JP2021167991A - Vehicle damage estimation device, estimation program therefor and estimation method therefor - Google Patents

Vehicle damage estimation device, estimation program therefor and estimation method therefor Download PDF

Info

Publication number
JP2021167991A
JP2021167991A JP2020070114A JP2020070114A JP2021167991A JP 2021167991 A JP2021167991 A JP 2021167991A JP 2020070114 A JP2020070114 A JP 2020070114A JP 2020070114 A JP2020070114 A JP 2020070114A JP 2021167991 A JP2021167991 A JP 2021167991A
Authority
JP
Japan
Prior art keywords
damage
vehicle
external
parts
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020070114A
Other languages
Japanese (ja)
Other versions
JP6991519B2 (en
Inventor
昂平 安田
Kohei Yasuda
聡一朗 田中
Soichiro Tanaka
亮介 田嶋
Ryosuke Tajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arithmer Inc
Original Assignee
Arithmer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arithmer Inc filed Critical Arithmer Inc
Priority to JP2020070114A priority Critical patent/JP6991519B2/en
Publication of JP2021167991A publication Critical patent/JP2021167991A/en
Application granted granted Critical
Publication of JP6991519B2 publication Critical patent/JP6991519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To estimate damages to a vehicle flexibly and accurately.SOLUTION: A part determination unit 4 determines an external part of a vehicle in a captured image with reference to a part learning model 9. The part learning model 9 is constructed by supervised learning using data related to vehicle parts as supervised data. An external damage determination unit 5 refers to a state learning model 10 and determines a damaged state of each external part determined by the part determination unit 4 as external damage. The state learning model 10 is constructed by supervised learning using data on the damaged state of external parts as supervised data. Processing is separated into the part determination and the damage determination, and the damage determination of each part is performed after the part determination is performed, whereby the determination accuracy as a whole can be improved.SELECTED DRAWING: Figure 1

Description

本発明は、撮像画像から車両の損傷状態を推定する車両損傷推定装置、その推定プログラムおよび推定方法に関する。 The present invention relates to a vehicle damage estimation device for estimating a vehicle damage state from a captured image, an estimation program thereof, and an estimation method.

例えば、特許文献1には、事故車の損傷の評価や修理見積もりを的確かつ迅速に行うことが可能な事故車修理費見積システムが開示されている。この見積システムは、キャプチャー手段と、記憶手段と、入力手段と、表示手段と、リンク手段と、見積手段とを有する。キャプチャー手段は、事故車両の画像データを取り込む。記憶手段は、事故車修理費見積に必要な車両属性データを記憶する。入力手段は、事故車修理費見積に必要な見積データを入力する。表示手段は、事故車両画像データを含む各種データを表示する。リンク手段は、画像データが車両のどの部位の損傷を明瞭に示しているかを決定する。見積手段は、画像データおよび画像データに対応する部位の車両属性データを表示手段に同時に表示する。また、見積手段は、見積データおよび車両属性データに基いて、事故車の修理に要する費用の見積処理を行う。 For example, Patent Document 1 discloses an accident vehicle repair cost estimation system that can accurately and quickly evaluate damage to an accident vehicle and estimate repairs. This estimation system includes a capture means, a storage means, an input means, a display means, a link means, and an estimation means. The capturing means captures the image data of the accident vehicle. The storage means stores the vehicle attribute data necessary for estimating the accident vehicle repair cost. The input means inputs the estimation data necessary for estimating the repair cost of the accident vehicle. The display means displays various data including accident vehicle image data. The linking means determines which part of the vehicle the image data clearly indicates damage. The estimation means simultaneously displays the image data and the vehicle attribute data of the portion corresponding to the image data on the display means. In addition, the estimation means performs estimation processing of the cost required for repairing the accident vehicle based on the estimation data and the vehicle attribute data.

特開平10−197285号公報Japanese Unexamined Patent Publication No. 10-197285

しかしながら、特許文献1のシステムでは、事故車両の画像データについて、過去に修理をした車両の画像データとの近似性から損傷の程度を判定するため、適切な過去の画像データが存在しない場合には判定精度が低下する。 However, in the system of Patent Document 1, the degree of damage is determined from the closeness of the image data of the accident vehicle to the image data of the vehicle repaired in the past. Therefore, if there is no appropriate past image data, Judgment accuracy is reduced.

第1観点に係る発明は、部品判定部と状態判定部とを有する車両状態判定装置である。部品判定部は、車両部品に関する教師データによって構築された部品学習モデルを参照して、撮像画像における車両部品を判定する。状態判定部は、車両部品の損傷状態に関する教師データによって構築された状態学習モデルを参照して、部品判定部によって判定された車両部品毎の損傷状態を判定する。部品学習モデルは、車両の写った画像に対し、当該車両における車両部品の部分をバウンディングボックスで指定した教師データ又は当該車両における車両部品の部分に対応するピクセルを指定した教師データのいずれか若しくは両方の教師データにより学習されたものであり、撮像画像の入力に応じて、撮像画像における車両部品の領域抽出と分類とを出力する。
第2観点に係る発明は、部品判定部と、外部損傷判定部と、内部損傷推定部とを有し、撮像画像から車両の損傷状態を推定する車両損傷推定装置である。部品判定部は、部品学習モデルを参照して、撮像画像における車両の外部部品を判定する。部品学習モデルは、車両部品に関するデータを教師データとした教師あり学習によって構築されている。外部損傷判定部は、状態学習モデルを参照して、部品判定部によって判定された外部部品毎の損傷状態を外部損傷として判定する。状態学習モデルは、外部部品の損傷状態に関するデータを教師データとした教師あり学習によって構築されている。内部損傷推定部は、損傷事例データベースを参照し、外部損傷判定部によって判定された外部損傷と類似した損傷事例を抽出することによって、車両の内部損傷を推定する。損傷事例データベースは、外部損傷および内部損傷を含む車両の損傷内容を含む過去の損傷事例を保持する。
The invention according to the first aspect is a vehicle state determination device having a parts determination unit and a state determination unit. The parts determination unit determines the vehicle parts in the captured image with reference to the parts learning model constructed by the teacher data regarding the vehicle parts. The state determination unit determines the damage state of each vehicle part determined by the parts determination unit with reference to the state learning model constructed by the teacher data regarding the damage state of the vehicle parts. The parts learning model is either or both of the teacher data in which the part of the vehicle part in the vehicle is specified by the bounding box and the teacher data in which the pixel corresponding to the part of the vehicle part in the vehicle is specified for the image of the vehicle. It is learned from the teacher data of the above, and the area extraction and classification of the vehicle parts in the captured image are output in response to the input of the captured image.
The invention according to the second aspect is a vehicle damage estimation device that has a parts determination unit, an external damage determination unit, and an internal damage estimation unit, and estimates a vehicle damage state from an captured image. The parts determination unit determines the external parts of the vehicle in the captured image with reference to the parts learning model. The parts learning model is constructed by supervised learning using data related to vehicle parts as teacher data. The external damage determination unit refers to the state learning model and determines the damage state of each external component determined by the component determination unit as external damage. The state learning model is constructed by supervised learning using data on the damaged state of external parts as supervised data. The internal damage estimation unit estimates the internal damage of the vehicle by referring to the damage case database and extracting damage cases similar to the external damage determined by the external damage determination unit. The damage case database holds past damage cases, including vehicle damage details, including external and internal damage.

本発明によれば、機械学習に基づいて車両の損傷状態を判定することで、未知の車両を含む様々な車両に対して、柔軟な対応が可能になる。その際、部品判定と損傷判定とに処理を分離し、部品判定を行った後に個々の部品の損傷判定を行うことで、全体としての判定精度の向上を図ることができる。また、本発明によれば、機械学習に基づいて外部部品の損傷状態を判定すると共に、これをキーとして損傷事例データベースを参照することで、内部損傷を推定する。これにより、未知の車両を含む様々な車両について、外部損傷のみならず内部損傷も含んだ損傷推定を柔軟かつ精度よく行うことができる。 According to the present invention, by determining the damaged state of a vehicle based on machine learning, it is possible to flexibly deal with various vehicles including an unknown vehicle. At that time, the processing is separated into the component determination and the damage determination, and the damage determination of each component is performed after the component determination is performed, so that the determination accuracy as a whole can be improved. Further, according to the present invention, the damage state of the external component is determined based on machine learning, and the internal damage is estimated by referring to the damage case database using this as a key. As a result, it is possible to flexibly and accurately estimate damage including not only external damage but also internal damage for various vehicles including unknown vehicles.

車両損傷推定装置のブロック図Block diagram of vehicle damage estimation device 画像受付の画面表示例を示す図Figure showing screen display example of image reception 面判定結果の画面表示例を示す図The figure which shows the screen display example of the surface judgment result 物体検出アルゴリズムの説明図Explanatory diagram of object detection algorithm YOLOのネットワーク構成図YOLO network configuration diagram 外部部品の判定結果の画面表示例を示す図The figure which shows the screen display example of the judgment result of an external part 外部損傷の判定結果の画面表示例を示す図The figure which shows the screen display example of the judgment result of external damage 損傷事例データベースの概略的な構成図Schematic block diagram of the damage case database 内部損傷の推定結果の画面表示例を示す図The figure which shows the screen display example of the estimation result of internal damage 見積テーブルの概略的な構成図Schematic block diagram of the quotation table 見積結果の画面表示例を示す図Figure showing screen display example of estimation result

図1は、本実施形態に係る車両損傷推定装置1のブロック図である。この車両損傷推定装置1は、ユーザによって指定された撮像画像から、外部損傷のみならず内部損傷を含めて車両の損傷状態を推定する。推定対象となる車両は、本実施形態では自家用の自動車を想定しているが、これは一例であって、トラック、バス、二輪車等を含めて、設計仕様次第で任意の車両を対象とすることができる。なお、車両損傷推定装置1は、コンピュータプログラムをコンピュータにインストールすることによって等価的に実現することも可能である。 FIG. 1 is a block diagram of the vehicle damage estimation device 1 according to the present embodiment. The vehicle damage estimation device 1 estimates the damage state of the vehicle including not only external damage but also internal damage from the captured image designated by the user. The vehicle to be estimated is assumed to be a private vehicle in this embodiment, but this is an example, and any vehicle including trucks, buses, motorcycles, etc. should be targeted depending on the design specifications. Can be done. The vehicle damage estimation device 1 can be equivalently realized by installing a computer program on the computer.

