペクト比:5)を1.0g入れ、その遠沈管に、実施例1と同じ方法で調製したPDDA溶液30mLを加えて懸濁液とした。
(2)ホモジナイザーを用いて、懸濁液内のベーマイト凝集物を超音波解砕した。
(3)懸濁液の入った遠沈管をチューブローテータにセットし、30分振とうした。
(4)遠沈管を遠心分離機にセットし、回転数8000rpmで10分間遠心分離を行い、スラリー中のベーマイトを沈降させた。
(5)遠沈管内の上澄みを捨て、新たにイオン交換水30mLを加えた。
(6)ボルテックスミキサーを用いて遠沈管内を攪拌し、沈降していたベーマイトを分散させた。
(7)上記(4)から(6)を2回繰り返し、余分なPDDAを洗い流した。洗浄工程後の沈降したベーマイトを回収し、60℃で24時間乾燥した。
(8)上記手順により、原料ベーマイトの表面がPDDAで被覆されたベーマイト試料が得られた。
<Comparative example 2>
(1) 1.0 g of plate-shaped boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 5) having a central particle diameter of 2 μm of primary particles is placed in a 50 mL centrifuge tube, and the same as in Example 1 is placed in the centrifuge tube. 30 mL of the PDDA solution prepared by the method was added to prepare a suspension.
(2) Using a homogenizer, the boehmite agglutination in the suspension was ultrasonically crushed.
(3) The centrifuge tube containing the suspension was set in a tube rotator and shaken for 30 minutes.
(4) The centrifuge tube was set in a centrifuge, and centrifugation was performed at a rotation speed of 8000 rpm for 10 minutes to settle boehmite in the slurry.
(5) The supernatant in the centrifuge tube was discarded, and 30 mL of ion-exchanged water was newly added.
(6) The inside of the centrifuge tube was stirred using a vortex mixer to disperse the sedimented boehmite.
(7) The above (4) to (6) were repeated twice to wash away excess PDDA. The precipitated boehmite after the washing step was recovered and dried at 60 ° C. for 24 hours.
(8) By the above procedure, a boehmite sample in which the surface of the raw material boehmite was coated with PDDA was obtained.

<比較例3>
原料ベーマイトを、一次粒子の中心粒子径が5μmの鱗片状ベーマイト(河合石灰工業株式会社製、アスペクト比:20)に変更した以外は、比較例1と同じ方法により、ベーマイト試料を調製した。
<Comparative example 3>
A boehmite sample was prepared by the same method as in Comparative Example 1 except that the raw material boehmite was changed to scaly boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 20) having a central particle size of 5 μm.

<比較例4>
原料ベーマイトを、一次粒子の中心粒子径が2μmの鱗片状ベーマイト(河合石灰工業株式会社製、アスペクト比:40)に変更した以外は、比較例1と同じ方法により、ベーマイト試料を調製した。
<Comparative example 4>
A boehmite sample was prepared by the same method as in Comparative Example 1 except that the raw material boehmite was changed to scaly boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 40) having a central particle size of 2 μm.

<比較例5>
原料ベーマイトを、一次粒子の中心粒子径が3.5μmの針状ベーマイト(河合石灰工業株式会社製、アスペクト比:30)に変更した以外は、比較例1と同じ方法により、ベーマイト試料を調製した。
<Comparative example 5>
A boehmite sample was prepared by the same method as in Comparative Example 1 except that the raw material boehmite was changed to needle-shaped boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 30) having a central particle diameter of 3.5 μm. ..

