JP2021166481A - Method for extraction of intracellular constituent - Google Patents

Method for extraction of intracellular constituent Download PDF

Info

Publication number
JP2021166481A
JP2021166481A JP2020070743A JP2020070743A JP2021166481A JP 2021166481 A JP2021166481 A JP 2021166481A JP 2020070743 A JP2020070743 A JP 2020070743A JP 2020070743 A JP2020070743 A JP 2020070743A JP 2021166481 A JP2021166481 A JP 2021166481A
Authority
JP
Japan
Prior art keywords
well
lid
wells
main body
intracellular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020070743A
Other languages
Japanese (ja)
Other versions
JP7409944B2 (en
Inventor
昌治 竹内
Shoji Takeuchi
悠 杉本
Yu Sugimoto
香苗 酒井
Kanae Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
University of Tokyo NUC
Original Assignee
Toyota Boshoku Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp, University of Tokyo NUC filed Critical Toyota Boshoku Corp
Priority to JP2020070743A priority Critical patent/JP7409944B2/en
Publication of JP2021166481A publication Critical patent/JP2021166481A/en
Application granted granted Critical
Publication of JP7409944B2 publication Critical patent/JP7409944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

To provide an extraction method that can efficiently extract an intracellular constituent.SOLUTION: The present invention relates to a method for extraction of an intracellular constituent 1 with an instrument 9 that has a body part 5 having a plurality of wells 3, and a lid 7 having gas permeability and to seal the openings of the wells 3. A culture medium 23 containing microorganisms 21 is put into the wells 3 and the openings are covered with the lid 7. In that state, the solvent of the culture medium 23 in the wells 3 are evaporated. The lid 7 is removed and an enzyme liquid 25 is added into the wells 3. The openings are covered with the lid 7. After left to stand for a predetermined period of time, the lid 7 is removed and the intracellular constituent 1 is extracted.SELECTED DRAWING: Figure 1

Description

本開示は、細胞内構成物質の抽出方法に関する。 The present disclosure relates to a method for extracting intracellular constituent substances.

多様な微生物から有用な微生物を探索することが行われている。この場合に、培養後に有用な微生物の遺伝子を解析するため、DNA等の細胞内構成物質を抽出する必要がある。
従来、DNA等の細胞内構成物質を抽出する方法としては、例えば、非特許文献1に開示されている物理破砕を用いた方法、非特許文献2に開示されている熱を用いた方法、非特許文献3に開示されている電気穿孔を用いた方法が知られている。
非特許文献1では、ナノ粒子と微生物を混合し振動させて溶菌している。非特許文献2では、微生物を95℃で加熱して溶菌している。非特許文献3では、微生物にDC 8kVの電圧をかけて溶菌している。
Searching for useful microorganisms from various microorganisms is being carried out. In this case, it is necessary to extract intracellular constituents such as DNA in order to analyze the genes of useful microorganisms after culturing.
Conventionally, as a method for extracting an intracellular constituent substance such as DNA, for example, a method using physical disruption disclosed in Non-Patent Document 1, a method using heat disclosed in Non-Patent Document 2, and a non-patent document 2 are used. A method using electric perforation disclosed in Patent Document 3 is known.
In Non-Patent Document 1, nanoparticles and microorganisms are mixed and vibrated to lyse. In Non-Patent Document 2, microorganisms are lysed by heating at 95 ° C. In Non-Patent Document 3, microorganisms are lysed by applying a voltage of DC 8 kV.

Biosens.Bioelectron.,2018,v99,p62Biosens. Bioelectron. , 2018, v99, p62 Lab Chip,2004,v4,p516Lab Chip, 2004, v4, p516 Electrophoresis,2011,v32,p3172Electrophoresis, 2011, v32, p3172

しかし、従来の方法は、細胞内構成物質の抽出効率が必ずしも十分でなく、新規な抽出方法が求められていた。
本開示は、上記実情に鑑みてなされたものであり、細胞内構成物質を効率よく抽出できる抽出方法を提供することを目的とする。本開示は、以下の形態として実現することが可能である。
However, the conventional method does not always have sufficient extraction efficiency of intracellular constituent substances, and a new extraction method has been required.
The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide an extraction method capable of efficiently extracting intracellular constituent substances. The present disclosure can be realized in the following forms.

〔1〕複数のウェルを有する本体部と、
ガス透過性を有し、前記ウェルの開口を塞ぐ蓋部と、を備えた器具を用いた細胞内構成物質の抽出方法であって、
微生物を含む培養液を前記ウェルに入れ、
前記開口を前記蓋部で覆った状態で、前記ウェル内の前記培養液の溶媒を蒸発させ、
前記蓋部を外して、前記ウェル内に酵素液を添加し、
前記開口を前記蓋部で覆い、所定時間置いた後に、前記蓋部を外して、前記細胞内構成物質を抽出する、細胞内構成物質の抽出方法。
[1] A main body having a plurality of wells and
A method for extracting intracellular constituents using an instrument having a gas-permeable lid and a lid that closes the opening of the well.
A culture solution containing microorganisms was placed in the well,
With the opening covered with the lid, the solvent of the culture solution in the well was evaporated.
The lid is removed, the enzyme solution is added into the well, and the enzyme solution is added.
A method for extracting an intracellular constituent substance, wherein the opening is covered with the lid portion, left for a predetermined time, and then the lid portion is removed to extract the intracellular constituent substance.

本開示の抽出方法によれば、効率的に細胞内構成物質を抽出できる。 According to the extraction method of the present disclosure, intracellular constituent substances can be efficiently extracted.

器具(マイクロチャンバー)の一例を示す斜視図である。It is a perspective view which shows an example of an instrument (micro chamber). 第1工程を示す模式図である。It is a schematic diagram which shows the 1st process. 第2工程を示す模式図である。It is a schematic diagram which shows the 2nd process. 第2工程を示す模式図である。It is a schematic diagram which shows the 2nd process. 第3工程を示す模式図である。It is a schematic diagram which shows the 3rd process. 第3工程を示す模式図である。It is a schematic diagram which shows the 3rd process. 第4工程を示す模式図である。It is a schematic diagram which shows the 4th process. 第4工程を示す模式図である。It is a schematic diagram which shows the 4th process. 第4工程を示す模式図である。It is a schematic diagram which shows the 4th process. 第4工程を示す模式図である。It is a schematic diagram which shows the 4th process. 器具(マイクロチャンバー)の一例を示す断面図である。It is sectional drawing which shows an example of an instrument (micro chamber). 器具(マイクロチャンバー)の使用方法の一例を示す側面図である。It is a side view which shows an example of how to use the instrument (micro chamber). 実施例1の抽出方法の概念図である。It is a conceptual diagram of the extraction method of Example 1. 比較例1の抽出方法の概念図である。It is a conceptual diagram of the extraction method of Comparative Example 1. 比較例2の抽出方法の概念図である。It is a conceptual diagram of the extraction method of Comparative Example 2. 比較例3の抽出方法の概念図である。It is a conceptual diagram of the extraction method of Comparative Example 3. 各種抽出方法によるDNA回収量を示すグラフである。It is a graph which shows the DNA recovery amount by various extraction methods. 各種微生物を用いた場合のDNA回収量を示すグラフである。It is a graph which shows the amount of DNA recovery when various microorganisms are used. 実験BにおけるウェルIDと菌体(微生物)の配置を説明する説明図である。It is explanatory drawing explaining the arrangement of a well ID and a bacterial cell (microorganism) in Experiment B. 実験Bの実験結果を示すグラフである。It is a graph which shows the experimental result of Experiment B.

