JP2021167791A - 故障予兆システム - Google Patents

故障予兆システム Download PDF

Info

Publication number
JP2021167791A
JP2021167791A JP2020071624A JP2020071624A JP2021167791A JP 2021167791 A JP2021167791 A JP 2021167791A JP 2020071624 A JP2020071624 A JP 2020071624A JP 2020071624 A JP2020071624 A JP 2020071624A JP 2021167791 A JP2021167791 A JP 2021167791A
Authority
JP
Japan
Prior art keywords
failure
parameter
failure sign
state
hydraulic oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020071624A
Other languages
English (en)
Inventor
悠樹 宮内
Yuki Miyauchi
俊 大内田
Shun Ouchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2020071624A priority Critical patent/JP2021167791A/ja
Priority to CN202180027615.1A priority patent/CN115380214A/zh
Priority to PCT/JP2021/011822 priority patent/WO2021210353A1/ja
Priority to EP21789345.2A priority patent/EP4137815A4/en
Priority to US17/918,513 priority patent/US20230147470A1/en
Publication of JP2021167791A publication Critical patent/JP2021167791A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

【課題】リアルタイムに処理を行うことにより作動油の状態のみならず機器の故障予兆情報を出力する。【解決手段】機器100に装着された油状態センサ10と、油状態センサ10のセンサ出力とそのセンサ出力と作動油の状態を示す複数のパラメータの値との相関関係情報とに基づいて、作動油の状態を示す複数のパラメータの値を求めるパラメータ算出部20と、パラメータの値から機器100の故障を予兆し、故障予兆の原因として推測されるパラメータを特定して出力する故障予兆判定部30と、を備え、リアルタイムに処理を行うことにより作動油の状態のみならず機器100の故障予兆情報を出力する。【選択図】図1

