JP2021169398A - Carbon dioxide storage method and cement-based hardened body - Google Patents

Carbon dioxide storage method and cement-based hardened body Download PDF

Info

Publication number
JP2021169398A
JP2021169398A JP2020073822A JP2020073822A JP2021169398A JP 2021169398 A JP2021169398 A JP 2021169398A JP 2020073822 A JP2020073822 A JP 2020073822A JP 2020073822 A JP2020073822 A JP 2020073822A JP 2021169398 A JP2021169398 A JP 2021169398A
Authority
JP
Japan
Prior art keywords
cement
carbon dioxide
hollow body
containing gas
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020073822A
Other languages
Japanese (ja)
Inventor
孝 生田
Takashi Ikuta
洋一 西本
Yoichi Nishimoto
貴泰 樋口
Takayasu Higuchi
明宏 市瀬
Akihiro Ichinose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2020073822A priority Critical patent/JP2021169398A/en
Publication of JP2021169398A publication Critical patent/JP2021169398A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a storage method of carbon dioxide or the like, in which the execution place is not limited to the vicinity of a site where a carbon dioxide-containing gas is generated, a large facility or the like is not required, and it can be easily carried out.SOLUTION: A hollow body containing a carbon dioxide-containing gas is produced, and the hollow body is stored in a cement-based hardened body. The hollow body is mixed with one of the cement-based materials and kneaded together with other cement-based materials to form a cement kneaded material, and the cement kneaded material can be cured. The hollow body can be kneaded with a cement-based material to form a cement kneaded material, and the cement kneaded material may be cured. The cement-based material is kneaded to form a cement kneaded material, and the hollow body may be mixed with the cement kneaded material and then cured. The hollow body containing the carbon dioxide-containing gas is produced in a facility discharging carbon dioxide-containing gas, and the hollow body can be stored in the cement-based hardened body in the facility other than the facility discharging the carbon dioxide-containing gas.SELECTED DRAWING: Figure 1

Description

本発明は、セメント系硬化体を用いて二酸化炭素を貯留する方法等に関する。 The present invention relates to a method for storing carbon dioxide using a cement-based cured product and the like.

地球温暖化対策として、二酸化炭素の排出削減が緊急課題となっている今日では、省エネルギーや燃料転換等による二酸化炭素排出量の低減に加え、大気や燃焼設備等から排出されたガスに含まれる二酸化炭素を固定、貯留する技術の開発が進められている。その一つとして、コンクリートに二酸化炭素含有排ガス等を接触させて炭酸化反応をさせることにより二酸化炭素を固定する技術が知られている。 Today, reducing carbon dioxide emissions is an urgent issue as a measure against global warming. In addition to reducing carbon dioxide emissions through energy conservation and fuel conversion, carbon dioxide contained in gas emitted from the atmosphere and combustion equipment, etc. Development of technology for fixing and storing carbon is underway. As one of them, a technique of fixing carbon dioxide by bringing carbon dioxide-containing exhaust gas or the like into contact with concrete to cause a carbonation reaction is known.

具体的には、図2に示すように、二酸化炭素排出元21である発電所、製鉄所、セメント工場等から排出された二酸化炭素含有ガスをパイプラインやガスボンベ、専用車両22で工場内に併設されたコンクリート製造設備23や外部のコンクリート製品工場24や生コン工場25へ輸送する。そして、各々の設備や工場23、24、25で製造したコンクリート硬化体に、養生層26、27、28内で二酸化炭素含有ガスを接触させて二酸化炭素を固定し、炭酸化コンクリート硬化体29、30、31としたのち、建設現場32等に二酸化炭素を貯留する。 Specifically, as shown in FIG. 2, carbon dioxide-containing gas emitted from a power plant, a steel mill, a cement factory, etc., which is a carbon dioxide emission source 21, is installed in the factory by a pipeline, a gas cylinder, and a dedicated vehicle 22. It will be transported to the concrete manufacturing equipment 23, the external concrete product factory 24, and the ready-mixed concrete factory 25. Then, carbon dioxide-containing gas is brought into contact with the hardened concrete produced in the respective facilities and factories 23, 24, and 25 in the curing layers 26, 27, and 28 to fix the carbon dioxide, and the hardened concrete carbonate 29. After setting 30 and 31, carbon dioxide is stored at the construction site 32 and the like.