ここで、本開示の望ましい例を示す。
〔2〕前記蓋部は、シリコーン樹脂を主成分とする、〔1〕に記載の細胞内構成物質の抽出方法。
蓋部の主成分がシリコーン樹脂であると、蓋部を通して溶媒の除去がしやすくなる。
〔3〕前記本体部は、シリコーン樹脂を主成分とする、〔1〕又は〔2〕に記載の細胞内構成物質の抽出方法。
本体部の主成分がシリコーン樹脂であると、本体部を通しても溶媒の除去が行える。
Here, a desirable example of the present disclosure is shown.
[2] The method for extracting an intracellular constituent substance according to [1], wherein the lid portion contains a silicone resin as a main component.
When the main component of the lid portion is a silicone resin, the solvent can be easily removed through the lid portion.
[3] The method for extracting an intracellular constituent substance according to [1] or [2], wherein the main body is mainly composed of a silicone resin.
If the main component of the main body is silicone resin, the solvent can be removed through the main body as well.

以下、本開示を詳しく説明する。なお、本明細書において、数値範囲について「〜」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10〜20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10〜20」は、「10以上20以下」と同じ意味である。 Hereinafter, the present disclosure will be described in detail. In this specification, the description using "~" for the numerical range shall include the lower limit value and the upper limit value unless otherwise specified. For example, in the description of "10 to 20", both the lower limit value "10" and the upper limit value "20" are included. That is, "10 to 20" has the same meaning as "10 or more and 20 or less".

1.細胞内構成物質1の抽出方法
細胞内構成物質1の抽出方法は、複数のウェル3を有する本体部5と、ウェル3の開口を塞ぐ蓋部7と、を備えた器具9を用いる(図1,11参照)。蓋部7は、ガス透過性(水蒸気透過性)を有する。器具9は、マイクロチャンバー(マイクロデバイス)とも呼ばれる。
細胞内構成物質1の抽出方法は、以下の工程を少なくとも備える。なお、細胞内構成物質1とは、細胞内に存在する物質である。例えば、DNA、RNA、タンパク質が例示される。
〔1〕微生物21を含む培養液23をウェル3に入れる第1工程(図2参照)。この際にウェル3毎に異なる種類の微生物21を入れてもよい。ウェル3毎に異なる種類の微生物21を入れれば、一度の実験で、複数種の微生物21の細胞内構成物質1を抽出できる。
〔2〕開口を蓋部7で覆った状態で、ウェル3内の培養液23の溶媒を蒸発させる第2工程(図3,4参照)。図3における矢印は水蒸気を示している(以下の図7でも同様である)。第2工程で溶媒を蒸発させることで、ウェル3内に酵素液25を受け入れるスペースを十分に確保できる。仮に溶媒を蒸発させないと、第3工程で所定量の酵素液25を入れた際に、酵素液25がウェル3から溢れてしまい、隣接するウェル3間で内容物が混ざるおそれがある。すなわち、各ウェル3が異なる内容物の場合には、隣接するウェル3間でのコンタミネーションの原因となる可能性がある。
なお、第2工程の際に器具9は、例えば常温(15℃〜30℃)の環境下に静置される。
〔3〕蓋部7を外して、ウェル3内に酵素液25を添加する第3工程(図5,6参照)。
〔4〕開口を蓋部7で覆い、所定時間(例えば20分〜2時間)置いた後に、蓋部7を外して、細胞内構成物質1を抽出する第4工程(図7〜10参照)。この工程では、酵素(例えば消化酵素)によって微生物の溶菌反応が起きて、細胞内構成物質1が細胞外へ出てくる。なお、第4工程の際に器具9は、例えば常温(15℃〜30℃)の環境下に静置される。
この第4工程では、図7に示すように、酵素液25の溶媒を蒸発させてもよい。
第4工程では、図9に示すように細胞内構成物質1を乾燥した状態で取り出してもよいが、図10に示すようにウェル3内に溶媒31(例えば水)を更に入れて、細胞内構成物質1を含有する液体とし、この液体を取り出してもよい。ウェル3内に溶媒31を加えて液体とすることで、細胞内構成物質1を抽出しやすくなる。
1. 1. Extraction Method of Intracellular Constituent Material 1 The extraction method of the intracellular constituent substance 1 uses an instrument 9 provided with a main body portion 5 having a plurality of wells 3 and a lid portion 7 for closing the opening of the well 3 (FIG. 1). , 11). The lid portion 7 has gas permeability (water vapor permeability). The instrument 9 is also called a microchamber (microdevice).
The method for extracting the intracellular constituent substance 1 includes at least the following steps. The intracellular constituent substance 1 is a substance existing in the cell. For example, DNA, RNA, and protein are exemplified.
[1] The first step (see FIG. 2) in which the culture solution 23 containing the microorganism 21 is put into the well 3. At this time, different types of microorganisms 21 may be added to each well 3. If different types of microorganisms 21 are added to each well 3, the intracellular constituent substance 1 of a plurality of types of microorganisms 21 can be extracted in one experiment.
[2] A second step of evaporating the solvent of the culture solution 23 in the well 3 with the opening covered with the lid 7 (see FIGS. 3 and 4). The arrow in FIG. 3 indicates water vapor (the same applies to FIG. 7 below). By evaporating the solvent in the second step, a sufficient space for receiving the enzyme solution 25 can be secured in the well 3. If the solvent is not evaporated, when a predetermined amount of the enzyme solution 25 is added in the third step, the enzyme solution 25 overflows from the wells 3, and the contents may be mixed between the adjacent wells 3. That is, if each well 3 has different contents, it may cause contamination between adjacent wells 3.
In the second step, the instrument 9 is allowed to stand in an environment of, for example, room temperature (15 ° C. to 30 ° C.).
[3] A third step of removing the lid portion 7 and adding the enzyme solution 25 into the well 3 (see FIGS. 5 and 6).
[4] A fourth step (see FIGS. 7 to 10) in which the opening is covered with the lid 7 and left for a predetermined time (for example, 20 minutes to 2 hours), then the lid 7 is removed and the intracellular constituent substance 1 is extracted (see FIGS. 7 to 10). .. In this step, an enzyme (for example, a digestive enzyme) causes a lytic reaction of the microorganism, and the intracellular constituent substance 1 comes out of the cell. In the fourth step, the instrument 9 is allowed to stand in an environment of, for example, room temperature (15 ° C. to 30 ° C.).
In this fourth step, as shown in FIG. 7, the solvent of the enzyme solution 25 may be evaporated.
In the fourth step, the intracellular constituent substance 1 may be taken out in a dry state as shown in FIG. 9, but as shown in FIG. 10, a solvent 31 (for example, water) is further added into the well 3 to enter the cell. A liquid containing the constituent substance 1 may be used, and this liquid may be taken out. By adding the solvent 31 into the well 3 to make it a liquid, it becomes easy to extract the intracellular constituent substance 1.

