JP2021167776A - Calibration device for three-dimensional shape measurement - Google Patents

Calibration device for three-dimensional shape measurement Download PDF

Info

Publication number
JP2021167776A
JP2021167776A JP2020071378A JP2020071378A JP2021167776A JP 2021167776 A JP2021167776 A JP 2021167776A JP 2020071378 A JP2020071378 A JP 2020071378A JP 2020071378 A JP2020071378 A JP 2020071378A JP 2021167776 A JP2021167776 A JP 2021167776A
Authority
JP
Japan
Prior art keywords
intersection
dimensional shape
stereo
stereo cameras
stereo camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020071378A
Other languages
Japanese (ja)
Other versions
JP7449486B2 (en
Inventor
謙太 木全
Kenta Kimata
信幸 高橋
Nobuyuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2020071378A priority Critical patent/JP7449486B2/en
Publication of JP2021167776A publication Critical patent/JP2021167776A/en
Application granted granted Critical
Publication of JP7449486B2 publication Critical patent/JP7449486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a calibration device for three-dimensional shape measurement that can simplify the three-dimensional measurement of a measurement object, such as a large forged product, by eliminating the need to install a large calibration board.SOLUTION: A calibration device for three-dimensional shape measurement includes a plurality of stereo cameras 1A and 1B oriented toward an object S1 whose three-dimensional shape is to be measured, a laser light-emitter 2, which irradiates the object S1 with a line laser beam LL and enables the generation of a captured image in which a plurality of line laser beams intersects each other, and a control device 3. The control device detects intersection points P in the captured image obtained by each stereo camera by capturing the line laser images generated on the object S1 by the irradiation of the line laser light LL from each stereo camera 1A and 1B, calculates three-dimensional coordinates of each detected intersection point P, calculates a transformation parameter for each stereo camera 1A and 1B that best matches the position of the intersection point for which three-dimensional coordinates have been calculated for each stereo camera 1A and 1B, and transforms a coordinate system of each stereo camera 1A and 1B into a reference coordinate system common to these stereo cameras 1A and 1B by each transformation parameter.SELECTED DRAWING: Figure 1

Description

本発明は三次元形状測定用校正装置に関し、特に複数のステレオカメラを使用して三次元形状を測定する場合に好適に使用できる校正装置に関するものである。 The present invention relates to a calibrator for measuring a three-dimensional shape, and more particularly to a calibrator that can be suitably used when measuring a three-dimensional shape using a plurality of stereo cameras.

対象物の三次元形状を測定するのに、一対のカメラを備えて両カメラの視差に基づいて上記三次元形状を測定するステレオカメラが使用されている。例えば特許文献1には、測定対象物を載置する回転テーブル面の回転中心の変動や回転テーブル面の傾斜の変動により形状測定の誤差が発生するのを防止するために、形状測定に先立って、例えば円形スポットが縦横一定間隔で多数配列された一定パターンを描いた校正ボードを回転テーブル面上に載置して形状測定値の校正を可能とした方法が示されている。 To measure the three-dimensional shape of an object, a stereo camera equipped with a pair of cameras and measuring the three-dimensional shape based on the parallax of both cameras is used. For example, in Patent Document 1, prior to shape measurement, in order to prevent an error in shape measurement from occurring due to fluctuations in the center of rotation of the rotary table surface on which the object to be measured is placed or fluctuations in the inclination of the rotary table surface. For example, a method is shown in which a calibration board having a constant pattern in which a large number of circular spots are arranged at regular intervals in the vertical and horizontal directions is placed on a rotary table surface to enable calibration of shape measurement values.

特開2017−3537JP 2017-3537

ところで、大型の鍛造品の三次元形状を測定する場合には、一台のステレオカメラでは十分な視野を確保できないために複数台(通常は2台)のステレオカメラを使用する必要があるが、ステレオカメラの架台が輻射熱を受けて変形する等によりステレオカメラの位置関係が変動し、これによって、ステレオカメラ間で予め一致させた座標系にずれを生じて形状測定の誤差を生むという問題があった。そこで従来は、鍛造品の撮像範囲をカバーできる大きさの校正ボードを使用してステレオカメラ間の相対位置のズレに起因する測定誤差を解消するようにしている。ところが、大型の校正ボードを、校正のつど設置する作業は負担が大きいという問題があった。 By the way, when measuring the three-dimensional shape of a large forged product, it is necessary to use multiple (usually two) stereo cameras because a single stereo camera cannot secure a sufficient field of view. There is a problem that the positional relationship of the stereo cameras fluctuates due to deformation of the stereo camera mount due to radiant heat, which causes a shift in the coordinate system that is matched in advance between the stereo cameras, resulting in an error in shape measurement. rice field. Therefore, conventionally, a calibration board having a size that can cover the imaging range of the forged product is used to eliminate the measurement error caused by the deviation of the relative positions between the stereo cameras. However, there is a problem that the work of installing a large calibration board each time it is calibrated is burdensome.