上記二酸化炭素固定化技術として、特許文献1には、コンクリート構造物の表面に、水、セメント、混和材料、骨材を含有するコンクリート組成物を硬化させ、表層部に大気中の二酸化炭素を固定化する二酸化炭素固定化成型体を備える二酸化炭素固定化コンクリート構造物が開示されている。 As the carbon dioxide fixation technique, Patent Document 1 states that a concrete composition containing water, cement, an admixture, and an aggregate is hardened on the surface of a concrete structure, and carbon dioxide in the atmosphere is fixed on the surface layer. A carbon dioxide-immobilized concrete structure comprising a carbon dioxide-immobilized molded body is disclosed.

また、特許文献2には、被養生体を炭酸化養生するために用いる炭酸ガス供給源として火力発電所を利用した炭酸化養生設備、炭酸化コンクリート製造方法及び炭酸ガス固定化方法が記載されている。 Further, Patent Document 2 describes a carbonated curing facility using a thermal power plant as a carbonic acid gas supply source used for carbonating and curing a living body, a carbonated concrete manufacturing method, and a carbonic acid gas immobilization method. There is.

特許文献3には、セメント質硬化体に二酸化炭素含有ガスを接触させる際に、二酸化炭素含有ガスとして、特定の水分量及び温度を有するものを用いることで、セメント質硬化体に二酸化炭素含有ガス中の二酸化炭素を効率的に固定化する方法が記載されている。 In Patent Document 3, when a carbon dioxide-containing gas is brought into contact with a cementum-hardened body, a carbon dioxide-containing gas having a specific water content and temperature is used as the carbon dioxide-containing gas, whereby the carbon dioxide-containing gas is brought into the cementum-hardened body. A method for efficiently immobilizing the carbon dioxide in it is described.

特開2008−75391公報Japanese Unexamined Patent Publication No. 2008-75391 特開2012−126623号公報Japanese Unexamined Patent Publication No. 2012-126623 特開2020−15659号公報Japanese Unexamined Patent Publication No. 2020-15569

しかし、上記特許文献に記載の発明では、直接コンクリート等に二酸化炭素含有ガスを接触させる必要があるため、実施場所が二酸化炭素含有ガスの発生場所付近に限定される。また、二酸化炭素を固定化する対象物が大型になると、養生層やガス供給設備が大型になり実施が困難になるという問題もあった。 However, in the invention described in the above patent document, since it is necessary to bring the carbon dioxide-containing gas directly into contact with concrete or the like, the place of implementation is limited to the vicinity of the place where the carbon dioxide-containing gas is generated. In addition, when the object for immobilizing carbon dioxide becomes large, the curing layer and the gas supply facility become large, which makes it difficult to implement.

本発明は、上記従来の技術における問題点に鑑みてなされたものであって、実施場所が二酸化炭素含有ガスの発生場所付近に限定されることなく、大型の設備等が不要で、容易に実施することができる二酸化炭素の貯留方法等を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems in the prior art, and the place of implementation is not limited to the vicinity of the place where carbon dioxide-containing gas is generated, large-scale equipment or the like is not required, and the present invention can be easily implemented. It is an object of the present invention to provide a carbon dioxide storage method and the like that can be used.

上記目的を達成するため、本発明の二酸化炭素の貯留方法は、二酸化炭素含有ガスを包含する中空体を製造し、該中空体をセメント系硬化体に貯留することを特徴とする。尚、二酸化炭素含有ガスには二酸化炭素ガスそのものも含まれる。 In order to achieve the above object, the method for storing carbon dioxide of the present invention is characterized in that a hollow body containing a carbon dioxide-containing gas is produced and the hollow body is stored in a cement-based hardened body. The carbon dioxide-containing gas also includes the carbon dioxide gas itself.

