JP2021169421A - Composite particle and method for producing the same - Google Patents

Composite particle and method for producing the same Download PDF

Info

Publication number
JP2021169421A
JP2021169421A JP2020072950A JP2020072950A JP2021169421A JP 2021169421 A JP2021169421 A JP 2021169421A JP 2020072950 A JP2020072950 A JP 2020072950A JP 2020072950 A JP2020072950 A JP 2020072950A JP 2021169421 A JP2021169421 A JP 2021169421A
Authority
JP
Japan
Prior art keywords
particles
mass
water
parts
organic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020072950A
Other languages
Japanese (ja)
Inventor
良範 井口
Yoshinori Iguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020072950A priority Critical patent/JP2021169421A/en
Priority to PCT/JP2021/005393 priority patent/WO2021210257A1/en
Priority to TW110106074A priority patent/TW202203884A/en
Publication of JP2021169421A publication Critical patent/JP2021169421A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/23Sulfur; Selenium; Tellurium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments

Abstract

To provide a composite particle which shows hydrophilicity and has an organic resin particle on an inorganic particle and a method for producing the composite particle.SOLUTION: The present disclosure provides a composite particle having an organic resin particle on an inorganic particle. The organic resin particle is fixed to the inorganic particle with silica as a binder.SELECTED DRAWING: Figure 1

Description

本発明は、複合粒子、具体的には無機粒子の表面に有機樹脂粒子を付着してなる複合粒子およびその製造方法に関するものである。 The present invention relates to composite particles, specifically composite particles formed by adhering organic resin particles to the surface of inorganic particles, and a method for producing the same.

ファンデーション等のメークアップ化粧料は、肌のシワ、毛穴、キメの荒さ等の形態トラブルや、肌のシミ、ソバカス等の色調トラブルを隠し、肌をなめらかに、美しく見せるためのものであり、近年では人工的でない自然な仕上り感(素肌感)が重視されている。また、化粧料の自然な仕上り感は、不自然な光沢(つや)がなく、化粧膜のつきの均一性に優れ、高い透明性を有する場合に評される。 Makeup cosmetics such as foundations are intended to hide morphological problems such as wrinkles, pores, and roughness of the skin, and color problems such as skin spots and freckles, and to make the skin look smooth and beautiful in recent years. In, the emphasis is on a natural, non-artificial finish (feeling of bare skin). In addition, the natural finish of cosmetics is evaluated when there is no unnatural luster, the cosmetic film has excellent uniformity of adhesion, and it has high transparency.

従来、上記のメークアップ化粧料の効果を踏襲させつつも、自然な仕上がり感を得るため、多くの新素材や新技術の提案がなされている。 Conventionally, many new materials and new technologies have been proposed in order to obtain a natural finish while following the effects of the above-mentioned makeup cosmetics.

特に、本発明者は、シリコーンレジンをバインダーとして、任意の核粒子表面に光拡散性を有するシリコーンエラストマー粒子を付着してなる複合粒子を提案しており(特許文献1)、これを配合した化粧料は、肌の形態トラブル改善効果を視覚的に発現でき、シリコーンエラストマー特有のさらさらとして、柔らかく、しっとりした使用感を有し、のび、柔らかさ、つき、混ざり具合が良好で、肌の形態補正効果を付与することができる。 In particular, the present inventor has proposed composite particles in which silicone elastomer particles having light diffusivity are adhered to the surface of arbitrary nuclear particles using a silicone resin as a binder (Patent Document 1), and cosmetics containing the composite particles. The agent can visually express the effect of improving skin morphology troubles, has a soft and moist feeling as a smoothness peculiar to silicone elastomer, and has good spreadability, softness, stickiness, and mixing condition, and skin morphology correction. The effect can be given.

この複合粒子におけるシリコーンレジンのバインダーとして、特許文献1には、〔CHSiO3/2〕単位からなる重合体、いわゆるポリメチルシルセスキオキサンや、〔CHSiO3/2〕単位および〔HNCSiO3/2〕単位からなる重合体、〔CHSiO3/2〕単位および〔(CHSiO2/2〕単位からなる重合体の具体例が示されている。これらシリコーンレジンは撥水性であり、このシリコーンレジンで複合粒子が被覆されると複合粒子は撥水性となる。これを水性の化粧料に配合するには界面活性剤を使用する必要があるが、界面活性剤は肌への刺激性を有するため化粧品への使用が敬遠される場合がある。 As binders for silicone resins in these composite particles, Patent Document 1 states that polymers consisting of [CH 3 SiO 3/2 ] units, so-called polymethylsilsesquioxane, [CH 3 SiO 3/2 ] units and [CH 3 SiO 3/2] units. Specific examples of a polymer consisting of H 2 NC 3 H 6 SiO 3/2 ] units, and a polymer consisting of [CH 3 SiO 3/2 ] units and [(CH 3 ) 2 SiO 2/2] units are shown. There is. These silicone resins are water repellent, and when the composite particles are coated with the silicone resin, the composite particles become water repellent. It is necessary to use a surfactant to add this to an aqueous cosmetic product, but since the surfactant has irritation to the skin, its use in cosmetics may be avoided.

特開2011−1332号公報Japanese Unexamined Patent Publication No. 2011-1332.

本発明は上記事情に鑑みなされたもので、親水性を示す、無機粒子の表面に有機樹脂粒子を付着してなる複合粒子及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide composite particles having hydrophilicity and having organic resin particles adhered to the surface of inorganic particles, and a method for producing the same.

上記課題を達成するために、本発明では、無機粒子の表面に有機樹脂粒子が付着した複合粒子であって、前記有機樹脂粒子が、シリカをバインダーとして前記無機粒子に固着したものである複合粒子を提供する。 In order to achieve the above object, in the present invention, the composite particles are composite particles in which organic resin particles are attached to the surface of the inorganic particles, and the organic resin particles are fixed to the inorganic particles using silica as a binder. I will provide a.

このようなものであれば、親水性を示す、無機粒子の表面に有機樹脂粒子を付着してなる複合粒子とすることができる。 If it is such a thing, it can be made into composite particles which show hydrophilicity and are formed by adhering organic resin particles to the surface of inorganic particles.

また、前記無機粒子が硫酸バリウム、タルク、マイカ、セリサイトから選ばれる1種以上であることが好ましい。 Further, it is preferable that the inorganic particles are one or more selected from barium sulfate, talc, mica, and sericite.

このようなものであれば、化粧料に配合したときに、より顕著なソフトフォーカス効果、即ち光散乱によってシワ等を目立たなくする効果を得ることができる。 If it is such a thing, when it is blended with cosmetics, it is possible to obtain a more remarkable soft focus effect, that is, an effect of making wrinkles and the like inconspicuous by light scattering.

また、前記有機樹脂粒子の量が、前記無機粒子100質量部に対し、0.5〜100質量部の範囲であることが好ましい。 Further, the amount of the organic resin particles is preferably in the range of 0.5 to 100 parts by mass with respect to 100 parts by mass of the inorganic particles.

このようなものであれば、化粧料に配合したときに、より顕著なソフトフォーカス効果、さらさら感、なめらかさ、伸延性、しっとり感、やわらかさ等、良好な使用感を得られるとともに、複合粒子が凝集するおそれもない。 If it is such a substance, when it is blended with cosmetics, a more remarkable soft focus effect, a silky feeling, smoothness, stretchability, moist feeling, softness, etc. can be obtained, and composite particles can be obtained. There is no risk of agglutination.

また、本発明では、上記の複合粒子の製造方法であって、前記無機粒子および前記有機樹脂粒子が分散された水分散液と、アルカリ性物質とを配合した混合液に、テトラアルコキシシランを添加して加水分解・縮合反応させる複合粒子の製造方法を提供する。 Further, in the present invention, tetraalkoxysilane is added to the above-mentioned method for producing composite particles, which is a mixture of an aqueous dispersion in which the inorganic particles and the organic resin particles are dispersed and an alkaline substance. Provided is a method for producing composite particles to be hydrolyzed and condensed.

本発明の複合粒子は、このような方法で製造することができる。 The composite particles of the present invention can be produced by such a method.

また、前記混合液に、さらにカチオン性界面活性剤を配合することが好ましい。 Further, it is preferable to further add a cationic surfactant to the mixed solution.

このようにすれば、無機粒子表面に有機樹脂粒子が均一に付着し、またシリカによる固着が十分なものとなる。 By doing so, the organic resin particles are uniformly adhered to the surface of the inorganic particles, and the adhesion by silica is sufficient.

このとき、前記カチオン性界面活性剤の配合量を、前記混合液中の水100質量部に対し、0.01〜2質量部の範囲とすることが好ましい。 At this time, the blending amount of the cationic surfactant is preferably in the range of 0.01 to 2 parts by mass with respect to 100 parts by mass of water in the mixed solution.

このようにすれば、無機粒子表面に有機樹脂粒子が均一に付着し、またシリカによる固着がより十分なものとなる。 By doing so, the organic resin particles are uniformly adhered to the surface of the inorganic particles, and the adhesion by silica becomes more sufficient.

以上のように、本発明の複合粒子であれば、親水性を有するため、必ずしも界面活性剤や水溶性高分子等の分散剤を配合することなく、水性の化粧料に配合することができ、化粧料に、良好なのび、柔らかさ、つき、混ざり具合、優れた肌の形態補正効果を付与できることが期待される。 As described above, since the composite particles of the present invention have hydrophilicity, they can be blended in water-based cosmetics without necessarily blending a dispersant such as a surfactant or a water-soluble polymer. It is expected that cosmetics can be provided with good spreadability, softness, adhesion, mixing condition, and excellent skin morphology correction effect.

実施例1で得られた複合粒子の電子顕微鏡写真である。It is an electron micrograph of the composite particle obtained in Example 1. FIG.

上述のように、親水性を示す、無機粒子の表面に有機樹脂粒子を付着してなる複合粒子及びその製造方法の開発が求められていた。 As described above, there has been a demand for the development of composite particles having organic resin particles adhered to the surface of inorganic particles showing hydrophilicity and a method for producing the same.

本発明者は、上記目的を達成するため鋭意検討した結果、シリカをバインダーとして、無機粒子の表面に有機樹脂粒子を付着してなる複合粒子とすることで、上記課題を解決できることを知見し、本発明をなすに至ったものである。 As a result of diligent studies to achieve the above object, the present inventor has found that the above problems can be solved by forming composite particles formed by adhering organic resin particles to the surface of inorganic particles using silica as a binder. This is what led to the present invention.

即ち、本発明は、無機粒子の表面に有機樹脂粒子が付着した複合粒子であって、前記有機樹脂粒子が、シリカをバインダーとして前記無機粒子に固着したものである複合粒子である。 That is, the present invention is a composite particle in which organic resin particles are adhered to the surface of the inorganic particles, and the organic resin particles are fixed to the inorganic particles using silica as a binder.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

[複合粒子]
本発明の複合粒子は、シリカをバインダーとして、無機粒子(無機粉体)の表面に有機樹脂粒子を付着してなる粒子である。
[Composite particles]
The composite particles of the present invention are particles formed by adhering organic resin particles to the surface of inorganic particles (inorganic powder) using silica as a binder.

<無機粒子>
本発明に用いる無機粒子は、複合粒子の核になる粒子である。無機粒子は1種単独で又は2種以上を適宜組み合わせて用いることができ、化粧料に実質的に使用可能な粉体及び全範囲の粒子径のものが適用できる。また、その幾何学的態様が、通常化粧料に用いられるものであれば、球状、多面体状、紡錘状、針状、板状等いずれの形状でもよく、また、無孔質、多孔質のいずれでもよい。
<Inorganic particles>
The inorganic particles used in the present invention are particles that form the core of composite particles. As the inorganic particles, one type alone or two or more types can be used as appropriate, and powders substantially usable in cosmetics and particles having a particle size in the entire range can be applied. Further, as long as the geometrical aspect is that usually used for cosmetics, it may have any shape such as spherical, polyhedral, spindle-shaped, needle-shaped, plate-shaped, and any of non-porous and porous. It may be.

