JP2021169201A - Piping repair method and piping repair materials - Google Patents
Piping repair method and piping repair materials Download PDFInfo
- Publication number
- JP2021169201A JP2021169201A JP2020089213A JP2020089213A JP2021169201A JP 2021169201 A JP2021169201 A JP 2021169201A JP 2020089213 A JP2020089213 A JP 2020089213A JP 2020089213 A JP2020089213 A JP 2020089213A JP 2021169201 A JP2021169201 A JP 2021169201A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fiber material
- repair
- piping
- dry fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
Description
本発明は配管補修に関する、特に繊維強化高分子材料を用いて配管を補修する方法とその材料に関するものである。 The present invention relates to a pipe repair, particularly to a method of repairing a pipe using a fiber reinforced polymer material and a material thereof.
配管はどこにでも存在し、住居、商業的、産業的用途に広く見られ、製造プロセス、化学薬品輸送、エネルギー輸送、水道設備、加熱・冷却・下水設備、そして化学薬品廃液・汚水のような使用剤薬品・化合物の回収等に使用されている。それら設置のピークは30から40年前であり、多くの配管ラインは未だに使用されている。 Plumbing is ubiquitous and widely found in residential, commercial and industrial applications, such as manufacturing processes, chemical transport, energy transport, water supply, heating / cooling / sewage facilities, and chemical wastewater / sewage. It is used for the recovery of chemicals and compounds. The peak of their installation was 30 to 40 years ago, and many plumbing lines are still in use.
配管の欠陥及び損傷トラブルは、機械的損傷、腐蝕、エロージョン、コーティングの損傷、保温の損傷、誤った運転条件、等により発生する。 Piping defects and damage troubles occur due to mechanical damage, corrosion, erosion, coating damage, heat insulation damage, incorrect operating conditions, and the like.
一般的に補修技術は、補強するために配管の一部周囲に配設する金属スリーブが用いられる。溶接スリーブや非溶接の機械式スリーブが、リークを防止し欠陥を補修するために、パイプの長手方向半径方向を覆うように設置される。スリーブは、潜在欠陥や配管の内部及び外部腐蝕した部分等を補修しうる。配管周囲の所定位置にスリーブを溶接する補強技術や溶接せず機械的に配管に取り付けたスリーブを使用する補強技術は、産業界において広く用いられる慣れた補修方法となっている。スリーブの取り付けを正しく施工するためには、優れた溶接技術者や作業技能者を要し、またその養成には多大なコストがかかる。また、配管ラインの溶接式スリーブ及び非溶接式スリーブを用いた補修は、配管ラインの補修部分を脆化させたり、残留応力を発生させる弱点を有する。 Generally, the repair technique uses a metal sleeve arranged around a part of the pipe for reinforcement. Welded and non-welded mechanical sleeves are installed to cover the longitudinal and radial directions of the pipe to prevent leaks and repair defects. The sleeve can repair latent defects and corroded parts inside and outside the pipe. Reinforcing technology that welds a sleeve to a predetermined position around a pipe and reinforcement technology that uses a sleeve that is mechanically attached to a pipe without welding are familiar repair methods that are widely used in the industrial world. Proper installation of the sleeve requires excellent welding technicians and work technicians, and its training is very costly. Further, the repair using the welded sleeve and the non-welded sleeve of the piping line has a weakness that the repaired portion of the piping line is embrittled and residual stress is generated.
一般に、配管ラインが運転されたままの状態で、プラント停止期間を要せずに配管を補修することは、運転コストの点からは望ましい。また、恒久的な補修にとどまらず、一時的な補修で定められた長期の修繕期間まで延命させるだけでも、突発的な停止を回避でき大幅なコストダウンに貢献する。 In general, it is desirable from the viewpoint of operating cost to repair the piping without requiring a plant shutdown period while the piping line is still in operation. In addition to permanent repairs, even extending the life of a temporary repair to the specified long-term repair period can avoid sudden outages and contribute to a significant cost reduction.