そこで、本発明はこのような課題を解決するもので、大型の校正ボードを設置する手間を不要として大型鍛造品等の測定対象物の三次元測定を簡易化できる三次元形状測定用校正装置を提供することを目的とする。 Therefore, the present invention solves such a problem, and provides a calibration device for three-dimensional shape measurement that can simplify three-dimensional measurement of a measurement object such as a large forged product without the need to install a large calibration board. The purpose is to provide.

上記目的を達成するために、本第1発明では、三次元形状を測定する対象物(S1)の方向に向けて配設された複数のステレオカメラ(1A,1B)と、前記対象物(S1)ないしその載置面にライン光(LL)を照射して複数のライン光が複数個所で互いに交差する撮像画像の生成を可能とするライン光照射手段(2)と、ライン光(LL)の照射によって前記対象物(S1)ないしその載置面に生じたライン光画像を前記各ステレオカメラ(1A,1B)から取り込んで各ステレオカメラで得た撮像画像中の交点(P)を検出する交点検出手段(3、ステップ102)と、検出された各交点(P)の三次元座標を算出する交点座標算出手段(3、ステップ107)と、前記各ステレオカメラ(1A,1B)について三次元座標が算出された交点群について、これら交点群の位置が互いに最も良く一致する前記各ステレオカメラ(1A、1B)毎の変換パラメータを算出して、各変換パラメータによって前記各ステレオカメラ(1A,1B)の座標系をこれらステレオカメラ(1A,1B)に共通な基準座標系に変換する座標変換手段(3、ステップ111)とを備える。 In order to achieve the above object, in the first invention, a plurality of stereo cameras (1A, 1B) arranged in the direction of the object (S1) for measuring the three-dimensional shape, and the object (S1). ) Or the line light (LL), and the line light (LL) means of irradiating the line light (LL) to generate an image in which a plurality of line lights intersect each other at a plurality of places. An intersection point (P) in which a line light image generated on the object (S1) or its mounting surface by irradiation is captured from the stereo cameras (1A, 1B) and the intersection (P) in the captured image obtained by each stereo camera is detected. Three-dimensional coordinates for the detection means (3, step 102), the intersection coordinate calculation means (3, step 107) for calculating the three-dimensional coordinates of each detected intersection (P), and each of the stereo cameras (1A, 1B). For the intersection group in which It is provided with a coordinate conversion means (3, step 111) for converting the coordinate system of the above into a reference coordinate system common to these stereo cameras (1A, 1B).

本第1発明によれば、ライン光照射手段によって対象物ないしその載置面にライン光を照射して、複数のライン光が複数個所で互いに交差する撮像画像の生成を可能としたから、撮像画像の交点を検出することによって従来の校正ボードを撮像した場合と同様の撮像画像を得ることができる。これにより、従来のような大型の校正ボードを設置する手間が不要になるから、大型鍛造品等の対象物の三次元測定を簡易化することができる。特に、ライン光であるから対象物の表面に直接照射することによって校正ボードを撮像した場合と同様の撮像画像を得ることができ、校正ボードが、対象物を載台上から取り去って温度が十分低下してからしか設置できなかった場合に比して、校正作業を大幅に効率化することができる。 According to the first invention, it is possible to generate an image in which a plurality of line lights intersect each other at a plurality of places by irradiating the object or its mounting surface with the line light by the line light irradiation means. By detecting the intersection of the images, it is possible to obtain an captured image similar to the case where the conventional calibration board is imaged. This eliminates the need to install a large calibration board as in the past, so that it is possible to simplify the three-dimensional measurement of an object such as a large forged product. In particular, since it is line light, it is possible to obtain an image similar to the case where the calibration board is imaged by directly irradiating the surface of the object, and the calibration board removes the object from the table and the temperature is sufficient. The calibration work can be made much more efficient than the case where the installation can be performed only after the temperature is lowered.

本第2発明では、前記基準座標系を、複数の前記ステレオカメラ(1A,1B)のうちのいずれかの座標系とする。 In the second invention, the reference coordinate system is any one of the plurality of stereo cameras (1A, 1B).

本第2発明によれば、基準座標系を一のステレオカメラの座標系としたから、対象物側に各ステレオカメラの座標系とは別の基準座標系を設定する場合に比して、変換パラメータの算出が簡易になる。 According to the second invention, since the reference coordinate system is set to the coordinate system of one stereo camera, the conversion is performed as compared with the case where a reference coordinate system different from the coordinate system of each stereo camera is set on the object side. The calculation of parameters becomes easy.