なお、第2,4工程では、図12に示すように、蓋部7を被せた本体部5を、一対の板状体41(例えばアクリル板)で挟み込んでもよい。このようにすることで、蓋部7が本体部5から外れることを防止できる。なお、板状体41を用いる場合には、図12に示すように、蓋部7と板状体41との間に不織布43を挟むことが望ましい。不織布43を挟むことで、蓋部7と板状体41との間に隙間ができるため、溶媒の除去が効率的に行える。 In the second and fourth steps, as shown in FIG. 12, the main body portion 5 covered with the lid portion 7 may be sandwiched between a pair of plate-shaped bodies 41 (for example, an acrylic plate). By doing so, it is possible to prevent the lid portion 7 from coming off from the main body portion 5. When the plate-shaped body 41 is used, it is desirable to sandwich the non-woven fabric 43 between the lid portion 7 and the plate-shaped body 41 as shown in FIG. By sandwiching the non-woven fabric 43, a gap is formed between the lid portion 7 and the plate-shaped body 41, so that the solvent can be efficiently removed.

ここで、各用語について詳細に説明する。
(1)器具9
器具9は、複数のウェル3を有する本体部5と蓋部7とを備える。本体部5は、例えば、複数の窪みたるウェル3を有する平板状部材である。
(1.1)本体部5
本体部5の材質は、特に限定されない。材質としては、例えば、シリコーン樹脂が主成分として好適に用いられる。ここで、主成分とは、含有率(質量%)が50質量%以上の物質をいう。シリコーン樹脂は、特に制限されないが、ポリジメチルシロキサン(PDMS)、ポリメチルフェニルシロキサン、ポリメチルハイドロジェンシロキサン、ポリメチルメトキシシロキサン、ポリメチルビニルシロキサン等が好ましい。これらのシリコーン樹脂は1種単独で使用してもよいし、2種以上を併用してもよい。ポリジメチルシロキサン(PDMS)が好ましい。ポリジメチルシロキサンは、ガス透過性を有しており、水蒸気が透過するから、前記第2工程においてウェル3内の溶媒(水)を蒸発させるために好都合だからである。
Here, each term will be described in detail.
(1) Instrument 9
The instrument 9 includes a main body portion 5 having a plurality of wells 3 and a lid portion 7. The main body 5 is, for example, a flat plate-like member having a plurality of recessed wells 3.
(1.1) Main body 5
The material of the main body 5 is not particularly limited. As the material, for example, silicone resin is preferably used as the main component. Here, the main component means a substance having a content (mass%) of 50% by mass or more. The silicone resin is not particularly limited, but polydimethylsiloxane (PDMS), polymethylphenylsiloxane, polymethylhydrogensiloxane, polymethylmethoxysiloxane, polymethylvinylsiloxane and the like are preferable. These silicone resins may be used alone or in combination of two or more. Polydimethylsiloxane (PDMS) is preferred. This is because polydimethylsiloxane has gas permeability and is permeable to water vapor, which is convenient for evaporating the solvent (water) in the well 3 in the second step.

本体部5の平面形状及び大きさは、特に限定されない。
本体部5の厚みt(図11参照)は、特に限定されない。
本体部5の厚みtは、ウェル3の深さを十分に確保する観点から、350μm以上が好ましく、400μm以上がより好ましく、450μm以上が更に好ましい。他方、本体部5の厚みtは、取扱い性及び生産性の観点から、5mm以下が好ましく、3mm以下がより好ましく、2mm以下が更に好ましい。これらの観点から、本体部5の厚みtは、350μm〜5mmが好ましく、400μm〜3mmより好ましく、450μm〜2mmが更に好ましい。
The planar shape and size of the main body 5 are not particularly limited.
The thickness t (see FIG. 11) of the main body 5 is not particularly limited.
The thickness t of the main body 5 is preferably 350 μm or more, more preferably 400 μm or more, still more preferably 450 μm or more, from the viewpoint of ensuring a sufficient depth of the well 3. On the other hand, the thickness t of the main body 5 is preferably 5 mm or less, more preferably 3 mm or less, still more preferably 2 mm or less, from the viewpoint of handleability and productivity. From these viewpoints, the thickness t of the main body 5 is preferably 350 μm to 5 mm, more preferably 400 μm to 3 mm, and even more preferably 450 μm to 2 mm.

ウェル3の平面形状及び大きさは、特に限定されない。
ウェル3の平面形状は、例えば円形、矩形等を採用することができる。
The planar shape and size of the well 3 are not particularly limited.
As the planar shape of the well 3, for example, a circular shape, a rectangular shape, or the like can be adopted.

ウェル3の大きさは、その平面形状が円形の場合には、ウェル3に入る微生物の量を十分に確保する観点から、径3A(図11参照)は350μm以上が好ましく、500μm以上がより好ましい。他方、ウェル3の大きさは、ウェル3を高密度に配置するの観点から、径3Aは1200μm以下が好ましく、1000μm以下がより好ましい。これらの観点から、ウェル3の大きさは、その平面形状が円形の場合には、径3Aは350μm〜1200μmが好ましく、500μm〜1000μmがより好ましい。 When the planar shape of the well 3 is circular, the diameter 3A (see FIG. 11) is preferably 350 μm or more, more preferably 500 μm or more, from the viewpoint of sufficiently securing the amount of microorganisms entering the well 3. .. On the other hand, the size of the well 3 is preferably 1200 μm or less, more preferably 1000 μm or less, from the viewpoint of arranging the well 3 at a high density. From these viewpoints, when the planar shape of the well 3 is circular, the diameter 3A is preferably 350 μm to 1200 μm, and more preferably 500 μm to 1000 μm.