Description

本発明は、故障予兆システムに関する。
機器に用いられる作動油は、機器の使用に伴って酸化し、徐々に劣化していく。そのため、機器の故障や機器の寿命が短くなるのを避けるために、作動油の劣化状態を適切に推定し、適切なタイミングで作動油の補充や交換を行うことが求められる。
上記のような要求に応えるため、機器に使用中の作動油を採取してから、作動油の劣化度を判定するまでに要する時間を短縮する技術が開示されている(例えば、特許文献1参照。)。
特開2016−20864号公報
しかしながら、特許文献1に記載の技術では、機器に使用中の作動油を採取することが前提となっている。そのため、作動油の採取時には、機器の動作を停止する必要があり、生産性や作業効率に影響を与えるという問題がある。
また、上記の問題に関連して、機器に使用中の作動油を採取することを前提とすると、頻繁に、作動油の状態を評価することができないため、判定時間を短縮しても、予知保全を的確に行うことが困難であるという問題がある。
さらに、特許文献1に記載の技術は、作動油の劣化度を推定するものの、機器の故障までも判定するものではない。
そこで、本発明は、上述の課題に鑑みてなされたものであって、リアルタイムに処理を行うことにより作動油の状態のみならず機器の故障予兆情報を出力する故障予兆システムを提供することを目的とする。
形態1;本発明の1またはそれ以上の実施形態は、機器に装着された油状態センサと、前記油状態センサのセンサ出力と作動油の状態を示す複数のパラメータの値との相関関係情報と前記センサ出力とに基づいて、前記作動油の状態を示す複数のパラメータの値を求めるパラメータ算出部と、前記パラメータの値から前記機器の故障を予兆し、故障予兆の原因として推測される前記パラメータを特定して出力する故障予兆判定部と、を備えたことを特徴とする機器の故障予兆システムを提案している。
本システムでは、機器に装着された油状態センサからの情報により、油状態および機器の故障をリアルタイムに監視することができるため、適切な作動油の交換時期の判断や機器の故障を早期に判定することができる。
また、本システムでは、パラメータ算出部が、油状態センサのセンサ出力と作動油の状態を示す複数のパラメータの値との相関関係情報と前記センサ出力とに基づいて、作動油の状態を示す複数のパラメータの値を求め、故障予兆判定部が、パラメータの値から機器の故障を予兆し、故障予兆の原因として推測される前記パラメータを特定して出力する。
つまり、作動油の状態を予測した上で、ユーザに対して、故障予兆情報を通知するため、故障予兆情報の根拠を作動油の状態の予測結果からユーザに提示することができる。
形態2;本発明の1またはそれ以上の実施形態は、前記パラメータ算出部は、予め測定された前記パラメータの値を教師データとした機械学習により生成された第1の学習データを用いて、前記油状態センサのセンサ出力から前記パラメータの値を求める機器の故障予兆システムを提案している。
本システムのパラメータ算出部は、例えば、収集したデータに基づいて数学的に算出したセンサ出力と作動油の状態を示すパラメータとの相関関数を格納しており、予め測定されたパラメータの値を教師データとした機械学習により生成された第1の学習データを用いて、油状態センサのセンサ出力からパラメータの値を求める。
そのため、機器の累積使用時間等によるセンサ出力値の変化に伴って、相対的に、作動油の状態を示すパラメータの値がどのように変化するのかを予測することができる。
形態3;本発明の1またはそれ以上の実施形態は、前記故障予兆判定部は、前記機器が故障した状態か否か、または、故障する予兆にある状態か否かを目的変数とし、前記パラメータを説明変数として、機械学習により生成された第2の学習モデルを用いて、前記パラメータ算出部が算出した前記パラメータの値から前記機器の故障予兆の原因として推測される前記パラメータを特定して出力する機器の故障予兆システムを提案している。
本システムの故障予兆判定部は、機器が故障した状態か否か、または、故障する予兆にある状態か否かを目的変数とし、パラメータを説明変数として、機械学習により生成された第2の学習モデルを用いて、パラメータ算出部が算出したパラメータの値から機器の故障予兆の原因として推測される前記パラメータを特定して出力する。
つまり、故障予兆判定部は、例えば、機器が故障した状態か否か、または、故障する予兆にある状態か否かを目的変数とし、パラメータを説明変数として、機械学習により生成された第2の学習モデルを基に、パラメータ算出部が算出したパラメータの値から機器の故障予兆の原因として推測される前記パラメータを特定して出力する。
そのため、短時間で、確度の高い機器の故障予兆情報を出力することができる。
形態4;本発明の1またはそれ以上の実施形態は、前記故障予兆判定部は、前記第2の学習モデルとして、決定木構造のアルゴリズムを用いて、故障予兆の原因として推測される前記パラメータの寄与度を演算し、出力する機器の故障予兆システムを提案している。
本システムの故障予兆判定部は、第2の学習モデルとして、決定木構造のアルゴリズムを用いて、故障予兆の原因として推測される前記パラメータの寄与度を演算し、出力する。
そのため、複数の作動油の状態を示すパラメータごとの予測結果(機器の故障予兆の有無、故障時期)に関する寄与度を出力することができる。