本第3発明では、前記交点検出手段(3、ステップ102)は、前記撮像画像の各交差領域で、交差する各ライン光の一定区間ごとにその輝度の重心位置を検出して、複数の重心位置に対して最小二乗法によって近似線を算出して、近似線が交差する点を前記交点(P)とするものである。 In the third invention, the intersection detecting means (3, step 102) detects the position of the center of gravity of the brightness of each intersecting line light in each intersecting region of the captured image, and detects the position of the center of gravity of the brightness, and a plurality of centers of gravity. The approximate line is calculated by the method of least squares with respect to the position, and the point where the approximate lines intersect is set as the intersection (P).

本第3発明によれば、交点を精度よく求めることができる。 According to the third invention, the intersection can be obtained with high accuracy.

本第4発明では、前記最小二乗法は、偏差絶対値が大きくなるほど重みが小さくなる重み付け最小二乗法である。 In the fourth invention, the least squares method is a weighted least squares method in which the weight decreases as the absolute deviation value increases.

本第4発明によれば、外れ値による近似線の算出への影響が小さく抑えられる。 According to the fourth invention, the influence of outliers on the calculation of the approximate line can be suppressed to a small extent.

本第5発明では、前記座標変換手段(3、ステップ111)は、前記各ステレオカメラ(1A、1B)で得られる撮像画像の交点群の重心の位置を検出するとともに当該重心回りの各交点群の慣性モーメントの特異値分解を行って各ステレオカメラ(1A、1B)について暫定変換パラメータを算出し、前記各暫定変換パラメータと前記重心位置を初期値として非線形最適化処理により前記各ステレオカメラ(1A、1B)の交点群の間の誤差の平均を最小とするような前記各暫定変換パラメータを前記各変換パラメータとするものである。 In the fifth invention, the coordinate conversion means (3, step 111) detects the position of the center of inertia of the intersection group of the captured images obtained by the stereo cameras (1A, 1B) and each intersection group around the center of gravity. The singular value decomposition of the moment of inertia is performed to calculate the provisional conversion parameters for each stereo camera (1A, 1B), and each stereo camera (1A) is subjected to nonlinear optimization processing with the provisional conversion parameters and the position of the center of gravity as initial values. Each of the provisional conversion parameters that minimizes the average of the errors between the intersections of 1B) is used as each of the conversion parameters.

本第5発明によれば、変換パラメータを精度良く求めることができる。 According to the fifth invention, the conversion parameters can be obtained with high accuracy.

本第6発明では、前記対象物が590〜1100nm(橙〜赤)の発光色を有する赤熱材である場合に、前記ライン光(LL)の波長範囲を400〜590nm(紫〜黄)とすることにより、前記赤熱材とライン光(LL)とを区別する。 In the sixth invention, when the object is a red-hot material having an emission color of 590 to 1100 nm (orange to red), the wavelength range of the line light (LL) is set to 400 to 590 nm (purple to yellow). This distinguishes between the red-hot material and the line light (LL).

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。 The reference numerals in parentheses indicate the correspondence with the specific means described in the embodiments described later for reference.

以上のように、本発明の三次元形状測定用校正装置によれば、大型の校正ボードを設置する手間を要することなく、大型鍛造品等の対象物の三次元測定を簡易に行うことができる。 As described above, according to the calibration device for three-dimensional shape measurement of the present invention, it is possible to easily perform three-dimensional measurement of an object such as a large forged product without the trouble of installing a large calibration board. ..

三次元形状測定用校正装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the calibration apparatus for three-dimensional shape measurement. 撮像画像から抽出された交差する直線の画像である。It is an image of intersecting straight lines extracted from the captured image. 撮像画像の交点周辺の画素データを抜き出した画像である。It is an image extracted from the pixel data around the intersection of the captured images. 画素データの輝度の、重心位置の検出を説明する画像である。It is an image explaining the detection of the position of the center of gravity of the brightness of pixel data. 重み付き最小二乗法によって直線を再検出した画像である。This is an image in which a straight line is rediscovered by the weighted least squares method. 重み付き最小二乗法における偏差と重みの関係を示すグラフである。It is a graph which shows the relationship between the deviation and the weight in the weighted least squares method. 輝度の最も高い領域を通る直線を検出した画像である。It is an image in which a straight line passing through a region having the highest brightness is detected. 制御装置における処理フローチャートである。It is a processing flowchart in a control device.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。
図1には三次元形状測定用校正装置の全体構成を示す。図1において、大型の円柱状鍛造品等の、測定する対象物S1を載置した円形の載台Sを挟んでその両側の斜め上方位置に、それぞれ図略の架台に支持されてステレオカメラ1A,1Bが設置されている。各ステレオカメラ1A,1Bは左右一対のCCDカメラ11,12を備え、これらカメラ11,12の間に形状測定用のラインレーザ光を照射するレーザ発光器13が設けられている。
The embodiments described below are merely examples, and various design improvements made by those skilled in the art within the scope of the present invention are also included in the scope of the present invention.
FIG. 1 shows the overall configuration of the calibration device for three-dimensional shape measurement. In FIG. 1, a stereo camera 1A is supported at an obliquely upper position on both sides of a circular mount S on which an object S1 to be measured is placed, such as a large columnar forged product, by a mount shown in the drawing. , 1B is installed. Each of the stereo cameras 1A and 1B includes a pair of left and right CCD cameras 11 and 12, and a laser light emitter 13 for irradiating a line laser beam for shape measurement is provided between the cameras 11 and 12.