車両損傷推定装置1は、画像受付部2と、面判定部3と、部品判定部4と、外部損傷判定部5と、内部損傷推定部6と、入出力インターフェース7と、学習モデル8〜10と、損傷事例データベース11とを主体に構成されている。各処理ユニット2〜6は、入出力インターフェース7を介して表示装置12に接続されており、入出力インターフェース7は、これらと表示装置12との間の入出力を司る。基本的に、処理ユニット2〜6における各処理は逐次的に行われるが、隣接した処理ユニット間における処理の移行、具体的には、面判定部3から部品判定部4への移行、部品判定部4から外部損傷判定部5への移行、および、外部損傷判定部5から内部損傷推定部6への移行は、ユーザによる判定結果の修正を許容した上で、ユーザの承認が得られたことを条件に行われる。これは、処理過程でユーザの意図を適宜反映することで、車両損傷の推定精度の向上を図るためである。ただし、処理の移行の一部については、ユーザの承認を条件とすることなく自動的に行ってもよい。なお、表示装置12がインターネットなどにネットワーク接続されている場合、入出力インターフェース7は、ネットワーク通信を行うために必要な通信機能を備える。 The vehicle damage estimation device 1 includes an image reception unit 2, a surface determination unit 3, a parts determination unit 4, an external damage determination unit 5, an internal damage estimation unit 6, an input / output interface 7, and a learning model 8 to 10. And the damage case database 11 are mainly configured. Each processing unit 2 to 6 is connected to a display device 12 via an input / output interface 7, and the input / output interface 7 controls input / output between these and the display device 12. Basically, each process in the processing units 2 to 6 is sequentially performed, but the transfer of the process between adjacent processing units, specifically, the transfer from the surface determination unit 3 to the component determination unit 4, and the component determination. The transition from the unit 4 to the external damage determination unit 5 and the transition from the external damage determination unit 5 to the internal damage estimation unit 6 were approved by the user after allowing the user to correct the determination result. It is done on the condition. This is to improve the estimation accuracy of vehicle damage by appropriately reflecting the user's intention in the processing process. However, some of the process transitions may be done automatically without the condition of user approval. When the display device 12 is connected to the Internet or the like via a network, the input / output interface 7 has a communication function necessary for performing network communication.

画像受付部2は、表示装置13から推定対象となる撮像画像、具体的には、損傷した車両の外観をカメラで撮像した画像を受け付ける。車両を撮像する向きは、前方、後方、側方のいずれであってもよく、斜め前方や斜め後方などであってもよい。 The image receiving unit 2 receives an captured image to be estimated from the display device 13, specifically, an image captured by a camera of the appearance of the damaged vehicle. The direction in which the vehicle is imaged may be any of front, rear, and sideways, and may be diagonally forward, diagonally rearward, and the like.

推定対象となる撮像画像は、ユーザが画面を見ながら表示装置13を操作することによって指定され、車両損傷推定装置1に出力/アップロードされる。図2は、表示装置13における画像受付の画面表示例を示す図である。画像受付用の表示画面30は、画像受付領域31を有する。画像受付領域31には、推定対象となる撮像画像のサムネイルが表示される。ユーザは、ファイル参照ボタンを通じて特定の画像ファイルを指定することで、あるいは、画像受付領域31内に特定の画像ファイルをドロップすることで、推定対象を指定する。画像受付領域31に複数のブランク枠が存在することからも理解できるように、推定対象は複数指定することもでき、既に指定された推定対象であっても、取り消しボタンを通じて取り消すことができる。ユーザは、推定対象の指定が完了した場合、判定開始ボタンを押す。このアクションによって、推定対象は画像受付部2に出力される。画像受付部2によって受け付けられた撮像画像は、面判定部3に出力される。 The captured image to be estimated is designated by the user operating the display device 13 while looking at the screen, and is output / uploaded to the vehicle damage estimation device 1. FIG. 2 is a diagram showing an example of screen display of an image reception in the display device 13. The display screen 30 for receiving an image has an image receiving area 31. In the image receiving area 31, thumbnails of captured images to be estimated are displayed. The user specifies an estimation target by designating a specific image file through the file reference button or by dropping a specific image file in the image receiving area 31. As can be understood from the existence of a plurality of blank frames in the image receiving area 31, a plurality of estimation targets can be specified, and even an already designated estimation target can be canceled through the cancel button. When the specification of the estimation target is completed, the user presses the determination start button. By this action, the estimation target is output to the image receiving unit 2. The captured image received by the image receiving unit 2 is output to the surface determination unit 3.

推定対象となる撮像画像は、カラー画像であってもよいが、メモリ使用量の低減を図るべく、グレースケール画像を受け付けるようにしてもよい。撮像画像のサイズは、システムのメモリ使用量などを考慮して適宜設定される。 The captured image to be estimated may be a color image, but a grayscale image may be accepted in order to reduce the memory usage. The size of the captured image is appropriately set in consideration of the memory usage of the system and the like.

面判定部3は、推定対象となる撮像画像に写し出されている車両の構成面を判定する。ここで、「構成面」とは、立体的な車両を構成する個別の面をいい、車両の前面、背面、側面などが挙げられる。例えば、前方から車両を撮影した撮像画像の場合、判定結果は前面となり、後方から車両を撮影した撮像画像の場合、判定結果は背面となる。ただし、判定結果として得られる構成面の数は一つであるとは限らず、複数の場合もある。例えば、斜め前方から車両を撮影した撮像画像の場合、判定結果が前面および側面となるといった如くである。このような構成面の判定を行う理由は、後処理における判定精度の向上を図るためである。 The surface determination unit 3 determines the constituent surface of the vehicle projected on the captured image to be estimated. Here, the "construction surface" refers to an individual surface that constitutes a three-dimensional vehicle, and includes the front surface, the back surface, and the side surface of the vehicle. For example, in the case of a captured image of the vehicle taken from the front, the determination result is the front side, and in the case of the captured image of the vehicle taken from the rear, the determination result is the back side. However, the number of constituent surfaces obtained as a determination result is not limited to one, and may be multiple. For example, in the case of an captured image of a vehicle taken diagonally from the front, the determination results are front and side surfaces. The reason for determining the configuration surface in this way is to improve the determination accuracy in the post-processing.

構成面の判定では、面学習モデル8が参照される。この面学習モデル8は、人の脳神経を模したニューラルネットワーク系を主体に構成されている。ニューラルネットワーク系は、コンピュータの作業領域上に形成され、入力層と、隠れ層と、出力層とを有する。入力層は、隠れ層に入力信号を伝達する際、活性化関数による重み付けが行われる。そして、隠れ層の層数に応じた重み付けを伴う伝達が繰り返され、出力層に伝達された信号が最終的に出力される。入力層のポート数、出力層のポート数、隠れ層の層数などは任意である。出力層は、出力(前面、背面、側面など)の分類確率も出力する。 The surface learning model 8 is referred to in the determination of the constituent surface. This surface learning model 8 is mainly composed of a neural network system that imitates the human cranial nerves. The neural network system is formed on the work area of a computer and has an input layer, a hidden layer, and an output layer. The input layer is weighted by an activation function when transmitting an input signal to the hidden layer. Then, the transmission with weighting according to the number of layers of the hidden layer is repeated, and the signal transmitted to the output layer is finally output. The number of ports in the input layer, the number of ports in the output layer, the number of layers in the hidden layer, etc. are arbitrary. The output layer also outputs the classification probabilities of the outputs (front, back, sides, etc.).

面学習モデル8の構築は、車両の構成面に関するデータを教師データとした教師あり学習によって行われる。教師データは、車両を撮影した撮像画像と、車両の構成面の分類とを有し、様々な車種、様々な車体色、様々な撮影方向などを含めて、多様かつ大量のデータが用いられる。教師あり学習では、教師データの入力に対する出力の分類確率が検証され、これに基づいて活性化関数(重み付け)の調整を繰り返すことによって、面学習モデル8が所望の状態に設定される。 The surface learning model 8 is constructed by supervised learning using data related to the constituent surfaces of the vehicle as teacher data. The teacher data has a captured image of the vehicle and a classification of the constituent surfaces of the vehicle, and various and large amounts of data are used including various vehicle types, various body colors, various shooting directions, and the like. In supervised learning, the classification probability of the output with respect to the input of supervised data is verified, and the surface learning model 8 is set to a desired state by repeating the adjustment of the activation function (weighting) based on this.

なお、面学習モデル8としては、ニューラルネットワークの他、サポートベクターマシン、決定木、ベイジアンネットワーク、線形回帰、多変量解析、ロジスティック回帰分析、判定分析等の機械学習手法を用いてもよい。また、畳み込みニューラルネットワークおよびそれを用いたR−CNN(Regions with CNN features)などを用いてもよい。この点は、後述する状態学習モデル10についても同様である。 As the surface learning model 8, in addition to the neural network, a machine learning method such as a support vector machine, a decision tree, a Bayesian network, a linear regression, a multivariate analysis, a logistic regression analysis, or a judgment analysis may be used. Further, a convolutional neural network and R-CNN (Regions with CNN features) using the convolutional neural network may be used. This point is the same for the state learning model 10 described later.