本発明によれば、二酸化炭素含有ガスを包含する中空体とすることで、従来のように二酸化炭素含有ガスを直接コンクリート等に接触させて炭酸化反応をさせる必要がなく、通常の練り混ぜ方法を用いてセメント系硬化体に二酸化炭素を貯留することができるため、大型の設備等が不要で、容易に実施することができる。 According to the present invention, by forming a hollow body containing carbon dioxide-containing gas, it is not necessary to directly contact the carbon dioxide-containing gas with concrete or the like to cause a carbonation reaction as in the conventional method, and a normal kneading method is used. Since carbon dioxide can be stored in the cement-based hardened body by using the above, large-scale equipment or the like is not required, and it can be easily carried out.

前記二酸化炭素の貯留方法において、前記中空体をセメント系材料の一つと混合し、他のセメント系材料と共に混練してセメント混練物とし、該セメント混練物を硬化させることができる。また、前記中空体をセメント系材料と共に混練してセメント混練物とし、該セメント混練物を硬化させてもよい。さらに、セメント系材料を混練してセメント混練物とし、該セメント混練物に前記中空体を混合した後硬化させてもよい。 In the carbon dioxide storage method, the hollow body can be mixed with one of the cement-based materials and kneaded together with the other cement-based materials to form a cement kneaded product, and the cement kneaded product can be cured. Further, the hollow body may be kneaded together with a cement-based material to form a cement kneaded product, and the cement kneaded product may be hardened. Further, the cement-based material may be kneaded to obtain a cement kneaded product, and the hollow body may be mixed with the cement kneaded product and then cured.

さらに、二酸化炭素含有ガスを排出する設備において該二酸化炭素含有ガスを包含する中空体を製造し、前記二酸化炭素含有ガスを排出する設備以外の設備において前記中空体をセメント系硬化体に貯留することで、実施場所が二酸化炭素含有ガスの発生場所付近に限定されることがない。 Further, a hollow body containing the carbon dioxide-containing gas is manufactured in a facility that discharges the carbon dioxide-containing gas, and the hollow body is stored in a cement-based hardened body in a facility other than the facility that discharges the carbon dioxide-containing gas. Therefore, the place of implementation is not limited to the vicinity of the place where carbon dioxide-containing gas is generated.

前記中空体を1μm以上1000μm以下の中空粒子とすることで、二酸化炭素の貯留を行うと共に、セメント系硬化体の耐火性、断熱性、凍結融解抵抗性等を向上させることができる。前記中空体を細骨材又は粗骨材として利用することもできる。 By forming the hollow body into hollow particles of 1 μm or more and 1000 μm or less, carbon dioxide can be stored and the fire resistance, heat insulating property, freeze-thaw resistance and the like of the cement-based cured body can be improved. The hollow body can also be used as a fine aggregate or a coarse aggregate.

また、本発明は、セメント系硬化体であって、二酸化炭素含有ガスを包含した中空体を含むことを特徴とする。本発明によれば、セメント系硬化体中に二酸化炭素を貯留することができる。 Further, the present invention is characterized in that it is a cement-based hardened body and includes a hollow body containing a carbon dioxide-containing gas. According to the present invention, carbon dioxide can be stored in the cement-based cured product.

前記中空体を、粒径が1μm以上1000μm以下の中空粒子とすることで、二酸化炭素の貯留に加え、セメント系硬化体の耐火性、断熱性、凍結融解抵抗性等を向上させることができる。前記中空体を細骨材又は粗骨材としてモルタルやコンクリートに利用することもできる。 By forming the hollow body into hollow particles having a particle size of 1 μm or more and 1000 μm or less, it is possible to improve the fire resistance, heat insulating property, freeze-thaw resistance, etc. of the cement-based cured product in addition to the storage of carbon dioxide. The hollow body can also be used for mortar or concrete as a fine aggregate or a coarse aggregate.

以上のように、本発明によれば、実施場所が二酸化炭素含有ガスの発生場所付近に限定されることなく、大型の設備等が不要で、容易に実施することができる二酸化炭素の貯留方法等を提供することができる。 As described above, according to the present invention, the implementation location is not limited to the vicinity of the carbon dioxide-containing gas generation location, a large-scale facility or the like is not required, and a carbon dioxide storage method and the like that can be easily implemented. Can be provided.