対象物S1の形状測定時には左右の各ステレオカメラ1A,1Bは、これらから発せられる各ラインレーザ光が両者併せて対象物S1の表面全域をカバーし走査されるように首振り作動させられ、左右のカメラ11,12で得られた画像の視差より公知の方法で各ステレオカメラ1A,1Bから見た対象物S1の三次元形状が測定される。なお、両ステレオカメラ1A,1Bはその視野が互いに部分的に重なるように設定されている。 When measuring the shape of the object S1, the left and right stereo cameras 1A and 1B are swung so that the line laser beams emitted from them cover the entire surface of the object S1 and are scanned. The three-dimensional shape of the object S1 seen from each of the stereo cameras 1A and 1B is measured by a known method from the disparity of the images obtained by the cameras 11 and 12. Both stereo cameras 1A and 1B are set so that their fields of view partially overlap each other.

ステレオカメラ1Aの下方には、以下に説明する校正用の交点を得るためにラインレーザ光を照射するレーザ発光器2が設けられている。レーザ発光器2は図略の架台に支持されて、ラインレーザ光を対象物S1の平らな表面上に、後述するような互いに直交する方向へ一定間隔で延びる直線群からなる格子模様を生じるように走査される。ここで、対象物S1が、圧延、鍛造、鋳造等における熱処理等で表面が赤熱する対象材(以下赤熱材)である場合には、カメラの感度波長が400nm〜1100nmで、ラインレーザ光の波長範囲を590nm〜1100nm (橙〜赤)に設定すると、赤熱材の発光色である590nm〜1100nm(橙〜赤)と重複するから直線像を識別できない。そこで、赤熱材の発光色と区別できる400nm〜590nm (紫〜黄)の波長範囲のラインレーザ光を使用することで、熱処理等の高温加熱環境下においても赤熱材の三次元形状等を正確に測定することが可能となる。 Below the stereo camera 1A, a laser light emitter 2 that irradiates a line laser beam in order to obtain an intersection for calibration described below is provided. The laser light emitter 2 is supported by a frame (not shown) so as to generate a lattice pattern consisting of a group of straight lines extending at regular intervals in a direction orthogonal to each other on a flat surface of the object S1 with line laser light. Is scanned into. Here, when the object S1 is an object material whose surface becomes red-hot due to heat treatment in rolling, forging, casting, etc. (hereinafter referred to as red-hot material), the sensitivity wavelength of the camera is 400 nm to 1100 nm, and the wavelength of the line laser light. When the range is set to 590 nm to 1100 nm (orange to red), the linear image cannot be identified because it overlaps with the emission color of the red heat material, which is 590 nm to 1100 nm (orange to red). Therefore, by using line laser light in the wavelength range of 400 nm to 590 nm (purple to yellow) that can be distinguished from the emission color of the red hot material, the three-dimensional shape of the red hot material can be accurately determined even in a high-temperature heating environment such as heat treatment. It becomes possible to measure.

CPUやメモリを備えた制御装置3が設けられて、レーザ発光器2の走査と発光、各ステレオカメラ1A,1Bでの撮像を制御しており、対象物S1の表面内にて一定間隔でレーザ発光器2を走査しつつ各ステレオカメラ1A,1Bで撮像したライン光画像を取り込み、これらを合成することによって、あたかも図1に示すような一定間隔の平行直線が直交交差して格子模様を形成している撮像画像を得る。なお、図1では実際とは異なり格子模様の各交点を大きな丸で示してある。 A control device 3 equipped with a CPU and a memory is provided to control scanning and light emission of the laser emitter 2 and imaging by the stereo cameras 1A and 1B, and lasers are used at regular intervals on the surface of the object S1. By capturing the line light images captured by the stereo cameras 1A and 1B while scanning the light emitter 2 and synthesizing them, parallel straight lines at regular intervals as shown in FIG. 1 intersect at right angles to form a lattice pattern. Obtain the captured image. In Fig. 1, unlike the actual situation, each intersection of the grid pattern is indicated by a large circle.