また、構成面の判定では、面学習モデル8の参照に加えて、特定の構成面に存在する固有の外部部品の有無に着目して、構成面を推定してもよい。本明細書において、「外部部品」とは、車両部品のうち、外観上露出したものをいう。また、車両部品のうち、外観上露出していないものを「内部部品」という。
例えば、フロントライトやフロントグリルなどは、車両の前面に固有であり、他の外部部品とは区別できる特徴的な形状を有することから、フロントライトなどの存在を以て、撮像画像中には少なくとも前面が含まれているとみなせる。このことから、撮像画像中に特定の構成面に固有の外部部品が存在する場合、この固有の外部部品に対応する構成面が判定結果に含められる。
Further, in the determination of the constituent surface, in addition to the reference of the surface learning model 8, the constituent surface may be estimated by paying attention to the presence or absence of the unique external component existing in the specific constituent surface. As used herein, the term "external parts" refers to vehicle parts that are exposed in appearance. In addition, among vehicle parts, those that are not exposed in appearance are called "internal parts".
For example, the front light and the front grille are unique to the front surface of the vehicle and have a characteristic shape that can be distinguished from other external parts. Therefore, due to the presence of the front light and the like, at least the front surface is included in the captured image. It can be considered to be included. For this reason, when an external component unique to a specific constituent surface is present in the captured image, the constituent surface corresponding to the unique external component is included in the determination result.

さらに、GPU(Graphics Processing Unit)のメモリ使用量を抑制するために、または、学習効率の向上を図るために、面学習モデル8の軽量化を図ってもよい。その一例として、VGG−16などの汎用モデルにおけるVGGブロック(畳み込み→畳み込み→プーリングで1ブロック)の個数を減らすことや、撮像画像のサイズを小さくすることが挙げられる。VGG−16は、既に学習済のモデルをCNN(畳み込みニューラルネットワーク)に用いる手法、すなわち、転移学習モデルの一つであり、畳み込み層と全結合層との合計16層を含み、畳み込みフィルタの大きさは全て3×3、全結合層は4096ユニット2層、クラス分類用の1000ユニット1層からなる。 Further, the surface learning model 8 may be reduced in weight in order to suppress the memory usage of the GPU (Graphics Processing Unit) or to improve the learning efficiency. As an example, the number of VGG blocks (1 block by convolution-> convolution-> pooling) in a general-purpose model such as VGG-16 can be reduced, and the size of the captured image can be reduced. VGG-16 is a method of using an already trained model for a CNN (convolutional neural network), that is, one of the transfer learning models, which includes a total of 16 layers including a convolutional layer and a fully connected layer, and has a large convolutional filter. All of them are 3x3, and the fully connected layer consists of 2 layers of 4096 units and 1 layer of 1000 units for classification.

面判定部3の判定結果は、表示装置12に出力される。図3は、表示装置12に表示される面判定結果の画面表示例を示す図である。この判定結果の表示画面40は、画像表示領域41と、複数の判定結果表示領域42と、複数のチェックボックス43とを有する。画像表示領域41には、推定対象に係る車両の撮像画像が表示される。それぞれの判定結果表示領域42には、車両の構成面の候補(前面、側面、背面)が分類確率付きで表示される。チェックボックス43は、それぞれの判定結果表示領域42に対応して設けられており、所定の条件を満たすものにはチェックマークが付されている。所定の条件としては、構成面の候補の分類確率が所定のしきい値以上であること(この場合は複数にチェックマークが付されることもある。)、構成面の分類確率が最も高いものなどが挙げられる。ユーザは、判定結果が妥当であると判断した場合、判定継続ボタンを押す。また、ユーザは、これが妥当でないと判断した場合、チェックボックス43のチックマークの変更を含む判定結果の修正を行った上で、判定継続ボタンを押す。このアクションによって、面判定部3の判定結果(ユーザによって修正された判定結果を含む。)は、撮像画像と共に部品判定部4に出力される。 The determination result of the surface determination unit 3 is output to the display device 12. FIG. 3 is a diagram showing a screen display example of the surface determination result displayed on the display device 12. The determination result display screen 40 has an image display area 41, a plurality of determination result display areas 42, and a plurality of check boxes 43. In the image display area 41, a captured image of the vehicle related to the estimation target is displayed. In each determination result display area 42, candidates (front surface, side surface, back surface) of the constituent surface of the vehicle are displayed with a classification probability. The check boxes 43 are provided corresponding to the respective determination result display areas 42, and those satisfying a predetermined condition are marked with a check mark. The predetermined conditions are that the classification probability of the constituent surface candidates is equal to or higher than the predetermined threshold value (in this case, a plurality of check marks may be added), and the constituent surface classification probability is the highest. And so on. When the user determines that the determination result is valid, the user presses the determination continuation button. If the user determines that this is not appropriate, he / she corrects the determination result including the change of the tick mark of the check box 43, and then presses the determination continuation button. By this action, the determination result of the surface determination unit 3 (including the determination result corrected by the user) is output to the component determination unit 4 together with the captured image.

なお、ユーザによって修正された判定結果は、面学習モデル8に反映させてもよい。これにより、構成面の判定における学習深度を深めることができる。 The determination result modified by the user may be reflected in the surface learning model 8. Thereby, the learning depth in the determination of the constituent surface can be deepened.

部品判定部4は、撮像画像に写し出された外部部品の抽出処理、具体的には、外部部品が写し出されている部品領域と、外部部品の属性とを個別に抽出する。この部品判定では、部品学習モデル9が参照される。この部品学習モデル9は、マルチスケール性や動作速度などを考慮して、YOLOやSSDなどの深層学習による物体検出アルゴリズムに基づき構築されている。 The component determination unit 4 individually extracts the external component extraction process projected on the captured image, specifically, the component area on which the external component is projected and the attributes of the external component. In this component determination, the component learning model 9 is referred to. This component learning model 9 is constructed based on an object detection algorithm by deep learning such as YOLO and SSD in consideration of multi-scale property and operation speed.

図4は、物体検出アルゴリズムの説明図である。同図(a)に示すように、顔検出などで用いられる従来の検出手法では、入力に対する処理として、領域探索、特徴量抽出、機械学習という3つの段階に別れている。すなわち、まず領域探索が行われ、つぎに検出する物体に合わせて特徴抽出が行われ、最後に適切な機械学習手法が選択される。この検出手法では、物体検出を3つのアルゴリズムに別けて実現される。特徴量についても、基本的に、検出対象に応じた専用設計になるため特定の対象しか検出できない。そこで、かかる制約を解消すべく、同図(b)および(c)に示すような深層学習による物体検出アルゴリズムが提案された。同図(b)に示すように、R−CNNなどでは、深層学習を用いることで特徴量抽出が自動で実現される。これによって、ネットワークの設計だけで、色々な物体に対する柔軟な分類が可能になる。しかしながら、領域探索については別処理として依然として残る。そこで、領域探索についても深層学習に含めたものが、YOLO( You Only Look Once)やSSD(Single Shot MultiBox Detector)に代表される同図(c)の手法である。本手法では、入力(撮像画像)を単一のニューラルネットワークに入力することで、項目領域の抽出と、その属性の分類とがまとめて行われる。本手法の特徴として、第1に、回帰問題的なアプローチであることが挙げられる。回帰(Regression)とは、データの傾向から数値を直接予測するアプローチをいい、領域を決めてからそれが何かを分類するのではなく、物体の座標と大きさが直接予測される。第2に、単一のネットワークで処理が完結することである。データ入力した後は深層学習だけで最後(出力結果)までいってしまうという意味で、「End-to-End」の処理ということもできる。 FIG. 4 is an explanatory diagram of the object detection algorithm. As shown in FIG. 6A, the conventional detection method used for face detection and the like is divided into three stages of input processing: area search, feature extraction, and machine learning. That is, first, the area search is performed, then the feature extraction is performed according to the object to be detected, and finally the appropriate machine learning method is selected. In this detection method, object detection is realized by dividing it into three algorithms. As for the feature quantity, basically, only a specific target can be detected because it is designed exclusively for the detection target. Therefore, in order to eliminate such restrictions, an object detection algorithm by deep learning as shown in FIGS. (B) and (c) has been proposed. As shown in FIG. 3B, in R-CNN and the like, feature extraction is automatically realized by using deep learning. This allows flexible classification of various objects simply by designing the network. However, the area search still remains as a separate process. Therefore, the method shown in FIG. 6C, represented by YOLO (You Only Look Once) and SSD (Single Shot MultiBox Detector), includes the area search in the deep learning. In this method, by inputting an input (captured image) to a single neural network, extraction of an item area and classification of its attributes are performed collectively. The first feature of this method is that it is a regression problem approach. Regression is an approach that directly predicts numerical values from the tendency of data, and instead of deciding a region and then classifying what it is, the coordinates and size of an object are directly predicted. Second, the process is completed in a single network. It can also be called "End-to-End" processing in the sense that after data is input, it goes to the end (output result) only by deep learning.