ウェル間距離3B(図11参照)は、特に限定されない。ウェル間距離3Bとは、隣合うウェル3同士の最短の直線距離を意味する。
ウェル間距離3Bは、隣接するウェル3間でコンタミネーション抑制の観点から、200μm〜1000μmが好ましい。
The distance between wells 3B (see FIG. 11) is not particularly limited. The distance between wells 3B means the shortest straight line distance between adjacent wells 3.
The distance between wells 3B is preferably 200 μm to 1000 μm from the viewpoint of suppressing contamination between adjacent wells 3.

ウェル3の深さ3C(図11参照)は、特に限定されない。
ウェル3の深さ3Cは、ウェル3内に十分な培養液23を内包する観点から、40μm以上が好ましく、60μm以上がより好ましく、80μm以上が更に好ましい。他方、ウェル3の深さ3Cは、深すぎて培養液23、酵素液25等を入れにくくなることを抑制する観点から、160μm以下が好ましく、140μm以下がより好ましく、120μm以下が更に好ましい。これらの観点から、ウェル3の深さ3Cは、40μm〜160μmが好ましく、60μm〜140μmがより好ましく、80μm〜120μmが更に好ましい。
The depth 3C of the well 3 (see FIG. 11) is not particularly limited.
The depth 3C of the well 3 is preferably 40 μm or more, more preferably 60 μm or more, still more preferably 80 μm or more, from the viewpoint of including a sufficient culture solution 23 in the well 3. On the other hand, the depth 3C of the well 3 is preferably 160 μm or less, more preferably 140 μm or less, still more preferably 120 μm or less, from the viewpoint of suppressing the difficulty of inserting the culture solution 23, the enzyme solution 25, etc. because it is too deep. From these viewpoints, the depth 3C of the well 3 is preferably 40 μm to 160 μm, more preferably 60 μm to 140 μm, and even more preferably 80 μm to 120 μm.

ウェル3の容量は、特に限定されない。1つのウェル3の容量は、各ウェル3から十分な量の細胞内構成物質1を回収する観点から、30nL〜100nLが好ましく、40nL〜70nLがより好ましい。 The capacity of the well 3 is not particularly limited. The volume of one well 3 is preferably 30 nL to 100 nL, more preferably 40 nL to 70 nL, from the viewpoint of recovering a sufficient amount of the intracellular constituent substance 1 from each well 3.

1つの本体部5におけるウェル3の個数は、特に限定されず、本体部5の大きさ等に応じて適宜選択される。 The number of wells 3 in one main body 5 is not particularly limited, and is appropriately selected according to the size of the main body 5 and the like.

(1.2)蓋部7
蓋部7は、ウェル3の開口を塞ぐものであり、例えば、平板状部材とされている。
蓋部7の材質は、ガス透過性(水蒸気透過性)を有するものであれば特に限定されない。材質としては、例えば、シリコーン樹脂が主成分として好適に用いられる。ここで、主成分とは、含有率(質量%)が50質量%以上の物質をいう。シリコーン樹脂は、特に制限されないが、ポリジメチルシロキサン(PDMS)、ポリメチルフェニルシロキサン、ポリメチルハイドロジェンシロキサン、ポリメチルメトキシシロキサン、ポリメチルビニルシロキサン等が好ましい。これらのシリコーン樹脂は1種単独で使用してもよいし、2種以上を併用してもよい。ポリジメチルシロキサン(PDMS)が好ましい。ポリジメチルシロキサンは、ガス透過性を有しており、水蒸気が透過するから、前記第2工程においてウェル3内の溶媒(水)を蒸発させるために好都合だからである。
(1.2) Cover 7
The lid portion 7 closes the opening of the well 3, and is, for example, a flat plate-shaped member.
The material of the lid portion 7 is not particularly limited as long as it has gas permeability (water vapor permeability). As the material, for example, silicone resin is preferably used as the main component. Here, the main component means a substance having a content (mass%) of 50% by mass or more. The silicone resin is not particularly limited, but polydimethylsiloxane (PDMS), polymethylphenylsiloxane, polymethylhydrogensiloxane, polymethylmethoxysiloxane, polymethylvinylsiloxane and the like are preferable. These silicone resins may be used alone or in combination of two or more. Polydimethylsiloxane (PDMS) is preferred. This is because polydimethylsiloxane has gas permeability and is permeable to water vapor, which is convenient for evaporating the solvent (water) in the well 3 in the second step.

蓋部7の厚み7A(図11参照)は、特に限定されない。
蓋部7の厚み7Aは、第2工程においてウェル3内の溶媒(水)を蒸発させやすくする観点から、100μm〜700μmが好ましく、200μm〜600μmがより好ましい。
The thickness 7A of the lid portion 7 (see FIG. 11) is not particularly limited.
The thickness 7A of the lid portion 7 is preferably 100 μm to 700 μm, more preferably 200 μm to 600 μm, from the viewpoint of facilitating evaporation of the solvent (water) in the well 3 in the second step.

2.本実施形態の効果
本実施形態の抽出方法によれば、効率的に細胞内構成物質1を抽出できる。
2. Effect of the present embodiment According to the extraction method of the present embodiment, the intracellular constituent substance 1 can be efficiently extracted.

以下、実施例により更に具体的に説明する。 Hereinafter, a more specific description will be given with reference to Examples.

<実験A>
以下の実験では、本開示の抽出方法(実施例1)、熱による抽出方法(比較例1)、電気穿孔による抽出方法(比較例2)、ビーズによる抽出方法(比較例3)をそれぞれ行い、抽出されたDNA量を比較した。なお、各方法の概念を図13〜16で示す。図13は、本開示の抽出方法(実施例1)を示している。図14は、熱による抽出方法(比較例1)を示している。図15は、電気穿孔による抽出方法(比較例2)を示している。図16は、ビーズによる抽出方法(比較例3)を示している。なお、図13の符号43は酵素を示し、図16の符号45はビーズを示している。
<Experiment A>
In the following experiments, the extraction method of the present disclosure (Example 1), the extraction method by heat (Comparative Example 1), the extraction method by electric perforation (Comparative Example 2), and the extraction method by beads (Comparative Example 3) were performed, respectively. The amount of extracted DNA was compared. The concept of each method is shown in FIGS. 13 to 16. FIG. 13 shows the extraction method (Example 1) of the present disclosure. FIG. 14 shows an extraction method by heat (Comparative Example 1). FIG. 15 shows an extraction method by electroporation (Comparative Example 2). FIG. 16 shows an extraction method using beads (Comparative Example 3). Reference numeral 43 in FIG. 13 indicates an enzyme, and reference numeral 45 in FIG. 16 indicates beads.