平均粒径は0.5〜50μmの範囲が好ましく、より好ましくは1〜30μmである。粒径が0.5μm以上であればさらさら感、なめらかさ等の使用感や伸展性付与の効果が十分に得られ、50μm以下であればざらつき感を低減することができる。なお、平均粒径は、各形状に合わせ、顕微鏡法、光散乱法、レーザー回折法、液相沈降法、電気抵抗法等から適宜選択して測定する。 The average particle size is preferably in the range of 0.5 to 50 μm, more preferably 1 to 30 μm. When the particle size is 0.5 μm or more, a feeling of use such as smoothness and smoothness and the effect of imparting extensibility can be sufficiently obtained, and when the particle size is 50 μm or less, the feeling of roughness can be reduced. The average particle size is appropriately selected from a microscope method, a light scattering method, a laser diffraction method, a liquid phase sedimentation method, an electric resistance method, and the like according to each shape.

無機粒子としては、酸化チタン、雲母チタン、酸化ジルコニウム、酸化亜鉛、酸化セリウム、酸化マグネシウム、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、タルク、劈開タルク、マイカ(雲母)、カオリン、セリサイト、白雲母、合成雲母、金雲母、紅雲母、黒雲母、リチア雲母、ケイ酸、二酸化ケイ素、含水二酸化ケイ素、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウムマグネシウム、ケイ酸カルシウム、ケイ酸バリウム、ケイ酸ストロンチウム、タングステン酸金属塩、ヒドロキシアパタイト、バーミキュライト、ハイジライト、ベントナイト、モンモリロナイト、ヘクトライト、ゼオライト、セラミックス、第二リン酸カルシウム、アルミナ、水酸化アルミニウム、チッ化ホウ素、チッ化ボロン、ガラス等の粒子が挙げられる。 Inorganic particles include titanium oxide, titanium mica, zirconium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, calcium sulfate, magnesium sulfate, calcium carbonate, magnesium carbonate, talc, talc, mica (mica), kaolin, Serisite, white mica, synthetic mica, gold mica, red mica, black mica, lithia mica, silicic acid, silicon dioxide, hydrous silicon dioxide, aluminum silicate, magnesium silicate, magnesium silicate, calcium silicate, silicic acid Barium, strontium silicate, metal tungrate, hydroxyapatite, vermiculite, hygilite, bentonite, montmorillonite, hectrite, zeolite, ceramics, calcium diphosphate, alumina, aluminum hydroxide, boron titanate, boron titanate, glass, etc. Particles can be mentioned.

さらに、無機系の顔料が挙げられ、具体例としては、酸化鉄、水酸化鉄、チタン酸鉄等の無機赤色系顔料;γ−酸化鉄等の無機褐色系顔料;黄酸化鉄、黄土等の無機黄色系顔料;黒酸化鉄、カーボンブラック等の無機黒色系顔料;マンガンバイオレット、コバルトバイオレット等の無機紫色系顔料;水酸化クロム、酸化クロム、酸化コバルト、チタン酸コバルト等の無機緑色系顔料;紺青、群青等の無機青色系顔料;タール系色素をレーキ化したもの、天然色素をレーキ化したもの等の有色顔料;酸化チタン被覆雲母、酸化チタン被覆マイカ、オキシ塩化ビスマス、酸化チタン被覆オキシ塩化ビスマス、酸化チタン被覆タルク、魚鱗箔、酸化チタン被覆着色雲母等のパール顔料;アルミニウムパウダー、カッパーパウダー、ステンレスパウダー等の金属粉末顔料が挙げられる。 Further, inorganic pigments are mentioned, and specific examples thereof include inorganic red pigments such as iron oxide, iron hydroxide and iron titanate; inorganic brown pigments such as γ-iron oxide; yellow iron oxide and yellow clay. Inorganic yellow pigments; Inorganic black pigments such as black iron oxide and carbon black; Inorganic purple pigments such as manganese violet and cobalt violet; Inorganic green pigments such as chromium hydroxide, chromium oxide, cobalt oxide and cobalt titanate; Inorganic blue pigments such as dark blue and ultramarine; colored pigments such as tar-based pigments raked and natural pigments raked; titanium oxide-coated mica, titanium oxide-coated mica, bismuth oxychloride, titanium oxide-coated oxychloride Pearl pigments such as bismuth, titanium oxide-coated talc, fish scale foil, and titanium oxide-coated colored mica; metal powder pigments such as aluminum powder, copper powder, and stainless powder can be mentioned.

より顕著なソフトフォーカス効果を所望する場合には、硫酸バリウム、タルク、マイカ、セリサイトが好ましい。 Barium sulfate, talc, mica and sericite are preferred if a more pronounced soft focus effect is desired.

無機粒子が金属石鹸、シラン、シリコーン、シリコーン樹脂、フッ素化合物、アミノ酸、酸化鉄、酸化チタン、酸化鉄酸化チタン又は水酸化アルミニウムにより、表面処理されていてもよい。 The inorganic particles may be surface-treated with metal soap, silane, silicone, silicone resin, fluorine compound, amino acid, iron oxide, titanium oxide, iron oxide or aluminum hydroxide.

<有機樹脂粒子>
本発明に用いる有機樹脂粒子は、複合粒子の核になる無機粒子の表面に付着している粒子である。有機樹脂粒子は1種単独で又は2種以上を適宜組み合わせて用いることができ、化粧料に実質的に使用可能な粉体及び全範囲の粒子径のものが適用できる。また、その幾何学的態様が、通常化粧料に用いられるものであれば、球状、多面体状、紡錘状、針状、板状等いずれの形状でもよく、また、無孔質、多孔質のいずれでもよい。
<Organic resin particles>
The organic resin particles used in the present invention are particles adhering to the surface of the inorganic particles that form the core of the composite particles. As the organic resin particles, one type alone or two or more types can be used as appropriate, and powders substantially usable for cosmetics and particles having a particle size in the entire range can be applied. Further, as long as the geometrical aspect is that usually used for cosmetics, it may have any shape such as spherical, polyhedral, spindle-shaped, needle-shaped, plate-shaped, and any of non-porous and porous. It may be.

有機樹脂粒子の粒径は無機粒子より小さいことが好ましい。核粉体である無機粒子より小さければ、粉体のさらさら感、なめらかさ等の使用感、伸展性、付着性等の特性が十分に発現する。平均粒径は0.05〜5μmの範囲が好ましく、より好ましくは0.1〜1μmである。 The particle size of the organic resin particles is preferably smaller than that of the inorganic particles. If the size is smaller than that of the inorganic particles, which are the nuclear powders, the characteristics such as the smoothness of the powder, the feeling of use such as smoothness, the extensibility, and the adhesiveness are sufficiently exhibited. The average particle size is preferably in the range of 0.05 to 5 μm, more preferably 0.1 to 1 μm.

有機樹脂粒子としては、ポリアミド、ポリアクリル酸・アクリル酸エステル、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、スチレン・アクリル酸共重合体、ジビニルベンゼン・スチレン共重合体、ポリウレタン、ビニル樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン、ポリメチルベンゾグアナミン、テトラフルオロエチレン、ポリメタクリル酸メチル等のポリメチルメタクリレート、セルロース、シルク、ナイロン、フェノール樹脂、エポキシ樹脂、ポリカーボネート、ポリブタジエンゴム、アクリルゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム等の粒子が挙げられる。 Examples of the organic resin particles include polyamide, polyacrylic acid / acrylic acid ester, polyester, polyethylene, polypropylene, polystyrene, styrene / acrylic acid copolymer, divinylbenzene / styrene copolymer, polyurethane, vinyl resin, urea resin, and melamine resin. , Benzoguanamine, polymethylbenzoguanamine, tetrafluoroethylene, polymethylmethacrylate such as polymethylmethacrylate, cellulose, silk, nylon, phenol resin, epoxy resin, polycarbonate, polybutadiene rubber, acrylic rubber, urethane rubber, silicone rubber, fluororubber, etc. Particles can be mentioned.

本発明において、無機粒子の表面に付着している有機樹脂粒子の密度は特に限定はない。すなわち、有機樹脂粒子が無機粒子表面にまばらに付着していてもよいし、無機粒子表面を隙間なく被覆付着していてもよい。 In the present invention, the density of the organic resin particles adhering to the surface of the inorganic particles is not particularly limited. That is, the organic resin particles may be sparsely adhered to the surface of the inorganic particles, or the surface of the inorganic particles may be coated and adhered without gaps.

有機樹脂粒子の量は、化粧料への添加効果を発現する場合においては、特に限定はないが、より顕著なソフトフォーカス効果、さらさら感、なめらかさ、伸延性、しっとり感、やわらかさ等、良好な使用感を所望する場合には、無機粒子100質量部に対して0.5質量部以上が好ましく、より好ましくは1質量部以上であり、さらに好ましくは2質量部以上である。また、より十分な低凝集性、ソフトフォーカス効果を得る観点から、無機粒子100質量部に対して、100質量部以下が好ましく、より好ましくは70質量部以下、さらに好ましくは50質量部以下である。 The amount of the organic resin particles is not particularly limited when the effect of adding to the cosmetic is exhibited, but the more remarkable soft focus effect, silky feeling, smoothness, stretchability, moist feeling, softness, etc. are good. When a good feeling of use is desired, it is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and further preferably 2 parts by mass or more with respect to 100 parts by mass of the inorganic particles. Further, from the viewpoint of obtaining more sufficient low cohesiveness and soft focus effect, it is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, and further preferably 50 parts by mass or less with respect to 100 parts by mass of the inorganic particles. ..

<シリカ>
本発明に用いるシリカは、無機粒子と有機樹脂粒子とのバインダーである。シリカをバインダーとして、無機粒子の表面に有機樹脂粒子を付着してなる複合粒子とすることで、有機樹脂粒子が無機粒子表面に固着され、無機粒子表面から脱落しにくくなり、より良好な使用感を付与することが可能となる。
<Silica>
The silica used in the present invention is a binder of inorganic particles and organic resin particles. By using silica as a binder to form composite particles formed by adhering organic resin particles to the surface of inorganic particles, the organic resin particles are fixed to the surface of the inorganic particles and are less likely to fall off from the surface of the inorganic particles, resulting in a better usability. Can be given.

シリカは、その形状は膜状でも粒状であってもよく、また無機粒子表面および/または有機樹脂粒子表面に部分的に又は全面に付着していてもよい。シリカはSiO単位からなる構造であり、その製法は特に限定されないが、後述する製造方法のように、テトラアルコキシシランの加水分解・縮合反応によって得られるものが好ましい。 The shape of silica may be film-like or granular, and may be partially or wholly attached to the surface of inorganic particles and / or the surface of organic resin particles. Silica has a structure composed of 2 units of SiO, and the production method thereof is not particularly limited, but silica is preferably obtained by a hydrolysis / condensation reaction of tetraalkoxysilane as in the production method described later.