形態5;本発明の1またはそれ以上の実施形態は、前記故障予兆判定部は、予め設定された値よりも低い寄与度の前記パラメータについて、次回以降の前記寄与度を演算する処理を実行しない機器の故障予兆システムを提案している。
本システムの故障予兆判定部は、予め設定された値よりも低い寄与度の前記パラメータについて、次回以降の寄与度を演算する処理を実行しない。
つまり、リアルタイムの処理において、作動油の状態を示す、あるパラメータの寄与度が予め設定された値よりも低い寄与度の前記パラメータについて、回以降の寄与度を演算する処理を実行しない。
そのため、システムの処理負担を軽減することができる。
形態6;本発明の1またはそれ以上の実施形態は、前記油状態センサは、前記作動油の比誘電率および導電率を含む前記作動油の電気的特性を出力し、前記パラメータ算出部は、前記比誘電率および前記導電率に基づいて、全酸価、汚染度、金属元素、水分のパラメータを算出する機器の故障予兆システムを提案している。
本システムの油状態センサは、作動油の比誘電率および導電率を含む作動油の電気的特性を出力する。また、パラメータ算出部は、比誘電率および導電率に基づいて、全酸価、汚染度、金属元素、水分のパラメータを算出する。
そのため、油状態センサにより、比誘電率、導電率を含む作動油の電気的特性を得ることにより、作動油の状態を示すパラメータの値を予測することができる。
上記の故障予兆システムによれば、リアルタイムに処理を行うことにより作動油の状態のみならず機器の故障予兆情報を出力することができる。
第1の実施形態に係る故障予兆システムの構成を示す図である。 第1の実施形態に係るパラメータ算出部の構成を示す図である。 第1の実施形態に係る故障予兆判定部の構成を示す図である。 第1の実施形態に係る故障予兆システムの処理を示すフローチャート図である。 第1の実施形態に係るパラメータ算出部の相関関数格納部に格納される相関関係を例示する図である。 第2の実施形態に係る故障予兆システムの処理を示すフローチャート図である。
<第1の実施形態>
以下、図1から図5を用いて、本発明の第1の実施形態に係る故障予兆システム1について説明する。
(故障予兆システム1の構成)
図1から図3を用いて、本発明の第1の実施形態に係る故障予兆システム1の構成について説明する。
図1に示すように、本実施形態に係る故障予兆システム1は、油状態センサ10と、パラメータ算出部20と、故障予兆判定部30と、を含んで構成されている。
油状態センサ10は、例えば、作動油の油状態を検出する油状態センサであり、センシング対象の機器100の作動油内にセンシング部材が浸漬されるように装着され、例えば、作動油の比誘電率や導電率を含む情報を取得する。
また、油状態センサ10は、例えば、後述するパラメータ算出部20と無線あるいは、ネットワークで接続されており、油状態センサ10が取得した情報を逐次出力あるいは、パラメータ算出部20からの要求に応じて、取得した情報を出力する。
パラメータ算出部20は、油状態センサ10のセンサ出力と作動油の状態を示す複数のパラメータの値との相関関係情報とセンサ出力とに基づいて、作動油の状態を示す複数のパラメータの値を求める。
なお、作動油の状態を示すパラメータは、全酸価、汚染度、金属元素、水分を含むパラメータを例示することができる。
ここで、パラメータ算出部20は、単体の装置であってもよいし、例えば、クラウド上のサーバ等であってもよい。
故障予兆判定部30は、相関関係を有するパラメータの値から機器100の故障予兆情報をリアルタイムに出力する。
ここで、故障予兆判定部30は、相関関係を有するパラメータの値を入力し、機械学習を実行して機器100の故障予兆情報を出力する。
また、例えば、故障予兆情報とし、故障時期、作動油の状態を示すパラメータの寄与度を含む情報を例示することができる。
故障予兆判定部30は、単体の装置であってもよいし、例えば、クラウド上のサーバ等であってもよい。
また、故障予兆判定部30とパラメータ算出部20をまとめた単体の装置であってもよいし、例えば、クラウド上のサーバ等であってもよい。
(パラメータ算出部20の構成)
パラメータ算出部20は、図2に示すように、算出部21と、相関関数格納部22と、制御部23と、を含んで構成されている。
算出部21は、油状態センサ10から得られる情報、例えば、比誘電率や導電率を含むセンサ情報と後述する相関関数格納部22に格納された相関関数とに基づいて、作動油の油状態を示すパラメータの値を算出する。
相関関数格納部22は、油状態センサ10から得られるセンサ情報と、作動油の油状態を示すパラメータとの相関関係を示す相関関数を格納する。
相関関数は、収集された膨大なデータから数学的回帰により算出されたものであり、例えば、比誘電率と全酸価との相関関数、比誘電率と汚染度との相関関数、比誘電率と水分との相関関数、導電率と汚染度との相関関数、導電率と金属元素との相関関数、導電率と水分との相関関数を含む。
制御部23は、ROM(Read Only Memory)等に格納された制御プログラムにしたがって、算出部21の動作を制御する。
(故障予兆判定部30の構成)
故障予兆判定部30は、図3に示すように、故障予兆判定アルゴリズム31と、学習モデル格納部32と、制御部33と、情報記憶部34と、を含んで構成されている。
故障予兆判定アルゴリズム31は、故障予兆判定部30における機械学習を実行するためのアルゴリズムであり、パラメータ算出部20において算出される作動油の油状態を示すパラメータの値を入力とし、後述する学習モデルを用いた機械学習を実行し、例えば、故障時期、作動油の状態を示すパラメータの寄与度を含む故障予兆情報と、故障を未然に防止するための対応メッセージを出力する。
