JP2021167013A - Welded joined body, manufacturing method therefor, and filler material - Google Patents

Welded joined body, manufacturing method therefor, and filler material Download PDF

Info

Publication number
JP2021167013A
JP2021167013A JP2020071478A JP2020071478A JP2021167013A JP 2021167013 A JP2021167013 A JP 2021167013A JP 2020071478 A JP2020071478 A JP 2020071478A JP 2020071478 A JP2020071478 A JP 2020071478A JP 2021167013 A JP2021167013 A JP 2021167013A
Authority
JP
Japan
Prior art keywords
aluminum
based metal
metal member
welding
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020071478A
Other languages
Japanese (ja)
Inventor
政男 清水
Masao Shimizu
健 尾花
Takeshi Obana
旭東 張
Xudong Zhang
章弘 佐藤
Akihiro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020071478A priority Critical patent/JP2021167013A/en
Publication of JP2021167013A publication Critical patent/JP2021167013A/en
Pending legal-status Critical Current

Links

Images

Abstract

To ensure weld strength equal to or higher than conventional weld strength by controlling production of a compound between brittle metals in a weld portion between an iron-based metal member and an aluminum-based metal member and to reduce costs by increasing the degree of freedom in welding temperature, thereby making a manufacturing yield high in comparison with a conventional manufacturing yield.SOLUTION: A welded joined body includes: an iron-based metal member 101; an aluminum-based metal member 102; and a welding metal portion 103 for joining the iron-based metal member 101 and the aluminum-based metal member 102. In the welded joined body, an aluminum-based solid solution phase 105 is formed between the welding metal portion 103 and the aluminum-based metal member 102, a region where brittle phases 104 are dispersed is formed between the welding metal portion 103 and the aluminum-based solid solution phase 105. The central portion of the welding metal portion 103 contains nickel, copper, iron and aluminum. The content of nickel is 14-71% by mass, the content of copper is 20 to 69% by mass, and the content of aluminum is 16% or less by mass.SELECTED DRAWING: Figure 1

Description

本発明は、溶接接合体、その製造方法、及び溶加材に関する。 The present invention relates to a welded joint, a method for producing the same, and a filler metal.

近年、省エネルギー化の観点から、輸送機械(例えば、自動車、鉄道車両、船舶)の構造部材の軽量化が求められている。該構造部材としては、アルミニウム合金系金属部材(以下「Al系金属部材」という。)を適用する試みがなされている。ただし、当該構造部材に要求される機械的強度やコストの観点から、全ての金属部材をAl系金属部材とすることは困難であり、従来用いられている鉄系金属部材(以下「Fe系金属部材」という。)との複合化が検討されている。 In recent years, from the viewpoint of energy saving, weight reduction of structural members of transportation machines (for example, automobiles, railroad vehicles, ships) has been required. Attempts have been made to apply an aluminum alloy-based metal member (hereinafter referred to as "Al-based metal member") as the structural member. However, from the viewpoint of mechanical strength and cost required for the structural member, it is difficult to use all metal members as Al-based metal members, and conventionally used iron-based metal members (hereinafter, "Fe-based metal"). It is being considered to be combined with "members").

しかしながら、Fe系金属部材とAl系金属部材とを直接溶接すると、溶接部(例えば、溶接ビード)に脆弱な金属間化合物が生成してしまうことが知られている。具体的には、接合界面領域に脆性金属間化合物(例えば、Al13Fe相、AlFe相)が厚く層状に生成し、十分な溶接強度が得られないという問題がある。ここで、脆弱な金属間化合物は、Intermetallic compound(IMC)と呼ばれるものである。 However, it is known that when a Fe-based metal member and an Al-based metal member are directly welded, a fragile intermetallic compound is generated in a welded portion (for example, a weld bead). Specifically, there is a problem that a brittle intermetallic compound (for example, Al 13 Fe 4 phase, Al 5 Fe 2 phase) is formed in a thick layer in the bonding interface region, and sufficient welding strength cannot be obtained. Here, the fragile intermetallic compound is called an Intermetallic compound (IMC).

特に、耐食性高強度Fe系金属部材(例えば、ステンレス鋼部材)や耐食性高強度Al系金属部材(例えば、A3000系〜A7000系のAl合金部材)は、表面に不動態被膜を形成することで高い耐食性を確保しているが、該不動態被膜は、溶接接合の際には阻害要因となる。不動態被膜(酸化被膜)を除去することを目的として、溶接時に通常より大きな熱量を投入することがしばしば行われるが、結果として、脆性金属間化合物の生成量がより増加してしまうという負の循環が生じ易い。 In particular, corrosion-resistant high-strength Fe-based metal members (for example, stainless steel members) and corrosion-resistant high-strength Al-based metal members (for example, A3000-based to A7000-based Al alloy members) are high due to the formation of a passivation film on the surface. Although corrosion resistance is ensured, the passivation film becomes an impeding factor at the time of welding and joining. For the purpose of removing the passivation film (oxide film), a larger amount of heat than usual is often applied during welding, but as a result, the amount of brittle intermetallic compound produced increases, which is a negative effect. Circulation is likely to occur.

そのような背景から、Fe系金属部材とAl系金属部材とを強固に接合するための技術が種々提案されている。 Against such a background, various techniques for firmly joining the Fe-based metal member and the Al-based metal member have been proposed.

例えば、特許文献1には、鉄系材料とアルミニウム系材料とをスポット溶接により接合する方法において、鉄系材料側の被接合面にはCu合金層を配置し、アルミニウム系材料側の被接合面にはフッ化物系フラックスを塗布して接合する技術が開示されている。 For example, in Patent Document 1, in a method of joining an iron-based material and an aluminum-based material by spot welding, a Cu alloy layer is arranged on the bonded surface on the iron-based material side, and the bonded surface on the aluminum-based material side. Discloses a technique for applying and joining a fluoride-based flux.

また、特許文献2には、異種金属である鋼材とアルミニウム合金材とを異材接合するに際し、これら両材料の間に、これら材料とは異なる金属から成る第3の材料を介在させ、上記両材料の少なくとも一方の材料と第3の材料との間で共晶溶融を生じさせて接合する技術が開示されている。 Further, in Patent Document 2, when joining different materials of a steel material and an aluminum alloy material which are dissimilar metals, a third material made of a metal different from these materials is interposed between these two materials, and the above two materials are provided. A technique for causing eutectic melting and joining between at least one of the materials and a third material is disclosed.

また、特許文献3には、アルミニウム系金属材と、少なくとも表面の一部に亜鉛を含有する鉄系金属材と、の合わせ目にレーザ光を照射して、亜鉛とアルミニウムとを溶出させ、レーザ光の照射面同士が接触する方向へローラで加圧し、鉄系金属材とアルミニウム系金属材との界面に、亜鉛をアルミニウムに固溶させた合金層を形成させ、亜鉛、アルミニウム、鉄からなる群より選択される2種以上の金属元素からなる金属間化合物を合金層内に分散させる、異種金属接合体の製造方法が開示されている。 Further, in Patent Document 3, a laser beam is irradiated at the joint between the aluminum-based metal material and the iron-based metal material containing zinc at least a part of the surface to elute zinc and aluminum, and the laser is used. Pressurized by a roller in the direction in which the light irradiation surfaces come into contact with each other, an alloy layer in which zinc is solid-dissolved in aluminum is formed at the interface between the iron-based metal material and the aluminum-based metal material, and is composed of zinc, aluminum, and iron. A method for producing a dissimilar metal conjugate in which an intermetal compound composed of two or more kinds of metal elements selected from the group is dispersed in an alloy layer is disclosed.