本発明に係る二酸化炭素の貯留方法の一実施の形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the carbon dioxide storage method which concerns on this invention. 従来の二酸化炭素の貯留方法の一例を示すフローチャートである。It is a flowchart which shows an example of the conventional carbon dioxide storage method.

次に、本発明を実施するための形態について詳細に説明する。 Next, a mode for carrying out the present invention will be described in detail.

図1は、本発明に係る二酸化炭素の貯留方法の一実施の形態を示し、二酸化炭素排出元1である発電所、製鉄所、セメント工場等から排出された二酸化炭素含有ガスを、二酸化炭素含有中空粒子製造所2で中空粒子の中に包含する。次に、製造した中空粒子を生コン工場3、建築現場の生コンプラント4、コンクリート製品工場5へ輸送する。そして、生コン工場3や建築現場の生コンプラント4で中空粒子をコンクリートと共に混練して中空粒子含有混練物6とし、建設現場8で硬化させて二酸化炭素を貯留する。一方、コンクリート製品工場5では、中空粒子をコンクリートと共に混練して硬化させ、中空粒子含有硬化体7として建設現場8に輸送して設置し、二酸化炭素を貯留する。 FIG. 1 shows an embodiment of a carbon dioxide storage method according to the present invention, in which carbon dioxide-containing gas emitted from a power plant, a steel mill, a cement factory, etc., which is a carbon dioxide emission source 1, contains carbon dioxide. It is included in the hollow particles at the hollow particle manufacturing plant 2. Next, the manufactured hollow particles are transported to the ready-mixed concrete factory 3, the ready-mixed concrete plant 4 at the construction site, and the concrete product factory 5. Then, the hollow particles are kneaded together with concrete at the ready-mixed concrete factory 3 or the ready-mixed concrete plant 4 at the construction site to form a hollow particle-containing kneaded product 6, which is cured at the construction site 8 to store carbon dioxide. On the other hand, in the concrete product factory 5, hollow particles are kneaded together with concrete and hardened, transported to a construction site 8 as a hollow particle-containing hardened body 7, and installed to store carbon dioxide.

本発明では、上記コンクリートの他、セメントペースト、モルタルを含むセメント系硬化体に中空粒子を貯留することができる。 In the present invention, hollow particles can be stored in a cement-based hardened body containing cement paste and mortar in addition to the concrete.

本発明で使用する中空体は、粒子中に内包された空洞を有するもので、内部に二酸化炭素含有ガスを包含し、セメント系硬化体中で長期間形状を保持できるものが好ましい。 The hollow body used in the present invention preferably has a cavity contained in the particles, contains carbon dioxide-containing gas inside, and can maintain its shape in a cement-based hardened body for a long period of time.

有機系の中空体の材質としては、一般にセメント用又はコンクリート用混和材として使用されているものであれば特に材質を限定されるものではないが、アクリロニトリル、アクリル酸エステル、メタクリル酸エステル、フェノール、ポリメチルメタクリレート、メタクリロニトリル、ポリスチレン、塩化ビニリデン、酢酸ビニル及びポリフェノール等があり、共重合物や架橋体であってもよい。無機系の中空体の材質としては、二酸化ケイ素、酸化アルミニウム、炭酸カルシウム等を主成分とするものが好ましい。 The material of the organic hollow body is not particularly limited as long as it is generally used as an admixture for cement or concrete, but acrylonitrile, acrylic acid ester, methacrylic acid ester, phenol, etc. There are polymethylmethacrylate, methacrylonitrile, polystyrene, vinylidene chloride, vinyl acetate, polyphenol and the like, and they may be copolymers or crosslinked products. As the material of the inorganic hollow body, those containing silicon dioxide, aluminum oxide, calcium carbonate or the like as main components are preferable.

二酸化炭素を中空体に包含する方法は特に限定されないが、次のような方法を用いることができる。 The method of including carbon dioxide in the hollow body is not particularly limited, but the following method can be used.