非溶接式スリーブは溶接や火気の使用を必要としないため、溶接式に比べれば施工が容易に行えるが、クランプ、ボルト等により位置決めする必要があり、正しく取り付けるためには、機械的な技量を必要とし、溶接方法と比較して複雑なものとなり、その結果、非溶接式スリーブを用いた配管補修は溶接式スリーブを用いた補修と比較してより高価になると言われている。しかしながら、非溶接式スリーブを用いた補修は、配管ライン区域及び化学・石油化学プロセス区域のような補修現場では溶接回避しうる利点があるため、採用されることが多い。 Non-welding sleeves do not require welding or the use of fire, so they are easier to install than welded sleeves, but they need to be positioned with clamps, bolts, etc. It is said that it is necessary and complicated compared to the welding method, and as a result, the pipe repair using the non-welding sleeve is more expensive than the repair using the welding sleeve. However, repairs using non-welded sleeves are often adopted because they have the advantage of avoiding welding at repair sites such as piping line areas and chemical and petrochemical process areas.
前述のように、溶接式スリーブ及び非溶接の機械式スリーブを用いる確立した方法は、いずれもコストがかかり、高度の技術を要し、配管応力を増加させ、配管ラインの運転停止も必要となる。これらのことから、配管補修にはより改善された方法が要望されてきた。 As mentioned above, both welded and non-welded mechanical sleeves are costly, require a high degree of skill, increase piping stress, and require the shutdown of piping lines. .. For these reasons, a more improved method for repairing pipes has been desired.
一方で、樹脂による補修は、簡易に行う場合強化材料を用いないことが多いが、中圧、高圧の配管ラインの補修を行うには、適切な強度を備えない難点を有する。これを補うべく、エポキシ材料及び他の樹脂に複合材料繊維を用いて、損傷配管周囲に一体成形構造体を構成する方法が試みられている。一般には、種々の繊維、ポリマー、樹脂プレポリマー、接着剤及び他の成分が、配管の損傷部分周囲に複合材料構造体を形成するべく利用される。このような複合材料補修には、ガラス繊維を用いることが多い。前記、機械式スリーブや溶接式スリーブを用いる場合に比べ、前記述の種々発生するコストを省くことが可能であり、劣化した配管の補修コストを低減しうる一手段である。 On the other hand, repair with resin often does not use a reinforcing material when it is simply performed, but it has a drawback that it does not have appropriate strength for repairing medium-pressure and high-pressure piping lines. In order to compensate for this, a method of constructing an integrally molded structure around a damaged pipe by using a composite material fiber for an epoxy material and another resin has been attempted. Generally, various fibers, polymers, resin prepolymers, adhesives and other components are utilized to form composite structures around damaged parts of piping. Glass fiber is often used for repairing such composite materials. Compared with the case of using the mechanical sleeve or the welding type sleeve, it is possible to omit various costs incurred as described above, and it is one means that can reduce the repair cost of the deteriorated pipe.
しかしながら、これらの補修複合材料の使用は、これまで用いられてきた方法では、特許第4955569号が指摘するように、繊維を配管周囲に取り付ける以前に、繊維各層を樹脂に浸漬させ湿潤にすることを要するなど多大な労力がかかる。これらの複雑な事前準備を回避できる方法として特許第4955569号による方法が提案された。 However, the use of these repair composites is that in the methods used so far, as pointed out by Japanese Patent No. 4955569, each layer of fiber is dipped in resin and moistened before the fiber is attached around the pipe. It takes a lot of labor such as requiring. A method according to Japanese Patent No. 4955569 has been proposed as a method for avoiding these complicated preparations.