例えば、YOLOの処理は、概ね以下のようになる。まず、入力画像がS×Sの領域に分割される。つぎに、それぞれの領域内における物体の分類確率が導出される。そして、B個(ハイパーパラメータ)のバウンディングボックスのパラメータ(x,y,height,width)と信頼度(confidence)とが算出される。バウンディングボックスとは、物体領域の外接四角形であり、信頼度とは、予測と正解のバウンディングボックスの一致度である。物体検出には、物体の分類確率と、各バウンディングボックスの信頼度との積が用いられる。図5は、YOLOのネットワーク構成図である。YOLOにおいて、撮像画像はCNN(Convolutional Neural Network)層に入力されると共に、複数段の全結合層を経て結果が出力される。出力は、S*S個に分割した画像領域と、信頼度(分類確度)を含むバウンディングボックス(BB)の5パラメータと、クラス数(項目の属性)とを含む。 For example, the processing of YOLO is as follows. First, the input image is divided into S × S regions. Next, the classification probabilities of the objects in each region are derived. Then, the parameters (x, y, height, width) and the confidence (confidence) of B bounding boxes (hyperparameters) are calculated. The bounding box is the circumscribed quadrangle of the object area, and the reliability is the degree of agreement between the predicted and the correct bounding box. For object detection, the product of the classification probability of the object and the reliability of each bounding box is used. FIG. 5 is a network configuration diagram of YOLO. In YOLO, the captured image is input to the CNN (Convolutional Neural Network) layer, and the result is output through a plurality of fully connected layers. The output includes an image area divided into S * S pieces, five parameters of a bounding box (BB) including reliability (classification accuracy), and the number of classes (item attributes).

部品学習モデル9の構築は、車両の構成面毎の外部部品に関するデータを教師データとした教師あり学習によって行われる。具体的には、部品学習モデル9は、車両の写った画像に対し、車両の構成面毎の外部部品の部分をバウンディングボックスで指定した教師データにより学習されることにより行われる。そして、このような教師あり学習により、部品学習モデル9は、撮像画像の入力に応じて、撮像画像における車両部品の領域抽出と分類とを出力する。
なお、教師データは、外部部品の部分画像と、この外部部品の属性とを有し、様々な車種、様々な外部部品、様々な撮影方向などを含めて、多様かつ大量のデータが用いられる。大量のデータを確保するために、あるソース画像に画像処理を施したものも用いられる。ただし、右ヘッドランプ、左ヘッドランプ等を区別するために、画像処理の一つである画像の左右反転は行わない。このような部品学習モデル9を用いることで、車両の損傷の有無やその程度に関わりなく、車両の構成面に含まれる外部部品を判定・抽出することができる。
The parts learning model 9 is constructed by supervised learning using data related to external parts for each constituent surface of the vehicle as teacher data. Specifically, the parts learning model 9 is performed by learning the parts of the external parts for each constituent surface of the vehicle from the image of the vehicle by the teacher data specified by the bounding box. Then, by such supervised learning, the parts learning model 9 outputs the region extraction and classification of the vehicle parts in the captured image in response to the input of the captured image.
The teacher data has a partial image of the external part and an attribute of the external part, and various and large amounts of data are used including various vehicle models, various external parts, various shooting directions, and the like. In order to secure a large amount of data, a source image that has undergone image processing is also used. However, in order to distinguish between the right headlamp and the left headlamp, the image is not flipped horizontally, which is one of the image processing. By using such a parts learning model 9, it is possible to determine and extract external parts included in the constituent surface of the vehicle regardless of the presence or absence of damage to the vehicle and its degree.

部品判定部4は、面判定部3によって判定された車両の構成面に基づいて、部品学習モデル9に基づき特定された外部部品をフィルタリングし、フィルタリングされた外部部品を判定結果として出力する。例えば、構成面の判定結果が前面および側面の場合、部品判定の結果としてテールランプが抽出されたとしても、これが誤判定であることは明らかである。テールランプは背面に存在し、前面および側面には存在し得ないからである。このような相関性は、側面固有のサイドドア、前面固有のヘッドライト、フロントグリル、フロントウインドウなどについても認められる。よって、部品判定の結果として得られた外部部品のうち、構成面の判定結果として得られた構成面に関するもののみを判定結果に含め、それ以外については除外することで、部品判定精度の向上を図ることができる。 The parts determination unit 4 filters the external parts specified based on the parts learning model 9 based on the constituent surface of the vehicle determined by the surface determination unit 3, and outputs the filtered external parts as the determination result. For example, when the determination result of the constituent surface is the front surface and the side surface, it is clear that this is an erroneous determination even if the tail lamp is extracted as a result of the component determination. This is because the tail lamps are on the back and cannot be on the front and sides. Such correlation is also recognized for side doors unique to the sides, headlights specific to the front, front grilles, front windows, and the like. Therefore, among the external parts obtained as the result of the part judgment, only the parts related to the constituent surface obtained as the judgment result of the constituent surface are included in the judgment result, and the others are excluded to improve the parts judgment accuracy. Can be planned.

部品判定部4の判定結果は、表示装置13に出力される。図6は、部品判定結果の画面表示例を示す図である。この判定結果の表示画面50は、画像表示領域51と、複数の判定結果表示領域52と、複数のチェックボックス53とを有する。画像表示領域51には、推定対象に係る車両の撮像画像が表示されると共に、部品判定部4によって抽出された個々の外部部品を示す矩形枠が表示される。判定結果表示領域52には、それぞれの外部部品の候補(右ヘッドライト、左ヘッドライト、フロントウインドウなど)が分類確率付きで表示される。チェックボックス53は、それぞれの判定結果表示領域52に対応して設けられており、所定の条件を満たすものにはチェックマークが付されている。所定の条件としては、典型的には、構成面の候補の分類確率が所定のしきい値以上であることが挙げられる。ユーザは、判定結果が妥当であると判断した場合、判定継続ボタンを押す。また、ユーザは、これが妥当でないと判断した場合、チェックボックス53のチックマークの変更を含む判定結果の修正を行った上で、判定継続ボタンを押す。このアクションによって、部品判定部4の判定結果(ユーザによって修正された判定結果を含む。)は、撮像画像と共に外部損傷判定部5に出力される。 The determination result of the component determination unit 4 is output to the display device 13. FIG. 6 is a diagram showing a screen display example of the component determination result. The determination result display screen 50 has an image display area 51, a plurality of determination result display areas 52, and a plurality of check boxes 53. In the image display area 51, a captured image of the vehicle related to the estimation target is displayed, and a rectangular frame showing individual external parts extracted by the part determination unit 4 is displayed. In the determination result display area 52, candidates for each external component (right headlight, left headlight, front window, etc.) are displayed with a classification probability. The check boxes 53 are provided corresponding to the respective determination result display areas 52, and those satisfying a predetermined condition are marked with a check mark. As a predetermined condition, typically, the classification probability of the candidate of the constituent surface is equal to or higher than the predetermined threshold value. When the user determines that the determination result is valid, the user presses the determination continuation button. If the user determines that this is not appropriate, he / she corrects the determination result including the change of the tick mark of the check box 53, and then presses the determination continuation button. By this action, the determination result of the component determination unit 4 (including the determination result corrected by the user) is output to the external damage determination unit 5 together with the captured image.

なお、ユーザによって修正された判定結果は、部品学習モデル9に反映させてもよい。これにより、部品判定の学習深度を深めることができる。 The determination result corrected by the user may be reflected in the component learning model 9. As a result, the learning depth of component determination can be deepened.

外部損傷判定部5は、部品判定部4によって抽出された外部部品毎の損傷状態を判定する。そして、複数の外部部品の損傷状態をまとめた判定結果が外部損傷として出力される。外部損傷の判定は、外部部品の損傷状態に関する教師データを用いた教師あり学習によって構築された状態学習モデル10を参照することによって行われる。状態学習モデル10の構成は、基本的に、面学習モデル8のそれに準ずる。 The external damage determination unit 5 determines the damage state of each external component extracted by the component determination unit 4. Then, the determination result summarizing the damage states of the plurality of external parts is output as external damage. The determination of external damage is performed by referring to the state learning model 10 constructed by supervised learning using supervised data on the damaged state of the external component. The configuration of the state learning model 10 basically conforms to that of the surface learning model 8.

また、状態学習モデル10の構築は、外部部品の損傷状態に関するデータを教師データとした教師あり学習によって行われる。この教師データは、損傷した外部部品の部分画像と、その損傷状態を分類した属性(例えば、「取替」、「脱着」、損傷程度の「大」、「中」、「小」)とを有し、様々な車種、様々な外部部品、様々な撮影方向などを含めて、多様かつ大量のデータが用いられる。ここで、「取替」は、補修では済まず外部部品自体を交換しなければならない程度の損傷を意味する。「脱着」は、その外部部品自体は損傷を受けていないものの、損傷を受けた他の車両部品の交換・修理のために、車体から一端外されなければならないことを意味する。なお、大量のデータを確保するために、あるソース画像に画像処理を施したものを用いてもよい。このような状態学習モデル10を用いて損傷状態を外部部品毎に判定することで、損傷状態の判定精度の向上を図ることができる。 Further, the state learning model 10 is constructed by supervised learning using data on the damaged state of the external component as teacher data. This teacher data contains a partial image of the damaged external part and the attributes that classify the damaged state (for example, "replacement", "detachment", damage degree "large", "medium", "small"). It has a large amount of diverse data, including various vehicle models, various external parts, and various shooting directions. Here, "replacement" means damage to the extent that the external parts themselves must be replaced rather than being repaired. "Detachment" means that the external parts themselves are not damaged, but must be removed from the vehicle body in order to replace or repair other damaged vehicle parts. In addition, in order to secure a large amount of data, a certain source image that has undergone image processing may be used. By determining the damaged state for each external component using such a state learning model 10, it is possible to improve the accuracy of determining the damaged state.