なお、故障予兆判定アルゴリズム31としては、例えば、決定木構造をなすブースティングを例示することができる。
学習モデル格納部32は、予め生成した学習モデルを格納する。ここで、学習モデルとは、入力データを元に、ルールやパターン(出力)を学習したデータである。
制御部33は、ROM(Read Only Memory)等に格納された制御プログラムにしたがって、故障予兆判定部30の動作を制御する。
また、制御部33のROM等の記憶素子等には、故障予兆情報に対する、故障を未然に防止するための対応メッセージ等が記憶されている。
なお、制御部33は、すべての機器100について故障予兆判定を実行させる。つまり、同じ機種であって、使用期間も同程度の機器100についても故障予兆判定を実行させる。
情報記憶部34は、パラメータ算出部20から入力した情報と故障予兆判定アルゴリズム31から出力される故障予兆情報とを紐付けたデータベースを記憶する。
(故障予兆システムの処理)
図4および図5を用いて、本発明の第1の実施形態に係る故障予兆システムの処理について説明する。
パラメータ算出部20の制御部23は、例えば、予め定めた時間間隔で油状態センサ10からの出力をモニタし、油状態センサ10から得られたセンサ情報、例えば、比誘電率、導電率を含む情報を算出部21に出力する(ステップS101)。
パラメータ算出部20の算出部21は、制御部23から入力した情報、例えば、比誘電率や導電率を含むセンサ情報と後述する相関関数格納部22に格納された相関関数とに基づいて、作動油の油状態を示すパラメータの値を算出する(ステップS102)。
なお、相関関数格納部22には、例えば、図5に示すような比誘電率と全酸価との相関関数をはじめとする比誘電率と汚染度との相関関数、比誘電率と水分との相関関数、導電率と汚染度との相関関数、導電率と金属元素との相関関数、導電率と水分との相関関数等が格納されている。
算出部21は、例えば、比誘電率や導電率を含むセンサ情報と相関関数格納部22に格納された相関関数とに基づいて、作動油の油状態を示すパラメータ、例えば、全酸価、汚染度、金属元素、水分を含むパラメータの値を算出して、故障予兆判定部30に出力する。
故障予兆判定部30の制御部33は、パラメータ算出部20の算出結果を故障予兆判定アルゴリズム31に取り込む。
故障予兆判定アルゴリズム31は、パラメータ算出部20において算出される作動油の油状態を示すパラメータの値を入力とし、学習モデルを用いた機械学習を実行して、例えば、故障時期、作動油の状態を示すパラメータの寄与度を含む故障予兆情報と、故障を未然に防止するための対応メッセージ等とをリアルタイムに図示しない表示部に表示、あるいはユーザ端末等に出力する(ステップS103)。
なお、パラメータ算出部20から出力された情報と故障予兆判定アルゴリズム31から出力される故障予兆情報とは、データベースの形式で情報記憶部34に記憶される。
(作用効果)
以上、説明したように、本実施形態に係る故障予兆システム1は、機器100に装着された油状態センサ10のセンサ出力と作動油の状態を示す複数のパラメータの値とセンサ出力との相関関係情報とに基づいて、パラメータ算出部20が、作動油の状態を示す複数のパラメータの値を求め、故障予兆判定部30が、パラメータの値から機器100の故障を予兆し、故障予兆の原因として推測されるパラメータを特定して故障予兆情報をリアルタイムに出力する。
そのため、機器100に装着された油状態センサ10センサ出力と作動油の状態を示す複数のパラメータの値とセンサ出力の相関関係情報とに基づいて、作動油の油状態および機器100の故障をリアルタイムに監視することができるため、適切な作動油の交換時期の判断や機器100の故障を早期に判定することができる。
また、本実施形態に係る故障予兆システム1では、パラメータ算出部20が、作動油の状態を示す複数のパラメータの値を求め、故障予兆判定部30が、パラメータの値から機器100の故障を予兆し、故障予兆の原因として推測されるパラメータを特定して故障予兆情報をリアルタイムに出力する。
つまり、作動油の状態を予測した上で、ユーザに対して、故障予兆情報を通知するため、故障予兆情報の根拠を作動油の状態の予測結果からユーザに提示することができる。
また、本実施形態に係る故障予兆システム1は、故障予兆情報として、故障時期、作動油の状態を示すパラメータの寄与度を含む情報と、故障を未然に防止するための対応メッセージと、をリアルタイムに図示しない表示部に表示、あるいはユーザ端末等に出力することから、ユーザに迅速な行動を促すことができる。
本実施形態に係る故障予兆システム1における前記パラメータ算出部は、予め測定されたパラメータの値を教師データとした機械学習により生成された第1の学習データを用いて、油状態センサのセンサ出力からパラメータの値を求める。
つまり、本実施形態に係る故障予兆システム1におけるパラメータ算出部20は、例えば、収集したデータに基づいて数学的に算出したセンサ出力と作動油の状態を示すパラメータとの相関関数を格納しており、予め測定されたパラメータの値を教師データとした機械学習により生成された第1の学習データを用いて、油状態センサのセンサ出力からパラメータの値を求める。