特許第4955569号による方法は、欠陥部分を囲んで一旦繊維材料などの補強を取り付けた後に、格納コンポーネントと称する機械的なスリーブ状の容器を外装しその内側に液体樹脂を注入すること等を特徴とする補修方法などを提案するものであるが、実際の施工においては液体樹脂を均一に装入することが極めて難しい。コンポーネントの装着の前にブラシ塗布する方法も提案されているが、そのような補助的な工夫を用いた場合でも、コンポーネントと繊維材料との間隙が制御しにくい。多くの場合、繊維材料に接してコンポーネントを配置することとなるが、液体樹脂が注入される流路が不均一に構成されるために、圧力をかけても均一な注入が実現できない。特に対象となる補修配管は円筒形であるため、水平に配設されている場合は上下に、垂直に配設されている場合はその軸方向に、その中間的な位置に配設される配管やバルブ、エルボ、曲げ配管などにおいても同様に、重力に反し付着させたい部分への均一注入が実現しにくい。 The method according to Japanese Patent No. 4955569 is characterized in that, after surrounding the defective portion and once attaching reinforcement such as a fiber material, a mechanical sleeve-shaped container called a storage component is exteriorized and liquid resin is injected into the exterior. However, in actual construction, it is extremely difficult to uniformly charge the liquid resin. A method of applying a brush before mounting the component has also been proposed, but even when such an auxiliary device is used, it is difficult to control the gap between the component and the fiber material. In many cases, the component is arranged in contact with the fiber material, but since the flow path for injecting the liquid resin is non-uniformly configured, uniform injection cannot be realized even when pressure is applied. In particular, since the repair pipe to be targeted is cylindrical, the pipe is arranged vertically when it is arranged horizontally, in the axial direction when it is arranged vertically, and at an intermediate position. Similarly, in valves, elbows, bent pipes, etc., it is difficult to achieve uniform injection into the part to be adhered against gravity.
特許第4955569号は、コンポーネントの内部に液体樹脂を注入するに際し、注ぎ口を設け必要に応じ外圧をかけるなどの方法を提案するが、注入される液体樹脂は継時的に粘度が増加する前に効率的に行われなければならず、また初期段階で粘度の高い液体樹脂は採用することが不可能である。一方で初期粘度の低い材料は硬化するまでに長時間を要する難点を有する。 Patent No. 4955569 proposes a method of injecting a liquid resin into a component by providing a spout and applying external pressure as necessary, but the injected liquid resin has a viscosity before the viscosity increases over time. It must be done efficiently, and it is impossible to adopt a liquid resin with high viscosity at the initial stage. On the other hand, a material having a low initial viscosity has a drawback that it takes a long time to cure.
本発明者は、上記問題点を解決するため、
配管ラインの一部分における欠陥を囲んで樹脂を塗布する際、当該樹脂を保持、補強するために乾燥繊維材料を樹脂の内外装に取り付けるにあたり、乾燥繊維材料の配管ライン側に樹脂を塗布したのちに装着することを特徴とする配管ライン補修方法、
前記樹脂を乾燥繊維材料に塗布する際、樹脂の流動を抑制するために乾燥繊維材料で樹脂を包み込むよう層状ないしは筒状に乾燥繊維材料を構成し、樹脂と乾燥補強材料を配管ラインに装着することを特徴とする配管ライン補強方法、
前記樹脂を塗布する乾燥繊維材料の少なくとも片側表面に、線状ないしは格子状等の凸部分を設け、樹脂の流動を抑制させる機能を具備する乾燥繊維材料を用いる、請求項1及び請求項2に記載の配管ライン補修方法、
補修に用いる樹脂を保持、補強しやすくするために、乾燥繊維材料の少なくとも片側表面に線状ないしは格子状等の凸部分を設け、塗布される樹脂の流動を抑制させる機能を具備した乾燥繊維材料、
補修に用いる樹脂を保持、補強しやすくするために、乾燥繊維材料をチューブ状に構成し、塗布される樹脂をチューブ内面に装填してその流動を抑制しかつ保持する機能を具備した乾燥繊維材料、
を提供することを手段とする。In order to solve the above problems, the present inventor
When applying resin around a defect in a part of the piping line, when attaching the dry fiber material to the interior and exterior of the resin to hold and reinforce the resin, after applying the resin to the piping line side of the dry fiber material. Piping line repair method characterized by mounting,
When the resin is applied to the dry fiber material, the dry fiber material is formed in a layered or tubular shape so as to wrap the resin with the dry fiber material in order to suppress the flow of the resin, and the resin and the dry reinforcing material are attached to the piping line. Piping line reinforcement method, which is characterized by
2. Described piping line repair method,
A dry fiber material having a function of suppressing the flow of the applied resin by providing a convex portion such as a linear or lattice shape on at least one side surface of the dry fiber material in order to easily hold and reinforce the resin used for repair. ,
In order to easily hold and reinforce the resin used for repair, the dry fiber material is configured in a tube shape, and the resin to be applied is loaded on the inner surface of the tube to suppress and hold the flow of the dry fiber material. ,
By providing.