1.実験方法
(1)試薬
リン酸緩衝食塩水タブレットはSigma Aldrichから購入した。これを純水に溶解させることで、2.7mM 塩化カリウムと137mM塩化ナトリウムを含む10mMリン酸緩衝食塩水(pH 7.4、これ以降PBS(−)と略記)を調製した。エチレンジアミン四酢酸(EDTA)二水素二ナトリウム水和物はナカライテスクから購入した。1mM EDTAを含む10mMトリス緩衝液(pH 8.0、これ以降TE Bufferと略記)はニッポン・ジーンから購入した。クエン酸、クエン酸3ナトリウム、リゾチーム、アクロモペプチダーゼは富士フィルムから購入した。ラビアーゼはコスモバイオから購入した。リゾチーム、アクロモペプチダーゼの10mg mL−1ストック溶液はTE bufferを用いて調製した。ラビアーゼの10mg mL−1ストック溶液は1mM EDTAを含む10mMクエン酸緩衝液(pH 4.0)を用いて作成した。酵素による溶菌を用いた本開示の抽出方法では、実験直前にこれらのストック溶液をTE bufferで希釈し、リゾチーム溶液(200μg mL−1)、もしくはリゾチーム、アクロモペプチダーゼ、ラビアーゼの混合溶液(それぞれ200μg mL−1)を作製した。
1. 1. Experimental Method (1) Reagent Phosphate Buffered Saline Tablet was purchased from Sigma Aldrich. By dissolving this in pure water, a 10 mM phosphate buffered saline (pH 7.4, hereinafter abbreviated as PBS (−)) containing 2.7 mM potassium chloride and 137 mM sodium chloride was prepared. Ethylenediaminetetraacetic acid (EDTA) disodium dihydrogen hydrate was purchased from Nacalai Tesque. A 10 mM Tris buffer (pH 8.0, hereinafter abbreviated as TE Buffer) containing 1 mM EDTA was purchased from Nippon Gene. Citric acid, trisodium citrate, lysozyme, and achromopeptidase were purchased from Fujifilm. Labiase was purchased from Cosmo Bio. A 10 mg mL- 1 stock solution of lysozyme, achromopeptidase was prepared using TE buffer. A 10 mg mL- 1 stock solution of labiase was prepared using 10 mM citrate buffer (pH 4.0) containing 1 mM EDTA. In the extraction method of the present disclosure using enzymatic lysis, these stock solutions are diluted with TE buffer immediately prior to the experiment and lysozyme solution (200 μg mL -1 ) or a mixed solution of lysozyme, achromopeptidase, and labiase (200 μg each). mL -1 ) was prepared.

(2)微生物の培養
Escherichia coli(ATCC 25922)はLB培地にて37℃で振とう培養した。Acinetobacter radioresistens(NBRC 102413)、Bacillus subtilis subsp. subtilis(NBRC 13719)、Pseudomonas putida(NBRC 14164)はMedium No.702(ハイポリペプトン10g、酵母エキス2g、MgSO・7HO 1g、蒸留水1L、pH 7.0)にて30℃で振とう培養した。Staphylococcus(NBRC 100911)はMedium No.702で37℃にて振とう培養した。Streptomyces kanamyceticus(NBRC No.13414)はIsp Medium No.2(酵母エキス4g、麦芽エキス10g、グルコース4g、蒸留水1L、pH 7.3)にて28℃で振とう培養した。培養後、各菌体液を1,000×g、5minで遠心した。遠心後、上清を捨てPBS(−)を1mL加えて懸濁した。懸濁後、1,000×g、10minで遠心した。遠心後、上清を捨て、菌体の湿重量1mgに対してPBS(−)を1μL加えて懸濁し、各菌体の溶菌サンプルとした。
(2) Culture of microorganisms Escherichia coli (ATCC 25922) was cultured in LB medium by shaking at 37 ° C. Acinetobacter radioretestens (NBRC 102413), Bacillus subtilis subsp. Subtilis (NBRC 13719) and Pseudomonas putida (NBRC 14164) are described in Medium No. 702 (high poly peptone 10 g, yeast extract 2g, MgSO 4 · 7H 2 O 1g, distilled water 1L, pH 7.0) and cultured with shaking at 30 ° C. at. Staphylococcus (NBRC 100911) is described in Medium No. The cells were cultured with shaking at 37 ° C. at 702. Streptomyces kanamyces (NBRC No. 13414) is described in Isp Medium No. 2 (4 g of yeast extract, 10 g of malt extract, 4 g of glucose, 1 L of distilled water, pH 7.3) was cultured with shaking at 28 ° C. After culturing, each bacterial cell fluid was centrifuged at 1,000 × g for 5 minutes. After centrifugation, the supernatant was discarded and 1 mL of PBS (-) was added and suspended. After suspension, it was centrifuged at 1,000 × g for 10 minutes. After centrifugation, the supernatant was discarded, and 1 μL of PBS (−) was added to 1 mg of wet weight of the cells to suspend the cells to prepare a lysed sample of each cells.

(3)標準DNA試料の作製
各微生物を上述の手順で培養、遠心し、湿重量50〜100mgを得た。この菌体を微生物破砕・精製キット(ZYMO RESEARCH, Quick−DNA Fungal/Bacterial Kit(D6005))にアプライし、DNAを抽出・精製した。精製したDNAの濃度(cDNA)は260nmの吸光度(Abs260)を測定し、以下の式を用いて算出した。
cDNA (ngμL−1)=Abs260×50
このDNAを標準DNA試料とした。これをTE bufferで希釈し、qPCRの検量線作成のための希釈系列(10ngμL−1、1ngμL−1、0.1ngμL−1、0.01ngμL−1、0.001ngμL−1)とした。
(3) Preparation of standard DNA sample Each microorganism was cultured and centrifuged according to the above procedure to obtain a wet weight of 50 to 100 mg. This bacterial cell was applied to a microbial crushing / purification kit (ZYMO RESEARCH, Quick-DNA Fungal / Bacterial Kit (D6005)), and DNA was extracted and purified. The concentration (cDNA) of the purified DNA was calculated by measuring the absorbance (Abs260) at 260 nm using the following formula.
cDNA (ngμL -1 ) = Abs 260 × 50
This DNA was used as a standard DNA sample. This was diluted with TE buffer to prepare a dilution series (10 ng μL -1 , 1 ng μL -1 , 0.1 ng μL -1 , 0.01 ng μL -1, 0.001 ng μL -1 ) for preparing a calibration curve for qPCR.