シリカの量は、特に限定はないが、有機樹脂粒子を無機粒子表面に固着させるには、有機樹脂粒子100質量部に対して10質量部以上が好ましく、より好ましくは20質量部以上であり、さらに好ましくは、30質量部以上である。また、より十分なソフトフォーカス効果を得る観点から、有機樹脂粒子100質量部に対して500質量部以下が好ましく、より好ましくは300質量部以下、さらに好ましくは200質量部以下である。 The amount of silica is not particularly limited, but in order to fix the organic resin particles to the surface of the inorganic particles, it is preferably 10 parts by mass or more, more preferably 20 parts by mass or more with respect to 100 parts by mass of the organic resin particles. More preferably, it is 30 parts by mass or more. Further, from the viewpoint of obtaining a more sufficient soft focus effect, it is preferably 500 parts by mass or less, more preferably 300 parts by mass or less, and further preferably 200 parts by mass or less with respect to 100 parts by mass of the organic resin particles.

無機粒子の表面に有機樹脂粒子が付着した状態は、電子顕微鏡で確認することができる。 The state in which the organic resin particles are attached to the surface of the inorganic particles can be confirmed with an electron microscope.

本発明の複合粒子は、シリカをバインダーとして、無機粒子の表面に有機樹脂粒子を付着してなる粒子であり親水性を有するものであるが、目的に応じて撥水性の付与、向上や油剤への分散性の向上のために、粒子表面をシリル化剤、シリコーンオイル、ワックス類、パラフィン類、有機フッ素化合物、界面活性剤等で処理することも可能である。 The composite particles of the present invention are particles formed by adhering organic resin particles to the surface of inorganic particles using silica as a binder and have hydrophilicity. It is also possible to treat the particle surface with a silylating agent, silicone oil, waxes, paraffins, an organic fluorine compound, a surfactant, or the like in order to improve the dispersibility of the particles.

[複合粒子の製造方法]
本発明のシリカをバインダーとして、無機粒子の表面に有機樹脂粒子を付着してなる複合粒子は、無機粒子及び有機樹脂粒子が分散された水分散液(混合水分散液)と、アルカリ性物質とを配合した混合液に、テトラアルコキシシランを添加して加水分解・縮合反応させることにより、得ることができる。
[Manufacturing method of composite particles]
The composite particles formed by adhering the organic resin particles to the surface of the inorganic particles using the silica of the present invention as a binder are composed of an aqueous dispersion (mixed water dispersion) in which the inorganic particles and the organic resin particles are dispersed and an alkaline substance. It can be obtained by adding tetraalkoxysilane to the blended mixed solution and hydrolyzing / condensing the mixture.

本発明の複合粒子の製造方法においては、無機粒子、及び有機樹脂粒子は、上述のものを用いることができる。 In the method for producing composite particles of the present invention, the above-mentioned inorganic particles and organic resin particles can be used.

無機粒子は、配合される水100質量部に対して、3〜150質量部が好ましく、5〜50質量部がより好ましい。3質量部以上では製造効率が高くなり、150質量部以下では水分散液の動粘度が高くなり過ぎず、有機樹脂粒子を付着させやすくなる。有機樹脂粒子の量は、無機粒子の表面に付着させる量とすればよい。 The amount of the inorganic particles is preferably 3 to 150 parts by mass, more preferably 5 to 50 parts by mass, based on 100 parts by mass of the water to be blended. When the amount is 3 parts by mass or more, the production efficiency is high, and when the amount is 150 parts by mass or less, the kinematic viscosity of the aqueous dispersion does not become too high, and organic resin particles are easily attached. The amount of the organic resin particles may be an amount that adheres to the surface of the inorganic particles.

無機粒子および/または有機樹脂粒子を水に分散させるために、界面活性剤および水溶性高分子を配合してもよい。 Surfactants and water-soluble polymers may be added to disperse the inorganic particles and / or the organic resin particles in water.

界面活性剤は特に限定されないが、非イオン性界面活性剤、カチオン性界面活性剤、および/または両性界面活性剤が好ましい。 The surfactant is not particularly limited, but a nonionic surfactant, a cationic surfactant, and / or an amphoteric surfactant are preferable.

非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン硬化ヒマシ油脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレン変性オルガノポリシロキサン、ポリオキシエチレンポリオキシプロピレン変性オルガノポリシロキサン等が挙げられる。 Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyethylene glycol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and poly. Oxyethylene sorbit fatty acid ester, glycerin fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyglycerin fatty acid ester, propylene glycol fatty acid ester, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, polyoxyethylene hydrogenated castor oil fatty acid ester, poly Examples thereof include oxyethylene alkylamine, polyoxyethylene fatty acid amide, polyoxyethylene modified organopolysiloxane, and polyoxyethylene polyoxypropylene modified organopolysiloxane.

カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、ポリオキシエチレンアルキルジメチルアンモニウム塩、ジポリオキシエチレンアルキルメチルアンモニウム塩、トリポリオキシエチレンアルキルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルピリジウム塩、モノアルキルアミン塩、モノアルキルアミドアミン塩等が挙げられる。 Examples of cationic surfactants include alkyltrimethylammonium salt, dialkyldimethylammonium salt, polyoxyethylene alkyldimethylammonium salt, dipolyoxyethylene alkylmethylammonium salt, tripolyoxyethylene alkylammonium salt, alkylbenzyldimethylammonium salt, and alkylpyri. Examples thereof include a didium salt, a monoalkylamine salt, and a monoalkylamidoamine salt.

両イオン性界面活性剤としては、アルキルジメチルアミンオキシド、アルキルジメチルカルボキシベタイン、アルキルアミドプロピルジメチルカルボキシベタイン、アルキルヒドロキシスルホベタイン、アルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン等が挙げられる。 Examples of the amphoteric surfactant include alkyldimethylamine oxide, alkyldimethylcarboxybetaine, alkylamidepropyldimethylcarboxybetaine, alkylhydroxysulfobetaine, alkylcarboxymethylhydroxyethylimidazolinium betaine and the like.

水溶性高分子は特に限定されないが、ノニオン性水溶性高分子および/またはカチオン性水溶性高分子が好ましい。 The water-soluble polymer is not particularly limited, but a nonionic water-soluble polymer and / or a cationic water-soluble polymer is preferable.

ノニオン性水溶性高分子としては、ポリビニルアルコール、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド、ポリメチルビニルエーテル、ポリイソプロピルアクリルアミド、メチルセルロース、ヒドロキシプロピルメチルセルロース、デンプン、グアガム、キタンサンガム等が挙げられる。 Examples of the nonionic water-soluble polymer include polyvinyl alcohol, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, polymethyl vinyl ether, polyisopropylacrylamide, methyl cellulose, hydroxypropyl methyl cellulose, starch, guagam, and kitansan gum.

カチオン性水溶性高分子としては、例えば、ジメチルジアリルアンモニウムクロライドの重合体、ビニルイミダゾリンの重合体、メチルビニルイミダゾリウムクロライドの重合体、アクリル酸エチルトリメチルアンモニウムクロライドの重合体、メタクリル酸エチルトリメチルアンモニウムクロライドの重合体、アクリルアミドプロピルトリメチルアンモニウムクロライドの重合体、メタクリルアミドプロピルトリメチルアンモニウムクロライドの重合体、エピクロルヒドリン/ジメチルアミン重合体、エチレンイミンの重合体、エチレンイミンの重合体の4級化物、アリルアミン塩酸塩の重合体、ポリリジン、カチオンデンプン、カチオン化セルロース、キトサン、及びこれらに非イオン性基やアニオン性基を持つモノマーを共重合する等したこれらの誘導体等が挙げられる。 Examples of the cationic water-soluble polymer include a polymer of dimethyldialylammonium chloride, a polymer of vinylimidazoline, a polymer of methylvinylimidazolium chloride, a polymer of ethyltrimethylammonium chloride acrylate, and a polymer of ethyltrimethylammonium chloride methacrylate. Polymer, acrylamide propyltrimethylammonium chloride polymer, methacrylicamidopropyltrimethylammonium chloride polymer, epichlorohydrin / dimethylamine polymer, ethyleneimine polymer, quaternary product of ethyleneimine polymer, allylamine hydrochloride Examples thereof include polymers, polylysine, cationic starch, cationized cellulose, chitosan, and derivatives thereof obtained by copolymerizing a monomer having a nonionic group or an anionic group with them.

無機粒子および/または有機樹脂粒子は、予め水分散液として調製されたものや水中で合成された水分散液を用いてもよい。 As the inorganic particles and / or the organic resin particles, those prepared in advance as an aqueous dispersion or an aqueous dispersion synthesized in water may be used.

本発明の複合粒子の製造方法では、さらにアルカリ性物質を用いる。アルカリ性物質は、テトラアルコキシシランの加水分解・縮合反応のための触媒である。 In the method for producing composite particles of the present invention, an alkaline substance is further used. The alkaline substance is a catalyst for the hydrolysis / condensation reaction of tetraalkoxysilane.

アルカリ性物質の配合量は、少なくとも該アルカリ性物質と、無機粒子及び有機樹脂粒子が分散された水分散液との混合液のpHが9.0〜12.0となる量が好ましく、9.5〜11.5となる量がより好ましい。pHが9.0〜12.0となる量のアルカリ性物質を添加すると、テトラアルコキシシランの加水分解・縮合反応の進行および無機粒子表面への有機樹脂粒子の固着が十分なものとなる。 The amount of the alkaline substance to be blended is preferably at least an amount such that the pH of the mixed solution of the alkaline substance and the aqueous dispersion in which the inorganic particles and the organic resin particles are dispersed is 9.0 to 12.0, preferably 9.5 to 12.0. An amount of 11.5 is more preferable. When an alkaline substance having a pH of 9.0 to 12.0 is added, the hydrolysis / condensation reaction of tetraalkoxysilane proceeds and the organic resin particles are sufficiently adhered to the surface of the inorganic particles.

アルカリ性物質は特に限定されず、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等のアルカリ金属水酸化物;水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物;炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩;アンモニア;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド;又はモノメチルアミン、モノエチルアミン、モノプロピルアミン、モノブチルアミン、モノペンチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエタノールアミン、エチレンジアミン等のアミン類等を使用することができる。中でも、揮発させることにより、得られる複合粒子の粉末から容易に除去できることから、アンモニアが最も適している。アンモニアとしては、市販されているアンモニア水溶液を用いることができる。 The alkaline substance is not particularly limited, and for example, alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and lithium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide; potassium carbonate and carbon dioxide. Alkali metal carbonates such as sodium; ammonia; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide; or monomethylamine, monoethylamine, monopropylamine, monobutylamine, monopentylamine, dimethylamine, diethylamine , Trimethylamine, triethanolamine, ethylenediamine and other amines can be used. Among them, ammonia is most suitable because it can be easily removed from the powder of the obtained composite particles by volatilization. As the ammonia, a commercially available aqueous solution of ammonia can be used.

本発明では、無機粒子及び有機樹脂粒子が分散された水分散液と、アルカリ性物質とを配合した混合液に、カチオン性界面活性剤が配合されることが好ましい。このようにすれば、無機粒子表面に有機樹脂粒子が均一に付着し、またシリカによる固着が十分なものとなる。 In the present invention, it is preferable that the cationic surfactant is added to the mixture of the aqueous dispersion in which the inorganic particles and the organic resin particles are dispersed and the alkaline substance. By doing so, the organic resin particles are uniformly adhered to the surface of the inorganic particles, and the adhesion by silica is sufficient.

カチオン性界面活性剤は、上述のものが挙げられるが、アルキルトリメチルアンモニウム塩が好ましい。 Examples of the cationic surfactant include those described above, but an alkyltrimethylammonium salt is preferable.