そのため、機器100の累積使用時間等によるセンサ出力値の変化に伴って、相対的に、作動油の状態を示すパラメータの値がどのように変化するのかを予測することができる。
本実施形態に係る故障予兆システム1における故障予兆判定部は、機器が故障した状態か否か、または、故障する予兆にある状態か否かを目的変数とし、パラメータを説明変数として、機械学習により生成された第2の学習モデルを用いて、パラメータ算出部が算出したパラメータの値から機器の故障予兆の原因として推測される前記パラメータを特定して出力する。
すなわち、本実施形態に係る故障予兆システム1における故障予兆判定部は、例えば、機器が故障した状態か否か、または、故障する予兆にある状態か否かを目的変数とし、パラメータを説明変数として、機械学習により生成された第2の学習モデルを基に、パラメータ算出部が算出したパラメータの値から機器の故障予兆の原因として推測される前記パラメータを特定して出力する。
そのため、短時間で、確度の高い機器の故障予兆情報を出力することができる。
本実施形態に係る故障予兆システム1における制御部33は、すべての機器100について、すなわち、同じ機種であって、使用期間も同程度の機器100についても故障予兆判定を実行させる。
一般に、同じ機種の機器100については、よく似た故障予兆傾向が現れると考えられるが、故障予兆は、ユーザの使用状に応じて、作動油の状態を示すパラメータの寄与度が異なる。
そのため、本実施形態に係る故障予兆システム1において、例えば、同じ機種であって、使用期間も同程度の機器100についても故障予兆判定を実行させることにより、各機器100ごとの故障予兆情報をユーザに報知することができる。
なお、故障予兆システム1に学習モデルを生成する機能を追加し、故障予兆情報の取得処理プロセスで用いた情報や故障予兆情報により、学習モデルを生成し、故障予兆情報の取得処理プロセスに用いる学習モデルを更新してもよい。
このように、新たに得られた情報を用いて、学習モデルをアップデートすることにより、故障予兆システム1における故障予兆情報の生成精度を向上させることができる。
<第2の実施形態>
以下、図6を用いて、本発明の第2の実施形態に係る故障予兆システム1Aについて説明する。
(故障予兆システム1Aの構成)
本発明の第2の実施形態に係る故障予兆システム1Aの構成について説明する。
本実施形態に係る故障予兆システム1Aは、油状態センサ10と、パラメータ算出部20と、故障予兆判定部30Aと、を含んで構成されている。
なお、第1の実施形態と同一の符号を付す構成要素については、同様の機能を有することから、その詳細な説明は、省略する。
故障予兆判定部30Aは、相関関係を有するパラメータの値から機器100の故障予兆情報をリアルタイムに出力する。
なお、故障予兆判定部30Aは、寄与度が設定した値よりも低いパラメータについて、次回以降の寄与度に関する機械学習を実行しない。
(故障予兆判定部30Aの構成)
故障予兆判定部30Aは、故障予兆判定アルゴリズム31と、学習モデル格納部32と、制御部33Aと、情報記憶部34と、を含んで構成されている。
なお、第1の実施形態と同一の符号を付す構成要素については、同様の機能を有することから、その詳細な説明は、省略する。
制御部33Aは、ROM(Read Only Memory)等に格納された制御プログラムにしたがって、故障予兆判定部30Aの動作を制御する。
なお、制御部33Aは、情報記憶部34に記憶されたパラメータ算出部20から入力した情報と故障予兆判定アルゴリズム31から出力される故障予兆情報とを紐付けたデータベースに基づいて、寄与度が設定した値よりも低いパラメータを検出し、当該パラメータについて、次回以降の寄与度に関する機械学習を実行しないように故障予兆判定部30Aを制御する。
(故障予兆システム1Aの処理)
図6を用いて、本発明の第2の実施形態に係る故障予兆システム1Aの処理について説明する。
パラメータ算出部20の制御部23は、例えば、予め定めた時間間隔で油状態センサ10からの出力をモニタし、油状態センサ10から得られたセンサ情報、例えば、比誘電率、導電率を含む情報を算出部21に出力する(ステップS201)。
パラメータ算出部20の算出部21は、制御部23から入力した情報、例えば、比誘電率や導電率を含むセンサ情報と後述する相関関数格納部22に格納された相関関数とに基づいて、作動油の油状態を示すパラメータの値を算出する(ステップS202)。
故障予兆判定部30Aの制御部33Aは、情報記憶部34に記憶されたパラメータ算出部20から入力した情報と故障予兆判定アルゴリズム31から出力される故障予兆情報とを紐付けたデータベースに基づいて、寄与度が設定した値よりも低いパラメータの有無を判定する(ステップS203)。
このとき、故障予兆判定部30Aの制御部33Aは、データベースに寄与度が設定した値よりも低いパラメータが無いと判定した場合(ステップS203の「NO」)には、パラメータ算出部20の算出結果のすべてを故障予兆判定アルゴリズム31に取り込むように制御を実行し、故障予兆判定アルゴリズム31は、パラメータ算出部20において算出される作動油の油状態を示すパラメータの値を入力とし、学習モデルを用いた機械学習を実行して、例えば、故障時期、作動油の状態を示すパラメータの寄与度を含む故障予兆情報と、故障を未然に防止するための対応メッセージと、をリアルタイムに図示しない表示部に表示、あるいはユーザ端末等に出力する(ステップS205)。