制御装置3内では、格子模様を形成する各直線の交点の座標を求めてそれに基づいて座標変換に必要な変換パラメータを取得すべく、図8のフローチャートの各ステップに示すような以下の処理を行う。すなわち、制御装置3では、得られた撮像画像中からハフ変換等によって直線L1,L2を抽出して(ステップ101、図2)各直線L1,L2の交点Pを検出し(ステップ102)、交点周辺の画素データを抜き出す(ステップ103、図3)。続いて上記直線L1,L2に沿った一定間隔毎に、当該直線L1,L2の法線方向での所定数の各画素データの輝度の重心位置を検出する(ステップ104、図4(a),(b))。続いて検出された各重心位置に対して重み付き最小二乗法によって直線L3,L4を再検出する(ステップ105、図5)。なお、この場合の重み付けは、図6に示すように、直線L3,L4との偏差絶対値(距離)が大きくなるほど重みを小さくする。ステップ104,105を適当回繰り返して直線の再検出を行い、輝度の最も高い領域を通る直線L5,L6を得て当該直線L5,L6の交点Pfの二次元座標を算出する(ステップ106、図7)。 In the control device 3, in order to obtain the coordinates of the intersections of the straight lines forming the checkered pattern and acquire the conversion parameters required for the coordinate conversion based on the coordinates, the following processing as shown in each step of the flowchart of FIG. 8 is performed. conduct. That is, the control device 3 extracts straight lines L1 and L2 from the obtained captured image by Hough transform or the like (step 101, FIG. 2), detects the intersection P of each straight line L1 and L2 (step 102), and detects the intersection point. Peripheral pixel data is extracted (step 103, FIG. 3). Subsequently, the position of the center of gravity of the brightness of a predetermined number of pixel data in the normal direction of the straight lines L1 and L2 is detected at regular intervals along the straight lines L1 and L2 (step 104, FIG. 4A, (B)). Subsequently, the straight lines L3 and L4 are rediscovered by the weighted least squares method for each of the detected positions of the center of gravity (step 105, FIG. 5). As shown in FIG. 6, the weighting in this case decreases as the absolute value (distance) of deviation from the straight lines L3 and L4 increases. Steps 104 and 105 are repeated appropriately times to rediscover the straight line, obtain straight lines L5 and L6 passing through the region having the highest brightness, and calculate the two-dimensional coordinates of the intersection Pf of the straight lines L5 and L6 (step 106, FIG. 7).

以上のようにして格子模様の各交点Pfの二次元座標が算出され、各ステレオカメラ1A,1Bの左右のカメラ11,12の視差より、公知の方法で上記各交点Pfの三次元座標が算出される(ステップ107)。続いて、各ステレオカメラ1A,1Bで得られた交点群についてそれぞれの重心の位置が算出される(ステップ108)。そして、一方のステレオカメラ1Aの交点群画像の重心を平行移動によって他方のステレオカメラ1Bの交点群画像の重心に一致させ、さらに慣性モーメントの特異値分解によって上記各交点群画像の慣性主軸を求めて、一方のステレオカメラ1Aの交点群画像の慣性主軸を他方のステレオカメラ1Bの交点群画像の慣性主軸に一致させる(ステップ109)。この時の慣性主軸を一致させる暫定変換パラメータをHtとする。 As described above, the two-dimensional coordinates of each intersection Pf of the lattice pattern are calculated, and the three-dimensional coordinates of each intersection Pf are calculated by a known method from the parallax of the left and right cameras 11 and 12 of the stereo cameras 1A and 1B. (Step 107). Subsequently, the position of the center of gravity of each of the intersections obtained by the stereo cameras 1A and 1B is calculated (step 108). Then, the center of gravity of the intersection group image of one stereo camera 1A is aligned with the center of gravity of the intersection group image of the other stereo camera 1B by parallel movement, and the inertial principal axis of each of the intersection group images is obtained by singular value decomposition of the moment of inertia. Then, the moment of inertia principal axis of the intersection group image of one stereo camera 1A is aligned with the moment of inertia principal axis of the intersection group image of the other stereo camera 1B (step 109). Let Ht be the provisional conversion parameter that matches the inertial spindles at this time.

続いて上記重心および暫定変換パラメータHtを初期値として非線形最適化(逐次二次計画法)処理を行い、両交点群画像の対応点同士の誤差の平均値が最小となる変換パラメータHmを算出する(ステップ110)。そしてさらに、対応点同士の誤差の標準偏差値を求め、全ての対応点について標準偏差値に応じた重みを付けることによって外れ値による影響を排除しつつ上記変換パラメータHmを初期値として再度非線形最適化処理を行う。そしてこれを繰り返して、対応点同士の誤差が最小となる変換パラメータHを得る(ステップ111)。 Subsequently, nonlinear optimization (sequential quadratic programming) processing is performed with the center of gravity and the provisional conversion parameter Ht as initial values, and the conversion parameter Hm that minimizes the average value of the errors between the corresponding points of both intersection group images is calculated. (Step 110). Further, the standard deviation value of the error between the corresponding points is obtained, and all the corresponding points are weighted according to the standard deviation value to eliminate the influence of the outliers, and the above conversion parameter Hm is used as the initial value for nonlinear optimum again. Perform the conversion process. Then, this is repeated to obtain the conversion parameter H that minimizes the error between the corresponding points (step 111).