本実施形態では、外部損傷判定部5として、上述したVGG−16などの汎用モデルをベースとして全結合層のみを取り替えたネットワークを用いている。また、外部部品毎にデータ量のばらつきが大きいことから、少ないデータ量でも学習を行うべく、予めImageN etで学習した重みによるファインチューニングを実施してもよい。ファインチューニングとは、既存のモデルの一部を再利用して、新しいモデルを構築する手法である。さらに、データごとに引き気味の画像と、アップの画像と異なる種類の画像とが混在している場合に対応すべく、アップ画像の選別、対象部位のトリミングによるクレンジングを実施してもよい(トリミングされた画像も一部使用)。 In the present embodiment, the external damage determination unit 5 uses a network in which only the fully connected layer is replaced based on the general-purpose model such as the VGG-16 described above. Further, since the amount of data varies widely for each external component, fine tuning may be performed by the weights learned in advance by ImageN et in order to perform learning even with a small amount of data. Fine tuning is a method of constructing a new model by reusing a part of an existing model. Furthermore, in order to deal with the case where an image that is slightly pulled for each data and an image of a different type from the up image are mixed, the up image may be selected and cleansing may be performed by trimming the target portion (trimming). Some of the images that have been cropped are also used).

外部損傷判定部5の判定結果は、表示装置12に出力される。図7は、表示装置12に表示される外部損傷の判定結果の画面表示例を示す図である。この判定結果の表示画面60は、画像表示領域61と、複数の判定結果表示領域62と、複数のチェックボックス63とを有する。画像表示領域61には、推定対象に係る車両の撮像画像が表示されると共に、外部損傷判定部5によって判定された損傷部位を示す丸枠が表示される。判定結果表示領域62には、損傷状態の候補(取替、脱着、大、中、小)が分類確率付きで表示される。チェックボックス63は、それぞれの判定結果表示領域62に対応して設けられており、所定の条件を満たすものにはチェックマークが付されている。所定の条件としては、典型的には、損傷程度の候補の分類確率が所定のしきい値以上であることが挙げられる。ユーザは、判定結果が妥当であると判断した場合、見積開始継続ボタンを押す。また、ユーザは、これが妥当でないと判断した場合、チェックボックス63のチックマークの変更を含む判定結果の修正を行った上で、見積開始ボタンを押す。このアクションによって、外部損傷判定部5の判定結果(ユーザによって修正された判定結果を含む。)は、撮像画像と共に内部損傷推定部6に出力される。 The determination result of the external damage determination unit 5 is output to the display device 12. FIG. 7 is a diagram showing a screen display example of the determination result of external damage displayed on the display device 12. The determination result display screen 60 has an image display area 61, a plurality of determination result display areas 62, and a plurality of check boxes 63. In the image display area 61, a captured image of the vehicle related to the estimation target is displayed, and a round frame indicating the damaged portion determined by the external damage determining unit 5 is displayed. In the determination result display area 62, candidates for the damaged state (replacement, desorption, large, medium, small) are displayed with a classification probability. The check boxes 63 are provided corresponding to the respective determination result display areas 62, and those satisfying a predetermined condition are marked with a check mark. A predetermined condition typically includes a probability of classification of damage degree candidates greater than or equal to a predetermined threshold. When the user determines that the determination result is appropriate, the user presses the estimate start continuation button. If the user determines that this is not appropriate, he / she corrects the determination result including the change of the tick mark of the check box 63, and then presses the estimation start button. By this action, the determination result of the external damage determination unit 5 (including the determination result corrected by the user) is output to the internal damage estimation unit 6 together with the captured image.

なお、ユーザによって修正された判定結果は、状態学習モデル10に反映させてもよい。これにより、損傷状態判定の学習深度を深めることができる。 The determination result corrected by the user may be reflected in the state learning model 10. As a result, the learning depth for determining the damage state can be deepened.

内部損傷推定部6は、損傷事例データベース11を参照し、外部損傷判定部5によって判定された外部損傷と類似した損傷事例を抽出することによって、車両の内部損傷を推定する。図8は、損傷事例データベース11の概略的な構成図である。損傷事例データベース11は、過去に発生した実際の損傷事例を大量に保持している(ビックデータ)。それぞれの損傷事例は、ログとして、外部損傷および内部損傷を含む車両の損傷内容を含む。具体的には、車両を構成するそれぞれの車両部品(外部部品および内部部品の双方を含む。)について、0%は損傷なし、100%は全損といった如く、損傷の程度がパーセントで表示されている。例えば、損傷事例1は、フロントバンパーの損傷割合が81%(大)、フロントウインドウの損傷割合が53%(中)、ラジエータの損傷割合が17%(小)、コアサポートの損傷割合が12%(小)であることを示している。そして、外部損傷判定部5の判定結果が、例えば、フロントバンパーの損傷状態が「大」、フロントウインドの損傷状態が「中」であった場合、これと類似したものとして損傷事例1が抽出される。その結果、内部部品の推定結果として、ラジエータの損傷状態が「小」、コアサポートの損傷状態が「小」となる。 The internal damage estimation unit 6 estimates the internal damage of the vehicle by referring to the damage case database 11 and extracting damage cases similar to the external damage determined by the external damage determination unit 5. FIG. 8 is a schematic configuration diagram of the damage case database 11. The damage case database 11 holds a large amount of actual damage cases that have occurred in the past (big data). Each damage case includes as a log the damage content of the vehicle, including external and internal damage. Specifically, for each vehicle part (including both external parts and internal parts) that composes the vehicle, the degree of damage is displayed as a percentage, such as 0% for no damage and 100% for total loss. There is. For example, in damage case 1, the damage rate of the front bumper is 81% (large), the damage rate of the front window is 53% (medium), the damage rate of the radiator is 17% (small), and the damage rate of the core support is 12% ( Small). Then, when the determination result of the external damage determination unit 5 is, for example, the damage state of the front bumper is "large" and the damage state of the front window is "medium", the damage case 1 is extracted as similar to this. .. As a result, the damage state of the radiator is "small" and the damage state of the core support is "small" as the estimation result of the internal parts.

外部損傷判定部5によって判定された外部損傷と類似した損傷事例が複数抽出された場合、これらをサンプルとした統計的な処理によって、車両の内部損傷が推定される。例えば、ある内部部品について、所定の範囲毎に区分された損傷状態のヒストグラムをとり、出現頻度が最も高い損傷状態を採用するといった如くである。 When a plurality of damage cases similar to the external damage determined by the external damage determination unit 5 are extracted, the internal damage of the vehicle is estimated by statistical processing using these as samples. For example, for a certain internal component, a histogram of the damaged state divided into predetermined ranges is taken, and the damaged state having the highest frequency of appearance is adopted.

内部損傷推定部6の推定結果は、外部損傷も含めた車両損傷の推定結果として、表示装置12に出力される。図9は、表示装置12に表示される車両損傷の推定結果の画面表示例を示す図である。この推定結果の表示画面70は、画像表示領域71と、結果表示領域72とを有する。画像表示領域71には、推定対象に係る車両の撮像画像が表示される。結果表示領域72には、損傷した車両部品(外部部品および内部部品を含む。)と、損傷の程度とが表示される。ユーザが終了ボタンを押すことによって、車両損傷推定装置1における一連の処理が終了する。 The estimation result of the internal damage estimation unit 6 is output to the display device 12 as the estimation result of the vehicle damage including the external damage. FIG. 9 is a diagram showing a screen display example of the vehicle damage estimation result displayed on the display device 12. The estimation result display screen 70 has an image display area 71 and a result display area 72. In the image display area 71, a captured image of the vehicle related to the estimation target is displayed. In the result display area 72, the damaged vehicle parts (including external parts and internal parts) and the degree of damage are displayed. When the user presses the end button, a series of processes in the vehicle damage estimation device 1 are completed.

また、内部損傷推定部6は、見積テーブルを参照することによって、推定対象に係る車両の修理に要する費用を見積もった上で、ユーザに提示してもよい。この見積テーブルは、外部部品および内部部品を含む車両部品名と、損傷の程度と、工賃を含む費用とが対応付けて保持されている。外部部品については、部品判定部4によって特定された外部部品と、外部損傷判定部5によって判定された損傷状態とに基づき、費用が特定される。また、内部部品については、内部損傷推定部6によって特定された内部部品およびその損傷状態に基づき、費用が算出される。車両の修理に要する費用は、車両部品毎の費用を合算した総額となる。車両の修理に要する費用は、図9に示した表示画面における結果表示領域72に表示される。 Further, the internal damage estimation unit 6 may refer to the estimation table to estimate the cost required for repairing the vehicle related to the estimation target and then present it to the user. In this estimation table, the vehicle part name including the external part and the internal part, the degree of damage, and the cost including the wage are kept in association with each other. For the external parts, the cost is specified based on the external parts specified by the part determination unit 4 and the damage state determined by the external damage determination unit 5. For internal parts, the cost is calculated based on the internal parts specified by the internal damage estimation unit 6 and the damaged state thereof. The cost required to repair the vehicle is the total of the costs for each vehicle part. The cost required for repairing the vehicle is displayed in the result display area 72 on the display screen shown in FIG.

なお、撮像画像の解析によって車種が特定されている場合、または、ユーザによって車種が指定されている場合といった如く、車種が既知であることを前提に費用を算出する設計仕様であれば、見積テーブルの項目として車種(例えば「ABC」)を含めてもよい。このように、車種別に費用を細かく設定することで、車種に応じた見積金額を的確に算出できる。 If the design specifications are such that the vehicle type is specified by the analysis of the captured image, or the vehicle type is specified by the user, and the cost is calculated on the assumption that the vehicle type is known, the estimation table is used. The vehicle type (for example, "ABC") may be included as an item of. In this way, by setting the cost in detail for each vehicle type, it is possible to accurately calculate the estimated amount according to the vehicle type.

このように、本実施形態によれば、機械学習に基づいて外部部品の損傷状態を判定すると共に、これをキーとして損傷事例データベース11を参照することで、内部損傷を推定する。これにより、未知の車両を含む様々な車両について、外部損傷のみならず内部損傷も含んだ損傷推定を柔軟かつ精度よく行うことができる。 As described above, according to the present embodiment, the damage state of the external component is determined based on machine learning, and the internal damage is estimated by referring to the damage case database 11 using this as a key. As a result, it is possible to flexibly and accurately estimate damage including not only external damage but also internal damage for various vehicles including unknown vehicles.