非特許文献1には、二枚のアルミニウム合金の薄板におけるハイブリッド溶接施工に関して、重ねすみ肉継手において、板間にギャップを設けたときの接合可能な限界ギャップ比較と継手の引張せん断荷重の関係が開示されている。この文献においては、レーザ溶接とアーク(ミグ)溶接をハイブリッド化することが記載されている。 Non-Patent Document 1 describes the relationship between the limit gap comparison that can be joined when a gap is provided between the plates and the tensile shear load of the joint in the lap fillet joint with respect to the hybrid welding work on two thin plates of aluminum alloy. It is disclosed. In this document, it is described that laser welding and arc (Mig) welding are hybridized.

特開2004−351507号公報Japanese Unexamined Patent Publication No. 2004-351507 特開2006−175502号公報Japanese Unexamined Patent Publication No. 2006-175502 特許第5165339号公報Japanese Patent No. 5165339

神戸製鋼技報/Vol.54 No.2(Aug. 2004)Kobe Steel Technical Report / Vol.54 No.2 (Aug. 2004)

特許文献1によると、従来のスポット溶接の設備を大幅に改造することなく簡易な手段により、溶接部に生成する脆弱な金属間化合物の生成を抑制して安定した高い接合強度が得られる鉄系材料とアルミニウム系材料とのスポット溶接接合方法および接合継手を提供することができる、とされている。 According to Patent Document 1, an iron system capable of obtaining stable and high bonding strength by suppressing the formation of fragile metal-to-metal compounds generated in the welded portion by a simple means without significantly modifying the conventional spot welding equipment. It is said that it is possible to provide a spot welding joining method and a joining joint between a material and an aluminum-based material.

しかしながら、特許文献1に記載の技術は、スポット溶接、すなわち、比較的薄い板同士の重ね合わせ溶接、溶接部の熱容量が比較的小さい溶接を前提としたものであり、比較的厚い部材同士の溶接、溶接部の熱容量が比較的大きい溶接に適用した場合には、溶接部の最高到達温度が上昇したり凝固速度(冷却速度)が低下したりすることで、該溶接部に粒界割れが発生したり脆性金属間化合物が生成したりすることが懸念される。また、スポット溶接は、線接合でなく点接合であるために、溶接により気密性を確保する加工をする場合には適用が困難であると考えられる。 However, the technique described in Patent Document 1 is premised on spot welding, that is, overlay welding of relatively thin plates and welding of relatively small heat capacity of the welded portion, and welding of relatively thick members. When applied to welding in which the heat capacity of the welded portion is relatively large, the maximum temperature reached of the welded portion rises or the solidification rate (cooling rate) decreases, causing grain boundary cracks in the welded portion. There is a concern that a brittle metal-to-metal compound may be formed. Further, since spot welding is not a line joining but a point joining, it is considered that it is difficult to apply it when performing a process for ensuring airtightness by welding.

一方、特許文献2によると、Alと共晶反応を生じる第3の金属材料を、鋼材とアルミニウム合金材との間に介在させて接合することにより、接合過程における金属間化合物の生成を抑制しながら、接合界面における酸化被膜を除去することができ、強固な接合が可能な異種金属の接合方法を提供することができる、とされている。 On the other hand, according to Patent Document 2, by joining a third metal material that causes a passivation reaction with Al by interposing it between the steel material and the aluminum alloy material, the formation of intermetallic compounds in the joining process is suppressed. However, it is said that the oxide film at the bonding interface can be removed, and a method for bonding dissimilar metals capable of strong bonding can be provided.

しかしながら、特許文献2に記載の技術は、接合過程における金属間化合物の生成を抑制するために、接合界面温度を共晶点以上、母材であるアルミニウム合金材の融点以下に制御する必要があり、溶接部の最高到達温度を狭い温度範囲の中で精密に制御することが要求される。言い換えると、溶接部温度の精密制御の難しさから、製造歩留まりの低下(それによるコスト増加)が懸念される。 However, in the technique described in Patent Document 2, in order to suppress the formation of intermetallic compounds in the welding process, it is necessary to control the welding interface temperature to be equal to or higher than the eutectic point and lower than the melting point of the base aluminum alloy material. , It is required to precisely control the maximum temperature reached of the welded part within a narrow temperature range. In other words, due to the difficulty of precise control of the weld temperature, there is a concern that the manufacturing yield will decrease (and thus the cost will increase).

また、特許文献3によると、金属間化合物を積極的に利用して、せん断強度及び剥離強度の高い接合部の備える異種金属の接合体を提供することができる、とされている。 Further, according to Patent Document 3, it is possible to provide a bonded body of dissimilar metals provided with a bonded portion having high shear strength and peel strength by positively utilizing an intermetallic compound.

しかしながら、特許文献3に記載の接合体は、亜鉛めっき鋼板に限定しており、亜鉛めっきなしのFe系金属部材を用いることは困難と考えられる。また、亜鉛めっきが10μmのオーダーであり薄いため、溶接継手は重ね継手に限られている。 However, the bonded body described in Patent Document 3 is limited to a galvanized steel sheet, and it is considered difficult to use an Fe-based metal member without zinc plating. Further, since the zinc plating is thin on the order of 10 μm, the welded joint is limited to the lap joint.

本発明の目的は、鉄系金属部材とアルミニウム系金属部材との溶接接合体(溶接継手)において、溶接部における脆性金属間化合物の生成を制御して従来と同等以上の溶接強度を確保し、かつ、溶接温度の自由度を高めて従来よりも製造歩留まりを高くし低コスト化することにある。 An object of the present invention is to control the formation of a brittle metal-to-metal compound in a welded portion in a welded joint (welded joint) between an iron-based metal member and an aluminum-based metal member to secure welding strength equal to or higher than that of the conventional one. At the same time, the degree of freedom in welding temperature is increased to increase the manufacturing yield and reduce the cost as compared with the conventional case.

本発明の溶接接合体は、鉄系金属部材と、アルミニウム系金属部材と、鉄系金属部材とアルミニウム系金属部材とを接合する溶着金属部と、を含み、溶着金属部とアルミニウム系金属部材との間には、アルミニウム系固溶体相が形成され、溶着金属部とアルミニウム系固溶体相との間には、脆化相が分散された領域が形成され、溶着金属部の中心部は、ニッケル、銅、鉄及びアルミニウムを含有し、ニッケルの含有量が14〜71質量%であり、銅の含有量が20〜69質量%であり、アルミニウムの含有量が16質量%以下である。 The welded joint of the present invention includes an iron-based metal member, an aluminum-based metal member, and a welded metal portion for joining the iron-based metal member and the aluminum-based metal member, and the welded metal portion and the aluminum-based metal member. An aluminum-based solid solution phase is formed between them, a region in which a brittle phase is dispersed is formed between the weld metal portion and the aluminum-based solid solution phase, and the central portion of the weld metal portion is made of nickel or copper. , Iron and aluminum, the nickel content is 14-71% by mass, the copper content is 20-69% by mass, and the aluminum content is 16% by mass or less.