特開2017−165890号公報に記載のように、多官能(メタ)アクリレート化合物を含む重合性モノマーと、重合開始剤とを含有する混合物で二酸化炭素の気泡を被覆した後、加熱及び/又は活性エネルギー線の照射により、重合性モノマーを反応させる。 As described in JP-A-2017-165890, after coating carbon dioxide bubbles with a mixture containing a polymerizable monomer containing a polyfunctional (meth) acrylate compound and a polymerization initiator, heating and / or activity The polymerizable monomer is reacted by irradiation with energy rays.

特開2019−94226号公報に記載のように、水を含む反応液中で加水分解性の官能基を有するケイ素化合物を含む気泡を発生させ、この気泡及び反応液の界面において、ケイ素化合物の加水分解及び脱水縮合によってシロキサン結合を有する固体膜を形成する。 As described in JP-A-2019-94226, bubbles containing a silicon compound having a hydrolyzable functional group are generated in a reaction solution containing water, and water of the silicon compound is added at the interface between the bubbles and the reaction solution. A solid film having a siloxane bond is formed by decomposition and dehydration condensation.

特開2013−216545号公報に記載のように、カルシウム(Ca)塩水溶液のpHをアルカリ溶液及び酸溶液を用いて調整した後、所定のpH変化曲線になるように炭酸ガスを吹き込むことにより中空体を合成する。 As described in Japanese Patent Application Laid-Open No. 2013-216545, after adjusting the pH of the calcium (Ca) salt aqueous solution with an alkaline solution and an acid solution, carbonic acid gas is blown into the hollow so as to obtain a predetermined pH change curve. Synthesize the body.

本発明で使用する中空体を粒径の小さい中空粒子とした場合の粒径や膜厚の範囲は、特開2005−263595号公報、特開2017−36186号公報、特開2017−104639号公報に記載のような、一般的にセメント系硬化体に使用される中空粒子等と同様のものであればよく、概ね粒径で1〜1000μm程度であるのが好ましく、10〜500μmであるのがより好ましく、20〜100μmがさらに好ましい。粒径が小さくなると充分な二酸化炭素固定効果が得られない場合があり、大きくなるとセメント混錬物の性状に影響する場合がある。 When the hollow body used in the present invention is a hollow particle having a small particle size, the range of the particle size and the film thickness is defined in JP-A-2005-263595, JP-A-2017-36186, and JP-A-2017-104639. It may be the same as the hollow particles generally used for the cement-based cured product as described in the above, and the particle size is preferably about 1 to 1000 μm, preferably 10 to 500 μm. More preferably, 20 to 100 μm is further preferable. If the particle size is small, a sufficient carbon dioxide fixing effect may not be obtained, and if the particle size is large, the properties of the cement kneaded product may be affected.

また、中空粒子の膜厚は0.05〜50μm程度であるのが好ましく、0.5〜25μmであるのがより好ましく、1〜5μmがさらに好ましい。膜厚が薄くなると、中空粒子が破損して包含した二酸化炭素が貯留されず、厚くなると粒子当たりの二酸化炭素貯留量が減少するため好ましくない。 The film thickness of the hollow particles is preferably about 0.05 to 50 μm, more preferably 0.5 to 25 μm, and even more preferably 1 to 5 μm. When the film thickness is thin, the hollow particles are broken and the contained carbon dioxide is not stored, and when the film thickness is thick, the amount of carbon dioxide stored per particle is reduced, which is not preferable.

上記中空粒子の粒子径や膜厚は、例えば、レーザー回折式粒度分布計等を用いることにより測定が可能であり、膜厚は、例えば、中空粒子を樹脂含浸させて固定したサンプルを研磨して粒子断面を露出させ、走査型電子顕微鏡等で計測することができる。 The particle size and film thickness of the hollow particles can be measured by using, for example, a laser diffraction type particle size distribution meter, and the film thickness can be measured, for example, by polishing a sample in which hollow particles are impregnated with a resin and fixed. The particle cross section can be exposed and measured with a scanning electron microscope or the like.