制御装置3では、このようにして得られた変換パラメータHを使用することで、一方のステレオカメラ1Aの交点群画像と他方のステレオカメラ1Bの交点群画像の座標系を精度よく校正一致させることができる。これにより、各ステレオカメラ1A,1Bで互いに補完するように測定対象物の三次元形状を部分撮像した各画像を、変換パラメータHを使用して同一座標系で合成することにより、大型の測定対象物の正確な三次元全体形状を得ることができる。 In the control device 3, by using the conversion parameter H obtained in this way, the coordinate system of the intersection group image of one stereo camera 1A and the intersection group image of the other stereo camera 1B can be accurately calibrated and matched. Can be done. As a result, each image in which the three-dimensional shape of the measurement object is partially imaged so as to complement each other with the stereo cameras 1A and 1B is synthesized in the same coordinate system using the conversion parameter H, so that a large measurement object can be measured. It is possible to obtain an accurate three-dimensional overall shape of an object.

(他の実施形態)
上記実施形態では一方のステレオカメラの座標系を他方のステレオカメラの座標系(基準座標系)に一致させるようにしたが、両ステレオカメラの座標系とは別の座標系を基準座標系としても良い。
上記実施形態では、複数のステレオカメラで撮像した画像から対象物の三次元形状を測定する際の校正に本発明を適用した場合を説明したが、各ステレオカメラの一対のカメラで撮像した画像から対象物の三次元形状を測定する際の校正にも本発明を適用することが可能であり、その際の本発明の構成は以下のようになる。
(Other embodiments)
In the above embodiment, the coordinate system of one stereo camera is made to match the coordinate system (reference coordinate system) of the other stereo camera, but a coordinate system different from the coordinate systems of both stereo cameras may be used as the reference coordinate system. good.
In the above embodiment, the case where the present invention is applied to calibration when measuring the three-dimensional shape of an object from images captured by a plurality of stereo cameras has been described, but from images captured by a pair of stereo cameras. The present invention can also be applied to calibration when measuring the three-dimensional shape of an object, and the configuration of the present invention at that time is as follows.

三次元形状を測定する対象物に向けて配設された一対のカメラを有する単一のステレオカメラと、前記対象物ないしその載置面の複数個所で互いに交差する複数のライン光を照射するライン光照射手段と、ライン光の照射によって前記対象物ないしその載置面に生じたライン光画像を前記各カメラから取り込んで各カメラで得たライン光画像の交点を検出する交点検出手段と、検出された各交点の三次元座標を算出する交点座標算出手段と、前記各カメラについて三次元座標が算出された交点群について、これら交点群の位置が互いに最も良く一致する前記各カメラ毎の変換パラメータを算出して、各変換パラメータによって前記各カメラの座標系をこれらステレオカメラに共通な基準座標系に変換する座標変換手段とを備える三次元形状測定用校正装置。なお、この場合の基準座標系をいずれか一方のカメラの座標系とすることができる。 A single stereo camera having a pair of cameras arranged toward an object for measuring a three-dimensional shape, and a line that irradiates a plurality of lines that intersect each other at a plurality of locations on the object or its mounting surface. The light irradiation means, the intersection detection means for detecting the intersection of the line light images obtained by each camera by capturing the line light image generated on the object or its mounting surface by the irradiation of the line light from the cameras, and the detection. For the intersection coordinate calculation means for calculating the three-dimensional coordinates of each of the intersections and the intersection group for which the three-dimensional coordinates have been calculated for each camera, the conversion parameters for each camera in which the positions of the intersections best match each other. A calibrator for three-dimensional shape measurement, comprising a coordinate conversion means for calculating and converting the coordinate system of each camera into a reference coordinate system common to these stereo cameras according to each conversion parameter. The reference coordinate system in this case can be the coordinate system of either camera.

上記実施形態では、ラインレーザ光を発する単一のレーザ発光器を走査して制御装置内の画像処理によって、互いに交差する平行直線が配列された格子模様の撮像画像を得るようにしたが、格子模様を同時に生成するような光源を使用するようにしても良い。
また上記実施形態では、ラインレーザ光を対象物の表面に直接照射したが、対象物を載せる載台の表面に照射するようにしてももちろん良い。
In the above embodiment, a single laser light source that emits line laser light is scanned and image processing in the control device is performed to obtain an image of a lattice pattern in which parallel straight lines intersecting each other are arranged. A light source that generates patterns at the same time may be used.
Further, in the above embodiment, the line laser beam is directly irradiated on the surface of the object, but of course, the surface of the platform on which the object is placed may be irradiated.