[樹脂に対する付着性の評価]
以下の手順により、実施例1から5及び比較例1から5のベーマイト試料の、樹脂サンプル片に対する付着性を評価した。付着性の結果を、表1に示す。表1において、「○」は、樹脂サンプル片に、ベーマイト試料が十分に付着していることを意味し、「×」は、樹脂サンプル片に、ベーマイト試料がほとんど付着していないことを意味する。付着状態を示す一例として、図2に、実施例1及び比較例1のベーマイト試料を使用した付着試験後の樹脂サンプル片のSEM(走査型電子顕微鏡)画像を示す。
(1)容器にイオン交換水9.0g、工業用アルコール1.0g(今津薬品工業製「クリンエースハイ」)、及びベーマイト試料0.1gを加え、懸濁液を調製した。
(2)ホモジナイザーを用いて、懸濁液内のベーマイト試料の凝集物を超音波解砕した。
(3)篩を用意し、その上に樹脂サンプル片を置き、樹脂サンプル片に上記の懸濁液をまんべんなく垂らした。樹脂サンプル片としては、ポリフッ化ビニリデン(PVDF)のフィルム(近江オドエアーサービス株式会社製、PVDFバッグ)、及びポリエチレン(PE)のフィルム(生産日本社製、ユニパック(登録商標)D−4)を使用した。なお、樹脂サンプル片の表面電荷は負である。
(4)イオン交換水を用いて、篩上の樹脂サンプル片を念入りに洗浄した。
(5)樹脂サンプル片を60℃の乾燥機内で24時間乾燥させた。
(6)乾燥後の樹脂サンプル片の表面を走査型電子顕微鏡(JEOL製「JSM−7500FA」)で観察した。
[Evaluation of adhesiveness to resin]
The adhesiveness of the boehmite samples of Examples 1 to 5 and Comparative Examples 1 to 5 to the resin sample pieces was evaluated by the following procedure. The adhesiveness results are shown in Table 1. In Table 1, "○" means that the boehmite sample is sufficiently adhered to the resin sample piece, and "x" means that the boehmite sample is hardly adhered to the resin sample piece. .. As an example showing the adhesion state, FIG. 2 shows SEM (scanning electron microscope) images of the resin sample pieces after the adhesion test using the boehmite samples of Example 1 and Comparative Example 1.
(1) 9.0 g of ion-exchanged water, 1.0 g of industrial alcohol (“Clean Ace High” manufactured by Imazu Pharmaceutical Co., Ltd.), and 0.1 g of boehmite sample were added to a container to prepare a suspension.
(2) Using a homogenizer, agglomerates of boehmite samples in the suspension were ultrasonically crushed.
(3) A sieve was prepared, a resin sample piece was placed on the sieve, and the above suspension was evenly dropped on the resin sample piece. As resin sample pieces, polyvinylidene fluoride (PVDF) film (PVDF bag manufactured by Omi Odo Air Service Co., Ltd.) and polyethylene (PE) film (manufactured by Japan, Unipack (registered trademark) D-4) are used. used. The surface charge of the resin sample piece is negative.
(4) The resin sample piece on the sieve was thoroughly washed with ion-exchanged water.
(5) The resin sample piece was dried in a dryer at 60 ° C. for 24 hours.
(6) The surface of the dried resin sample piece was observed with a scanning electron microscope (“JSM-7500FA” manufactured by JEOL).