上記中空粒子の使用量は、セメント混錬物に対する割合で、3〜30体積%が好ましく、5〜15体積%がより好ましい。3体積%未満では十分な量の二酸化炭素を貯留することができず、30体積%を超えるとセメント系硬化体の物理性特が低下する場合や、硬化体表面に中空粒子が露出する割合が増え、外的要因により中空粒子が破損して二酸化炭素が貯留できなくなる場合がある。 The amount of the hollow particles used is preferably 3 to 30% by volume, more preferably 5 to 15% by volume, in proportion to the cement kneaded product. If it is less than 3% by volume, a sufficient amount of carbon dioxide cannot be stored, and if it exceeds 30% by volume, the physical characteristics of the cement-based cured product deteriorate, or the ratio of hollow particles exposed on the surface of the cured product is high. In some cases, the number of hollow particles increases and the hollow particles are damaged due to external factors, making it impossible to store carbon dioxide.

二酸化炭素含有ガスを内部に含む中空体を上記中空粒子とすることで、二酸化炭素を貯留すると共に、セメント系硬化体の耐火性、断熱性、凍結融解抵抗性等を向上させることができる。 By using the hollow particles containing carbon dioxide-containing gas as the hollow particles, it is possible to store carbon dioxide and improve the fire resistance, heat insulating property, freeze-thaw resistance and the like of the cement-based cured product.

また、本発明に係る中空体を、上記粒径の小さい中空粒子ではなく、粒径が数ミリ以上のものとし、細骨材又は粗骨材としてモルタルやコンクリートに用いることもできる。 Further, the hollow body according to the present invention may have a particle size of several millimeters or more instead of the hollow particles having a small particle size, and may be used for mortar or concrete as a fine aggregate or a coarse aggregate.

本発明における中空体をセメント系硬化体に貯留するにあたっては、中空体をセメント系材料の一つと混合し、他のセメント系材料と共に混練してセメント混練物とし、このセメント混練物を硬化させる。また、中空体をセメント系材料と共に混練してセメント混練物とし、このセメント混練物を硬化させてもよい。さらに、セメント系材料を混練してセメント混練物とし、該セメント混練物に前記中空体を混合した後硬化させてもよい。 In storing the hollow body in the cement-based hardened body in the present invention, the hollow body is mixed with one of the cement-based materials and kneaded together with other cement-based materials to obtain a cement kneaded product, and the cement-based kneaded product is cured. Further, the hollow body may be kneaded together with a cement-based material to form a cement kneaded product, and the cement kneaded product may be hardened. Further, the cement-based material may be kneaded to obtain a cement kneaded product, and the hollow body may be mixed with the cement kneaded product and then cured.

一例として、本発明における中空体をコンクリートヘ添加する場合には、予め中空体をセメント等にプレミックスしてから練り混ぜてもよく、練り混ぜの時に他の材料と同時に混合してもよい。また、練り混ぜたセメント系混練物に後から中空体を添加して再度練り混ぜて混合する方法でもよく、例えば、生コン出荷後に使用されなかった戻りコンや残コンを活用することもできる。 As an example, when the hollow body in the present invention is added to concrete, the hollow body may be premixed with cement or the like in advance and then kneaded, or may be mixed at the same time as other materials at the time of kneading. Alternatively, a method may be used in which a hollow body is added to the mixed cement-based kneaded material afterwards, and the mixture is kneaded and mixed again. For example, a return concrete or a residual concrete that has not been used after shipping the ready-mixed concrete can be utilized.

練り混ぜに使用する装置としては、通常のホバートミキサーや、二軸ミキサ、傾胴ミキサ、オムニミキサ等のコンクリートミキサや、コンクリートの運搬と混合を兼ねることができるトラックアジテータを用いることが可能である。 As a device used for kneading, it is possible to use a normal hovert mixer, a concrete mixer such as a biaxial mixer, a tilting mixer, or an omni mixer, or a truck agitator capable of transporting and mixing concrete.