本発明によれば、鉄系金属部材とアルミニウム系金属部材との溶接接合体(溶接継手)において、溶接部における脆性金属間化合物の生成を制御して従来と同等以上の溶接強度を確保し、かつ、溶接温度の自由度を高めて従来よりも製造歩留まりを高くし低コスト化することができる。 According to the present invention, in a welded joint (welded joint) between an iron-based metal member and an aluminum-based metal member, the formation of brittle metal-to-metal compounds in the welded portion is controlled to secure welding strength equal to or higher than the conventional one. In addition, the degree of freedom in welding temperature can be increased to increase the manufacturing yield and reduce the cost as compared with the conventional case.

溶接実験における溶接後の溶接部を示す模式断面図である。It is a schematic cross-sectional view which shows the weld part after welding in a welding experiment. 重ね隅肉溶接により作製した溶接接合体の溶着金属部の組成分析位置を示す模式断面図である。It is a schematic cross-sectional view which shows the composition analysis position of the weld metal part of the welded joint produced by lap fillet welding. 隅肉溶接により作製した溶接接合体の溶着金属部の組成分析位置を示す模式断面図である。It is a schematic cross-sectional view which shows the composition analysis position of the weld metal part of the welded joint produced by fillet welding. 実施例1の溶接実験において形成した溶接部を示す断面画像である。6 is a cross-sectional image showing a welded portion formed in the welding experiment of Example 1. 図4の溶接部の一部を拡大したSEM画像である。It is an enlarged SEM image of a part of the welded part of FIG. 実施例の溶接方法を示すフロー図である。It is a flow chart which shows the welding method of an Example.

本発明は、金属部材の溶接技術に関し、特に、Fe系金属部材とAl系金属部材とを強固に溶接した接合体に関するものである。 The present invention relates to a welding technique for metal members, and more particularly to a bonded body in which an Fe-based metal member and an Al-based metal member are firmly welded.

(本発明の基本思想)
本発明者は、溶加材(溶接材料)を用いたFe系金属/Al系金属の溶接接合において、溶接部での望まない金属間化合物の連続形成を抑制し、かつ、溶接温度の自由度を高めるためには、被溶着金属部材金属(特に、Al系金属よりも高融点のFe系金属)との相溶性が高い元素をベースとする合金が、溶接材料として望ましいと考えた。
(Basic idea of the present invention)
The present inventor suppresses the continuous formation of undesired metal-to-metal compounds at the weld in the welded joint of Fe-based metal / Al-based metal using a filler metal (welding material), and has a degree of freedom in welding temperature. It was considered that an alloy based on an element having high compatibility with the metal to be welded metal member (particularly, an Fe-based metal having a higher melting point than the Al-based metal) is desirable as a welding material.

具体的には、溶加材として、Fe系金属との相溶性が高くなるように、NiとCuとを含む合金(以下「Ni−Cu合金」という。)を選定した。これにより、Alは、溶加材のNi及びCu並びに被溶着金属のFeの三元素の反応により生成されたAl−Fe、Al−Cu及びAl−Niの金属間化合物がAl系金属に分散しやすくなる。言い換えると、異なるAl−Fe、Al−Cu及びAl−Niの金属間化合物の生成により、金属間化合物の連続形成が生じにくくなる。なお、溶加材としては、溶接棒、溶接ワイヤ等が用いられる。 Specifically, as a filler material, an alloy containing Ni and Cu (hereinafter referred to as "Ni-Cu alloy") was selected so as to have high compatibility with Fe-based metals. As a result, in Al, the metal-metal compounds of Al—Fe, Al—Cu and Al—Ni produced by the reaction of the three elements of Ni and Cu of the filler metal and Fe of the metal to be welded are dispersed in the Al-based metal. It will be easier. In other words, the formation of different intermetallic compounds of Al—Fe, Al—Cu and Al—Ni makes it difficult for continuous formation of intermetallic compounds to occur. As the filler material, a welding rod, a welding wire, or the like is used.

また、本発明は、被溶着金属部材のAlが拡散する溶着金属部の中心部のAl含有量の制御によりなされたものである。本発明は、当該技術的思想に基づいて鋭意調査・検討して完成されたものである。 Further, the present invention has been made by controlling the Al content in the central portion of the welded metal portion in which Al of the metal to be welded member is diffused. The present invention has been completed by diligent research and examination based on the technical idea.

以下、本発明の実施形態について、図面を参照しながら具体的に説明する。なお、本発明は、ここで取り上げた実施形態に限定されることはなく、本発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。また、同義の部位には同じ符号を付して重複する説明を省略することがある。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. The present invention is not limited to the embodiments taken up here, and can be appropriately combined and improved without departing from the technical idea of the present invention. In addition, the same reference numerals may be given to parts having the same meaning, and duplicate description may be omitted.

[溶接実験]
(実施例1〜7及び比較例1〜6の試料の作製)
試料は、Fe系金属部材とAl系金属部材とを溶加材により接合した溶接接合体(以下「Fe系金属/Al系金属溶接接合体」とも呼ぶ。)である。
[Welding experiment]
(Preparation of samples of Examples 1 to 7 and Comparative Examples 1 to 6)
The sample is a welded joint in which an Fe-based metal member and an Al-based metal member are joined by a filler metal (hereinafter, also referred to as "Fe-based metal / Al-based metal welded joint").

溶加材としては、主にNi−Cu合金製のワイヤを用いた。ワイヤの直径は、1.2mmである。 As the filler material, a wire made of a Ni—Cu alloy was mainly used. The diameter of the wire is 1.2 mm.

被溶着金属部材となるFe系金属部材としては、主に軟鋼板(幅100mm×長さ200mm×厚さ2mm)を用いた。Al系金属部材としては、Al合金板(A6061又はA7N01、幅100mm×長さ200mm×厚さ3mm)を用いた。 As the Fe-based metal member to be the metal member to be welded, a mild steel plate (width 100 mm × length 200 mm × thickness 2 mm) was mainly used. As the Al-based metal member, an Al alloy plate (A6061 or A7N01, width 100 mm × length 200 mm × thickness 3 mm) was used.

なお、Fe系金属部材は、その材質に関して、実施例に制限されるものはなく、例えば、炭素鋼、高張力鋼、ステンレス鋼などを用いることができる。 The material of the Fe-based metal member is not limited to the examples, and for example, carbon steel, high-strength steel, stainless steel, and the like can be used.