[分散安定性の評価]
以下の手順により、実施例1から5及び比較例1から5のベーマイト試料の、イオン交換水中における分散安定性について評価した。分散安定性の結果を表1に示す。表1において、「○」は、ベーマイト試料の分散状態が維持されていることを意味し、「△」は、ベーマイト試料の一部が沈降していることを意味し、「×」は、ベーマイト試料が完全に沈降していることを意味する。実施例1〜3及び比較例1〜3の結果は、測定開始から10分後の結果であり、実施例4及び比較例4の結果は、測定開始から180分後の結果であり、実施例5及び比較例5の結果は、測定開始から90分後の結果である。分散状態を示す一例として、図3に、pH6〜8における、実施例1、比較例1及び比較例2の分散安定性試験の写真を示す。
(1)容器にイオン交換水10.0gとベーマイト試料0.1gを加え、懸濁液を調製した。
(2)ホモジナイザーを用いて、懸濁液内におけるベーマイト試料の凝集物を超音波解砕した。
(3)懸濁液を所定のpHに調整した。pHを低下させる場合には、硝酸の希釈溶液を懸濁液に加え、pHを上昇させる場合には、水酸化ナトリウムの希釈溶液を懸濁液に加えた。
(4)pHを調整した懸濁液を10mLメスシリンダーに移し、ベーマイト試料の沈降具合を目視により確認した。
[Evaluation of dispersion stability]
The dispersion stability of the boehmite samples of Examples 1 to 5 and Comparative Examples 1 to 5 in ion-exchanged water was evaluated by the following procedure. The results of dispersion stability are shown in Table 1. In Table 1, "○" means that the dispersed state of the boehmite sample is maintained, "△" means that a part of the boehmite sample is settled, and "x" means boehmite. It means that the sample is completely settled. The results of Examples 1 to 3 and Comparative Examples 1 to 3 are the results 10 minutes after the start of measurement, and the results of Examples 4 and 4 are the results 180 minutes after the start of measurement. The results of 5 and Comparative Example 5 are the results 90 minutes after the start of measurement. As an example showing the dispersed state, FIG. 3 shows photographs of dispersion stability tests of Example 1, Comparative Example 1 and Comparative Example 2 at pH 6 to 8.
(1) 10.0 g of ion-exchanged water and 0.1 g of boehmite sample were added to the container to prepare a suspension.
(2) Using a homogenizer, agglomerates of boehmite samples in the suspension were ultrasonically crushed.
(3) The suspension was adjusted to a predetermined pH. A diluted solution of nitric acid was added to the suspension to lower the pH, and a diluted solution of sodium hydroxide was added to the suspension to raise the pH.
(4) The pH-adjusted suspension was transferred to a 10 mL measuring cylinder, and the sedimentation condition of the boehmite sample was visually confirmed.

Figure 2021172560
Figure 2021172560

表1及び図2に示すように、実施例1〜5の表面被覆ベーマイトは、PVDFフィルム及びPEフィルムに対する付着性が高かった。これに対し、比較例1〜5のベーマイト試料は、PVDFフィルム及びPEフィルムにほとんど付着しなかった。したがって、本発明の表面被覆ベーマイトが付着した樹脂フィルム複合材料は、高い寸法安定性を有し、例えば、二次電池用のセパレータとして有用である。 As shown in Table 1 and FIG. 2, the surface-coated boehmite of Examples 1 to 5 had high adhesion to the PVDF film and the PE film. On the other hand, the boehmite samples of Comparative Examples 1 to 5 hardly adhered to the PVDF film and the PE film. Therefore, the resin film composite material to which the surface-coated boehmite of the present invention is attached has high dimensional stability and is useful as a separator for, for example, a secondary battery.

表1及び図3に示すように、実施例1〜5の表面被覆ベーマイトは、pH6〜8であっても、分散性が高かった。これに対し、比較例1〜5のベーマイト試料は、pH6〜8において、その一部又は全部が沈降していた。 As shown in Table 1 and FIG. 3, the surface-coated boehmite of Examples 1 to 5 had high dispersibility even at pH 6 to 8. On the other hand, the boehmite samples of Comparative Examples 1 to 5 had some or all of them precipitated at pH 6 to 8.

比較例2のベーマイト試料は、PDDAで被覆されているものの、pH6〜8における分散性は良好ではなかった。このことから、本発明のように、ベーマイトを、アニオン性高分子電解質とカチオン性高分子電解質とによって交互に被覆することが、分散性を向上させる上で有効であることが分かる。 Although the boehmite sample of Comparative Example 2 was coated with PDDA, the dispersibility at pH 6 to 8 was not good. From this, it can be seen that it is effective to alternately coat the boehmite with the anionic polyelectrolyte and the cationic polyelectrolyte as in the present invention in order to improve the dispersibility.

一般に、ベーマイトを、液体と混合して使用する場合(例えば、スラリー)、廃液処理など様々な観点から、液体は中性に調製されることが好ましい。本発明の表面被覆ベーマイトは、中性付近(pH6〜8)でも高い分散性を有しているため、幅広い用途で利用可能である。 In general, when boehmite is mixed with a liquid and used (for example, a slurry), the liquid is preferably prepared to be neutral from various viewpoints such as waste liquid treatment. Since the surface-coated boehmite of the present invention has high dispersibility even near neutrality (pH 6 to 8), it can be used in a wide range of applications.