(4)qPCR測定
各微生物の遺伝子に特異的なプライマーを作製した。Streptomycesの場合、作成したプライマー、測定サンプル、TAKARA,TB Green Premix Ex Taq GC (Perfect Real Time)を用い、溶液量20μLとしてqPCR測定を行った。Streptomyces以外の微生物の場合、作成したプライマー、測定サンプル、TAKARA,TB Green Premix Ex Taq II (Tli RNaseH Plus)を用い、溶液量20μLとしてqPCR測定を行った。検量線は標準DNAの希釈系列をサンプルとすることで作成した。
(4) qPCR measurement Primers specific to the genes of each microorganism were prepared. In the case of Streptomyces, qPCR measurement was performed with a solution volume of 20 μL using the prepared primers, measurement sample, TAKARA, TB Green Premix Ex Taq GC (Perfect Real Time). In the case of microorganisms other than Streptomyces, qPCR measurement was performed with a solution volume of 20 μL using the prepared primers, measurement sample, TAKARA, TB Green Premix Ex Taq II (TliRNaseH Plus). The calibration curve was prepared by using a dilution series of standard DNA as a sample.

(5)各実験に用いた器具
実施例1、比較例1、比較例3では、本体部5と蓋部7とを備えた器具9(マイクロチャンバー)を用いた。ウェル3のサイズ等を以下に示す。ウェル3の平面形状は、全て円形とした。これらの器具9(マイクロチャンバー)は、全てポリジメチルシロキサンにより作製した。
(5) Instruments used in each experiment In Example 1, Comparative Example 1, and Comparative Example 3, an instrument 9 (microchamber) having a main body 5 and a lid 7 was used. The size of well 3 and the like are shown below. The planar shape of the wells 3 is all circular. All of these instruments 9 (microchambers) were made of polydimethylsiloxane.

Figure 2021166481
Figure 2021166481

比較例2では、厚さ300μmのポリジメチルシロキサン製のシートを用いた。このシートには、直径500μmの円形の貫通孔が500μmの間隔で形成されている。このシートを2枚の白金電極で挟むことでチャンバとした。 In Comparative Example 2, a sheet made of polydimethylsiloxane having a thickness of 300 μm was used. Circular through holes having a diameter of 500 μm are formed in this sheet at intervals of 500 μm. This sheet was sandwiched between two platinum electrodes to form a chamber.

(6)実施例1の実験方法(酵素による溶菌)
本体部5(PDMS製)のウェル3に菌体液を50μLアプライし、すべてのウェル3を覆うように広げた後、PDMS片(25mm×25mm、厚み2mm程度)を用いて本体部5表面をワイプし余分な菌体液を除去した(第1工程)。この本体部5に蓋部7(PDMS製)を被せた状態にて常温で30min静置し、菌体液に含まれる水分を蒸発させた(第2工程)。水分を蒸発後、蓋部7を外して、ウェル3内に酵素溶液(リゾチーム溶液(200μg mL−1)、もしくはリゾチーム、アクロモペプチダーゼ、ラビアーゼ混合溶液(それぞれ200μg mL−1))を200μLアプライし、すべてのウェル3を覆うように広げた(第3工程)。蓋部7(PDMS製)を被せた状態で、常温で20minの酵素反応を進めた後、蓋部7を取り外した。その後、本体部5に純水200μLをアプライし、本体部5上でピペッティングしてDNAを回収した(第4工程)。回収した液体を10,000×g、1min遠心し、上清を回収、そこに含まれるDNA量をqPCR測定により決定した。
(6) Experimental method of Example 1 (enzymatic lysis)
Apply 50 μL of the bacterial cell fluid to the well 3 of the main body 5 (manufactured by PDMS), spread it so as to cover all the wells 3, and then wipe the surface of the main body 5 using a PDMS piece (25 mm × 25 mm, thickness about 2 mm). Excess cell fluid was removed (first step). The main body 5 was covered with a lid 7 (manufactured by PDMS) and allowed to stand at room temperature for 30 minutes to evaporate the water contained in the bacterial cell fluid (second step). After evaporating the water, remove the lid 7 and apply 200 μL of enzyme solution (lysozyme solution (200 μg mL -1 ) or mixed solution of lysozyme, achromopeptidase, and labiase (each 200 μg mL -1)) into the well 3. , Spread to cover all wells 3 (third step). With the lid 7 (manufactured by PDMS) covered, the enzyme reaction was carried out for 20 minutes at room temperature, and then the lid 7 was removed. Then, 200 μL of pure water was applied to the main body 5, and DNA was recovered by pipetting on the main body 5 (fourth step). The collected liquid was centrifuged at 10,000 × g for 1 min, the supernatant was collected, and the amount of DNA contained therein was determined by qPCR measurement.

(7)比較例1の実験方法(熱による溶菌)
本体部5(PDMS製)のウェル3に菌体液を50μLアプライし、すべてのウェル3を覆うように広げた後、PDMS片(25mm×25mm、厚み2mm程度)を用いて本体部5表面をワイプし余分な菌体液を除去した。この本体部5をホットプレートにて98℃、10min間加熱した。加熱後、本体部5に純水200μLをアプライし、本体部5上でピペッティングしてDNAを回収した。回収した液体を10,000×g、1min遠心し、上清を回収、そこに含まれるDNA量をqPCR測定により決定した。
(7) Experimental method of Comparative Example 1 (lysis by heat)
Apply 50 μL of the bacterial cell fluid to the well 3 of the main body 5 (manufactured by PDMS), spread it so as to cover all the wells 3, and then wipe the surface of the main body 5 with a PDMS piece (25 mm × 25 mm, thickness about 2 mm). Excess bacterial fluid was removed. The main body 5 was heated on a hot plate at 98 ° C. for 10 minutes. After heating, 200 μL of pure water was applied to the main body 5, and DNA was recovered by pipetting on the main body 5. The collected liquid was centrifuged at 10,000 × g for 1 min, the supernatant was collected, and the amount of DNA contained therein was determined by qPCR measurement.

(8)比較例2の実験方法(電気穿孔による抽出方法)
貫通孔が形成された上述のポリジメチルシロキサン製のシートを用いた。ガラスに白金をスパッタしたものを電極とした。シートを白金電極にのせ、そこに菌体液を50μLアプライし、すべての穴を覆うように広げた後、もう一枚の白金電極で蓋をした。あふれた菌体液は除去した。これをクランプで固定し、電極間に100V、1s印加した。電圧印加後、クランプ、白金電極を取り外し、シートに純水200μLをアプライし、シート上でピペッティングしてDNAを回収した。回収した液体を10,000×g、1min遠心し、上清を回収、そこに含まれるDNA量をqPCR測定により決定した。
(8) Experimental method of Comparative Example 2 (extraction method by electroporation)
The above-mentioned sheet made of polydimethylsiloxane having through holes formed was used. A glass sputtered with platinum was used as an electrode. The sheet was placed on a platinum electrode, 50 μL of the bacterial cell fluid was applied thereto, and the sheet was spread so as to cover all the holes, and then covered with another platinum electrode. The overflowing bacterial cell fluid was removed. This was fixed with a clamp, and 100 V, 1 s was applied between the electrodes. After applying the voltage, the clamp and the platinum electrode were removed, 200 μL of pure water was applied to the sheet, and DNA was recovered by pipetting on the sheet. The collected liquid was centrifuged at 10,000 × g for 1 min, the supernatant was collected, and the amount of DNA contained therein was determined by qPCR measurement.