一方で、故障予兆判定部30Aの制御部33Aは、データベースに寄与度が設定した値よりも低いパラメータが有ると判定した場合(ステップS203の「YES」)には、パラメータ算出部20の算出結果のうち、寄与度が設定した値よりも低いパラメータの算出結果を除くパラメータの算出結果を故障予兆判定アルゴリズム31に取り込むように制御を実行し、故障予兆判定アルゴリズム31は、パラメータ算出部20において算出される作動油の油状態を示すパラメータの値を入力とし、学習モデルを用いた機械学習を実行して、例えば、故障時期や作動油の状態を示すパラメータの寄与度を含む故障予兆情報と、故障を未然に防止するための対応メッセージと、をリアルタイムに図示しない表示部に表示、あるいはユーザ端末等に出力する(ステップS204)。
(作用効果)
以上、説明したように、本実施形態に係る故障予兆システム1Aにおける故障予兆判定部30Aの制御部33Aは、情報記憶部34に記憶されたパラメータ算出部20から入力した情報と故障予兆判定アルゴリズム31から出力される故障予兆情報とを紐付けたデータベースに基づいて、寄与度が設定した値よりも低いパラメータの有無を判定し、データベースに寄与度が設定した値よりも低いパラメータが有ると判定した場合(ステップS203の「YES」)には、パラメータ算出部20の算出結果のうち、寄与度が設定した値よりも低いパラメータの算出結果を除くパラメータの算出結果を故障予兆判定アルゴリズム31に取り込むように制御を実行し、故障予兆判定アルゴリズム31は、パラメータ算出部20において算出される作動油の油状態を示すパラメータの値を入力とし、学習モデルを用いた機械学習を実行して、例えば、故障時期、作動油の状態を示すパラメータの寄与度を含む故障予兆情報と、故障を未然に防止するための対応メッセージと、をリアルタイムに図示しない表示部に表示、あるいはユーザ端末等に出力する。
そのため、情報記憶部34に記憶されたパラメータ算出部20から入力した情報と故障予兆判定アルゴリズム31から出力される故障予兆情報とを紐付けたデータベースに基づいて、寄与度が設定した値よりも低いパラメータが有る場合には、故障予兆判定部30Aの処理負荷を軽減することができる。
(変形例1)
第1の実施形態および第2の実施形態では、パラメータ算出部20は、油状態センサ10から得られる情報、例えば、比誘電率や導電率を含むセンサ情報と後述する相関関数格納部22に格納された膨大なデータからの数学的回帰により算出される相関関数とに基づいて、作動油の油状態を示すパラメータの値を算出するとした。
しかしながら、パラメータ算出部20は、膨大なデータから特定のアルゴリズムを用いて得られた比誘電率や導電率を含むセンサ情報と作動油の油状態を示すパラメータの値との相関関係から、当該パラメータの値を算出するようにしてもよい。
このようにすることにより、比誘電率や導電率を含むセンサ情報と作動油の油状態を示すパラメータの値との関係が関数では表現できない分布をしている場合であっても、確度を高めてパラメータの値を算出することができる。
また、変形例1では、パラメータ算出部20と故障予兆判定部30、30Aとに異なるアルゴリズムを適用して、故障予兆判定を実行することを例示したが、例えば、誘電率が高いデータ等のように、ある特有のデータに限定するという条件の下であれば、パラメータ算出部20と故障予兆判定部30、30Aとを1つのアルゴリズムで運用してもよい。
また、第1の実施形態および第2の実施形態では、故障予兆判定部30、30Aに機械学習による分類アルゴリズムを適用することを例示したが、理論ベースあるいはルールベースのアルゴリズムを適用してもよい。
(変形例2)
また、故障予兆判定部30は、機器100が今までに作動油の状態を示すパラメータの寄与度の機会学習を実行した機器100と同一の機種であっても、寄与度の機械学習を実行するようにしてもよい。
つまり、同一の機種の機器であっても、その使用方法や使用環境等の使用条件が異なれば、異なった寄与度が得られ、故障モードが異なる場合も想定される。
そのため、同一の機種の機器であっても、寄与度の機会学習を実行することにより、その機器の真の故障予兆情報をユーザに通知することができる。
なお、故障予兆システム1、1Aの処理をコンピュータシステムが読み取り可能な記録媒体に記録し、この記録媒体に記録されたプログラムを故障予兆システム1、1Aに読み込ませ、実行することによって本発明の故障予兆システム1、1Aを実現することができる。ここでいうコンピュータシステムとは、OSや周辺装置等のハードウェアを含む。
「コンピュータシステム」は、WWW(World Wide Web)システムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組合せで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
以上、この発明の実施形態につき、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1;故障予兆システム
1A;故障予兆システム
10;油状態センサ
20;パラメータ算出部
21;算出部
22;相関関数格納部
23;制御部
30;故障予兆判定部
30A;故障予兆判定部
31;故障予兆判定アルゴリズム
32;学習モデル格納部
33;制御部
33A;制御部
34;情報記憶部
100;機器