Claims (6)

最外層がカチオン性高分子電解質となるように、アニオン性高分子電解質とカチオン性高分子電解質とによって交互に被覆されている、表面被覆ベーマイト。 A surface-coated boehmite in which an anionic polyelectrolyte and a cationic polyelectrolyte are alternately coated so that the outermost layer becomes a cationic polyelectrolyte. 前記カチオン性高分子電解質は、ポリ(塩化ジアリルジメチルアンモニウム)、及びポリエチレンイミンの少なくとも一種である、
請求項1に記載の表面被覆ベーマイト。
The cationic polyelectrolyte is at least one of poly (diallyldimethylammonium chloride) and polyethyleneimine.
The surface-coated boehmite according to claim 1.
前記アニオン性高分子電解質は、ポリ(4−スチレンスルホン酸)ナトリウム、ポリアクリル酸、及びポリビニル硫酸の少なくとも一種である、
請求項1又は2に記載の表面被覆ベーマイト。
The anionic polyelectrolyte is at least one of poly (4-styrene sulfonic acid) sodium, polyacrylic acid, and polyvinyl sulfuric acid.
The surface-coated boehmite according to claim 1 or 2.
樹脂フィルムに、請求項1から3のいずれか1項に記載の表面被覆ベーマイトが付着した樹脂フィルム複合材料。 A resin film composite material in which the surface-coated boehmite according to any one of claims 1 to 3 is attached to a resin film. 炭素材に、請求項1から3のいずれか1項に記載の表面被覆ベーマイトが付着した炭素材複合材料。 A carbon material composite material in which the surface-coated boehmite according to any one of claims 1 to 3 is attached to the carbon material. 請求項4に記載の樹脂フィルム複合材料、又は、請求項5に記載の炭素材複合材料を使用した二次電池材料。 A secondary battery material using the resin film composite material according to claim 4 or the carbon material composite material according to claim 5.
JP2020077973A 2020-04-27 2020-04-27 Surface-coated boehmite, resin film composite materials, carbon material composite materials Active JP7422397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020077973A JP7422397B2 (en) 2020-04-27 2020-04-27 Surface-coated boehmite, resin film composite materials, carbon material composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020077973A JP7422397B2 (en) 2020-04-27 2020-04-27 Surface-coated boehmite, resin film composite materials, carbon material composite materials

Publications (2)

Publication Number Publication Date
JP2021172560A true JP2021172560A (en) 2021-11-01
JP7422397B2 JP7422397B2 (en) 2024-01-26

Family

ID=78278750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077973A Active JP7422397B2 (en) 2020-04-27 2020-04-27 Surface-coated boehmite, resin film composite materials, carbon material composite materials

Country Status (1)