本発明により、配管の補修に際して、溶接や複雑で精緻な作業を求められる機械的補強を省略、縮小でき、したがって配管ラインやそれを含むプラントの停止を要しない、あるいは停止する場合でも短時間で、必要な配管補強が提供できる。 According to the present invention, when repairing pipes, welding and mechanical reinforcements that require complicated and precise work can be omitted or reduced. , The necessary piping reinforcement can be provided.
本発明法によれば、乾燥繊維材料はシート状でもチューブ状でも本法を構成することが可能であり、必要に応じそれらを複層的に構成することが出来る。具体的には、補修作業に必要な樹脂の厚みを、複雑な配管位置や配管類の形状に寄らず、確保することが可能になる。すなわち施工時に、意図しない樹脂の欠落や厚みの減少を防止することが可能であり、補修作業が容易になるばかりでなく、補修作業の品質を高めることが可能になって、補修作業の信頼性が高められる。 According to the method of the present invention, the dried fiber material can be formed in the form of a sheet or a tube, and can be formed in multiple layers as needed. Specifically, it is possible to secure the thickness of the resin required for the repair work regardless of the complicated piping position and the shape of the piping. That is, it is possible to prevent unintentional loss of resin and reduction in thickness during construction, which not only facilitates repair work but also improves the quality of repair work, thus improving the reliability of repair work. Is enhanced.
シート状の乾燥繊維材料を用いる場合、補強すべき配管の損傷状況に合わせ、様々な寸法のシートを用い、作業がしやすいように順次、より大きなシートを積層させ、さらには貼り付けのみならず配管の周方向に巻き付け、また、らせん状や軸方向に展開することも可能である。片面にのみ樹脂を塗布するにとどまらず、乾燥繊維材料のシートで樹脂をサンドイッチ構造に保持することも施工作業を容易にする。樹脂は様々な粘度のものが採用可能で、作業がしやすい粘度状態まで一時的に保持したのち適度な状況下で施工するとも有効である。粘度の低い樹脂材料を用いる場合には、少なくとも片側表面に、線状ないしは格子状等の凸部分を設けた乾燥繊維材料を用いると樹脂の流動を抑制させることが可能であり、配管の位置や複雑な形状に妨げられることなく、樹脂が重力方向に流動し不均一になることを防止できる。 When using a sheet-shaped dry fiber material, use sheets of various dimensions according to the damage situation of the piping to be reinforced, and in order to make the work easier, stack larger sheets one by one, and not only paste them. It is also possible to wind the pipe in the circumferential direction and to deploy it in a spiral or axial direction. Not only applying the resin to only one side, but also holding the resin in the sandwich structure with a sheet of dry fiber material facilitates the construction work. Resins of various viscosities can be used, and it is also effective to temporarily hold the resin in a viscous state that makes it easy to work and then apply it under appropriate conditions. When a resin material having a low viscosity is used, it is possible to suppress the flow of the resin by using a dry fiber material having a convex portion such as a linear or lattice shape on at least one side surface, and it is possible to suppress the flow of the resin. It is possible to prevent the resin from flowing in the direction of gravity and becoming non-uniform without being hindered by the complicated shape.
チューブ状の乾燥繊維材料を用いその内部に樹脂を充てんさせる場合、チューブの太さを適宜定めることにより、配管に巻き付けた後の締め付け状態により樹脂の配管系方向の厚みを調整することが可能である。 When using a tubular dry fiber material and filling the inside with resin, it is possible to adjust the thickness of the resin in the piping system direction according to the tightening state after winding it around the pipe by appropriately determining the thickness of the tube. be.