実施例のFe系金属部材としては、めっきを施したものも用いている。具体的には、溶融亜鉛めっき(GI)及び合金化溶融亜鉛めっき(GA)である。このほか、アルミニウム又はアルミニウム合金のめっきを施したもの等であってもよい。めっきは、施していても施していなくても、強固な溶接が可能である。 As the Fe-based metal member of the example, a plated one is also used. Specifically, it is hot-dip galvanizing (GI) and alloyed hot-dip galvanizing (GA). In addition, it may be plated with aluminum or an aluminum alloy. With or without plating, strong welding is possible.

溶接の方式は、ワイヤを用いた重ね隅肉溶接である。 The welding method is lap fillet welding using wires.

図1は、溶接実験における溶接後の溶接部の断面を模式的に示したものである。 FIG. 1 schematically shows a cross section of a welded portion after welding in a welding experiment.

本図においては、上板がFe系金属部材101であり、下板がAl系金属部材102である。 In this figure, the upper plate is the Fe-based metal member 101, and the lower plate is the Al-based metal member 102.

Fe系金属部材101とAl系金属部材102との溶接部は、溶着金属部103、脆化相104及びAl固溶体相105(アルミニウム系固溶体相)を含む。溶着金属部103は、溶加材が溶融凝固した部分であり、Fe及びAlを含むCu−Ni合金で形成された相である。脆化相104は、Al−Fe合金、Al−Cu合金又はAl−Ni合金で形成されている。Al固溶体相105は、少なくともFe及びCuを含む。 The welded portion between the Fe-based metal member 101 and the Al-based metal member 102 includes a welded metal portion 103, a brittle phase 104, and an Al solid solution phase 105 (aluminum solid solution phase). The weld metal portion 103 is a portion where the filler metal is melt-solidified, and is a phase formed of a Cu—Ni alloy containing Fe and Al. The embrittlement phase 104 is made of an Al—Fe alloy, an Al—Cu alloy, or an Al—Ni alloy. The Al solid solution phase 105 contains at least Fe and Cu.

溶接方法は、溶加材を使用する方法があれば、特に限定されず、直流MIG溶接、直流パルスMIG溶接、交流MIG溶接、交流パルスMIG溶接、短絡移行型MIG溶接などを用いても差し支えない。低入熱溶接プロセスとしては、コールドメタルトランスファー(CMT)がある。CMTは、MIGと異なり、ワイヤが溶融池に達すると、アークが消え、引き戻されるプロセスである。MIGとCMTとをミックスした電流電圧波形を用いても差し支えない。 The welding method is not particularly limited as long as there is a method using a filler metal, and DC MIG welding, DC pulse MIG welding, AC MIG welding, AC pulse MIG welding, short-circuit transition type MIG welding, etc. may be used. .. A low heat input welding process includes cold metal transfer (CMT). CMT, unlike MIG, is a process in which the arc disappears and is pulled back when the wire reaches the molten pool. A current-voltage waveform that is a mixture of MIG and CMT may be used.

今回は、MIGとCMTとをミックスした溶接方法を採用した。溶接条件は、部材の厚さにより変動するが、今回は、下板の厚さが3mmであるため、電流を100〜150A、ワイヤ送給速度を5.6m/分程度、溶接速度を100cm/分とした。シールドガスは、アルゴンガスであり、その供給速度は、20L/分である。
溶接機はFronius社製のTransPuls Synergic 5000 CMTを、ワイヤ供給機はFronius社製のVR 7000 CMTを使用した。ここで、溶接速度とは、溶接機により溶接する部位をワイヤが通過する速度をいう。
This time, we adopted a welding method that mixes MIG and CMT. Welding conditions vary depending on the thickness of the member, but this time, since the thickness of the lower plate is 3 mm, the current is 100 to 150 A, the wire feeding speed is about 5.6 m / min, and the welding speed is 100 cm / min. It was a minute. The shield gas is argon gas, and its supply rate is 20 L / min.
The welding machine used was a TransPuls Synergic 5000 CMT manufactured by Fronius, and the wire feeder used was a VR 7000 CMT manufactured by Fronius. Here, the welding speed means the speed at which the wire passes through the portion to be welded by the welding machine.

(Fe系金属/Al系金属溶接接合体の性状調査)
(1)溶着金属部の微細組織観察および組成分析
実施例1〜7及び比較例1〜6の試料であるFe系金属/Al系金属溶接接合体から、微細組織観察用試験片を採取した。該試験片について、光学顕微鏡及び走査型電子顕微鏡−エネルギー分散型X線分析装置(SEM−EDX)を用いて、溶着金属部断面の微細組織観察及び溶着金属部の組成分析を行った。
(Investigation of properties of Fe-based metal / Al-based metal welded joints)
(1) Microstructure Observation and Composition Analysis of Welded Metal Part A test piece for microstructure observation was collected from Fe-based metal / Al-based metal welded joints, which are samples of Examples 1 to 7 and Comparative Examples 1 to 6. Using an optical microscope and a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDX), the test piece was observed for microstructure of the cross section of the welded metal portion and the composition of the welded metal portion was analyzed.

溶着金属部の組成分析は、溶着金属部の中心部の1箇所について、50μm角の領域で面分析を行い、各成分の含有量を測定した。ここで、面分析の対象とした領域は、次のように定めた。 In the composition analysis of the welded metal portion, a surface analysis was performed on one location in the center of the welded metal portion in a region of 50 μm square, and the content of each component was measured. Here, the areas targeted for surface analysis are defined as follows.

図2は、重ね隅肉溶接により作製した溶接接合体の溶着金属部の組成分析位置を示す模式断面図である。本図の構成は、図1と同様であるため、各部の説明は省略する。 FIG. 2 is a schematic cross-sectional view showing a composition analysis position of a welded metal portion of a welded joint produced by lap fillet welding. Since the configuration of this figure is the same as that of FIG. 1, the description of each part will be omitted.

図2に示すように、Fe系金属部材101の断面における厚さ方向の中央部の位置(厚さtを示す線分の中点の位置)において、溶着金属部103の厚さをFe系金属部材101の長手方向について測定し、溶着金属部103におけるその厚さを示す線分の中点を中心として、面分析の対象とする領域206を定めた。よって、領域206の中心である中点は、50μm角の正方形領域の重心と一致する。なお、領域206の中心を含む線分については、Fe系金属部材101の断面における厚さ方向の中央部からFe系金属部材101の長手方向に溶着金属部103の内部に引いた延長線と重なると言い換えることもできる。更に言い換えると、当該長手方向に溶着金属部103の内部に引いた溶着金属部103の厚さを示す線分である。 As shown in FIG. 2, at the position of the central portion in the thickness direction (the position of the midpoint of the line segment indicating the thickness t) in the cross section of the Fe-based metal member 101, the thickness of the weld metal portion 103 is set to the Fe-based metal. The longitudinal direction of the member 101 was measured, and the region 206 to be surface-analyzed was determined centering on the midpoint of the line segment indicating the thickness of the weld metal portion 103. Therefore, the midpoint, which is the center of the region 206, coincides with the center of gravity of the square region of 50 μm square. The line segment including the center of the region 206 overlaps with the extension line drawn from the central portion in the thickness direction of the cross section of the Fe-based metal member 101 to the inside of the welded metal portion 103 in the longitudinal direction of the Fe-based metal member 101. In other words, In other words, it is a line segment showing the thickness of the welded metal portion 103 drawn inside the welded metal portion 103 in the longitudinal direction.