(9)比較例3の実験方法(ビーズによる抽出方法)
本体部5(PDMS製)のウェル3に直径50μmのジルコニア製のビーズ45をアプライした。すべてのウェル3にビーズ45を入れた後、本体部5を裏返し、余分なビーズ45を振り落とした。ウェル3とウェル3の間の表面に付着したジルコニアのビーズ45はテープで除去した。ビーズ45を入れたウェル3に菌体液を50μLアプライし、すべてのウェル3(穴)を覆うように広げた。その後、PDMS片(20mm×20mm、厚み2mm程度)を蓋部7として押しつけるように本体部5に被せた。PDMS片を押しつけた際にあふれた菌体液は除去した。本体部5と蓋部7とを厚さ1mmのガラス板2枚で挟みクランプで固定した。これをボルテックスミキサーで20min間振とうした。その後、クランプ、ガラス板、蓋部7を取り外した。その後、ウェル3に純水200μLをアプライし、本体部5上でピペッティングしてDNAを回収した。回収した液体を10,000×g、1min遠心し、上清を回収、そこに含まれるDNA量をqPCR測定により決定した。
(9) Experimental method of Comparative Example 3 (extraction method using beads)
A zirconia bead 45 having a diameter of 50 μm was applied to the well 3 of the main body 5 (made of PDMS). After putting the beads 45 in all the wells 3, the main body 5 was turned over and the excess beads 45 were shaken off. The zirconia beads 45 adhering to the surface between wells 3 were removed with tape. 50 μL of the bacterial cell fluid was applied to the well 3 containing the beads 45, and the cells were spread so as to cover all the wells 3 (holes). Then, a PDMS piece (20 mm × 20 mm, thickness about 2 mm) was put on the main body 5 so as to be pressed as the lid 7. The bacterial fluid that overflowed when the PDMS piece was pressed was removed. The main body 5 and the lid 7 were sandwiched between two glass plates having a thickness of 1 mm and fixed with a clamp. This was shaken for 20 minutes with a vortex mixer. After that, the clamp, the glass plate, and the lid 7 were removed. Then, 200 μL of pure water was applied to the well 3 and pipetting was performed on the main body 5 to recover the DNA. The collected liquid was centrifuged at 10,000 × g for 1 min, the supernatant was collected, and the amount of DNA contained therein was determined by qPCR measurement.

2.実験結果
(1)各種抽出方法によるDNA回収量
微生物として、E.coliを用いた結果を図17に示す。実施例1では酵素としてリゾチームを用いた場合の結果が示されている。
図17より、実施例1は、比較例1〜3よりもDNAの回収量(抽出量)が多いことが確認された。
2. Experimental results (1) Amount of DNA recovered by various extraction methods As a microorganism, E.I. The result of using colli is shown in FIG. Example 1 shows the results when lysozyme was used as the enzyme.
From FIG. 17, it was confirmed that Example 1 had a larger amount of DNA recovered (extracted amount) than Comparative Examples 1 to 3.

(2)各種微生物を用いた場合のDNA回収量
実施例1において、6種類の異なる微生物を用いた場合のDNA回収量を検討した。図18に結果を示す。いずれの微生物の場合においても、図17の比較例1〜3よりもDNAの回収量(抽出量)が多いことが確認された。
(2) Amount of DNA recovered when various microorganisms were used In Example 1, the amount of DNA recovered when six different types of microorganisms were used was examined. The results are shown in FIG. In the case of any of the microorganisms, it was confirmed that the amount of DNA recovered (extracted amount) was larger than that of Comparative Examples 1 to 3 in FIG.

3.実施例の効果
本実施例の抽出方法によれば、従来法よりもDNA等の細胞内構成物質を効率よく抽出できる。この抽出方法は、グラム陽性菌及びグラム陰性菌の種類を問わず、幅広い微生物に適用可能である。
3. 3. Effect of Example According to the extraction method of this example, intracellular constituent substances such as DNA can be extracted more efficiently than the conventional method. This extraction method is applicable to a wide range of microorganisms regardless of the types of Gram-positive and Gram-negative bacteria.

<実験B>
この実験では、本開示の器具9を用いた細胞内構成物質1の抽出方法において、各ウェル3毎にそれぞれ異なる微生物を含む培養液を入れた場合に、クロスコンタミネーションが抑制されることを確認した。
この実験では、図19に示すように、隣接する複数の(5つの)ウェル3に対して、別々の微生物を含む培養液(菌体液(OD660=1.0))をアプライした。各ウェル3のウェル間距離3Bは、450μmとした。ウェル3は平面形状が円形であり、径が750μmとした。
各ウェル3には、ウェルIDを付している。各ウェル3には、次の微生物を含む培養液をアプライした。
ウェルID 1:Pseudomonas
ウェルID 2:Bacillus
ウェルID 3:Staphylococcus
ウェルID 4:Acinetobacter
ウェルID 5:E.coli
<Experiment B>
In this experiment, it was confirmed that in the method for extracting the intracellular constituent substance 1 using the instrument 9 of the present disclosure, cross-contamination was suppressed when a culture solution containing a different microorganism was added to each well 3. bottom.
In this experiment, as shown in FIG. 19, a culture solution (cell fluid (OD660 = 1.0)) containing different microorganisms was applied to a plurality of (five) wells 3 adjacent to each other. The distance between wells 3B of each well 3 was set to 450 μm. The well 3 has a circular planar shape and a diameter of 750 μm.
A well ID is attached to each well 3. A culture solution containing the following microorganisms was applied to each well 3.
Well ID 1: Pseudomonas
Well ID 2: Bacillus
Well ID 3: Staphylococcus
Well ID 4: Acinetobacter
Well ID 5: E.I. coli