1A,1B…ステレオカメラ、11,12…カメラ、13…レーザ発光器、2…レーザ発光器(レーザ光照射手段)、3…制御装置、LL…ラインレーザ光、P…交点、S…載台、S1…対象物。 1A, 1B ... Stereo camera, 11, 12 ... Camera, 13 ... Laser light emitter, 2 ... Laser light emitter (laser light irradiation means), 3 ... Control device, LL ... Line laser light, P ... Intersection, S ... Stand , S1 ... Object.

Claims (6)

三次元形状を測定する対象物の方向に向けて配設された複数のステレオカメラと、前記対象物ないしその載置面にライン光を照射して複数のライン光が複数個所で互いに交差する撮像画像の生成を可能とするライン光照射手段と、ライン光の照射によって前記対象物ないしその載置面に生じたライン光画像を前記各ステレオカメラから取り込んで各ステレオカメラで得た撮像画像中の交点を検出する交点検出手段と、検出された各交点の三次元座標を算出する交点座標算出手段と、前記各ステレオカメラについて三次元座標が算出された交点群について、これら交点群の位置が互いに最も良く一致する前記各ステレオカメラ毎の変換パラメータを算出して、各変換パラメータによって前記各ステレオカメラの座標系をこれらステレオカメラに共通な基準座標系に変換する座標変換手段とを備える三次元形状測定用校正装置。 Imaging in which a plurality of stereo cameras arranged in the direction of an object for measuring a three-dimensional shape and a plurality of line lights intersect each other at a plurality of places by irradiating the object or its mounting surface with line light. A line light irradiating means capable of generating an image, and a line light image generated on the object or its mounting surface by irradiating the line light are captured from the stereo cameras and captured in the captured image obtained by the stereo cameras. With respect to the intersection detection means for detecting the intersection, the intersection coordinate calculation means for calculating the three-dimensional coordinates of each detected intersection, and the intersection group for which the three-dimensional coordinates have been calculated for each of the stereo cameras, the positions of these intersection groups are mutually exclusive. A three-dimensional shape provided with a coordinate conversion means for calculating a conversion parameter for each stereo camera that best matches and converting the coordinate system of each stereo camera into a reference coordinate system common to these stereo cameras by each conversion parameter. Calibration device for measurement. 前記基準座標系を、複数の前記ステレオカメラのうちのいずれかの座標系とした請求項1に記載の三次元形状測定用校正装置。 The calibrator for three-dimensional shape measurement according to claim 1, wherein the reference coordinate system is any one of the plurality of stereo cameras. 前記交点検出手段は、前記ライン光画像の各交差領域で、交差する各ライン光の一定区間ごとにその輝度の重心位置を検出して、複数の重心位置に対して最小二乗法によって近似線を算出して、近似線が交差する点を前記交点とするものである請求項1又は2に記載の三次元形状測定用校正装置。 The intersection detecting means detects the position of the center of gravity of the brightness at each fixed section of each intersecting line light in each intersecting region of the line light image, and approximates a plurality of positions of the center of gravity by the least squares method. The calibrator for three-dimensional shape measurement according to claim 1 or 2, wherein the point at which the approximate lines intersect is the intersection. 前記最小二乗法は、偏差絶対値が大きくなるほど重みが小さくなる重み付け最小二乗法である請求項3に記載の三次元形状測定用校正装置。 The calibration device for three-dimensional shape measurement according to claim 3, wherein the least squares method is a weighted least squares method in which the weight decreases as the absolute deviation value increases. 前記座標変換手段は、前記各ステレオカメラで得られる撮像画像の交点群の重心の位置を検出するとともに当該重心回りの各交点群の慣性モーメントの特異値分解を行って各ステレオカメラについて暫定変換パラメータを算出し、前記各暫定変換パラメータと前記重心位置を初期値として非線形最適化処理により前記各ステレオカメラの交点群の間の誤差の平均を最小とするような前記各暫定変換パラメータを前記各変換パラメータとするものである請求項1ないし4のいずれかに記載の三次元形状測定用校正装置。 The coordinate conversion means detects the position of the center of gravity of the intersection group of the captured images obtained by the stereo cameras, decomposes the moment of inertia of each intersection group around the center of gravity by a singular value, and performs provisional conversion parameters for each stereo camera. Is calculated, and each of the provisional conversion parameters is converted so as to minimize the average of the errors between the intersections of the stereo cameras by the nonlinear optimization process with the provisional conversion parameters and the position of the center of gravity as initial values. The calibrator for three-dimensional shape measurement according to any one of claims 1 to 4, which is a parameter. 前記対象物が590〜1100nm(橙〜赤)の発光色を有する赤熱材である場合に、前記ライン光の波長範囲を400〜590nm(紫〜黄)とすることにより、前記赤熱材とスポット光とを区別するようにした請求項1ないし5のいずれかに記載の三次元形状測定用校正装置。 When the object is a red-hot material having an emission color of 590 to 1100 nm (orange to red), the wavelength range of the line light is set to 400 to 590 nm (purple to yellow), so that the red-hot material and spot light The calibrator for three-dimensional shape measurement according to any one of claims 1 to 5, which is designed to distinguish between the two.
JP2020071378A 2020-04-11 2020-04-11 Calibration device for three-dimensional shape measurement Active JP7449486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020071378A JP7449486B2 (en) 2020-04-11 2020-04-11 Calibration device for three-dimensional shape measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071378A JP7449486B2 (en) 2020-04-11 2020-04-11 Calibration device for three-dimensional shape measurement