よって、重ね隅肉溶接の場合、溶着金属部の中心部は、図2における領域206である。 Therefore, in the case of lap fillet welding, the central portion of the weld metal portion is the region 206 in FIG.

なお、上記の組成分析においては試料として用いていないが、隅肉溶接により作製した溶接接合体を試料とした場合は、面分析の対象とする領域を次のように定めることが望ましい。 Although it is not used as a sample in the above composition analysis, when a welded joint produced by fillet welding is used as a sample, it is desirable to determine the region to be surface-analyzed as follows.

図3は、隅肉溶接により作製した溶接接合体の溶着金属部の組成分析位置を示す模式断面図である。 FIG. 3 is a schematic cross-sectional view showing the composition analysis position of the welded metal portion of the welded joint produced by fillet welding.

本図においては、Fe系金属部材301の厚さが溶着金属部303に比べて十分に大きく、図1及び2とは異なり、Fe系金属部材301の上面部に溶着金属部303が達しない構成となっている。このため、面分析の対象とする領域306の中心は、のど厚を示す線分307の中点と一致するように定めた。ここで、「のど厚」は、断面図において、溶着金属部の表面を両端部の2点を結ぶ直線に対し、溶着金属部の最奥部(三角形の他の頂点)から垂線を引いた場合の垂線(線分)の長さである。 In this figure, the thickness of the Fe-based metal member 301 is sufficiently larger than that of the welded metal portion 303, and unlike FIGS. 1 and 2, the welded metal portion 303 does not reach the upper surface portion of the Fe-based metal member 301. It has become. Therefore, the center of the region 306 to be the target of the surface analysis is determined to coincide with the midpoint of the line segment 307 indicating the throat thickness. Here, the "throat thickness" is the case where a perpendicular line is drawn from the innermost part (the other apex of the triangle) of the welded metal part with respect to the straight line connecting the two points at both ends on the surface of the welded metal part in the cross-sectional view. It is the length of the perpendicular line (line segment) of.

本図においては、他の構成は、図1と同様であり、溶接接合体は、Al系金属部材302、脆化相304及びAl固溶体相305を含む。 In this figure, the other configurations are the same as those in FIG. 1, and the welded joint includes an Al-based metal member 302, an embrittlement phase 304, and an Al solid solution phase 305.

よって、隅肉溶接の場合、溶着金属部の中心部である領域306の中心は、図3における線分307の中点と定義する。この中点は、50μm角の正方形領域の重心と一致する。 Therefore, in the case of fillet welding, the center of the region 306, which is the central portion of the weld metal portion, is defined as the midpoint of the line segment 307 in FIG. This midpoint coincides with the center of gravity of a 50 μm square area.

(2)溶接強度の測定
実施例1〜7及び比較例1〜6のFe系金属/Al系金属溶接接合体から引張試験用試験片を採取した。該試験片について、万能材料試験機を用いて引張せん断試験を行った。溶接部の引張強さ(溶接強度)は、非特許文献1に記載の二枚のアルミニウム合金の薄板の板間にギャップを設けないでYAG−ミグハイブリッド溶接による重ね隅肉溶接を施した試験片を用いて引張せん断破断荷重を測定した結果である400N/mm(10000N/25mm幅)を基準として、この値に対する比率で評価し、50%以上(200N/mm以上)を「合格」、50%未満を「不合格」と判定した。
(2) Measurement of Weld Strength Test pieces for tensile test were collected from Fe-based metal / Al-based metal welded joints of Examples 1 to 7 and Comparative Examples 1 to 6. The test piece was subjected to a tensile shear test using a universal material testing machine. The tensile strength (welding strength) of the welded portion is a test piece subjected to lap fillet welding by YAG-Mig hybrid welding without providing a gap between two thin aluminum alloy plates described in Non-Patent Document 1. Based on 400 N / mm (10000 N / 25 mm width), which is the result of measuring the tensile shear breaking load using Less than was judged as "failed".

表1は、実施例1〜7及び比較例1〜6における溶加材の組成及び金属部材並びに溶着金属部の中心部の組成及び溶接強度を示したものである。 Table 1 shows the composition of the filler metal, the composition of the metal member, and the composition of the central portion of the welded metal portion and the welding strength in Examples 1 to 7 and Comparative Examples 1 to 6.

Figure 2021167013
Figure 2021167013

図4は、実施例1の溶接実験において形成した溶接部を示す断面画像である。 FIG. 4 is a cross-sectional image showing a welded portion formed in the welding experiment of Example 1.

本図は、図1に対応する部分の構成を示している。 This figure shows the configuration of the part corresponding to FIG.

図4においては、Fe系金属部材401とAl系金属部材402とが溶着金属部403を介して接合されている。Fe系金属部材401における溶着金属部403に隣接する領域には、図1には示していないが、Fe系金属熱影響部406が形成されている。また、Al系金属部材402における溶着金属部403に隣接する領域には、Al固溶体相405(溶接中に母材が溶融凝固した部分)が形成されている。これは、溶加材成分の一部がFe系金属熱影響部406及びAl固溶体相405に拡散したことに起因すると考えられる。 In FIG. 4, the Fe-based metal member 401 and the Al-based metal member 402 are joined via the welded metal portion 403. Although not shown in FIG. 1, the Fe-based metal heat-affected zone 406 is formed in the region of the Fe-based metal member 401 adjacent to the welded metal portion 403. Further, an Al solid solution phase 405 (a portion where the base metal is melt-solidified during welding) is formed in a region of the Al-based metal member 402 adjacent to the welded metal portion 403. It is considered that this is because a part of the filler component is diffused into the Fe-based metal heat-affected zone 406 and the Al solid solution phase 405.

領域408は、更に拡大して観察する部分である。 Region 408 is a portion to be further magnified and observed.

図5は、図4の溶接部の一部(領域408)を拡大したSEM画像である。 FIG. 5 is an enlarged SEM image of a part (region 408) of the welded portion of FIG.

図5に示すように、溶着金属部503とAl系金属部材(図4の符号402)との間には、Al固溶体相505に脆化相504が分散された領域が存在する。望ましくない連続形成した脆化相は、領域408以外も含め、観察されなかった。 As shown in FIG. 5, there is a region in which the embrittlement phase 504 is dispersed in the Al solid solution phase 505 between the welded metal portion 503 and the Al-based metal member (reference numeral 402 in FIG. 4). Undesirably continuously formed embrittlement phases were not observed, including areas other than region 408.

なお、このような連続形成した脆化相については、他の実施例においても観察されなかった。 The continuously formed embrittlement phase was not observed in other examples.

このように、実施例の試験片においては、脆化相が不連続であるため、強度が高いと考えられる。 As described above, in the test piece of the example, the embrittlement phase is discontinuous, so that it is considered that the strength is high.