また、本実施形態によれば、撮像画像中に多くの外部部品が物体として検出され得る部品判定については、YOLOやSSDに代表されるように、撮像画像を単一のニューラルネットワーク系に入力し、回帰問題的なアプローチによって車両部品の領域抽出を属性の分類付きでまとめて行う物体検出アルゴリズムを採用する。これにより、部品判定部4における処理の高速化を図ることが可能になる。 Further, according to the present embodiment, for component determination in which many external components can be detected as objects in the captured image, the captured image is input to a single neural network system as represented by YOLO and SSD. , Adopt an object detection algorithm that collectively extracts the area of vehicle parts with attribute classification by a regression problematic approach. This makes it possible to speed up the processing in the component determination unit 4.

また、本実施形態によれば、部品判定部4の処理に先立ち、面判定部3によって撮像画像における車両の構成面を特定し、その上で、撮像画像に対する部品判定を実行する。これにより、部品判定部4の判定結果として得られた車両部品のうち、面判定部3によって特定された構成面上に存在し得ないものについては誤判定として除外できるため、部品判定の精度向上を図ることができる。 Further, according to the present embodiment, prior to the processing of the component determination unit 4, the surface determination unit 3 identifies the constituent surface of the vehicle in the captured image, and then executes the component determination for the captured image. As a result, among the vehicle parts obtained as the determination result of the component determination unit 4, those that cannot exist on the constituent surface specified by the surface determination unit 3 can be excluded as erroneous determination, so that the accuracy of component determination is improved. Can be planned.

さらに、本実施形態によれば、内部損傷推定部6によって、車両の修理費用を見積もった上で、車両の修理に要する費用をユーザに提示する。これにより、ユーザの利便性を更に高めることができる。 Further, according to the present embodiment, the internal damage estimation unit 6 estimates the repair cost of the vehicle and then presents the cost required for the repair of the vehicle to the user. As a result, the convenience of the user can be further enhanced.

(変形例1)
本実施形態に係る車両損傷推定装置1では、内部損傷推定部6に代えて、又は追加して見積算出部16を有するものでもよい。ここでは、ユーザによる見積開始ボタンを押下によって、外部損傷判定部(状態判定部)5の判定結果(ユーザによって修正された判定結果を含む。)が、撮像画像と共に見積算出部16に出力される。なお、ユーザによって修正された判定結果は、状態学習モデル10に反映させてもよい。これにより、損傷状態判定の学習深度を深めることができる。
(Modification example 1)
The vehicle damage estimation device 1 according to the present embodiment may have an estimation calculation unit 16 in place of or in addition to the internal damage estimation unit 6. Here, when the user presses the estimation start button, the determination result (including the determination result corrected by the user) of the external damage determination unit (state determination unit) 5 is output to the estimation calculation unit 16 together with the captured image. .. The determination result corrected by the user may be reflected in the state learning model 10. As a result, the learning depth for determining the damage state can be deepened.

見積算出部16は、見積テーブル21を参照することによって、判定対象に係る車両の修理に要する費用を見積もる。図10は、見積テーブル21の概略的な構成図である。この見積テーブル21は、車両部品名と、損傷の程度と、工賃を含む費用とが対応付けて保持されている。部品判定部4によって特定された車両部品と、外部損傷判定部5によって判定されたその車両部品の損傷状態とをキーに見積テーブル21を検索することによって、費用が車両部品別に特定される。車両の修理に要する費用は、車両部品毎の費用を合算した総額となる。例えば、部品判定部4によって「フロントバンパー」および「ヘッドライト」が抽出され、外部損傷判定部5によって前車の損傷程度が「中」、後者の損傷程度が「小」と判定された場合、前者の工賃が「\200,000」、後者の工賃が「\30,000」となり、総額は「\ 230,000」となる。 The estimation calculation unit 16 estimates the cost required for repairing the vehicle related to the determination target by referring to the estimation table 21. FIG. 10 is a schematic configuration diagram of the estimation table 21. The estimation table 21 holds the vehicle part name, the degree of damage, and the cost including wages in association with each other. The cost is specified for each vehicle part by searching the estimation table 21 using the vehicle parts specified by the parts determination unit 4 and the damage state of the vehicle parts determined by the external damage determination unit 5 as keys. The cost required to repair the vehicle is the total of the costs for each vehicle part. For example, when the parts determination unit 4 extracts the "front bumper" and the "headlight", and the external damage determination unit 5 determines that the degree of damage to the front vehicle is "medium" and the degree of damage to the latter is "small", the former The wage of is "200,000 yen", the wage of the latter is "30,000 yen", and the total amount is "230,000 yen".

なお、撮像画像の解析によって車種が特定されている場合、または、ユーザによって車種が指定されている場合といった如く、車種が既知であることを前提に費用を算出する設計仕様であれば、見積テーブル21の項目として車種(例えば「ABC」)を含めてもよい。このように、車種別に費用を細かく設定することで、車種に応じた見積金額を的確に算出できる。 If the design specifications are such that the vehicle type is specified by the analysis of the captured image, or the vehicle type is specified by the user, and the cost is calculated on the assumption that the vehicle type is known, the estimation table is used. The vehicle type (for example, "ABC") may be included as the item of 21. In this way, by setting the cost in detail for each vehicle type, it is possible to accurately calculate the estimated amount according to the vehicle type.

見積算出部16の見積結果は、表示装置12に出力される。図11は、表示装置12に表示される見積結果の画面表示例を示す図である。この見積結果の表示画面70は、画像表示領域71と、結果表示領域72とを有する。画像表示領域71には、判定対象に係る車両の撮像画像が表示される。結果表示領域72には、損傷した車両部品(パーツ)と、損傷の程度と、費用とが表示される。損傷した車両部品が複数存在する場合、個別の費用と共に総額も表示される。ユーザが終了ボタンを押すことによって、車両損傷推定装置1における一連の処理が終了する。 The estimation result of the estimation calculation unit 16 is output to the display device 12. FIG. 11 is a diagram showing a screen display example of the estimation result displayed on the display device 12. The estimation result display screen 70 has an image display area 71 and a result display area 72. In the image display area 71, a captured image of the vehicle related to the determination target is displayed. In the result display area 72, the damaged vehicle parts (parts), the degree of damage, and the cost are displayed. If there are multiple damaged vehicle parts, the total cost will be displayed along with the individual costs. When the user presses the end button, a series of processes in the vehicle damage estimation device 1 are completed.

以上説明したように、外部損傷判定部5によって判定された車両部品毎の損傷状態から、車両の修理費用を見積もる見積算出部16を設けることで、車両の修理に要する費用をユーザに提示する。これにより、ユーザの利便性を更に高めることができる。 As described above, by providing the estimation calculation unit 16 that estimates the vehicle repair cost from the damage state of each vehicle part determined by the external damage determination unit 5, the cost required for vehicle repair is presented to the user. As a result, the convenience of the user can be further enhanced.

(変形例2)
本実施形態に係る車両損傷推定装置1では、面判定部3と部品判定部4とを別のモデルとして構築することにより、判定対象の領域を限定している。これにより、判定精度の高めることができる。ただし、このような形態に限定されるものではなく、面判定部3と部品判定部4とは同一モデルとして構築することも可能である。
(Modification 2)
In the vehicle damage estimation device 1 according to the present embodiment, the area to be determined is limited by constructing the surface determination unit 3 and the component determination unit 4 as separate models. Thereby, the determination accuracy can be improved. However, the present invention is not limited to such a form, and the surface determination unit 3 and the component determination unit 4 can be constructed as the same model.

(変形例3)
また、本実施形態では、部品学習モデル9は、車両の写った画像に対し、車両部品の部分をバウンディングボックスで指定した教師データによる学習により構築されるものとしたが、部品学習モデル9の構築はこれに限定されるものではない。例えば、部品学習モデル9は、車両の写った画像に対し、車両部品の部分に対応するピクセルを指定した教師データによる学習により構築されるものでもよい。具体的には、U-Netのようなネットワーク構造により構築されるものでも良い。さらに、部品学習モデル9は、これらを統合したモデルであってもよい。すなわち、部品学習モデル9は、車両の写った画像に対し、車両部品の部分をバウンディングボックスで指定した教師データであって、車両部品の部分に対応するピクセルを指定した教師データ(Mask R-CNN)による学習により構築されるものでもよい。要するに、本実施形態に係る物体検出アルゴリズムは、YOLOやSSDなどのモデルに限定されるものではなく、Semantic segmentationやInstance segmentationなどのモデルであってもよい。また、物体の領域抽出と分類とが可能な任意のモデルを採用することができる。
(Modification example 3)
Further, in the present embodiment, the parts learning model 9 is constructed by learning the vehicle parts with the teacher data specified by the bounding box with respect to the image of the vehicle, but the parts learning model 9 is constructed. Is not limited to this. For example, the parts learning model 9 may be constructed by learning the image of the vehicle with the teacher data in which the pixels corresponding to the parts of the vehicle parts are specified. Specifically, it may be constructed by a network structure such as U-Net. Further, the component learning model 9 may be a model in which these are integrated. That is, the parts learning model 9 is teacher data in which the part of the vehicle parts is designated by the bounding box for the image of the vehicle, and the teacher data (Mask R-CNN) in which the pixels corresponding to the parts of the vehicle are designated. ) May be constructed by learning. In short, the object detection algorithm according to the present embodiment is not limited to a model such as YOLO or SSD, and may be a model such as Semantic segmentation or Instance segmentation. In addition, any model capable of extracting and classifying the area of the object can be adopted.