Publications (2)

Publication Number Publication Date
JP2021167776A true JP2021167776A (en) 2021-10-21
JP7449486B2 JP7449486B2 (en) 2024-03-14

Family

ID=78079662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071378A Active JP7449486B2 (en) 2020-04-11 2020-04-11 Calibration device for three-dimensional shape measurement

Country Status (1)

Country Link
JP (1) JP7449486B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023164064A1 (en) * 2022-02-27 2023-08-31 Summer Robotics, Inc. Association of concurrent tracks using graph crossings
US11785200B1 (en) 2022-03-14 2023-10-10 Summer Robotics, Inc. Stage studio for immersive 3-D video capture
US11808857B2 (en) 2021-08-27 2023-11-07 Summer Robotics, Inc. Multi-sensor superresolution scanning and capture system
US11887340B2 (en) 2021-07-29 2024-01-30 Summer Robotics, Inc. Dynamic calibration of 3D acquisition systems
US11974055B1 (en) 2023-10-17 2024-04-30 Summer Robotics, Inc. Perceiving scene features using event sensors and image sensors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11887340B2 (en) 2021-07-29 2024-01-30 Summer Robotics, Inc. Dynamic calibration of 3D acquisition systems
US11808857B2 (en) 2021-08-27 2023-11-07 Summer Robotics, Inc. Multi-sensor superresolution scanning and capture system
WO2023164064A1 (en) * 2022-02-27 2023-08-31 Summer Robotics, Inc. Association of concurrent tracks using graph crossings
US11785200B1 (en) 2022-03-14 2023-10-10 Summer Robotics, Inc. Stage studio for immersive 3-D video capture
US11974055B1 (en) 2023-10-17 2024-04-30 Summer Robotics, Inc. Perceiving scene features using event sensors and image sensors

Also Published As

Publication number Publication date
JP7449486B2 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
JP2021167776A (en) Calibration device for three-dimensional shape measurement
US7627197B2 (en) Position measurement method, an apparatus, a computer program and a method for generating calibration information
JP6104416B2 (en) System and method for dynamic window setting
US10444068B2 (en) Calibration device and calibration method for an apparatus for producing an object in layers
JP5943547B2 (en) Apparatus and method for non-contact measurement
EP2435783B1 (en) Hybrid sensor
US9239234B2 (en) Work system and information processing method
JP7107974B2 (en) Systems and methods for volume of distribution and isotope identification in radioactive environments
JPWO2006013635A1 (en) Three-dimensional shape measuring method and apparatus
EP3049756B1 (en) Modeling arrangement and method and system for modeling the topography of a three-dimensional surface
JP7064404B2 (en) Optical displacement meter
JP6473206B2 (en) Three-dimensional detection apparatus and three-dimensional detection method
BRPI0907048B1 (en) method for measuring the temperature of a sheet material, and, temperature measurement system
CN204535658U (en) A kind of high-precision section section bar laser measuring apparatus
JP2002202122A (en) Calibration method for two-dimensional distance image sensor
JP6600928B1 (en) X-ray diffractometer
JP2021099221A (en) Calibration device for three-dimensional shape measurement
US20180252656A1 (en) X-ray inspection apparatus
JP2012194108A (en) Measurement object surface abnormality identification device
Rodríguez Online self-calibration for mobile vision based on laser imaging and computer algorithms
CN113983958B (en) Motion state determining method and device, electronic equipment and storage medium
JP2012013592A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine
CN113029042B (en) Dynamic measuring device and method for surface morphology of high-temperature molten metal
Schöch et al. Enhancing multisensor data fusion on light sectioning coordinate measuring systems for the in-process inspection of freeform shaped parts
JP2003148936A (en) Three-dimensional measurement method for object by light-section method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240215

R150 Certificate of patent or registration of utility model

Ref document number: 7449486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150