損傷部分を覆い損傷部面積の10倍程度となる樹脂をサンドした乾燥繊維材料をパッチあてしたのち、直径3センチメートル程度のチューブ状の乾燥繊維材料に樹脂を装填し、前記パッチあてしたシートを縛り上げる要領で当該チューブ状の乾燥繊維材料を巻き付ける。チューブは充てんされる樹脂の量に応じて変形するが、樹脂の厚みが5ミリメートルになる程度にとどめ、巻き付けの際には1センチメートル程度の重なりを設けて補強すると有効である。エポキシ樹脂を当該樹脂として採用する場合、樹脂の厚みが1.5から2センチメートル程度になるように積層させることにより、十分な強度が確保できる。また、高圧の配管を補修する場合は当該補修した部分を簡易な機械的スリーブで補強することも必要に応じ有効である。 After patching a dry fiber material that covers the damaged part and sands a resin that is about 10 times the area of the damaged part, the resin is loaded into a tubular dry fiber material with a diameter of about 3 cm, and the patched sheet is applied. Wrap the tubular dry fiber material in the same way as tying it up. The tube is deformed according to the amount of resin to be filled, but it is effective to limit the thickness of the resin to about 5 mm and to reinforce it by providing an overlap of about 1 cm when winding. When an epoxy resin is used as the resin, sufficient strength can be ensured by laminating the resins so that the thickness of the resin is about 1.5 to 2 cm. Further, when repairing a high-pressure pipe, it is also effective to reinforce the repaired part with a simple mechanical sleeve as necessary.
試験として、配管径200ミリメートルの水平鋼管に、直径5ミリメートルの人工欠陥を100センチメートルの間隔を隔て設けた後、図1、図2に示すように2つの方法にて配管補修を実施した。 As a test, after artificial defects having a diameter of 5 mm were provided on a horizontal steel pipe having a diameter of 200 mm at an interval of 100 cm, the pipe was repaired by two methods as shown in FIGS. 1 and 2.
図1は本発明法による方法であり、乾燥繊維材料にはポリエステルを、樹脂にはエポキシ樹脂を採用した。欠陥部分に充てるパッチには直径120ミリメートルの円形のシートに前記樹脂を5ミリメートルの厚さでサンドイッチして装着した。上記円形パッチを押さえるために直径30ミリメートルの同種乾燥繊維材料に、変形した時に5ミリメートルの厚さになるよう量を調整して樹脂を装填して用いた。具体的にはチューブ100ミリメートルあたり21から24CC(0.5*4.2*10=21)となるよう樹脂を装填し、10分間保持して流動しにくい状態に硬化させたのちに配管に巻き付け補強した。締め付け圧はチューブの張力にして10kgf程度であり、その精度はあまり重要ではない。 FIG. 1 shows a method according to the method of the present invention, in which polyester is used as the dry fiber material and epoxy resin is used as the resin. The patch applied to the defective portion was attached by sandwiching the resin with a thickness of 5 mm on a circular sheet having a diameter of 120 mm. In order to hold down the circular patch, a resin was loaded into a dry fiber material of the same type having a diameter of 30 mm so as to have a thickness of 5 mm when deformed. Specifically, the resin is loaded so as to have 21 to 24 CC (0.5 * 4.2 * 10 = 21) per 100 mm of the tube, held for 10 minutes, hardened to a state where it is difficult to flow, and then wound around the pipe. Reinforced. The tightening pressure is about 10 kgf in terms of tube tension, and its accuracy is not so important.
チューブによる補強は当該円形パッチを覆い、配管軸方向に円形シートの直径の5倍となる長さ640ミリメートルまで、補強樹脂が15ミルメートル程度になるよう概ね3層に補強した。なお、チューブによる補強の取り付け最初の部分と取りつけ終了部分はそれぞれ、補修配管にチューブを縛り付けるよう固縛して密着させた。 Reinforcement with a tube covered the circular patch, and reinforced in approximately three layers so that the reinforcing resin was about 15 mil meters in length up to 640 mm, which was five times the diameter of the circular sheet in the direction of the pipe axis. The first part of the reinforcement with the tube and the end part of the reinforcement were firmly tied to the repair pipe so as to be tied to the repair pipe.