(変形例4)
また、本実施形態では、外部損傷判定部5に関し、状態学習モデル10の構成が面学習モデル8のそれに準ずるとしたが、このような形態に限定されるものではない。状態学習モデル10は、部品学習モデル9と同様の物体検出アルゴリズムを採用するものでもよい。具体的に、状態学習モデル10は、凹み及び/又は擦り傷の状態判定では、上述の物体検出アルゴリズムを用いることで判定精度を高めることができる。
(Modification example 4)
Further, in the present embodiment, regarding the external damage determination unit 5, the configuration of the state learning model 10 is similar to that of the surface learning model 8, but the present embodiment is not limited to such a form. The state learning model 10 may adopt the same object detection algorithm as the component learning model 9. Specifically, the state learning model 10 can improve the determination accuracy by using the above-mentioned object detection algorithm in determining the state of dents and / or scratches.

1 車両損傷推定装置
2 画像受付部
3 面判定部
4 部品判定部
5 外部損傷判定部
6 内部損傷推定部
7 入出力インターフェース
8 面学習モデル
9 部品学習モデル
10 状態学習モデル
11 損傷事例データベース
12 表示装置
16 見積算出部
21 見積テーブル

1 Vehicle damage estimation device 2 Image reception unit 3 Surface judgment unit 4 Parts judgment unit 5 External damage judgment unit 6 Internal damage estimation unit 7 Input / output interface 8 Surface learning model 9 Parts learning model 10 State learning model 11 Damage case database 12 Display device 16 Estimate calculation unit 21 Estimate table

Claims (15)

撮像画像から車両の損傷状態を推定する車両損傷推定装置において、
車両部品に関するデータを教師データとした教師あり学習によって構築された部品学習モデルを参照して、撮像画像における車両の外部部品を判定する部品判定部と、
外部部品の損傷状態に関するデータを教師データとした教師あり学習によって構築された状態学習モデルを参照して、前記部品判定部によって判定された外部部品毎の損傷状態を外部損傷として判定する外部損傷判定部と、を備え、
前記部品学習モデルは、車両の写った画像に対し、当該車両における外部部品の部分をバウンディングボックスで指定した教師データ又は当該車両における外部部品の部分に対応するピクセルを指定した教師データのいずれか若しくは両方の教師データによる学習により構築されたものであり、前記撮像画像の入力に応じて、前記撮像画像における前記外部部品の領域抽出と分類とを出力する、
車両損傷推定装置。
In the vehicle damage estimation device that estimates the damage state of the vehicle from the captured image,
A parts determination unit that determines external parts of the vehicle in the captured image by referring to the parts learning model constructed by supervised learning using data related to vehicle parts as teacher data.
External damage determination that determines the damage state of each external part determined by the component determination unit as external damage by referring to the state learning model constructed by supervised learning using data related to the damage state of external parts as supervised learning. With a department,
The parts learning model is either the teacher data in which the part of the external part in the vehicle is specified by the bounding box or the teacher data in which the pixel corresponding to the part of the external part in the vehicle is specified with respect to the image of the vehicle. It is constructed by learning with both teacher data, and outputs the region extraction and classification of the external component in the captured image in response to the input of the captured image.
Vehicle damage estimation device.
前記部品学習モデルは、YOLOまたはSSDにより構築される、
請求項1に記載された車両損傷推定装置。
The component learning model is constructed by YOLO or SSD.
The vehicle damage estimation device according to claim 1.
前記部品学習モデルは、Mask R-CNNにより構築される、
請求項1に記載された車両損傷推定装置。
The component learning model is constructed by Mask R-CNN.
The vehicle damage estimation device according to claim 1.
車両の構成面に関するデータを教師データとした教師あり学習によって構築された面学習モデルを参照して、撮像画像における車両の構成面を判定する面判定部をさらに有し、
前記部品判定部は、前記面判定部によって判定された前記構成面に基づいて外部部品を判定結果として出力する、
請求項1から3のいずれか1項に記載された車両損傷推定装置。
It also has a surface determination unit that determines the constituent surface of the vehicle in the captured image by referring to the surface learning model constructed by supervised learning using the data related to the constituent surface of the vehicle as supervised learning.
The component determination unit outputs an external component as a determination result based on the constituent surface determined by the surface determination unit.
The vehicle damage estimation device according to any one of claims 1 to 3.
前記面判定部は、前記撮像画像中に特定の構成面に固有の外部部品が存在する場合、当該固有の外部部品に対応する構成面を判定結果に含める、
請求項4に記載された車両損傷推定装置。
When an external component unique to a specific constituent surface is present in the captured image, the surface determination unit includes the constituent surface corresponding to the unique external component in the determination result.
The vehicle damage estimation device according to claim 4.
外部部品の損傷状態に対応付けられた修理費用が外部部品毎に保持された見積テーブルを参照することによって、前記状態判定部によって判定された外部部品毎の損傷状態から、車両の修理費用を見積もる見積算出部をさらに有する、
請求項1から5のいずれか1項に記載された車両損傷推定装置。
By referring to the estimation table in which the repair cost associated with the damaged state of the external part is held for each external part, the repair cost of the vehicle is estimated from the damaged state of each external part determined by the state determination unit. It also has an estimate calculation unit,
The vehicle damage estimation device according to any one of claims 1 to 5.
前記面判定部から前記部品判定部への処理の移行、前記部品判定部から前記状態判定部への処理の移行、および、前記状態判定部から前記見積算出部への処理の移行のうちの少なくとも一つは、ユーザによる判定結果の修正を許容した上でユーザの承認が得られたことを条件に行われる、
請求項1から6のいずれか1項に記載された車両損傷推定装置。
At least one of the transfer of the process from the surface determination unit to the component determination unit, the transfer of the process from the component determination unit to the state determination unit, and the transfer of the process from the state determination unit to the estimate calculation unit. One is performed on the condition that the user's approval is obtained after allowing the user to modify the judgment result.
The vehicle damage estimation device according to any one of claims 1 to 6.
外部損傷および内部損傷を含む車両の損傷内容を含む過去の損傷事例を保持する損傷事例データベースを参照し、前記外部損傷判定部によって判定された外部損傷と類似した損傷事例を抽出することによって、車両の内部損傷を推定する内部損傷推定部、
をさらに備える、請求項1から7のいずれか1項に記載の車両損傷推定装置。
By referring to the damage case database that holds past damage cases including the damage contents of the vehicle including external damage and internal damage, and extracting damage cases similar to the external damage determined by the external damage determination unit, the vehicle Internal damage estimation unit, which estimates the internal damage of
The vehicle damage estimation device according to any one of claims 1 to 7, further comprising.
撮像画像から車両の損傷状態を推定する車両損傷推定装置において、
車両部品に関するデータを教師データとした教師あり学習によって構築された部品学習モデルを参照して、撮像画像における車両の外部部品を判定する部品判定部と、
外部部品の損傷状態に関するデータを教師データとした教師あり学習によって構築された状態学習モデルを参照して、前記部品判定部によって判定された外部部品毎の損傷状態を外部損傷として判定する外部損傷判定部と、
外部損傷および内部損傷を含む車両の損傷内容を含む過去の損傷事例を保持する損傷事例データベースを参照し、前記外部損傷判定部によって判定された外部損傷と類似した損傷事例を抽出することによって、車両の内部損傷を推定する内部損傷推定部と、
を備える車両損傷推定装置。
In the vehicle damage estimation device that estimates the damage state of the vehicle from the captured image,
A parts determination unit that determines external parts of the vehicle in the captured image by referring to the parts learning model constructed by supervised learning using data related to vehicle parts as teacher data.
External damage determination that determines the damage state of each external part determined by the component determination unit as external damage by referring to the state learning model constructed by supervised learning using data related to the damage state of external parts as supervised learning. Department and
By referring to the damage case database that holds past damage cases including the damage contents of the vehicle including external damage and internal damage, and extracting damage cases similar to the external damage determined by the external damage determination unit, the vehicle Internal damage estimation unit that estimates the internal damage of
A vehicle damage estimation device equipped with.
前記内部損傷推定部は、前記外部損傷判定部によって判定された外部損傷と類似した複数の損傷事例に基づいて車両の内部損傷を推定する、
請求項9に記載された車両損傷推定装置。
The internal damage estimation unit estimates the internal damage of the vehicle based on a plurality of damage cases similar to the external damage determined by the external damage determination unit.
The vehicle damage estimation device according to claim 9.
前記内部損傷推定部は、
前記外部損傷判定部によって判定された外部損傷と、前記内部損傷推定部によって推定された内部損傷とに基づいて、車両の修理費用を見積もる、
請求項9または10に記載された車両損傷推定装置。
The internal damage estimation unit
The vehicle repair cost is estimated based on the external damage determined by the external damage determination unit and the internal damage estimated by the internal damage estimation unit.
The vehicle damage estimation device according to claim 9 or 10.
撮像画像から車両の損傷状態を推定する車両損傷推定プログラムにおいて、
車両部品に関するデータを教師データとした教師あり学習によって構築された部品学習モデルを参照して、撮像画像における車両の外部部品を判定する部品判定ステップと、
外部部品の損傷状態に関するデータを教師データとした教師あり学習によって構築された状態学習モデルを参照して、前記部品判定部によって判定された外部部品毎の損傷状態を外部損傷として判定する外部損傷判定ステップと、
を有する処理をコンピュータに実行させるものであり、
前記部品学習モデルは、車両の写った画像に対し、当該車両における外部部品の部分をバウンディングボックスで指定した教師データ又は当該車両における外部部品の部分に対応するピクセルを指定した教師データのいずれか若しくは両方の教師データによる学習により構築されたものであり、前記撮像画像の入力に応じて、前記撮像画像における前記外部部品の領域抽出と分類とを出力する、
車両損傷推定プログラム。
In a vehicle damage estimation program that estimates the damage state of a vehicle from captured images,
With reference to the parts learning model constructed by supervised learning using data related to vehicle parts as teacher data, a part determination step for determining external parts of the vehicle in the captured image, and
External damage determination that determines the damage state of each external part determined by the component determination unit as external damage by referring to the state learning model constructed by supervised learning using data related to the damage state of external parts as supervised learning. Steps and
Is to make the computer execute the process having
The parts learning model is either the teacher data in which the part of the external part in the vehicle is specified by the bounding box or the teacher data in which the pixel corresponding to the part of the external part in the vehicle is specified with respect to the image of the vehicle. It is constructed by learning with both teacher data, and outputs the region extraction and classification of the external component in the captured image in response to the input of the captured image.
Vehicle damage estimation program.
撮像画像から車両の損傷状態を推定する車両損傷推定プログラムにおいて、
車両部品に関するデータを教師データとした教師あり学習によって構築された部品学習モデルを参照して、撮像画像における車両の外部部品を判定する部品判定ステップと、
外部部品の損傷状態に関するデータを教師データとした教師あり学習によって構築された状態学習モデルを参照して、前記部品判定部によって判定された外部部品毎の損傷状態を外部損傷として判定する外部損傷判定ステップと、
外部損傷および内部損傷を含む車両の損傷内容を含む過去の損傷事例を保持する損傷事例データベースを参照し、前記外部損傷判定部によって判定された外部損傷と類似した損傷事例を抽出することによって、車両の内部損傷を推定する内部損傷推定ステップと、
を備える車両損傷推定プログラム。
In a vehicle damage estimation program that estimates the damage state of a vehicle from captured images,
With reference to the parts learning model constructed by supervised learning using data related to vehicle parts as teacher data, a part determination step for determining external parts of the vehicle in the captured image, and
External damage determination that determines the damage state of each external part determined by the component determination unit as external damage by referring to the state learning model constructed by supervised learning using data related to the damage state of external parts as supervised learning. Steps and
By referring to the damage case database that holds past damage cases including the damage contents of the vehicle including external damage and internal damage, and extracting damage cases similar to the external damage determined by the external damage determination unit, the vehicle Internal damage estimation step to estimate internal damage and
Vehicle damage estimation program with.
撮像画像から車両の損傷状態を推定する車両損傷推定方法において、
車両部品に関するデータを教師データとした教師あり学習によって構築された部品学習モデルを参照して、撮像画像における車両の外部部品を判定する部品判定ステップと、
外部部品の損傷状態に関するデータを教師データとした教師あり学習によって構築された状態学習モデルを参照して、前記部品判定部によって判定された外部部品毎の損傷状態を外部損傷として判定する外部損傷判定ステップと、
を含み、
前記部品学習モデルは、車両の写った画像に対し、当該車両における外部部品の部分をバウンディングボックスで指定した教師データ又は当該車両における外部部品の部分に対応するピクセルを指定した教師データのいずれか若しくは両方の教師データによる学習により構築されたものであり、前記撮像画像の入力に応じて、前記撮像画像における前記外部部品の領域抽出と分類とを出力する、
車両損傷推定方法。
In the vehicle damage estimation method for estimating the damage state of the vehicle from the captured image,
With reference to the parts learning model constructed by supervised learning using data related to vehicle parts as teacher data, a part determination step for determining external parts of the vehicle in the captured image, and
External damage determination that determines the damage state of each external part determined by the component determination unit as external damage by referring to the state learning model constructed by supervised learning using data related to the damage state of external parts as supervised learning. Steps and
Including
The parts learning model is either the teacher data in which the part of the external part in the vehicle is specified by the bounding box or the teacher data in which the pixel corresponding to the part of the external part in the vehicle is specified with respect to the image of the vehicle. It is constructed by learning with both teacher data, and outputs the region extraction and classification of the external component in the captured image in response to the input of the captured image.
Vehicle damage estimation method.
撮像画像から車両の損傷状態を推定する車両損傷推定方法において、
車両部品に関するデータを教師データとした教師あり学習によって構築された部品学習モデルを参照して、撮像画像における車両の外部部品を判定する部品判定ステップと、
外部部品の損傷状態に関するデータを教師データとした教師あり学習によって構築された状態学習モデルを参照して、前記部品判定部によって判定された外部部品毎の損傷状態を外部損傷として判定する外部損傷判定ステップと、
外部損傷および内部損傷を含む車両の損傷内容を含む過去の損傷事例を保持する損傷事例データベースを参照し、前記外部損傷判定部によって判定された外部損傷と類似した損傷事例を抽出することによって、車両の内部損傷を推定する内部損傷推定ステップと、
を含む車両損傷推定方法。
In the vehicle damage estimation method for estimating the damage state of the vehicle from the captured image,
With reference to the parts learning model constructed by supervised learning using data related to vehicle parts as teacher data, a part determination step for determining external parts of the vehicle in the captured image, and
External damage determination that determines the damage state of each external part determined by the component determination unit as external damage by referring to the state learning model constructed by supervised learning using data related to the damage state of external parts as supervised learning. Steps and
By referring to the damage case database that holds past damage cases including the damage contents of the vehicle including external damage and internal damage, and extracting damage cases similar to the external damage determined by the external damage determination unit, the vehicle Internal damage estimation step to estimate internal damage and
Vehicle damage estimation method including.
JP2020070114A 2020-04-08 2020-04-08 Vehicle damage estimation device, its estimation program and its estimation method Active JP6991519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020070114A JP6991519B2 (en) 2020-04-08 2020-04-08 Vehicle damage estimation device, its estimation program and its estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020070114A JP6991519B2 (en) 2020-04-08 2020-04-08 Vehicle damage estimation device, its estimation program and its estimation method