カチオン性界面活性剤の量は、無機粒子及び有機樹脂粒子が分散された水分散液と、アルカリ性物質とを配合した混合液中の水100質量部に対し、0.01〜2質量部が好ましく、より好ましくは、0.02〜1質量部の範囲である。0.01質量部〜2質量部の配合量であれば、無機粒子表面に有機樹脂粒子が均一に付着し、またシリカによる固着が十分なものとなる。 The amount of the cationic surfactant is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of water in a mixed solution containing an aqueous dispersion in which inorganic particles and organic resin particles are dispersed and an alkaline substance. , More preferably in the range of 0.02-1 parts by mass. When the blending amount is 0.01 part by mass to 2 parts by mass, the organic resin particles are uniformly adhered to the surface of the inorganic particles, and the adhesion by silica is sufficient.

カチオン性界面活性剤の混合液への配合の仕方については特に限定はされないが、例えば、無機粒子及び有機樹脂粒子が分散された水分散液と、アルカリ性物質とを配合した混合液に、後述するテトラアルコキシシランを添加する前に添加してもよいし、後述するテトラアルコキシシランの添加時に同時に添加してもよい。無機粉体および/または有機樹脂粒子の分散剤として使用した場合には、すでに配合されていることになるが、必要に応じて追加添加してもよい。 The method of blending the cationic surfactant into the mixed solution is not particularly limited, but for example, a mixed solution containing an aqueous dispersion in which inorganic particles and organic resin particles are dispersed and an alkaline substance will be described later. It may be added before the addition of the tetraalkoxysilane, or it may be added at the same time as the addition of the tetraalkoxysilane, which will be described later. When used as a dispersant for inorganic powder and / or organic resin particles, it is already blended, but it may be additionally added if necessary.

本発明の複合粒子の製造方法では、無機粒子及び有機樹脂粒子が分散された水分散液と、アルカリ性物質とを配合した混合液に、テトラアルコキシシランを添加する。テトラアルコキシシランは、上述のアルカリ性物質の触媒作用により加水分解・縮合反応し、シリカとなる。テトラアルコキシシランの添加後、テトラアルコキシシランの加水分解・縮合反応により生成するシリカは無機粒子の表面および/又は有機樹脂粒子の表面上に形成され、それと共に無機粒子表面への有機樹脂粒子の吸着が起こり、それにより、無機粒子表面に有機樹脂粒子がシリカで固着された状態となる。 In the method for producing composite particles of the present invention, tetraalkoxysilane is added to a mixed solution in which an aqueous dispersion in which inorganic particles and organic resin particles are dispersed and an alkaline substance are mixed. Tetraalkoxysilane is hydrolyzed and condensed by the catalytic action of the above-mentioned alkaline substance to become silica. After the addition of tetraalkoxysilane, the silica produced by the hydrolysis / condensation reaction of tetraalkoxysilane is formed on the surface of the inorganic particles and / or on the surface of the organic resin particles, and at the same time, the organic resin particles are adsorbed on the surface of the inorganic particles. As a result, the organic resin particles are fixed to the surface of the inorganic particles with silica.

テトラアルコキシシランは、Si(ORで表される。式中のRはアルキル基である。アルキル基としては、炭素数1〜6のアルキル基が好ましい。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられるが、反応性の点から、メチル基、エチル基であることがより好ましい。すなわち、テトラメトキシシラン、テトラエトキシシランがより好ましく、テトラメトキシシランがさらに好ましい。テトラアルコキシシランは、アルコキシ基の一部又は全部が加水分解したものを使用してもよい。さらに、一部が縮合したものを使用してもよい。 The tetraalkoxysilane is represented by Si (OR 6 ) 4. R 6 in the formula is an alkyl group. As the alkyl group, an alkyl group having 1 to 6 carbon atoms is preferable. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and the like, but from the viewpoint of reactivity, a methyl group and an ethyl group are more preferable. That is, tetramethoxysilane and tetraethoxysilane are more preferable, and tetramethoxysilane is even more preferable. As the tetraalkoxysilane, one in which a part or all of the alkoxy group is hydrolyzed may be used. Further, a partially condensed product may be used.

テトラアルコキシシランの添加量は、特に限定はないが、加水分解・縮合反応後のシリカの量が、上述の有機樹脂粒子の量に対する量となるようにすればよい。 The amount of tetraalkoxysilane added is not particularly limited, but the amount of silica after the hydrolysis / condensation reaction may be set to be the amount relative to the amount of the above-mentioned organic resin particles.

無機粒子及び有機樹脂粒子が分散された水分散液(混合水分散液)と、アルカリ性物質とを配合した混合液を撹拌しながら、テトラアルコキシシランを添加する。テトラアルコキシシランは、徐々に滴下して添加してもよく、水に溶解させた形態又は水に分散させた形態で添加してもよく、アルコール等の水溶性有機溶剤を配合したものを添加してもよい。 Tetraalkoxysilane is added while stirring a mixed solution containing an aqueous dispersion (mixed water dispersion) in which inorganic particles and organic resin particles are dispersed and an alkaline substance. The tetraalkoxysilane may be added by gradually dropping it, or it may be added in a form dissolved in water or dispersed in water, and a solution containing a water-soluble organic solvent such as alcohol is added. You may.

攪拌は、無機粒子同士の凝集を防ぐ観点から、パドル翼、プロペラ翼、後退翼、錨型翼等を用いる緩い攪拌とすることがよいが、無機粒子、有機樹脂粒子およびテトラアルコキシシランが、混合液中に分散される程度の攪拌強度は必要とされる。 From the viewpoint of preventing aggregation of the inorganic particles, the stirring may be loose using paddle blades, propeller blades, swept blades, anchor-shaped blades, etc., but the inorganic particles, organic resin particles, and tetraalkoxysilane are mixed. Stirring strength is required to disperse in the liquid.

テトラアルコキシシランを混合液に添加する時の温度は、0〜60℃であることが好ましく、より好ましくは0〜39℃である。この温度が、0℃以上であれば混合液が凝固するおそれがなく、60℃以下であれば得られた粒子が凝集を起こすおそれがない。 The temperature at which tetraalkoxysilane is added to the mixed solution is preferably 0 to 60 ° C, more preferably 0 to 39 ° C. If this temperature is 0 ° C. or higher, the mixed solution is unlikely to solidify, and if it is 60 ° C. or lower, the obtained particles are unlikely to coagulate.

無機粒子表面に有機樹脂粒子を均一に付着させる目的で、混合液にアルコール等の水溶性有機溶剤を配合してもよい。シリル化剤により表面処理した粒子とする場合には、仕上がった複合粒子に処理してもよいが、テトラアルコキシシランを混合液に添加した後に、シリル化剤を添加して処理してもよい。シリル化剤としては、例えば、トリメチルメトキシシラン、トリメチルシラノール、ヘキサメチルジシラザン、メチルトリメトキシシラン、フェニルトリメトキシシラン等が挙げられる。 A water-soluble organic solvent such as alcohol may be added to the mixed solution for the purpose of uniformly adhering the organic resin particles to the surface of the inorganic particles. When the particles are surface-treated with a silylating agent, the finished composite particles may be treated, or the silylating agent may be added and then treated after adding tetraalkoxysilane to the mixed solution. Examples of the silylating agent include trimethylmethoxysilane, trimethylsilanol, hexamethyldisilazane, methyltrimethoxysilane, and phenyltrimethoxysilane.

テトラアルコキシシランを添加終了後、加水分解・縮合反応が終了するまで、しばらく攪拌を続けておくことが好ましい。反応を促進させるために40〜100℃で加熱してもよいし、アルカリ性物質を追加してもよい。その後必要であれば酸性物質を投入して中和してもよい。 After the addition of tetraalkoxysilane is completed, it is preferable to continue stirring for a while until the hydrolysis / condensation reaction is completed. It may be heated at 40-100 ° C. to accelerate the reaction, or an alkaline substance may be added. After that, if necessary, an acidic substance may be added to neutralize the substance.

加水分解・縮合反応後、水分を除去する。水分の除去は、例えば、反応後の混合液を常圧下又は減圧下に加熱することにより行うことができ、具体的には、混合液を加熱下で静置して水分を除去する方法、混合液を加熱下で攪拌流動させながら水分を除去する方法、スプレードライヤーのように熱風気流中に混合液を噴霧、分散させる方法、流動熱媒体を利用する方法等が挙げられる。なお、この操作の前処理として、加熱脱水、加圧ろ過等の濾過分離、遠心分離、デカンテーション等の方法で混合液を濃縮してもよいし、必要ならば混合液を水やアルコール等で洗浄してもよい。 After the hydrolysis / condensation reaction, water is removed. Moisture can be removed, for example, by heating the mixed solution after the reaction under normal pressure or reduced pressure. Specifically, a method of allowing the mixed solution to stand under heating to remove water, mixing. Examples thereof include a method of removing water while stirring and flowing the liquid under heating, a method of spraying and dispersing the mixed liquid in a hot air stream such as a spray dryer, and a method of using a fluidized heat medium. As a pretreatment for this operation, the mixed solution may be concentrated by a method such as heat dehydration, filtration separation such as pressure filtration, centrifugation, decantation, etc., and if necessary, the mixed solution may be concentrated with water, alcohol, or the like. You may wash it.

反応後の混合液から水分を除去することにより得られた粉体が凝集している場合には、ジェットミル、ボールミル、ハンマーミル等の粉砕機で解砕又は分級するとよい。 When the powder obtained by removing water from the mixed solution after the reaction is agglutinated, it may be crushed or classified by a crusher such as a jet mill, a ball mill or a hammer mill.

以下、実施例および比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、例中、動粘度は25℃において毛管粘度計を用いて測定した値であり、濃度及び含有率を表す「%」は「質量%」を示す。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In the example, the kinematic viscosity is a value measured using a capillary viscometer at 25 ° C., and "%" indicating the concentration and the content rate indicates "mass%".

[製造例1]
(シリコーンゴム粒子の水分散液の製造)
下記式(1)で示される、動粘度が61mm/sのメチルビニルポリシロキサン349gと、下記式(2)で示される、動粘度が30mm/sのメチルハイドロジェンポリシロキサン51g(ビニル基1個に対しヒドロシリル基が1.2個となる配合量)を容量1リットルのガラスビーカーに仕込み、ホモミキサーを用いて混合溶解させた。ポリオキシエチレントリデシルエーテルエーテル(商品名:ノイゲンTDS−100、第一工業製薬(株)製)26gと水40gを加え、ホモミキサーを用いて攪拌したところ、攪拌できない状態にまで増粘した。増粘物を、ホモディスパーを用いて、15分間混練りした。次いで水532gを加え、ホモミキサーを用いて混合したところ、均一な白色エマルジョンが得られた。このエマルジョンを錨型攪拌翼による攪拌装置の付いた容量1リットルのガラスフラスコに移し、20〜25℃に温度調整した後、攪拌下に白金−ビニル基含有ジシロキサン錯体のイソドデカン溶液(白金含有量0.5%)1g、ポリオキシエチレントリデシルエーテル(商品名:ノイゲンTDS−100、第一工業製薬(株)製)1gの混合溶解物を添加し、同温度で24時間攪拌し、シリコーンゴム粒子の水分散液を得た。
[Manufacturing Example 1]
(Manufacturing of aqueous dispersion of silicone rubber particles)
349 g of methylvinylpolysiloxane having a kinematic viscosity of 61 mm 2 / s represented by the following formula (1) and 51 g of methylhydrogen polysiloxane having a kinematic viscosity of 30 mm 2 / s represented by the following formula (2) (vinyl group). A glass beaker having a capacity of 1 liter (a blending amount in which 1.2 hydrosilyl groups were added to each) was charged and mixed and dissolved using a homomixer. When 26 g of polyoxyethylene tridecyl ether ether (trade name: Neugen TDS-100, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and 40 g of water were added and stirred using a homomixer, the viscosity was increased to a state where stirring was not possible. The thickener was kneaded with a homodisper for 15 minutes. Then, 532 g of water was added and mixed using a homomixer to obtain a uniform white emulsion. This emulsion is transferred to a glass flask having a capacity of 1 liter equipped with a stirrer using an anchor-type stirring blade, the temperature is adjusted to 20 to 25 ° C., and then an isododecane solution (platinum content) of a platinum-vinyl group-containing disiloxane complex under stirring. A mixed solution of 1 g (0.5%) and 1 g of polyoxyethylene tridecyl ether (trade name: Neugen TDS-100, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added, and the mixture was stirred at the same temperature for 24 hours, and made of silicone rubber. An aqueous dispersion of particles was obtained.