また、中空体に二酸化炭素を封入することで固体として取り扱うことができるため、容易に輸送ができるようになる。このため、多量の二酸化炭素を排出するセメント工場や発電所で中空体とし、それを生コン工場や製品工場、建設現場の生コンプラント等に移送して使用することができる。さらに、生コン工場や生コンプラントでは、混錬物の状態で現場に出荷することができるため、目的に合わせた型枠を使用することにより、硬化体の形状を自由に設定することができ、セメント系硬化体による二酸化炭素の貯留量を増やすことができると共に、二酸化炭素の輸送に用いられるパイプラインや専用車両を必要としなくなるため効率的な二酸化炭素の貯留を進めることが可能となる。 Further, by enclosing carbon dioxide in the hollow body, it can be treated as a solid, so that it can be easily transported. Therefore, it can be used as a hollow body in a cement factory or a power plant that emits a large amount of carbon dioxide, and transferred to a ready-mixed concrete factory, a product factory, a ready-mixed concrete plant at a construction site, or the like. Furthermore, in ready-mixed concrete factories and ready-mixed concrete plants, the smelted product can be shipped to the site, so the shape of the cured product can be freely set by using a mold that suits the purpose, and cement. It is possible to increase the amount of carbon dioxide stored by the hardened concrete, and it is possible to promote efficient storage of carbon dioxide because the pipeline and dedicated vehicle used for transporting carbon dioxide are no longer required.

1 二酸化炭素排出元
2 二酸化炭素含有中空粒子製造所
3 生コン工場
4 生コンプラント
5 製品工場
6 中空粒子含有混練物
7 中空粒子含有硬化体
8 建設現場
1 Carbon dioxide emission source 2 Carbon dioxide-containing hollow particle factory 3 Raw particle factory 4 Raw concrete plant 5 Product factory 6 Hollow particle-containing kneaded product 7 Hollow particle-containing cured product 8 Construction site

Claims (10)

二酸化炭素含有ガスを包含する中空体を製造し、
該中空体をセメント系硬化体に貯留することを特徴とする二酸化炭素の貯留方法。
Manufacture a hollow body containing carbon dioxide-containing gas,
A method for storing carbon dioxide, which comprises storing the hollow body in a cement-based hardened body.
前記中空体をセメント系材料の一つと混合し、他のセメント系材料と共に混練してセメント混練物とし、該セメント混練物を硬化させることを特徴とする請求項1に記載の二酸化炭素の貯留方法。 The method for storing carbon dioxide according to claim 1, wherein the hollow body is mixed with one of the cement-based materials and kneaded together with another cement-based material to form a cement kneaded product, and the cement-based material is hardened. .. 前記中空体をセメント系材料と共に混練してセメント混練物とし、該セメント混練物を硬化させることを特徴とする請求項1に記載の二酸化炭素の貯留方法。 The method for storing carbon dioxide according to claim 1, wherein the hollow body is kneaded together with a cement-based material to form a cement kneaded product, and the cement kneaded product is hardened. セメント系材料を混練してセメント混練物とし、該セメント混練物に前記中空体を混合した後硬化させることを特徴とする請求項1に記載の二酸化炭素の貯留方法。 The method for storing carbon dioxide according to claim 1, wherein the cement-based material is kneaded to obtain a cement kneaded product, and the hollow body is mixed with the cement kneaded product and then cured. 二酸化炭素含有ガスを排出する設備において該二酸化炭素含有ガスを包含する中空体を製造し、前記二酸化炭素含有ガスを排出する設備以外の設備において前記中空体をセメント系硬化体に貯留することを特徴とする請求項1乃至4のいずれかに記載の二酸化炭素の貯留方法。 It is characterized in that a hollow body containing the carbon dioxide-containing gas is manufactured in a facility that discharges the carbon dioxide-containing gas, and the hollow body is stored in a cement-based hardened body in a facility other than the facility that discharges the carbon dioxide-containing gas. The method for storing carbon dioxide according to any one of claims 1 to 4. 前記中空体は、1μm以上1000μm以下の中空粒子であることを特徴とする請求項1乃至5のいずれかに記載の二酸化炭素の貯留方法。 The method for storing carbon dioxide according to any one of claims 1 to 5, wherein the hollow body is hollow particles of 1 μm or more and 1000 μm or less. 前記中空体を、細骨材又は粗骨材として用いることを特徴とする請求項1乃至5のいずれかに記載の二酸化炭素の貯留方法。 The method for storing carbon dioxide according to any one of claims 1 to 5, wherein the hollow body is used as a fine aggregate or a coarse aggregate. 二酸化炭素含有ガスを包含した中空体を含むことを特徴とするセメント系硬化体。 A cement-based hardened body characterized by containing a hollow body containing a carbon dioxide-containing gas. 前記中空体は、粒径が1μm以上1000μm以下の中空粒子であることを特徴とする請求項8に記載のセメント系硬化体。 The cement-based cured product according to claim 8, wherein the hollow body is hollow particles having a particle size of 1 μm or more and 1000 μm or less. 前記中空体は、細骨材又は粗骨材であることを特徴とする請求項8に記載のセメント系硬化体。 The cement-based hardened body according to claim 8, wherein the hollow body is a fine aggregate or a coarse aggregate.
JP2020073822A 2020-04-17 2020-04-17 Carbon dioxide storage method and cement-based hardened body Pending JP2021169398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020073822A JP2021169398A (en) 2020-04-17 2020-04-17 Carbon dioxide storage method and cement-based hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020073822A JP2021169398A (en) 2020-04-17 2020-04-17 Carbon dioxide storage method and cement-based hardened body