Country Link
JP (1) JP7422397B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257419A (en) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2010064945A (en) * 2008-09-12 2010-03-25 Toyohashi Univ Of Technology Method for manufacturing ceramic composite particle and functional ceramic composite particle
JP2010238392A (en) * 2009-03-30 2010-10-21 Dainippon Printing Co Ltd Electrolyte sheet, electrolyte sheet-electrode assembly and fuel cell
JP2013211260A (en) * 2012-03-02 2013-10-10 Hitachi Maxell Ltd Positive electrode material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014165007A (en) * 2013-02-25 2014-09-08 Toyota Industries Corp Negative electrode for nonaqueous secondary battery and manufacture of the same, and nonaqueous secondary battery
JP2016531993A (en) * 2013-09-18 2016-10-13 セルガード エルエルシー Nanoparticle-filled porous membrane and related methods
JP2016219275A (en) * 2015-05-21 2016-12-22 日立マクセル株式会社 Lithium ion secondary battery
JP2018181816A (en) * 2017-04-21 2018-11-15 トヨタ自動車株式会社 Lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257419A (en) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2010064945A (en) * 2008-09-12 2010-03-25 Toyohashi Univ Of Technology Method for manufacturing ceramic composite particle and functional ceramic composite particle
JP2010238392A (en) * 2009-03-30 2010-10-21 Dainippon Printing Co Ltd Electrolyte sheet, electrolyte sheet-electrode assembly and fuel cell
JP2013211260A (en) * 2012-03-02 2013-10-10 Hitachi Maxell Ltd Positive electrode material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014165007A (en) * 2013-02-25 2014-09-08 Toyota Industries Corp Negative electrode for nonaqueous secondary battery and manufacture of the same, and nonaqueous secondary battery
JP2016531993A (en) * 2013-09-18 2016-10-13 セルガード エルエルシー Nanoparticle-filled porous membrane and related methods
JP2016219275A (en) * 2015-05-21 2016-12-22 日立マクセル株式会社 Lithium ion secondary battery
JP2018181816A (en) * 2017-04-21 2018-11-15 トヨタ自動車株式会社 Lithium ion secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
堂地要 他: "ヘテロ凝集によるベーマイト−シリカ複合粒子の調製", 粉体工学会誌, vol. 55巻9号, JPN6022036782, 10 September 2018 (2018-09-10), JP, pages 478 - 482, ISSN: 0005149479 *

Also Published As

Publication number Publication date
JP7422397B2 (en) 2024-01-26

Similar Documents

Publication Publication Date Title
Venkatesh et al. Diethylenetriaminepentaacetic acid-functionalized multi-walled carbon nanotubes/titanium oxide-PVDF nanofiber membrane for effective separation of oil/water emulsion
Yuan et al. From Fragility to Flexibility: Construction of Hydrogel Bridges toward a Flexible Multifunctional Free‐Standing CaCO3 Film
JP5721623B2 (en) Surface coating method for inorganic solid particles, especially titanium dioxide pigment particles
CN1445283A (en) Product for stretching layered material using highly branced polymer
WO2017130946A1 (en) Coated fine particles of alkaline-earth metal compound, dispersion in organic solvent, resin composition, and image display device
TWI674302B (en) Method for manufacturing silver nanowire ink and silver nanowire ink and transparent conductive coating film
García et al. Influence of TiO 2 nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes
WO2013148307A1 (en) Composite particles, methods of making, and articles including the same
JP2020513298A (en) Coating method and its product
Rima et al. Protein amyloid fibrils as template for the synthesis of silica nanofibers, and their use to prepare superhydrophobic, lotus‐like surfaces
CN1138068A (en) Composite pigmentary material
JP2021172560A (en) Surface-coated boehmite, resin film composite, and carbon material composite
JP2009197221A (en) Powder coated with cuprous oxide and manufacturing method thereof
WO2019189254A1 (en) Dispersion for silicon carbide sintered body, green sheet for silicon carbide sintered body and prepreg material for silicon carbide sintered body using same, and method of producing same
JP5027385B2 (en) Porous film filler and porous film formed by blending the filler
JP2021172561A (en) Surface-coated boehmite, resin film composite, and carbon material composite
JP2016188338A (en) Additive for water-based coating, and water-based coating composition
KR20220054333A (en) Thermally conductive fillers and methods for their preparation
TWI709536B (en) Alcohol-based silver nanowire dispersion liquid and method for producing the same
He et al. Understanding bactericidal performance on ambient light activated TiO2–InVO4 nanostructured films
KR102308262B1 (en) Method for coating the surface of inorganic particles, in particular titanium dioxide pigment particles
Qian et al. Multilayer network membranes based on evenly dispersed nanofibers/Co3O4 nanoneedles for high‐efficiency separation of micrometer‐scale oil/water emulsions
JP4680757B2 (en) Method for producing surface-treated titanate pigment and surface-treated titanate pigment
TW202128564A (en) Barium sulfate dispersion, coating material, coating film, and film
WO2011094955A1 (en) Method for preparing organic - inorganic composite materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7422397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150