Claims (6)

  1. 機器に装着された油状態センサと、
    前記油状態センサのセンサ出力と作動油の状態を示す複数のパラメータの値との相関関係情報と前記センサ出力とに基づいて、前記作動油の状態を示す複数のパラメータの値を求めるパラメータ算出部と、
    前記パラメータの値から前記機器の故障を予兆し、故障予兆の原因として推測される前記パラメータを特定して出力する故障予兆判定部と、
    を備えたことを特徴とする機器の故障予兆システム。
  2. 前記パラメータ算出部は、予め測定された前記パラメータの値を教師データとした機械学習により生成された第1の学習データを用いて、前記油状態センサのセンサ出力から前記パラメータの値を求めることを特徴とする請求項1に記載の機器の故障予兆システム。
  3. 前記故障予兆判定部は、前記機器が故障した状態か否か、または、故障する予兆にある状態か否かを目的変数とし、前記パラメータを説明変数として、機械学習により生成された第2の学習モデルを用いて、前記パラメータ算出部が算出した前記パラメータの値から前記機器の故障予兆の原因として推測される前記パラメータを特定して出力することを特徴とする請求項1または2のいずれかに記載の機器の故障予兆システム。
  4. 前記故障予兆判定部は、前記第2の学習モデルとして、決定木構造のアルゴリズムを用いて、故障予兆の原因として推測される前記パラメータの寄与度を演算し、出力することを特徴とする請求項3に記載の機器の故障予兆システム。
  5. 前記故障予兆判定部は、予め設定された値よりも低い寄与度の前記パラメータについて、次回以降の前記寄与度を演算する処理を実行しないことを特徴とする請求項4に記載の機器の故障予兆システム。
  6. 前記油状態センサは、前記作動油の比誘電率および導電率を含む前記作動油の電気的特性を出力し、前記パラメータ算出部は、前記比誘電率および前記導電率に基づいて、全酸価、汚染度、金属元素、水分のパラメータを算出することを特徴とする請求項1から5のいずれかに記載の機器の故障予兆システム。
JP2020071624A 2020-04-13 2020-04-13 故障予兆システム Pending JP2021167791A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020071624A JP2021167791A (ja) 2020-04-13 2020-04-13 故障予兆システム
CN202180027615.1A CN115380214A (zh) 2020-04-13 2021-03-22 故障预兆系统
PCT/JP2021/011822 WO2021210353A1 (ja) 2020-04-13 2021-03-22 故障予兆システム
EP21789345.2A EP4137815A4 (en) 2020-04-13 2021-03-22 FAILURE PREDICTION SYSTEM
US17/918,513 US20230147470A1 (en) 2020-04-13 2021-03-22 Failure prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071624A JP2021167791A (ja) 2020-04-13 2020-04-13 故障予兆システム