Publications (1)

Publication Number Publication Date
JP2021169398A true JP2021169398A (en) 2021-10-28

Family

ID=78119531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073822A Pending JP2021169398A (en) 2020-04-17 2020-04-17 Carbon dioxide storage method and cement-based hardened body

Country Status (1)

Country Link
JP (1) JP2021169398A (en)

Similar Documents

Publication Publication Date Title
Maddalena et al. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements
Chithambaram et al. Effect of parameters on the compressive strength of fly ash based geopolymer concrete
Adam Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete
Pan et al. Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing
CA2986224C (en) Lightweight composite materials produced from carbonatable calcium silicate and methods thereof
Siddique et al. Acid and sulfate resistance of seawater based alkali activated fly ash: A sustainable and durable approach
WO2019133040A1 (en) Method for enhancement of mechanical strength and co2 storage in cementitious products
Shebl et al. Mechanical behavior of activated nano silicate filled cement binders
KR20130137190A (en) Carbonation curing eqipment, process for producing carbonated concrete, and method for fixing carbon dioxide
Zhang et al. Ettringite-related dimensional stability of CO2-cured Portland cement mortars
Waqas et al. Influence of bentonite on mechanical and durability properties of high-calcium fly ash geopolymer concrete with natural and recycled aggregates
Rath Effect of natural rubber latex on the shrinkage behavior and porosity of geopolymer concrete
Hwang et al. Physical–microstructural evaluation and sulfate resistance of no‐cement mortar developed from a ternary binder of industrial by‐products
Durga et al. Assessment of various self healing materials to enhance the durability of concrete structures
Huynh et al. Performance and microstructure characteristics of the fly ash and residual rice husk ash‐based geopolymers prepared at various solid‐to‐liquid ratios and curing temperatures
Babu et al. Performance studies on quaternary blended Geopolymer concrete
JP2021169398A (en) Carbon dioxide storage method and cement-based hardened body
Rong et al. Study on mechanical and thermal properties of alkali-excited fly ash aerogel foam concrete
CN1214030A (en) Method of waste stabilization via chemically bonded phosphate ceramics, structural materials incorporating potassium phosphate ceramics
Al-Salami et al. Pozzolanic activity of nano-silica and its application for improving physical, mechanical and structural properties of hardened cement
Stepien et al. Insulated Autoclaved Cellular Concretes and Improvement of Their Mechanical and Hydrothermal Properties
KR102406849B1 (en) Composition of self-healing concrete using clinker binder and clinker aggregate
Yorulmaz et al. Effect of Nano-SiO2 on Strength and Hydration Characteristics of Ternary Cementitious Systems
Tian et al. Effect of polymer latex powder on shrinkage behaviors and microstructure of alkali-activated slag binder
Abdel‐Rahman et al. Performance of irradiated blended cement paste composites containing ceramic waste powder towards sulfates, chlorides, and seawater attack