Figure 2021169421
Figure 2021169421

Figure 2021169421
Figure 2021169421

得られたシリコーンゴム粒子の体積平均粒径を、「レーザー回折/散乱式粒度分布測定装置LA−960」((株)堀場製作所製)を用いて測定したところ、360nmであった。 The volume average particle size of the obtained silicone rubber particles was measured using a "laser diffraction / scattering type particle size distribution measuring device LA-960" (manufactured by HORIBA, Ltd.) and found to be 360 nm.

次に、上記式(1)で示される、動粘度が61mm/sのメチルビニルポリシロキサン、上記式(2)で示される、動粘度が30mm/sのメチルハイドロジェンポリシロキサン、および白金−ビニル基含有ジシロキサン錯体のイソドデカン溶液(白金含有量
0.5%)を上記の配合割合で混合し、厚みが10mmになるようアルミシャーレに流し込み、25℃で6時間放置後、さらに50℃の恒温槽内で1時間加熱した。得られた硬化物は、べたつきのないゴム弾性体であり、硬度を、デュロメータA硬度計で測定したところ、48であった。
Next, the methylvinylpolysiloxane having a kinematic viscosity of 61 mm 2 / s represented by the above formula (1), the methylhydrogen polysiloxane having a kinematic viscosity of 30 mm 2 / s represented by the above formula (2), and platinum. − An isododecane solution of a vinyl group-containing disiloxane complex (platinum content 0.5%) is mixed at the above blending ratio, poured into an aluminum chalet so as to have a thickness of 10 mm, left at 25 ° C. for 6 hours, and then further 50 ° C. It was heated for 1 hour in a constant temperature bath. The obtained cured product was a non-sticky rubber elastic body, and the hardness was 48 when measured with a durometer A hardness tester.

[製造例2]
(アクリル粒子の水分散液の製造)
容量1リットルのガラスビーカーに、アクリル粒子(商品名:MP−2200、綜研化学(株)製、形状=球状、平均粒径=350nm)50g、ポリオキシエチレントリデシルエーテル(商品名:ノイゲンTDS−100、第一工業製薬(株)製)3.5g、および水447gを仕込み、ホモミキサーを用いて混合した。混合物を高圧式ホモジナイザーに40MPaの圧力で通し、アクリル粒子の水分散液を得た。
[Manufacturing Example 2]
(Manufacturing of aqueous dispersion of acrylic particles)
Acrylic particles (trade name: MP-2200, manufactured by Soken Kagaku Co., Ltd., shape = spherical, average particle size = 350 nm) 50 g, polyoxyethylene tridecyl ether (trade name: Neugen TDS-) in a glass beaker with a capacity of 1 liter. 100, 3.5 g of Dai-ichi Kogyo Seiyaku Co., Ltd., and 447 g of water were charged and mixed using a homomixer. The mixture was passed through a high pressure homogenizer at a pressure of 40 MPa to obtain an aqueous dispersion of acrylic particles.

[実施例1]
錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコを用いて、マイカ粒子(商品名:Y−5000、(株)角八魚鱗箔製、形状=板状、平均粒径=14μm)90gと、上記製造例1で得たシリコーンゴム粒子水分散液22g(マイカ粒子100質量部に対し、シリコーンゴム粒子が9.8質量部となる量)と、水805gを混合した混合水分散液に、2.8%アンモニア水1.6gを仕込んだ。このときの液のpHは、10.8であった。5〜10℃に温度調整した後、テトラメトキシシラン24g(シリコーンゴム粒子100質量部に対し、加水分解・縮合反応後のシリカが108質量部となる量)および30%ラウリルトリメチルアンモニウムクロライド水溶液(商品名:カチオンBB、日油(株)製、)を水で10倍に希釈した水溶液58g(水100質量部に対し、ラウリルトリメチルアンモニウムクロライドが0.2質量部となる量)を20分かけて滴下し、この間の液温を5〜10℃に保ち、さらに1時間攪拌を行った。次いで、75〜80℃まで加熱し、その温度を保ったまま1時間攪拌を行い、テトラメトキシシランの加水分解・縮合反応を完結させた。得られた懸濁液を、加圧ろ過器を用いて脱水した。脱水物を錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコに移し、水1,000gを添加し、30分間攪拌を行った後、加圧ろ過器を用いて脱水した。この操作を2回繰り返した。得られた脱水物を熱風流動乾燥機中で105℃の温度で乾燥し、乾燥物をジェットミルで解砕し、粒子を得た。
[Example 1]
Using a glass flask with a capacity of 2 liters equipped with a stirrer with an anchor-shaped stirrer, mica particles (trade name: Y-5000, made of Kakuhachi fish scale foil, shape = plate, average particle size = 14 μm) A mixed water dispersion in which 90 g, 22 g of the silicone rubber particle aqueous dispersion obtained in Production Example 1 (the amount of silicone rubber particles is 9.8 parts by mass with respect to 100 parts by mass of mica particles), and 805 g of water are mixed. Was charged with 1.6 g of 2.8% ammonia water. The pH of the liquid at this time was 10.8. After adjusting the temperature to 5 to 10 ° C., 24 g of tetramethoxysilane (the amount of silica after hydrolysis / condensation reaction is 108 parts by mass with respect to 100 parts by mass of silicone rubber particles) and 30% lauryltrimethylammonium chloride aqueous solution (commodity). Name: Cation BB, manufactured by Nichiyu Co., Ltd.) was diluted 10-fold with water and 58 g (amount of lauryltrimethylammonium chloride in 0.2 parts by mass with respect to 100 parts by mass of water) was applied over 20 minutes. The mixture was added dropwise, the liquid temperature was maintained at 5 to 10 ° C. during this period, and stirring was further carried out for 1 hour. Then, the mixture was heated to 75 to 80 ° C. and stirred for 1 hour while maintaining the temperature to complete the hydrolysis / condensation reaction of tetramethoxysilane. The obtained suspension was dehydrated using a pressure filter. The dehydrated product was transferred to a glass flask having a capacity of 2 liters equipped with a stirring device using an anchor-shaped stirring blade, 1,000 g of water was added, the mixture was stirred for 30 minutes, and then dehydrated using a pressure filter. This operation was repeated twice. The obtained dehydrated product was dried in a hot air flow dryer at a temperature of 105 ° C., and the dried product was crushed with a jet mill to obtain particles.

得られた粒子を電子顕微鏡で観察したところ、板状の粒子表面に約350nm前後の大きさの球状粒子が均一に付着しており、マイカ粒子表面にシリコーンゴム粒子を付着してなる複合粒子となっていることが確認された。電子顕微鏡写真を図1に示す。 When the obtained particles were observed with an electron microscope, spherical particles having a size of about 350 nm were uniformly adhered to the surface of the plate-shaped particles, and the composite particles formed by adhering silicone rubber particles to the surface of the mica particles. It was confirmed that it was. An electron micrograph is shown in FIG.

次に、水80gを入れた100mLビーカーに、得られた粒子5gを添加しガラス棒で撹拌したところ、粒子は全量水に分散し、親水性の粒子であることが確認された。さらに、24時間静置し、粒子の浮き沈みを観察したところ、粒子は全量沈降していた。シリコーンゴム粒子は比重が水より小さいため浮いてくるが、この結果から、シリコーンゴム粒子がマイカ粒子表面から脱落していないと判断され、シリカがバインダーとなり、マイカ粒子表面にシリコーンゴム粒子を固着させていることが示唆された。 Next, when 5 g of the obtained particles were added to a 100 mL beaker containing 80 g of water and stirred with a glass rod, all the particles were dispersed in water, and it was confirmed that the particles were hydrophilic. Further, when the particles were allowed to stand for 24 hours and the ups and downs of the particles were observed, all the particles were settled. Silicone rubber particles float because their specific gravity is smaller than that of water. From this result, it is judged that the silicone rubber particles have not fallen off from the surface of the mica particles, and silica acts as a binder to fix the silicone rubber particles to the surface of the mica particles. It was suggested that

[実施例2]
実施例1のマイカ粒子90gをタルク粒子(商品名:JA−69R、浅田製粉(株)製、形状=板状、平均粒径=10μm)90gとした他は、実施例1と同様にして粒子を得た。
[Example 2]
Particles in the same manner as in Example 1 except that 90 g of mica particles of Example 1 was 90 g of talc particles (trade name: JA-69R, manufactured by Asada Flour Milling Co., Ltd., shape = plate shape, average particle size = 10 μm). Got

得られた粒子を電子顕微鏡で観察したところ、板状の粒子表面に約350nm前後の大きさの球状粒子が均一に付着しており、タルク粒子表面にシリコーンゴム粒子を付着してなる複合粒子となっていることが確認された。 When the obtained particles were observed with an electron microscope, spherical particles having a size of about 350 nm were uniformly adhered to the surface of the plate-shaped particles, and the composite particles formed by adhering silicone rubber particles to the surface of the talc particles. It was confirmed that it was.

次に、水80gを入れた100mLビーカーに、得られた粒子5gを添加しガラス棒で撹拌したところ、粒子は全量水に分散し、親水性の粒子であることが確認された。さらに、24時間静置し、粒子の浮き沈みを観察したところ、粒子は全量沈降していた。シリコーンゴム粒子は比重が水より小さいため浮いてくるが、この結果から、シリコーンゴム粒子がタルク粒子表面から脱落していないと判断され、シリカがバインダーとなり、タルク粒子表面にシリコーンゴム粒子を固着させていることが示唆された。 Next, when 5 g of the obtained particles were added to a 100 mL beaker containing 80 g of water and stirred with a glass rod, all the particles were dispersed in water, and it was confirmed that the particles were hydrophilic. Further, when the particles were allowed to stand for 24 hours and the ups and downs of the particles were observed, all the particles were settled. Silicone rubber particles float because their specific gravity is smaller than that of water. From this result, it is judged that the silicone rubber particles have not fallen off from the surface of the talc particles, and silica acts as a binder to fix the silicone rubber particles to the surface of the talc particles. It was suggested that

[実施例3]
実施例1のマイカ粒子90gをセリサイト粒子(商品名:三信マイカFSE、(株)三信鉱工製、形状=板状、平均粒径=10μm)90gとした他は、実施例1と同様にして粒子を得た。
[Example 3]
Same as in Example 1 except that 90 g of mica particles of Example 1 was 90 g of sericite particles (trade name: Sanshin Mica FSE, manufactured by Sanshin Mining Co., Ltd., shape = plate shape, average particle size = 10 μm). Obtained particles.