なお、図4から、脆化相が分散された領域の厚さは、おおよそ100〜500μmであると考えられる。 From FIG. 4, it is considered that the thickness of the region where the embrittled phase is dispersed is approximately 100 to 500 μm.

また、図5から、脆化相504は、その断面の面積の合計値に対して、当該断面の短軸の長さが0.1〜2.0μmのものがその断面の面積基準で90%以上であると考えられる。 Further, from FIG. 5, the embrittlement phase 504 has a length of 0.1 to 2.0 μm on the minor axis of the cross section with respect to the total value of the area of the cross section, which is 90% based on the area of the cross section. It is considered that this is the above.

Al固溶体相に脆化相が分散された領域を更に観察した結果、脆化相は、粒子状であり、その寸法(平均粒径)は、Al系金属部材側に向かうほど小さくなっていることがわかった。言い換えると、脆化相の寸法(平均粒径)は、溶着金属部側に向かうほど大きくなっている。ここで、平均粒径は、断面において観察される粒子の寸法から算出されるものであり、短軸の長さで定義してもよいし、断面の面積基準で平均値を算出してもよい。個数平均とすると、微小な粒子の寸法の寄与が大きくなるからである。 As a result of further observing the region where the embrittled phase is dispersed in the Al solid solution phase, the embrittled phase is in the form of particles, and its size (average particle size) becomes smaller toward the Al-based metal member side. I understood. In other words, the size of the embrittled phase (average particle size) increases toward the weld metal portion. Here, the average particle size is calculated from the dimensions of the particles observed in the cross section, and may be defined by the length of the minor axis, or the average value may be calculated based on the area of the cross section. .. This is because the contribution of the size of the fine particles becomes large when the number is averaged.

なお、このような脆化相の分布は、図1等においても、脆化相104として模式的に表している。 The distribution of such an embrittled phase is schematically represented as the embrittled phase 104 also in FIG. 1 and the like.

表1に示すように、実施例1〜7においては、溶着金属部の中心部である領域206(図2)のアルミニウム含有量は、16質量%以下である。 As shown in Table 1, in Examples 1 to 7, the aluminum content of the region 206 (FIG. 2), which is the central portion of the weld metal portion, is 16% by mass or less.

また、実施例1〜7の試験片についての引張試験の結果である溶接強度はいずれも合格であり、実施例1〜7の試験片は十分な溶接強度を有していることがわかる。 Further, the welding strengths as a result of the tensile test for the test pieces of Examples 1 to 7 are all acceptable, and it can be seen that the test pieces of Examples 1 to 7 have sufficient welding strength.

また、実施例1〜7において使用した溶加材(ワイヤ)は、ニッケルの含有量が30〜80質量%の範囲内のNi−Cu合金である。 The filler metal (wire) used in Examples 1 to 7 is a Ni—Cu alloy having a nickel content in the range of 30 to 80% by mass.

本表に示すとおり、溶着金属部の中心部は、ニッケル、銅、鉄及びアルミニウムを含有し、ニッケルの含有量が14〜71質量%であり、銅の含有量が20〜69質量%であり、アルミニウムの含有量が16質量%以下である。 As shown in this table, the central part of the weld metal part contains nickel, copper, iron and aluminum, the nickel content is 14 to 71% by mass, and the copper content is 20 to 69% by mass. , The content of aluminum is 16% by mass or less.

また、溶着金属部の中心部は、マンガン、シリコン、チタン、スズ、亜鉛及びマグネシウムからなる群より選択される一種類以上の元素を更に含有し、これらの元素の含有量が合計で5質量%以下である。なお、これらの元素は、溶加材又は金属部材に由来するものである。よって、溶加材又は金属部材によっては、この含有量の範囲から外れる場合もある。 The central portion of the weld metal portion further contains one or more elements selected from the group consisting of manganese, silicon, titanium, tin, zinc and magnesium, and the total content of these elements is 5% by mass. It is as follows. In addition, these elements are derived from a filler material or a metal member. Therefore, depending on the filler material or the metal member, the content may be out of the range.

溶加材は、鉄、マンガン、シリコン、チタン、アルミニウム及び炭素からなる群より選択される一種類以上の元素を更に含有し、これらの元素の含有量が合計で5質量%以下である。 The filler material further contains one or more elements selected from the group consisting of iron, manganese, silicon, titanium, aluminum and carbon, and the total content of these elements is 5% by mass or less.

前述したように、溶接実験においては、厚さ2mmの被溶着金属部材の重ね隅肉溶接を行っており、特段の温度制御を行っていない。これは、溶接温度に特段の制約がないことを意味する。 As described above, in the welding experiment, the laminating fillet welding of the metal member to be welded with a thickness of 2 mm is performed, and no special temperature control is performed. This means that there are no particular restrictions on the welding temperature.

よって、実施例1〜7によれば、従来技術よりも製造歩留まりの高い(すなわち低コストの)Fe系金属/Al系金属の溶接接合体を提供することができる。 Therefore, according to Examples 1 to 7, it is possible to provide a welded joint of Fe-based metal / Al-based metal having a higher manufacturing yield (that is, lower cost) than the prior art.

これらに対し、溶着金属部の中心部のアルミニウム含有量が16質量%を超える比較例1の試験片は、目視観察の結果から、溶着金属部に局部的に割れが存在することが確認された。比較例1の試験片は、引張試験においては、溶接強度が不合格であった。これは、ニッケル及び銅が主成分となる溶着金属部におけるアルミニウム含有量が16質量%を超えると、溶着金属部の延性(柔軟性)が低くなるためである。比較例1においては、溶接条件は、電流が150A、ワイヤ送給速度が5.6m/分、溶接速度が70cm/分であり、実施例に比べ、溶接速度が遅いため、入熱量が大きかったことから、溶着金属部にアルミニウムが多量に混入したものと考えられる。 On the other hand, in the test piece of Comparative Example 1 in which the aluminum content in the central portion of the weld metal portion exceeded 16% by mass, it was confirmed from the results of visual observation that cracks were locally present in the weld metal portion. .. The test piece of Comparative Example 1 failed the welding strength in the tensile test. This is because when the aluminum content in the weld metal portion containing nickel and copper as main components exceeds 16% by mass, the ductility (flexibility) of the weld metal portion decreases. In Comparative Example 1, the welding conditions were a current of 150 A, a wire feeding speed of 5.6 m / min, and a welding speed of 70 cm / min. Since the welding speed was slower than that of the example, the amount of heat input was large. From this, it is considered that a large amount of aluminum was mixed in the weld metal part.

実施例1〜7及び比較例1の結果から、溶接速度は、80〜120cm/分が望ましく、90〜110cm/分が更に望ましい。 From the results of Examples 1 to 7 and Comparative Example 1, the welding speed is preferably 80 to 120 cm / min, and more preferably 90 to 110 cm / min.