一方の図2は従来行われていた一般的な樹脂補強方法であり、乾燥樹脂の厚さが15ミリメートルになるように樹脂を積層させるよう塗布し、長手方向も本発明法と概ね同様となる640ミリメートルとなるように施工した。 On the other hand, FIG. 2 shows a general resin reinforcing method that has been conventionally performed, in which the resin is applied so as to be laminated so that the thickness of the dry resin is 15 mm, and the longitudinal direction is substantially the same as that of the method of the present invention. It was constructed so as to be 640 mm.
施工後、樹脂が硬化し終わる8時間経過後に通水し圧力をかけ、補修の状況を試験的に確認した。順次圧力を0.01MPaごとに上げていったところ、図2の従来法では0.3MPaにて滴下する漏水が始まり、0.5MPaで樹脂と配管との間に水みちが構成され、漏水が定常的に生じた。 After the construction, 8 hours after the resin had finished curing, water was passed and pressure was applied to confirm the repair status on a trial basis. When the pressure was sequentially increased in increments of 0.01 MPa, in the conventional method shown in FIG. 2, water leakage started at 0.3 MPa, and at 0.5 MPa, a water path was formed between the resin and the pipe, causing water leakage. It occurred steadily.
本発明法による図1の方法では、1.0MPaまで圧力を上げても補修部分の変化は見られず、その後同圧力にて24時間保持したうえでも問題ないことが確認できた。 In the method of FIG. 1 according to the method of the present invention, no change was observed in the repaired portion even when the pressure was increased to 1.0 MPa, and it was confirmed that there was no problem even if the pressure was maintained at the same pressure for 24 hours thereafter.
なお、パッチあてに用いた直径120ミリメートルのポリエステルシートには高さ5ミリメートルの突起を介し2枚のシートが重なり合うように図3の形状を事前に作成し挟み込む樹脂の流動と変形を抑制した。この突起は直径20、40、60、80、100ミリメートルの円形の輪で代用可能である。 The polyester sheet having a diameter of 120 mm used for patching was prepared in advance with the shape of FIG. 3 so that the two sheets overlap each other through a protrusion having a height of 5 mm, and the flow and deformation of the sandwiching resin were suppressed. This protrusion can be replaced by a circular ring with diameters of 20, 40, 60, 80, 100 mm.
また、円形パッチを抑えるために用いた直径30ミリメートルのポリエステル繊維材料のチューブには直径方向対角位置に5ミリメートルの同種材料の断面矩形状の紐を内挿固定し、装填する樹脂厚が5ミリメートル程度になりやすいよう配慮した。 In addition, a tube made of polyester fiber material having a diameter of 30 mm used to suppress a circular patch is internally fixed with a string having a rectangular cross section of the same material having a diameter of 5 mm diagonally in the radial direction, and the resin thickness to be loaded is 5. Consideration was given so that it could easily be about millimeters.
前記実施例では、樹脂を装填させたチューブを巻き付ける際、人工欠陥を設けた配管を回転させてチューブを巻き付け固定して試験を行った。その際、円形パッチを仮押さえしておくために、ポリエステルの紐を用いて固縛固定した。実際の現場では、補修対象の配管を回転させることは難しいので、追加で行った試験ではチューブを3分割し重ねる層ごとに巻き始めと巻き終わり時点を配管に固縛し作業性を考慮した。その試験の結果は前記実施例と同様の結果となった。さらに再現性を得るために繰り返し行った試験では、本発明法と従来法を直列配置から並列配置にし、人工欠陥の形状も3*12ミリメートルに拡大して行ったが、その際も試験結果は同様の結果となった。また、3*12ミリメートルの人工欠陥に木栓を打ち込んで同様の比較試験を行った際も試験結果は同様であった。 In the above embodiment, when the tube loaded with the resin was wound, the pipe provided with the artificial defect was rotated to wind and fix the tube, and the test was conducted. At that time, in order to temporarily hold the circular patch, it was fixed by lashing with a polyester string. At the actual site, it is difficult to rotate the pipe to be repaired, so in the additional test, the tube was divided into three parts, and the start and end of winding were fixed to the pipe for each layer to be stacked in consideration of workability. The result of the test was the same as that of the above-mentioned example. In the repeated tests to obtain further reproducibility, the method of the present invention and the conventional method were changed from the series arrangement to the parallel arrangement, and the shape of the artificial defect was also expanded to 3 * 12 mm. Similar results were obtained. In addition, the test results were the same when a similar comparative test was performed by driving a cork into a 3 * 12 mm artificial defect.