得られた粒子を電子顕微鏡で観察したところ、板状の粒子表面に約350nm前後の大きさの球状粒子が均一に付着しており、セリサイト粒子表面にシリコーンゴム粒子を付着してなる複合粒子となっていることが確認された。 When the obtained particles were observed with an electron microscope, spherical particles having a size of about 350 nm were uniformly adhered to the surface of the plate-shaped particles, and composite particles formed by adhering silicone rubber particles to the surface of the sericite particles. It was confirmed that

次に、水80gを入れた100mLビーカーに、得られた粒子5gを添加しガラス棒で撹拌したところ、粒子は全量水に分散し、親水性の粒子であることが確認された。さらに、24時間静置し、粒子の浮き沈みを観察したところ、粒子は全量沈降していた。シリコーンゴム粒子は比重が水より小さいため浮いてくるが、この結果から、シリコーンゴム粒子がセリサイト粒子表面から脱落していないと判断され、シリカがバインダーとなり、セリサイト粒子表面にシリコーンゴム粒子を固着させていることが示唆された。 Next, when 5 g of the obtained particles were added to a 100 mL beaker containing 80 g of water and stirred with a glass rod, all the particles were dispersed in water, and it was confirmed that the particles were hydrophilic. Further, when the particles were allowed to stand for 24 hours and the ups and downs of the particles were observed, all the particles were settled. Silicone rubber particles float because their specific gravity is smaller than that of water. From this result, it is judged that the silicone rubber particles have not fallen off from the surface of the sericite particles, silica acts as a binder, and the silicone rubber particles are placed on the surface of the sericite particles. It was suggested that they were stuck.

[実施例4]
錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコを用いて、硫酸バリウム粒子(商品名:板状硫酸バリウムHL、堺化学工業(株)製、形状=板状、平均粒径=15μm)90gと、上記製造例2で得たアクリル粒子水分散液87g(硫酸バリウム粒子100質量部に対し、アクリル粒子が9.7質量部となる量)と、水740gを混合した混合水分散液に、2.8%アンモニア水1.6gを仕込んだ。このときの液のpHは、10.7であった。5〜10℃に温度調整した後、テトラメトキシシラン24g(アクリル粒子100質量部に対し、加水分解・縮合反応後のシリカが109質量部となる量)および30%ラウリルトリメチルアンモニウムクロライド水溶液(商品名:カチオンBB、日油(株)製、)を水で10倍に希釈した水溶液58g(水100質量部に対し、ラウリルトリメチルアンモニウムクロライドが0.2質量部となる量)を20分かけて滴下し、この間の液温を5〜10℃に保ち、さらに1時間攪拌を行った。次いで、75〜80℃まで加熱し、その温度を保ったまま1時間攪拌を行い、テトラメトキシシランの加水分解・縮合反応を完結させた。得られた懸濁液を、加圧ろ過器を用いて脱水した。脱水物を錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコに移し、水1,000gを添加し、30分間攪拌を行った後、加圧ろ過器を用いて脱水した。この操作を2回繰り返した。得られた脱水物を熱風流動乾燥機中で105℃の温度で乾燥し、乾燥物をジェットミルで解砕し、粒子を得た。
[Example 4]
Barium sulfate particles (trade name: plate-shaped barium sulfate HL, manufactured by Sakai Chemical Industry Co., Ltd., shape = plate-shaped, average particle size = Mixed water dispersion in which 90 g of 15 μm), 87 g of the aqueous dispersion of acrylic particles obtained in Production Example 2 (amount of 9.7 parts by mass of acrylic particles with respect to 100 parts by mass of barium sulfate particles) and 740 g of water are mixed. 1.6 g of 2.8% ammonia water was charged into the liquid. The pH of the liquid at this time was 10.7. After adjusting the temperature to 5 to 10 ° C, 24 g of tetramethoxysilane (amount of silica after hydrolysis / condensation reaction of 109 parts by mass with respect to 100 parts by mass of acrylic particles) and a 30% lauryltrimethylammonium chloride aqueous solution (trade name). : Cation BB, manufactured by Nichiyu Co., Ltd.) was diluted 10-fold with water, and 58 g of an aqueous solution (amount of lauryltrimethylammonium chloride in an amount of 0.2 parts by mass with respect to 100 parts by mass of water) was added dropwise over 20 minutes. During this period, the liquid temperature was maintained at 5 to 10 ° C., and stirring was further carried out for 1 hour. Then, the mixture was heated to 75 to 80 ° C. and stirred for 1 hour while maintaining the temperature to complete the hydrolysis / condensation reaction of tetramethoxysilane. The obtained suspension was dehydrated using a pressure filter. The dehydrated product was transferred to a glass flask having a capacity of 2 liters equipped with a stirring device using an anchor-shaped stirring blade, 1,000 g of water was added, the mixture was stirred for 30 minutes, and then dehydrated using a pressure filter. This operation was repeated twice. The obtained dehydrated product was dried in a hot air flow dryer at a temperature of 105 ° C., and the dried product was crushed with a jet mill to obtain particles.

得られた粒子を電子顕微鏡で観察したところ、板状の粒子表面に約350nm前後の大きさの球状粒子が均一に付着しており、硫酸バリウム粒子表面にアクリル粒子を付着してなる複合粒子となっていることが確認された。 When the obtained particles were observed with an electron microscope, spherical particles having a size of about 350 nm were uniformly adhered to the surface of the plate-shaped particles, and the composite particles formed by adhering acrylic particles to the surface of barium sulfate particles. It was confirmed that it was.

次に、水80gを入れた100mLビーカーに、得られた粒子5gを添加しガラス棒で撹拌したところ、粒子は全量水に分散し、親水性の粒子であることが確認された。さらに、24時間静置し、粒子の浮き沈みを観察したところ、粒子は全量沈降していた。アクリル粒子は比重が水より小さいため浮いてくるが、この結果から、アクリル粒子がマイカ粒子表面から脱落していないと判断され、シリカがバインダーとなり、硫酸バリウム粒子表面にアクリル粒子を固着させていることが示唆された。 Next, when 5 g of the obtained particles were added to a 100 mL beaker containing 80 g of water and stirred with a glass rod, all the particles were dispersed in water, and it was confirmed that the particles were hydrophilic. Further, when the particles were allowed to stand for 24 hours and the ups and downs of the particles were observed, all the particles were settled. Acrylic particles float because their specific gravity is smaller than that of water. From this result, it is judged that the acrylic particles have not fallen off from the surface of the mica particles, and silica acts as a binder to fix the acrylic particles to the surface of the barium sulfate particles. It has been suggested.

さらに、得られた複合粒子を、蛍光X線分析装置にて元素マッピングを行ったところ、粒子全体にケイ素および酸素が検出された。これより、複合粒子は全体がシリカで被覆され、かつ、シリカがバインダーとなり、硫酸バリウム粒子表面にアクリル粒子を固着させている形態になっていると判断された。 Furthermore, when the obtained composite particles were subjected to element mapping with a fluorescent X-ray analyzer, silicon and oxygen were detected in the entire particles. From this, it was determined that the composite particles were entirely coated with silica, and the silica served as a binder, and the acrylic particles were fixed to the surface of the barium sulfate particles.

[比較例1]
錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコを用いて、マイカ粒子(商品名:Y−5000、(株)角八魚鱗箔製、形状=板状、平均粒径=14μm)
90gと、上記製造例1で得たシリコーンゴム粒子水分散液22g(マイカ粒子100質量部に対し、シリコーンゴム粒子が9.8質量部となる量)と、水817gを混合した混合水分散液に、28%アンモニア水20gを仕込んだ。このときの液のpHは、11.4であった。5〜10℃に温度調整した後、メチルトリメトキシシラン19g(シリコーンゴム粒子100質量部に対し、加水分解・縮合反応後のポリメチルシルセスキオキサンが106質量部となる量)および30%ラウリルトリメチルアンモニウムクロライド水溶液(商品名:カチオンBB、日油(株)製、)を水で10倍に希釈した水溶液32g(水100質量部に対し、ラウリルトリメチルアンモニウムクロライドが0.1質量部となる量)を20分かけて滴下し、この間の液温を5〜10℃に保ち、さらに1時間攪拌を行った。次いで、75〜80℃まで加熱し、その温度を保ったまま1時間攪拌を行い、メチルトリメトキシシランの加水分解・縮合反応を完結させた。得られた懸濁液を、加圧ろ過器を用いて脱水した。脱水物を錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコに移し、水1,000gを添加し、30分間攪拌を行った後、加圧ろ過器を用いて脱水した。この操作を2回繰り返した。得られた脱水物を熱風流動乾燥機中で105℃の温度で乾燥し、乾燥物をジェットミルで解砕し、粒子を得た。
[Comparative Example 1]
Using a glass flask with a capacity of 2 liters equipped with a stirrer with an anchor-shaped stirrer, mica particles (trade name: Y-5000, made of Kakuhachi fish scale foil, shape = plate, average particle size = 14 μm)
A mixed water dispersion in which 90 g, 22 g of the silicone rubber particle aqueous dispersion obtained in Production Example 1 (the amount of silicone rubber particles is 9.8 parts by mass with respect to 100 parts by mass of mica particles), and 817 g of water are mixed. Was charged with 20 g of 28% ammonia water. The pH of the liquid at this time was 11.4. After adjusting the temperature to 5 to 10 ° C., 19 g of methyltrimethoxysilane (amount of polymethylsilsesquioxane after hydrolysis / condensation reaction becomes 106 parts by mass with respect to 100 parts by mass of silicone rubber particles) and 30% lauryl. 32 g of an aqueous solution of trimethylammonium chloride aqueous solution (trade name: Cation BB, manufactured by Nichiyu Co., Ltd.) diluted 10-fold with water (amount of lauryltrimethylammonium chloride in 0.1 parts by mass with respect to 100 parts by mass of water). ) Was added dropwise over 20 minutes, the liquid temperature during this period was maintained at 5 to 10 ° C., and stirring was further carried out for 1 hour. Then, the mixture was heated to 75 to 80 ° C. and stirred for 1 hour while maintaining the temperature to complete the hydrolysis / condensation reaction of methyltrimethoxysilane. The obtained suspension was dehydrated using a pressure filter. The dehydrated product was transferred to a glass flask having a capacity of 2 liters equipped with a stirring device using an anchor-shaped stirring blade, 1,000 g of water was added, the mixture was stirred for 30 minutes, and then dehydrated using a pressure filter. This operation was repeated twice. The obtained dehydrated product was dried in a hot air flow dryer at a temperature of 105 ° C., and the dried product was crushed with a jet mill to obtain particles.

得られた粒子を電子顕微鏡で観察したところ、板状の粒子表面に約350nm前後の大きさの球状粒子が均一に付着しており、マイカ粒子表面にシリコーンゴム粒子を付着してなる複合粒子となっていることが確認された。 When the obtained particles were observed with an electron microscope, spherical particles having a size of about 350 nm were uniformly adhered to the surface of the plate-shaped particles, and the composite particles formed by adhering silicone rubber particles to the surface of the mica particles. It was confirmed that it was.

次に、水80gを入れた100mLビーカーに、得られた粒子5gを添加しガラス棒で撹拌したところ、粒子は全量水に分散せず浮いた状態であり、撥水性の粒子であることが確認された。
ポリオキシエチレンラウリルエーテル(商品名:エマルゲン109P、花王((株)製)の0.5質量%溶解水80gを入れた100mLビーカーに、得られた粒子5gを添加しガラス棒で撹拌し、粒子を分散させた。その後、24時間静置し、粒子の浮き沈みを観察したところ、粒子は全量沈降していた。シリコーンゴム粒子は比重がポリオキシエチレンラウリルエーテル溶解水より小さいため浮いてくるが、この結果から、シリコーンゴム粒子がマイカ粒子表面から脱落していないと判断され、シリコーンレジンがバインダーとなり、マイカ粒子表面にシリコーンゴム粒子を固着させていることが示唆された。
Next, when 5 g of the obtained particles were added to a 100 mL beaker containing 80 g of water and stirred with a glass rod, all the particles were not dispersed in water and were in a floating state, confirming that they were water-repellent particles. Was done.
Add 5 g of the obtained particles to a 100 mL beaker containing 80 g of 0.5% by mass dissolved water of polyoxyethylene lauryl ether (trade name: Emargen 109P, manufactured by Kao Co., Ltd.), stir with a glass rod, and the particles. After that, the particles were allowed to stand for 24 hours, and when the ups and downs of the particles were observed, all the particles were settled. The silicone rubber particles floated because the specific gravity was smaller than that of the polyoxyethylene lauryl ether dissolved water. From this result, it was judged that the silicone rubber particles did not fall off from the surface of the mica particles, and it was suggested that the silicone resin acted as a binder and fixed the silicone rubber particles on the surface of the mica particles.