まとめると、鉄系金属部材とアルミニウム系金属部材とを溶加材を用いて溶接をする工程(溶接工程)は必須である。これに加え、溶接の前に、鉄系金属部材とアルミニウム系金属部材とが、少なくとも部分的には接するように設置する工程(金属部材設置工程)があることが望ましい。なお、溶接対象部位の全ての範囲に隙間があっても、溶加材による溶接が可能な程度の隙間であって溶接後の強度が所望の値以上であれば、問題はない。 In summary, the process of welding the iron-based metal member and the aluminum-based metal member using the filler metal (welding process) is indispensable. In addition to this, it is desirable that there is a step (metal member installation step) in which the iron-based metal member and the aluminum-based metal member are installed so as to be in contact with each other at least partially before welding. Even if there is a gap in the entire range of the welding target portion, there is no problem as long as the gap is such that welding with the filler metal is possible and the strength after welding is equal to or higher than the desired value.

図6は、実施例の溶接方法を示すフロー図である。 FIG. 6 is a flow chart showing a welding method of the embodiment.

本図に示すように、実施例の溶接方法は、金属部材設置工程(S110)と、溶接工程(S120)と、を含む。 As shown in this figure, the welding method of the embodiment includes a metal member installation step (S110) and a welding step (S120).

また、比較例2〜6において使用した溶加材(ワイヤ)は、ニッケルの含有量が30〜80質量%の範囲外であり、実施例1〜7において使用した溶加材とは組成が異なっている。比較例2〜6の試験片においては、SEM観察により、溶着金属部とAl系金属部材との界面領域に脆化相の連続形成が確認された。また、比較例2〜6の試験片は、引張試験において溶接強度が不合格であった。 Further, the fillering material (wire) used in Comparative Examples 2 to 6 has a nickel content outside the range of 30 to 80% by mass, and has a composition different from that of the fillering material used in Examples 1 to 7. ing. In the test pieces of Comparative Examples 2 to 6, continuous formation of the embrittlement phase was confirmed in the interface region between the welded metal portion and the Al-based metal member by SEM observation. Further, the test pieces of Comparative Examples 2 to 6 failed the welding strength in the tensile test.

実施例1〜7においては、溶着金属部とAl系金属部材との界面領域に生じる脆化相が分散して形成されるため、望ましい結果が得られたと考えられる。 In Examples 1 to 7, it is considered that the desired result was obtained because the embrittled phase generated in the interface region between the welded metal portion and the Al-based metal member was dispersed and formed.

なお、実施例1〜7及び比較例1の結果から、溶着金属部の中心部のアルミニウム含有量は、15質量%以下が望ましく、14.6質量%以下が更に望ましい。 From the results of Examples 1 to 7 and Comparative Example 1, the aluminum content in the central portion of the weld metal portion is preferably 15% by mass or less, and more preferably 14.6% by mass or less.

このほか、比較のため、アルミニウム合金製の溶加材(ワイヤ)であるA4043WY(Si:6.0質量%)を用いてMIG溶接を行った。その結果、引張試験において溶接強度が不合格であった。さらに、この試験片について、詳細にSEM観察した結果、溶着金属部とFe系金属部材との界面領域の脆化相は、厚さが1〜15μmとばらつきが大きく、かつ、連続形成になっていることが確認された。温度を制御することは困難であった。 In addition, for comparison, MIG welding was performed using A4043WY (Si: 6.0% by mass), which is a filler metal (wire) made of an aluminum alloy. As a result, the welding strength failed in the tensile test. Further, as a result of detailed SEM observation of this test piece, the embrittled phase in the interface region between the welded metal portion and the Fe-based metal member has a large variation of 1 to 15 μm in thickness and is continuously formed. It was confirmed that there was. It was difficult to control the temperature.

実施例の溶接方法を代えて、FSW(摩擦攪拌接合)を用いて接合を行った。ここで、FSWは、先端に突起の円筒状の工具を回転させながら母材に押し付けることにより、摩擦熱を発生させ、接合部周辺を塑性流動させて接合する方法である。その結果、引張試験において溶接強度が不合格であった。さらに、詳細にSEM観察した結果、接合部とFe系金属部材との界面領域の脆化相は、厚さが5〜20μmとばらつきが大きく、かつ、連続形成になっていることが確認された。摩擦熱を制御することは困難であった。 Instead of the welding method of the example, welding was performed using FSW (friction stir welding). Here, FSW is a method of generating frictional heat by pressing a cylindrical tool having a protrusion on the tip while rotating it against the base material, and causing plastic flow around the joint portion to join the joint. As a result, the welding strength failed in the tensile test. Further, as a result of detailed SEM observation, it was confirmed that the embrittled phase in the interface region between the joint portion and the Fe-based metal member has a large variation of 5 to 20 μm in thickness and is continuously formed. .. It was difficult to control the frictional heat.

上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。 The above-described embodiments and examples have been described for the purpose of assisting the understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. That is, the present invention can delete, replace a part of the configurations of the embodiments and examples of the present specification with other configurations, and add other configurations.

101、301、401:Fe系金属部材、102、302、402:Al系金属部材、103、303、403、503:溶着金属部、104、304、504:脆化相、105、305、405、505:Al固溶体相、206、306、408:領域、307:線分、406:Fe系金属熱影響部。 101, 301, 401: Fe-based metal member, 102, 302, 402: Al-based metal member, 103, 303, 403, 503: Welded metal part, 104, 304, 504: Embrittled phase, 105, 305, 405, 505: Al solid solution phase, 206, 306, 408: region, 307: line segment, 406: Fe-based metal heat-affected zone.

Claims (10)