Publications (2)

Publication Number Publication Date
JP2021167991A true JP2021167991A (en) 2021-10-21
JP6991519B2 JP6991519B2 (en) 2022-01-12

Family

ID=78079735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020070114A Active JP6991519B2 (en) 2020-04-08 2020-04-08 Vehicle damage estimation device, its estimation program and its estimation method

Country Status (1)

Country Link
JP (1) JP6991519B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11184933A (en) * 1997-12-19 1999-07-09 Tajima Kiko:Kk Vehicle repair estimating device
JP2012009073A (en) * 2011-09-28 2012-01-12 Fujitsu Ltd Specific portion extraction program
JP2019114059A (en) * 2017-12-22 2019-07-11 三井住友海上火災保険株式会社 Determination device, repair cost determination system, determination method, and determination program
JP2019115487A (en) * 2017-12-27 2019-07-18 株式会社日立製作所 Ultrasonic imaging device, image processing device, and method
WO2019142243A1 (en) * 2018-01-16 2019-07-25 オリンパス株式会社 Image diagnosis support system and image diagnosis support method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11184933A (en) * 1997-12-19 1999-07-09 Tajima Kiko:Kk Vehicle repair estimating device
JP2012009073A (en) * 2011-09-28 2012-01-12 Fujitsu Ltd Specific portion extraction program
JP2019114059A (en) * 2017-12-22 2019-07-11 三井住友海上火災保険株式会社 Determination device, repair cost determination system, determination method, and determination program
JP2019115487A (en) * 2017-12-27 2019-07-18 株式会社日立製作所 Ultrasonic imaging device, image processing device, and method
WO2019142243A1 (en) * 2018-01-16 2019-07-25 オリンパス株式会社 Image diagnosis support system and image diagnosis support method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
藤原 弘将: "解説 基礎研究", 画像ラボ 第30巻 第1号 IMAGE LABORATORY, vol. 第30巻, JPN6021007173, 10 January 2019 (2019-01-10), JP, pages 57 - 67, ISSN: 0004543164 *

Also Published As

Publication number Publication date
JP6991519B2 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
US11144889B2 (en) Automatic assessment of damage and repair costs in vehicles
CN102332092B (en) Flame detection method based on video analysis
WO2023065395A1 (en) Work vehicle detection and tracking method and system
CN110210474B (en) Target detection method and device, equipment and storage medium
Romdhane et al. An improved traffic signs recognition and tracking method for driver assistance system
CN104424634A (en) Object tracking method and device
KR20190137669A (en) Apparatus, method and computer program for automatically calculating the damage
CN108648211A (en) A kind of small target detecting method, device, equipment and medium based on deep learning
CN110502977B (en) Building change classification detection method, system, device and storage medium
US20220358669A1 (en) Methods and systems of utilizing image processing systems to measure objects
JPWO2020071560A1 (en) Vehicle damage estimation device, its estimation program and its estimation method
JPWO2020071559A1 (en) Vehicle condition judgment device, its judgment program and its judgment method
CN114863464B (en) Second-order identification method for PID drawing picture information
JP6991519B2 (en) Vehicle damage estimation device, its estimation program and its estimation method
CA3131758A1 (en) Image processing system
CN111191584B (en) Face recognition method and device
US20230012796A1 (en) Identification of a vehicle having various disassembly states
KR102197724B1 (en) Apparatus for crashworthiness prediction and method thereof
CN110175622B (en) Vehicle component identification method and system based on convolutional neural network of symbiotic relationship
CN111178200A (en) Identification method of instrument panel indicator lamp and computing equipment
CN115546824B (en) Taboo picture identification method, apparatus and storage medium
CN114972540A (en) Target positioning method and device, electronic equipment and storage medium
CN112365324A (en) Commodity picture detection method suitable for E-commerce platform
Jarraya et al. Adaptive moving shadow detection and removal by new semi-supervised learning technique
US11604940B2 (en) Systems and methods for part identification and assessment using multiple images

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201006

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6991519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350