実施例1〜4の結果から、バインダーにシリカを用いた本願発明の複合粒子であれば、親水性の複合粒子になることが明らかになった。一方、比較例1では、バインダーにシリカではなくメチル基を有するシリコーンレジンを用いたために、複合粒子は親水性を示さなかった。 From the results of Examples 1 to 4, it was clarified that the composite particles of the present invention using silica as a binder would be hydrophilic composite particles. On the other hand, in Comparative Example 1, the composite particles did not show hydrophilicity because a silicone resin having a methyl group was used as the binder instead of silica.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

[製造例1]
(シリコーンゴム粒子の水分散液の製造)
下記式(1)で示される、動粘度が61mm/sのメチルビニルポリシロキサン349gと、下記式(2)で示される、動粘度が30mm/sのメチルハイドロジェンポリシロキサン51g(ビニル基1個に対しヒドロシリル基が1.2個となる配合量)を容量1リットルのガラスビーカーに仕込み、ホモミキサーを用いて混合溶解させた。ポリオキシエチレントリデシルエーテル(商品名:ノイゲンTDS−100、第一工業製薬(株)製)26gと水40gを加え、ホモミキサーを用いて攪拌したところ、攪拌できない状態にまで増粘した。増粘物を、ホモディスパーを用いて、15分間混練りした。次いで水532gを加え、ホモミキサーを用いて混合したところ、均一な白色エマルジョンが得られた。このエマルジョンを錨型攪拌翼による攪拌装置の付いた容量1リットルのガラスフラスコに移し、20〜25℃に温度調整した後、攪拌下に白金−ビニル基含有ジシロキサン錯体のイソドデカン溶液(白金含有量0.5%)1g、ポリオキシエチレントリデシルエーテル(商品名:ノイゲンTDS−100、第一工業製薬(株)製)1gの混合溶解物を添加し、同温度で24時間攪拌し、シリコーンゴム粒子の水分散液を得た。
[Manufacturing Example 1]
(Manufacturing of aqueous dispersion of silicone rubber particles)
349 g of methylvinylpolysiloxane having a kinematic viscosity of 61 mm 2 / s represented by the following formula (1) and 51 g of methylhydrogen polysiloxane having a kinematic viscosity of 30 mm 2 / s represented by the following formula (2) (vinyl group). A glass beaker having a capacity of 1 liter (a blending amount in which 1.2 hydrosilyl groups were added to each) was charged and mixed and dissolved using a homomixer. Polyoxyethylene tridecyl ether (trade name: Noigen TDS-100, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 26g of water 40g was added, was stirred using a homomixer, it was increased in viscosity to a state that can not be stirred. The thickener was kneaded with a homodisper for 15 minutes. Then, 532 g of water was added and mixed using a homomixer to obtain a uniform white emulsion. This emulsion is transferred to a glass flask having a capacity of 1 liter equipped with a stirrer using an anchor-type stirring blade, the temperature is adjusted to 20 to 25 ° C., and then an isododecane solution (platinum content) of a platinum-vinyl group-containing disiloxane complex under stirring. A mixed solution of 1 g (0.5%) and 1 g of polyoxyethylene tridecyl ether (trade name: Neugen TDS-100, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added, and the mixture was stirred at the same temperature for 24 hours, and made of silicone rubber. An aqueous dispersion of particles was obtained.

[実施例1]
錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコを用いて、マイカ粒子(商品名:Y−5000、(株)角八魚鱗箔製、形状=板状、平均粒径=14μm)90gと、上記製造例1で得たシリコーンゴム粒子水分散液22g(マイカ粒子100質量部に対し、シリコーンゴム粒子が9.8質量部となる量)と、水805gを混合した混合水分散液に、2.8%アンモニア水1.6gを仕込んだ。このときの液のpHは、10.8であった。5〜10℃に温度調整した後、テトラメトキシシラン24g(シリコーンゴム粒子100質量部に対し、加水分解・縮合反応後のシリカが108質量部となる量)および30%ラウリルトリメチルアンモニウムクロライド水溶液(商品名:カチオンBB、日油(株)製)を水で10倍に希釈した水溶液58g(水100質量部に対し、ラウリルトリメチルアンモニウムクロライドが0.2質量部となる量)を20分かけて滴下し、この間の液温を5〜10℃に保ち、さらに1時間攪拌を行った。次いで、75〜80℃まで加熱し、その温度を保ったまま1時間攪拌を行い、テトラメトキシシランの加水分解・縮合反応を完結させた。得られた懸濁液を、加圧ろ過器を用いて脱水した。脱水物を錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコに移し、水1,000gを添加し、30分間攪拌を行った後、加圧ろ過器を用いて脱水した。この操作を2回繰り返した。得られた脱水物を熱風流動乾燥機中で105℃の温度で乾燥し、乾燥物をジェットミルで解砕し、粒子を得た。
[Example 1]
Using a glass flask with a capacity of 2 liters equipped with a stirrer with an anchor-shaped stirrer, mica particles (trade name: Y-5000, made of Kakuhachi fish scale foil, shape = plate, average particle size = 14 μm) A mixed water dispersion in which 90 g, 22 g of the silicone rubber particle aqueous dispersion obtained in Production Example 1 (the amount of silicone rubber particles is 9.8 parts by mass with respect to 100 parts by mass of mica particles), and 805 g of water are mixed. Was charged with 1.6 g of 2.8% ammonia water. The pH of the liquid at this time was 10.8. After adjusting the temperature to 5 to 10 ° C., 24 g of tetramethoxysilane (the amount of silica after hydrolysis / condensation reaction is 108 parts by mass with respect to 100 parts by mass of silicone rubber particles) and 30% lauryltrimethylammonium chloride aqueous solution (commodity). Name: Cationic BB, manufactured by Nichiyu Co., Ltd., and 58 g of an aqueous solution diluted 10-fold with water (amount of lauryltrimethylammonium chloride in an amount of 0.2 parts by mass with respect to 100 parts by mass of water) was added dropwise over 20 minutes. During this period, the liquid temperature was maintained at 5 to 10 ° C., and stirring was further carried out for 1 hour. Then, the mixture was heated to 75 to 80 ° C. and stirred for 1 hour while maintaining the temperature to complete the hydrolysis / condensation reaction of tetramethoxysilane. The obtained suspension was dehydrated using a pressure filter. The dehydrated product was transferred to a glass flask having a capacity of 2 liters equipped with a stirring device using an anchor-shaped stirring blade, 1,000 g of water was added, the mixture was stirred for 30 minutes, and then dehydrated using a pressure filter. This operation was repeated twice. The obtained dehydrated product was dried in a hot air flow dryer at a temperature of 105 ° C., and the dried product was crushed with a jet mill to obtain particles.

[実施例4]
錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコを用いて、硫酸バリウム粒子(商品名:板状硫酸バリウムHL、堺化学工業(株)製、形状=板状、平均粒径=15μm)90gと、上記製造例2で得たアクリル粒子水分散液87g(硫酸バリウム粒子100質量部に対し、アクリル粒子が9.7質量部となる量)と、水740gを混合した混合水分散液に、2.8%アンモニア水1.6gを仕込んだ。このときの液のpHは、10.7であった。5〜10℃に温度調整した後、テトラメトキシシラン24g(アクリル粒子100質量部に対し、加水分解・縮合反応後のシリカが109質量部となる量)および30%ラウリルトリメチルアンモニウムクロライド水溶液(商品名:カチオンBB、日油(株)製)を水で10倍に希釈した水溶液58g(水100質量部に対し、ラウリルトリメチルアンモニウムクロライドが0.2質量部となる量)を20分かけて滴下し、この間の液温を5〜10℃に保ち、さらに1時間攪拌を行った。次いで、75〜80℃まで加熱し、その温度を保ったまま1時間攪拌を行い、テトラメトキシシランの加水分解・縮合反応を完結させた。得られた懸濁液を、加圧ろ過器を用いて脱水した。脱水物を錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコに移し、水1,000gを添加し、30分間攪拌を行った後、加圧ろ過器を用いて脱水した。この操作を2回繰り返した。得られた脱水物を熱風流動乾燥機中で105℃の温度で乾燥し、乾燥物をジェットミルで解砕し、粒子を得た。
[Example 4]
Barium sulfate particles (trade name: plate-shaped barium sulfate HL, manufactured by Sakai Chemical Industry Co., Ltd., shape = plate-shaped, average particle size = Mixed water dispersion in which 90 g of 15 μm), 87 g of the aqueous dispersion of acrylic particles obtained in Production Example 2 (amount of 9.7 parts by mass of acrylic particles with respect to 100 parts by mass of barium sulfate particles) and 740 g of water are mixed. 1.6 g of 2.8% ammonia water was charged into the liquid. The pH of the liquid at this time was 10.7. After adjusting the temperature to 5 to 10 ° C, 24 g of tetramethoxysilane (amount of silica after hydrolysis / condensation reaction of 109 parts by mass with respect to 100 parts by mass of acrylic particles) and a 30% lauryltrimethylammonium chloride aqueous solution (trade name). : 58 g of an aqueous solution obtained by diluting cation BB, manufactured by Nichiyu Co., Ltd. with water 10 times (amount of lauryltrimethylammonium chloride in an amount of 0.2 parts by mass with respect to 100 parts by mass of water) was added dropwise over 20 minutes. During this period, the liquid temperature was maintained at 5 to 10 ° C., and stirring was further carried out for 1 hour. Then, the mixture was heated to 75 to 80 ° C. and stirred for 1 hour while maintaining the temperature to complete the hydrolysis / condensation reaction of tetramethoxysilane. The obtained suspension was dehydrated using a pressure filter. The dehydrated product was transferred to a glass flask having a capacity of 2 liters equipped with a stirring device using an anchor-shaped stirring blade, 1,000 g of water was added, the mixture was stirred for 30 minutes, and then dehydrated using a pressure filter. This operation was repeated twice. The obtained dehydrated product was dried in a hot air flow dryer at a temperature of 105 ° C., and the dried product was crushed with a jet mill to obtain particles.