鉄系金属部材と、
アルミニウム系金属部材と、
前記鉄系金属部材と前記アルミニウム系金属部材とを接合する溶着金属部と、を含み、
前記溶着金属部と前記アルミニウム系金属部材との間には、アルミニウム系固溶体相が形成され、
前記溶着金属部と前記アルミニウム系固溶体相との間には、脆化相が分散された領域が形成され、
前記溶着金属部の中心部は、ニッケル、銅、鉄及びアルミニウムを含有し、ニッケルの含有量が14〜71質量%であり、銅の含有量が20〜69質量%であり、アルミニウムの含有量が16質量%以下である、溶接接合体。
Iron-based metal members and
Aluminum-based metal parts and
A welded metal portion for joining the iron-based metal member and the aluminum-based metal member is included.
An aluminum-based solid solution phase is formed between the welded metal portion and the aluminum-based metal member.
A region in which the embrittlement phase is dispersed is formed between the weld metal portion and the aluminum-based solid solution phase.
The central portion of the weld metal portion contains nickel, copper, iron and aluminum, the nickel content is 14 to 71% by mass, the copper content is 20 to 69% by mass, and the aluminum content. Is 16% by mass or less, a welded joint.
前記溶着金属部の前記中心部は、マンガン、シリコン、チタン、スズ、亜鉛及びマグネシウムからなる群より選択される一種類以上の元素を更に含有し、これらの元素の含有量が合計で5質量%以下である、請求項1記載の溶接接合体。 The central portion of the weld metal portion further contains one or more elements selected from the group consisting of manganese, silicon, titanium, tin, zinc and magnesium, and the total content of these elements is 5% by mass. The welded joint according to claim 1, which is as follows. 前記鉄系金属部材と前記アルミニウム系金属部材とが溶加材を用いて溶接して接合された構成を有し、
前記溶加材は、ニッケル及び銅を含む合金であって、ニッケルの含有量が30〜80質量%である、請求項1記載の溶接接合体。
It has a structure in which the iron-based metal member and the aluminum-based metal member are welded and joined using a filler metal.
The welded joint according to claim 1, wherein the filler metal is an alloy containing nickel and copper and has a nickel content of 30 to 80% by mass.
前記溶加材は、鉄、マンガン、シリコン、チタン、アルミニウム及び炭素からなる群より選択される一種類以上の元素を更に含有し、これらの元素の含有量が合計で5質量%以下である、請求項3記載の溶接接合体。 The filler material further contains one or more elements selected from the group consisting of iron, manganese, silicon, titanium, aluminum and carbon, and the total content of these elements is 5% by mass or less. The welded joint according to claim 3. 前記脆化相の粒子の平均粒径は、前記溶着金属部側に向かうほど大きい、請求項1記載の溶接接合体。 The welded joint according to claim 1, wherein the average particle size of the particles in the embrittlement phase is larger toward the weld metal portion side. 鉄系金属部材とアルミニウム系金属部材とを溶加材を用いて溶接をする工程を含み、
前記溶加材は、ニッケル及び銅を含む合金であって、ニッケルの含有量が30〜80質量%であり、
前記鉄系金属部材と前記アルミニウム系金属部材との間に形成される溶着金属部の中心部は、アルミニウムの含有量が16質量%以下である、溶接接合体の製造方法。
Including the process of welding an iron-based metal member and an aluminum-based metal member using a filler metal.
The filler metal is an alloy containing nickel and copper, and has a nickel content of 30 to 80% by mass.
A method for producing a welded joint, wherein the central portion of the welded metal portion formed between the iron-based metal member and the aluminum-based metal member has an aluminum content of 16% by mass or less.
前記溶接の前に、前記鉄系金属部材と前記アルミニウム系金属部材とが接するように設置する工程を更に含む、請求項6記載の溶接接合体の製造方法。 The method for manufacturing a welded joint according to claim 6, further comprising a step of installing the iron-based metal member and the aluminum-based metal member so as to be in contact with each other before the welding. 前記溶接における溶接速度は、80〜120cm/分である、請求項6記載の溶接接合体の製造方法。 The method for manufacturing a welded joint according to claim 6, wherein the welding speed in the welding is 80 to 120 cm / min. 鉄系金属部材と、アルミニウム系金属部材と、前記鉄系金属部材と前記アルミニウム系金属部材とを接合する溶着金属部と、を含む溶接接合体であって前記溶着金属部の中心部におけるアルミニウムの含有量が16質量%以下であるものを製造する際に溶接接合に用いられる、ニッケル及び銅を含む合金である溶加材であって、
ニッケルの含有量が30〜80質量%である、溶加材。
A welded joint including an iron-based metal member, an aluminum-based metal member, and a welded metal portion for joining the iron-based metal member and the aluminum-based metal member, and the aluminum in the central portion of the welded metal portion. A filler metal which is an alloy containing nickel and copper and is used for welding and joining when producing a material having a content of 16% by mass or less.
A filler material having a nickel content of 30 to 80% by mass.
鉄、マンガン、シリコン、チタン、アルミニウム及び炭素からなる群より選択される一種類以上の元素を更に含有し、これらの元素の含有量が合計で5質量%以下である、請求項9記載の溶加材。 The solution according to claim 9, further containing one or more elements selected from the group consisting of iron, manganese, silicon, titanium, aluminum and carbon, and the total content of these elements is 5% by mass or less. Addition material.
JP2020071478A 2020-04-13 2020-04-13 Welded joined body, manufacturing method therefor, and filler material Pending JP2021167013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020071478A JP2021167013A (en) 2020-04-13 2020-04-13 Welded joined body, manufacturing method therefor, and filler material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071478A JP2021167013A (en) 2020-04-13 2020-04-13 Welded joined body, manufacturing method therefor, and filler material

Publications (1)

Publication Number Publication Date
JP2021167013A true JP2021167013A (en) 2021-10-21

Family

ID=78079259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071478A Pending JP2021167013A (en) 2020-04-13 2020-04-13 Welded joined body, manufacturing method therefor, and filler material

Country Status (1)

Country Link
JP (1) JP2021167013A (en)

Similar Documents

Publication Publication Date Title
JP4555160B2 (en) Steel plate for dissimilar welding with aluminum material and dissimilar material joint
Su et al. Influence of alloy elements on microstructure and mechanical property of aluminum–steel lap joint made by gas metal arc welding
JP5652574B1 (en) Solid wire for gas shielded arc welding, gas shielded arc welding metal, welded joint, welded member, welding method, and method of manufacturing welded joint
JP4256879B2 (en) Method of joining iron-based material and aluminum-based material and joint
WO2014148348A1 (en) Welding filler material for bonding different kind materials, and method for producing different kind material welded structure
Babu et al. Cold metal transfer welding of aluminium alloy AA 2219 to austenitic stainless steel AISI 321
Singh et al. Lap weld-brazing of aluminium to steel using novel cold metal transfer process
Singh et al. Role of bead shape and dispersed intermetallic phases in determining the strength of CMT brazed DP780 lap joints
Song et al. Effect of laser-GTAW hybrid welding heat input on the performance of Mg/Steel butt joint
Dong et al. Effects of post-weld heat treatment on dissimilar metal joint between aluminum alloy and stainless steel
JP2008207245A (en) Joined product of dissimilar materials of steel and aluminum material
EP3587614B1 (en) Laser brazing method and production method for lap joint member
Çetkin et al. Effect of welding parameters on microstructure and mechanical properties of AA7075/AA5182 alloys joined by TIG and MIG welding methods
Hasanniah et al. Gas tungsten arc lap welding of aluminum/steel hybrid structures
Wang et al. Resistance element welding of 7075 aluminum alloy to Ti6Al4V titanium alloy
JP2017080791A (en) Weld conjugant of ferrous metal/aluminum-based metal, and method for production thereof
Qin et al. Microstructures and mechanical properties of Al-Mg2Si-Si alloys resistance spot welded with Al-Si interlayers
Zhang et al. Microstructure and properties of an Al 6061/galvanized plate fabricated by CMT welding
JP6153744B2 (en) Manufacturing method of welded joint
Singh et al. High cycle fatigue performance of cold metal transfer (CMT) brazed C-Mn-440 steel joints
Singh et al. Influence of wire feed rate to speed ratio on arc stability and characteristics of cold metal transfer weld–brazed dissimilar joints
Venukumar et al. TIG arc welding-brazing of dissimilar metals-an overview
KR102061470B1 (en) MIG brazing method, manufacturing method of overlap joint member, and overlap joint member
JP2021167013A (en) Welded joined body, manufacturing method therefor, and filler material
JP2005319481A (en) Manufacturing method for steel-aluminum joint structure