1 鋼管
2 人工欠陥
3 円形シート
4 チューブ状繊維
5 チューブ状繊維に包まれた樹脂
6 円形シートに挟まれた樹脂
7 樹脂
8 輪形繊維材料
9 紐状繊維材料1
Claims (5)
配管ラインの一部分における欠陥を囲んで樹脂を塗布する際、当該樹脂を保持、補強するために乾燥繊維材料を樹脂の内外装に取り付けるにあたり、乾燥繊維材料の配管ライン側に樹脂を塗布したのちに装着することを特徴とする配管ライン補修方法。In the repair of piping lines
When applying resin around a defect in a part of the piping line, when attaching the dry fiber material to the interior and exterior of the resin to hold and reinforce the resin, after applying the resin to the piping line side of the dry fiber material. A piping line repair method characterized by mounting.
補修に用いる樹脂を保持、補強しやすくするために、乾燥繊維材料の少なくとも片側表面に線状ないしは格子状等の凸部分を設け、塗布される樹脂の流動を抑制させる機能を具備した乾燥繊維材料。In the repair of piping lines
A dry fiber material having a function of suppressing the flow of the applied resin by providing a convex portion such as a linear or lattice shape on at least one side surface of the dry fiber material in order to easily hold and reinforce the resin used for repair. ..
補修に用いる樹脂を保持、補強しやすくするために、乾燥繊維材料をチューブ状に構成し、塗布される樹脂をチューブ内面に装填してその流動を抑制しかつ保持する機能を具備した乾燥繊維材料。In the repair of piping lines
In order to easily hold and reinforce the resin used for repair, the dry fiber material is configured in a tube shape, and the resin to be applied is loaded on the inner surface of the tube to suppress and hold the flow of the dry fiber material. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020089213A JP2021169201A (en) | 2020-04-16 | 2020-04-16 | Piping repair method and piping repair materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020089213A JP2021169201A (en) | 2020-04-16 | 2020-04-16 | Piping repair method and piping repair materials |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021169201A true JP2021169201A (en) | 2021-10-28 |
Family
ID=78149956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020089213A Pending JP2021169201A (en) | 2020-04-16 | 2020-04-16 | Piping repair method and piping repair materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021169201A (en) |
-
2020
- 2020-04-16 JP JP2020089213A patent/JP2021169201A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2589854C (en) | System and method for pipe repair | |
US7367362B2 (en) | System and method for pipe repair | |
US20060272724A1 (en) | System and method for pipe repair using fiber wrap and polymeric resin | |
US7472722B2 (en) | Method of permanently repairing a pipeline section using a combination wrap and sleeve structure | |
US7938146B2 (en) | Repair apparatus and method for pipe and fittings | |
AU666589B2 (en) | Methods for repairing pipe | |
US7900655B2 (en) | Composite load transferring technique | |
US7673655B1 (en) | Composite wrap repair of internal defects | |
US8424571B2 (en) | Repair system and method | |
US20100078118A1 (en) | Repair and strengthening of small diameter pipes with frp laminates | |
US9163757B2 (en) | High-pressure pipe element having an assembly of hooped tubes and method of manufacture | |
JP2021169201A (en) | Piping repair method and piping repair materials | |
NO321164B1 (en) | Process for preparing a device for stopping the propagation of a bulb in a rigid rudder. | |
US20110139351A1 (en) | Method for Fast Cure of a Composite Wrap | |
US20240309982A1 (en) | Self-healing composite wrap systems and methods | |
Ehsani | Latest advances in pipeline renovation with fiber reinforced polymer (FRP) | |
CA2473867C (en) | Method and means of repairing a pipe | |
Ehsani | Superlaminate: the next generation of carbon FRP products for repair of pipelines | |
Liu et al. | A New Pipeline Repair System and Its Application in China | |
Venero et al. | In-Field Application of Steel Strip Reinforcement for Pipeline External Rehabilitation | |
Walker et al. | Non-metallic structural wrap systems for pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200818 |