[比較例1]
錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコを用いて、マイカ粒子(商品名:Y−5000、(株)角八魚鱗箔製、形状=板状、平均粒径=14μm)
90gと、上記製造例1で得たシリコーンゴム粒子水分散液22g(マイカ粒子100質量部に対し、シリコーンゴム粒子が9.8質量部となる量)と、水817gを混合した混合水分散液に、28%アンモニア水20gを仕込んだ。このときの液のpHは、11.4であった。5〜10℃に温度調整した後、メチルトリメトキシシラン19g(シリコーンゴム粒子100質量部に対し、加水分解・縮合反応後のポリメチルシルセスキオキサンが106質量部となる量)および30%ラウリルトリメチルアンモニウムクロライド水溶液(商品名:カチオンBB、日油(株)製)を水で10倍に希釈した水溶液32g(水100質量部に対し、ラウリルトリメチルアンモニウムクロライドが0.1質量部となる量)を20分かけて滴下し、この間の液温を5〜10℃に保ち、さらに1時間攪拌を行った。次いで、75〜80℃まで加熱し、その温度を保ったまま1時間攪拌を行い、メチルトリメトキシシランの加水分解・縮合反応を完結させた。得られた懸濁液を、加圧ろ過器を用いて脱水した。脱水物を錨型攪拌翼による攪拌装置の付いた容量2リットルのガラスフラスコに移し、水1,000gを添加し、30分間攪拌を行った後、加圧ろ過器を用いて脱水した。この操作を2回繰り返した。得られた脱水物を熱風流動乾燥機中で105℃の温度で乾燥し、乾燥物をジェットミルで解砕し、粒子を得た。
[Comparative Example 1]
Using a glass flask with a capacity of 2 liters equipped with a stirrer with an anchor-shaped stirrer, mica particles (trade name: Y-5000, made of Kakuhachi fish scale foil, shape = plate, average particle size = 14 μm)
A mixed water dispersion in which 90 g, 22 g of the silicone rubber particle aqueous dispersion obtained in Production Example 1 (the amount of silicone rubber particles is 9.8 parts by mass with respect to 100 parts by mass of mica particles), and 817 g of water are mixed. Was charged with 20 g of 28% ammonia water. The pH of the liquid at this time was 11.4. After adjusting the temperature to 5 to 10 ° C., 19 g of methyltrimethoxysilane (amount of polymethylsilsesquioxane after hydrolysis / condensation reaction becomes 106 parts by mass with respect to 100 parts by mass of silicone rubber particles) and 30% lauryl. 32 g of an aqueous solution of trimethylammonium chloride aqueous solution (trade name: cation BB, manufactured by Nichiyu Co., Ltd.) diluted 10-fold with water (amount of lauryltrimethylammonium chloride in 0.1 parts by mass with respect to 100 parts by mass of water) Was added dropwise over 20 minutes, the liquid temperature during this period was maintained at 5 to 10 ° C., and stirring was further carried out for 1 hour. Then, the mixture was heated to 75 to 80 ° C. and stirred for 1 hour while maintaining the temperature to complete the hydrolysis / condensation reaction of methyltrimethoxysilane. The obtained suspension was dehydrated using a pressure filter. The dehydrated product was transferred to a glass flask having a capacity of 2 liters equipped with a stirring device using an anchor-shaped stirring blade, 1,000 g of water was added, the mixture was stirred for 30 minutes, and then dehydrated using a pressure filter. This operation was repeated twice. The obtained dehydrated product was dried in a hot air flow dryer at a temperature of 105 ° C., and the dried product was crushed with a jet mill to obtain particles.

次に、水80gを入れた100mLビーカーに、得られた粒子5gを添加しガラス棒で撹拌したところ、粒子は全量水に分散せず浮いた状態であり、撥水性の粒子であることが確認された。
ポリオキシエチレンラウリルエーテル(商品名:エマルゲン109P、花王(株)製)の0.5質量%溶解水80gを入れた100mLビーカーに、得られた粒子5gを添加しガラス棒で撹拌し、粒子を分散させた。その後、24時間静置し、粒子の浮き沈みを観察したところ、粒子は全量沈降していた。シリコーンゴム粒子は比重がポリオキシエチレンラウリルエーテル溶解水より小さいため浮いてくるが、この結果から、シリコーンゴム粒子がマイカ粒子表面から脱落していないと判断され、シリコーンレジンがバインダーとなり、マイカ粒子表面にシリコーンゴム粒子を固着させていることが示唆された。
Next, when 5 g of the obtained particles were added to a 100 mL beaker containing 80 g of water and stirred with a glass rod, all the particles were not dispersed in water and were in a floating state, confirming that they were water-repellent particles. Was done.
Polyoxyethylene lauryl ether: in 100mL beaker containing 0.5 wt% dissolved water 80g (trade name Emulgen 109P, Kao Co., Ltd.), and stirred with a glass rod was added and the resulting particles 5g, particles Was dispersed. After that, the particles were allowed to stand for 24 hours, and the ups and downs of the particles were observed. As a result, all the particles had settled. Silicone rubber particles float because their specific gravity is smaller than that of polyoxyethylene lauryl ether dissolved water. From this result, it is judged that the silicone rubber particles have not fallen off from the surface of the mica particles, and the silicone resin serves as a binder to the surface of the mica particles. It was suggested that silicone rubber particles were fixed to the surface.

Claims (6)

無機粒子の表面に有機樹脂粒子が付着した複合粒子であって、
前記有機樹脂粒子が、シリカをバインダーとして前記無機粒子に固着したものであることを特徴とする複合粒子。
Composite particles in which organic resin particles are attached to the surface of inorganic particles.
A composite particle characterized in that the organic resin particles are adhered to the inorganic particles using silica as a binder.
前記無機粒子が硫酸バリウム、タルク、マイカ、セリサイトから選ばれる1種以上であることを特徴とする請求項1に記載の複合粒子。 The composite particle according to claim 1, wherein the inorganic particle is one or more selected from barium sulfate, talc, mica, and sericite. 前記有機樹脂粒子の量が、前記無機粒子100質量部に対し、0.5〜100質量部の範囲であることを特徴とする請求項1又は請求項2に記載の複合粒子。 The composite particle according to claim 1 or 2, wherein the amount of the organic resin particles is in the range of 0.5 to 100 parts by mass with respect to 100 parts by mass of the inorganic particles. 請求項1から請求項3のいずれか一項に記載の複合粒子の製造方法であって、
前記無機粒子および前記有機樹脂粒子が分散された水分散液と、アルカリ性物質とを配合した混合液に、テトラアルコキシシランを添加して加水分解・縮合反応させることを特徴とする複合粒子の製造方法。
The method for producing composite particles according to any one of claims 1 to 3.
A method for producing composite particles, which comprises adding tetraalkoxysilane to a mixed solution of an aqueous dispersion in which the inorganic particles and the organic resin particles are dispersed and an alkaline substance, and hydrolyzing and condensing the particles. ..
前記混合液に、さらにカチオン性界面活性剤を配合することを特徴とする請求項4に記載の複合粒子の製造方法。 The method for producing composite particles according to claim 4, wherein a cationic surfactant is further added to the mixed solution. 前記カチオン性界面活性剤の配合量を、前記混合液中の水100質量部に対し、0.01〜2質量部の範囲とすることを特徴とする請求項5に記載の複合粒子の製造方法。 The method for producing composite particles according to claim 5, wherein the blending amount of the cationic surfactant is in the range of 0.01 to 2 parts by mass with respect to 100 parts by mass of water in the mixed solution. ..
JP2020072950A 2020-04-15 2020-04-15 Composite particle and method for producing the same Pending JP2021169421A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020072950A JP2021169421A (en) 2020-04-15 2020-04-15 Composite particle and method for producing the same
PCT/JP2021/005393 WO2021210257A1 (en) 2020-04-15 2021-02-15 Composite particle and method for producing same
TW110106074A TW202203884A (en) 2020-04-15 2021-02-22 Composite particle and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072950A JP2021169421A (en) 2020-04-15 2020-04-15 Composite particle and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021169421A true JP2021169421A (en) 2021-10-28

Family

ID=78084217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072950A Pending JP2021169421A (en) 2020-04-15 2020-04-15 Composite particle and method for producing the same

Country Status (3)

Country Link
JP (1) JP2021169421A (en)
TW (1) TW202203884A (en)
WO (1) WO2021210257A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195402A1 (en) * 2022-04-08 2023-10-12 信越化学工業株式会社 Composite particles, method for producing composite particles, and cosmetic

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003119A1 (en) * 1990-08-16 1992-03-05 Catalysts & Chemicals Industries Co., Ltd. Flaky fine powder, production thereof, and cosmetic
JPH11228349A (en) * 1998-02-18 1999-08-24 Noevir Co Ltd Makeup cosmetic
JP2000229809A (en) * 1999-02-10 2000-08-22 Nippon Shikizai Kogyo Kenkyusho:Kk Cosmetic
JP2006176742A (en) * 2004-01-22 2006-07-06 Nippon Sheet Glass Co Ltd Colored brilliant pigment
JP2011001332A (en) * 2009-06-22 2011-01-06 Shin-Etsu Chemical Co Ltd Composite particle, method for producing the same and cosmetic product
JP2011526274A (en) * 2008-06-30 2011-10-06 ユニリーバー・ナームローゼ・ベンノートシヤープ Sunscreen composite particles in cosmetic compositions
JP2019073635A (en) * 2017-10-17 2019-05-16 信越化学工業株式会社 Method for producing silica-coated silicone elastomer spherical particles and silica-coated silicone elastomer spherical particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521111B2 (en) * 2000-12-07 2010-08-11 ポーラ化成工業株式会社 Flat powder with diffuse transmission layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003119A1 (en) * 1990-08-16 1992-03-05 Catalysts & Chemicals Industries Co., Ltd. Flaky fine powder, production thereof, and cosmetic
JPH11228349A (en) * 1998-02-18 1999-08-24 Noevir Co Ltd Makeup cosmetic
JP2000229809A (en) * 1999-02-10 2000-08-22 Nippon Shikizai Kogyo Kenkyusho:Kk Cosmetic
JP2006176742A (en) * 2004-01-22 2006-07-06 Nippon Sheet Glass Co Ltd Colored brilliant pigment
JP2011526274A (en) * 2008-06-30 2011-10-06 ユニリーバー・ナームローゼ・ベンノートシヤープ Sunscreen composite particles in cosmetic compositions
JP2011001332A (en) * 2009-06-22 2011-01-06 Shin-Etsu Chemical Co Ltd Composite particle, method for producing the same and cosmetic product
JP2019073635A (en) * 2017-10-17 2019-05-16 信越化学工業株式会社 Method for producing silica-coated silicone elastomer spherical particles and silica-coated silicone elastomer spherical particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195402A1 (en) * 2022-04-08 2023-10-12 信越化学工業株式会社 Composite particles, method for producing composite particles, and cosmetic

Also Published As

Publication number Publication date
TW202203884A (en) 2022-02-01
WO2021210257A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP5901799B2 (en) Surface treated powder for cosmetics and solid powder cosmetic containing the same
JP5985773B2 (en) Surface treated powder for cosmetics and solid powder cosmetic containing the same
WO2020213444A1 (en) Silica-coated particles and method for producing same
JP2005509658A (en) Organosiliconized cosmetic powder, its manufacture and use
WO2021210257A1 (en) Composite particle and method for producing same
JP4986385B2 (en) Scale-like composite particles and cosmetics containing the same
JP7306786B2 (en) Aqueous dispersion composition and use thereof
WO2012029643A1 (en) Composite particles, method for producing same and use of same
JP4731053B2 (en) Resin-coated spherical porous particles, method for producing the same, and cosmetics containing the particles
JP7003881B2 (en) Porous Silicone Rubber Spherical Particles, Porous Silicone Composite Particles, and Methods for Producing These Particles
JP2012529424A (en) Cosmetics and method for producing the same
WO2020246555A1 (en) Particle-containing composition
JP2020075845A (en) Hexagonal boron nitride powder
JP5363540B2 (en) Method for producing composite particles
TWI825044B (en) Solid powder cosmetics
JP2007153995A (en) Composite spherical cellulose powder and cosmetic
JP2020070292A (en) Powder cosmetics
JP2010030952A (en) Treated powder and cosmetic
JP2007211131A (en) Black-colored spherical cellulose powder and cosmetic
JP2019026620A (en) Water-in-oil emulsion cosmetic
JPH09208427A (en) Powder cosmetic
WO2023234072A1 (en) Cellulose-siloxane composite particles, method for producing same, and cosmetic
JP5039417B2 (en) Method for producing solid powder cosmetic
JP2016216422A (en) Cosmetic
TW202410881A (en) Cellulose-siloxane composite particles, manufacturing method and cosmetics thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230613