Publications (1)

Publication Number Publication Date
JP2021167791A true JP2021167791A (ja) 2021-10-21

Family

ID=78079637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071624A Pending JP2021167791A (ja) 2020-04-13 2020-04-13 故障予兆システム

Country Status (5)

Country Link
US (1) US20230147470A1 (ja)
EP (1) EP4137815A4 (ja)
JP (1) JP2021167791A (ja)
CN (1) CN115380214A (ja)
WO (1) WO2021210353A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238690A1 (ja) * 2022-06-10 2023-12-14 株式会社日立製作所 圧縮機油の物性予測システム
WO2024095582A1 (ja) * 2022-11-04 2024-05-10 出光興産株式会社 潤滑油異常検知システム、潤滑油異常検知装置、潤滑油異常検知方法、潤滑油異常検知プログラム、及び記録媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR028868A1 (es) * 1999-09-17 2003-05-28 Prolec Ge S De R L De C V Aparato y metodo de analisis inteligente para equipos electricos llenos con fluido
US7581434B1 (en) * 2003-09-25 2009-09-01 Rockwell Automation Technologies, Inc. Intelligent fluid sensor for machinery diagnostics, prognostics, and control
JP4857597B2 (ja) * 2005-05-02 2012-01-18 富士電機株式会社 油入電気機器の劣化診断方法
JP5055035B2 (ja) * 2007-06-19 2012-10-24 三菱重工業株式会社 オイル劣化検出装置
EP3242118A1 (en) * 2016-05-06 2017-11-08 DANA ITALIA S.r.l. Sensor system for monitoring a vehicle axle and for discriminating between a plurality of axle failure modes
WO2018102036A2 (en) * 2016-11-30 2018-06-07 General Electric Company Sensing system and method
JP2018116545A (ja) * 2017-01-19 2018-07-26 オムロン株式会社 予測モデル作成装置、生産設備監視システム、及び生産設備監視方法
US11447936B2 (en) * 2017-07-28 2022-09-20 Hitachi Construction Machinery Co., Ltd. Oil diagnosis system
JP7063022B2 (ja) * 2018-03-14 2022-05-09 オムロン株式会社 異常検知システム、サポート装置およびモデル生成方法
CN110287980A (zh) * 2019-03-28 2019-09-27 清华大学 基于随机森林的主变压器故障诊断方法
CN110766059A (zh) * 2019-10-14 2020-02-07 四川西部能源股份有限公司郫县水电厂 一种变压器故障的预测方法、装置和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238690A1 (ja) * 2022-06-10 2023-12-14 株式会社日立製作所 圧縮機油の物性予測システム
WO2024095582A1 (ja) * 2022-11-04 2024-05-10 出光興産株式会社 潤滑油異常検知システム、潤滑油異常検知装置、潤滑油異常検知方法、潤滑油異常検知プログラム、及び記録媒体

Also Published As

Publication number Publication date
CN115380214A (zh) 2022-11-22
EP4137815A1 (en) 2023-02-22
EP4137815A4 (en) 2024-04-24
US20230147470A1 (en) 2023-05-11
WO2021210353A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
US20200166905A1 (en) Optimal machining parameter selection using a data-driven tool life modeling approach
JP5768834B2 (ja) プラントモデル管理装置及び方法
JP4276623B2 (ja) 技術的設備の監視装置および方法
WO2021210353A1 (ja) 故障予兆システム
JP2009098147A (ja) Dcモータシステムの信頼性を判定する方法及びシステム
JP2008154418A (ja) 配電系統の状態推定装置、状態推定方法及びそのプログラム
JP6711323B2 (ja) プロセスの異常状態診断方法および異常状態診断装置
JP2015529813A (ja) 遺伝的プログラミングを用いて発見された前兆的特徴からの、残存耐用寿命の推定
US20240012407A1 (en) Condition-Based Method for Malfunction Prediction
Golmakani Optimal age-based inspection scheme for condition-based maintenance using A* search algorithm
Tian et al. Condition-based maintenance optimization considering improving prediction accuracy
CN114365125A (zh) 信息处理装置、运转辅助系统、信息处理方法、以及信息处理程序
JP2019021032A (ja) シミュレーション装置およびシミュレーション方法
CN111967917A (zh) 预测用户流失的方法以及设备
Mishra et al. An opportunistic group maintenance model for the multi-unit series system employing Jaya algorithm
Kovacs et al. A modified Weibull model for service life prediction and spare parts forecast in heat treatment industry
US20200116585A1 (en) Adaptive remaining useful life estimation method using constraint convex regression from degradation measurement
JP2016091271A (ja) 通信品質予測装置及び通信品質予測プログラム
JP2015184818A (ja) サーバ、モデル適用可否判定方法およびコンピュータプログラム
KR20200051343A (ko) 시계열 데이터 예측 모델 평가 방법 및 장치
Shojaee et al. Integration of production–maintenance planning and monitoring simple linear profiles via Hotelling's T2 control chart and particle swarm optimization
JP2008165412A (ja) 性能演算装置
Jiang An adaptive power-law degradation model for modelling wear processes
JP2021157654A (ja) 機械学習装置、学習モデルの生成方法及びプログラム
US20230152759A1 (en) Information processing apparatus, information processing method, and computer program product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402