実験方法を次に示す。本体部5(PDMS製)のウェル3にそれぞれの菌体液を50μLアプライし、すべてのウェル3を覆うように広げた後、PDMS片(25mm×25mm、厚み2mm程度)を用いて本体部5表面をワイプし余分な菌体液を除去した(第1工程)。この本体部5に蓋部7(PDMS製)を被せた状態にて常温で30min静置し、菌体液に含まれる水分を蒸発させた(第2工程)。水分を蒸発後、蓋部7を外して、ウェル3内にリゾチーム、アクロモペプチダーゼ、ラビアーゼ混合溶液(それぞれ200μg mL−1)を200μLアプライした(第3工程)。蓋部7(PDMS製)を被せた状態で、常温で20minの酵素反応を進めた後、蓋部7を取り外した。その後、マイクロピペットのチップで各ウェル3をこすってDNAを回収した(第4工程)。0.1N NaOH 5μLでチップ先端を洗い、0.1N HCl5μLで中和し、実験Aと同様にDNA量をqPCR測定により決定した。 The experimental method is shown below. Apply 50 μL of each bacterial solution to the well 3 of the main body 5 (manufactured by PDMS), spread it so as to cover all the wells 3, and then use a PDMS piece (25 mm × 25 mm, thickness about 2 mm) to cover the surface of the main body 5. Was wiped to remove excess bacterial cell fluid (first step). The main body 5 was covered with a lid 7 (manufactured by PDMS) and allowed to stand at room temperature for 30 minutes to evaporate the water contained in the bacterial cell fluid (second step). After evaporating the water content, the lid 7 was removed, and 200 μL of a mixed solution of lysozyme, achromopeptidase, and labiase (each 200 μg mL -1 ) was applied into the well 3 (third step). With the lid 7 (manufactured by PDMS) covered, the enzyme reaction was carried out for 20 minutes at room temperature, and then the lid 7 was removed. Then, the DNA was collected by rubbing each well 3 with the tip of a micropipette (4th step). The tip of the chip was washed with 5 μL of 0.1N NaOH, neutralized with 5 μL of 0.1N HCl, and the amount of DNA was determined by qPCR measurement in the same manner as in Experiment A.

実験結果を図20に示す。各ウェル3で、そこにアプライした微生物のDNAが主に回収されたことから、クロスコンタミネーションが抑制されていることが確認された。これは、第2工程で溶媒を蒸発させることによって、ウェル3内に酵素液を受け入れるスペースを十分に確保することができ、その結果、第3工程で所定量の酵素液を入れた際に、酵素液25がウェル3から溢れて、隣接するウェル3間で内容物が混ざりにくかったためと推測される。 The experimental results are shown in FIG. In each well 3, the DNA of the microorganism applied thereto was mainly recovered, confirming that cross-contamination was suppressed. This is because by evaporating the solvent in the second step, a sufficient space for receiving the enzyme solution can be secured in the well 3, and as a result, when a predetermined amount of the enzyme solution is added in the third step, It is presumed that the enzyme solution 25 overflowed from the well 3 and the contents were difficult to mix between the adjacent wells 3.

前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述及び図示において使用された文言は、限定的な文言ではなく説明的及び例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲又は本質から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料及び実施例を参照したが、本発明をここにおける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。 The above examples are for illustration purposes only and are not to be construed as limiting the invention. Although the present invention has been described with reference to typical embodiments, the language used in the description and illustration of the invention is understood to be descriptive and exemplary rather than restrictive. As described in detail here, modifications can be made within the scope of the appended claims without departing from the scope or nature of the invention in that form. Although specific structures, materials and examples have been referred to herein in detail of the invention, it is not intended to limit the invention to the disclosures herein, but rather the invention is claimed in the accompanying claims. It shall cover all functionally equivalent structures, methods and uses within the scope.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形又は変更が可能である。 The present invention is not limited to the embodiments detailed above, and various modifications or modifications can be made within the scope of the claims of the present invention.

本開示の細胞内構成物質の抽出方法を用いれば、細胞内構成物質を効率よく抽出できる By using the method for extracting intracellular constituents of the present disclosure, intracellular constituents can be efficiently extracted.

1 …細胞内構成物質
3 …ウェル
3A…径
3B…ウェル間距離
3C…深さ
5 …本体部
7 …蓋部
7A…厚み
9 …器具
21…微生物
23…培養液
25…酵素液
31…溶媒
41…板状体
43…不織布
1 ... Intracellular constituents 3 ... Wells 3A ... Diameter 3B ... Well-to-well distance 3C ... Depth 5 ... Main body 7 ... Lid 7A ... Thickness 9 ... Instruments 21 ... Microorganisms 23 ... Culture solution 25 ... Enzyme solution 31 ... Solvent 41 ... Plate-shaped body 43 ... Non-woven fabric

Claims (3)

複数のウェルを有する本体部と、
ガス透過性を有し、前記ウェルの開口を塞ぐ蓋部と、を備えた器具を用いた細胞内構成物質の抽出方法であって、
微生物を含む培養液を前記ウェルに入れ、
前記開口を前記蓋部で覆った状態で、前記ウェル内の前記培養液の溶媒を蒸発させ、
前記蓋部を外して、前記ウェル内に酵素液を添加し、
前記開口を前記蓋部で覆い、所定時間置いた後に、前記蓋部を外して、前記細胞内構成物質を抽出する、細胞内構成物質の抽出方法。
The main body with multiple wells and
A method for extracting intracellular constituents using an instrument having a gas-permeable lid and a lid that closes the opening of the well.
A culture solution containing microorganisms was placed in the well,
With the opening covered with the lid, the solvent of the culture solution in the well was evaporated.
The lid is removed, the enzyme solution is added into the well, and the enzyme solution is added.
A method for extracting an intracellular constituent substance, wherein the opening is covered with the lid portion, left for a predetermined time, and then the lid portion is removed to extract the intracellular constituent substance.
前記蓋部は、シリコーン樹脂を主成分とする、請求項1に記載の細胞内構成物質の抽出方法。 The method for extracting an intracellular constituent substance according to claim 1, wherein the lid portion contains a silicone resin as a main component. 前記本体部は、シリコーン樹脂を主成分とする、請求項1又は請求項2に記載の細胞内構成物質の抽出方法。 The method for extracting an intracellular constituent substance according to claim 1 or 2, wherein the main body is mainly composed of a silicone resin.
JP2020070743A 2020-04-10 2020-04-10 Extraction method of intracellular constituents Active JP7409944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020070743A JP7409944B2 (en) 2020-04-10 2020-04-10 Extraction method of intracellular constituents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020070743A JP7409944B2 (en) 2020-04-10 2020-04-10 Extraction method of intracellular constituents

Publications (2)

Publication Number Publication Date
JP2021166481A true JP2021166481A (en) 2021-10-21
JP7409944B2 JP7409944B2 (en) 2024-01-09

Family

ID=78079146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020070743A Active JP7409944B2 (en) 2020-04-10 2020-04-10 Extraction method of intracellular constituents

Country Status (1)

Country Link
JP (1) JP7409944B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110234A (en) 2008-11-04 2010-05-20 Tokai Univ Method for extracting nucleic acid from microorganism cell using dry crushing
JP6196661B2 (en) 2012-04-20 2017-09-13 スリップチップ, エルエルシー Fluidic devices and systems for sample preparation or autonomous analysis
JP7344016B2 (en) 2019-06-17 2023-09-13 国立大学法人 東京大学 Culture method

Also Published As

Publication number Publication date
JP7409944B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
US11142758B2 (en) Method and device for collection and amplification of circulating nucleic acids
Kurihara et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA
EP1730276B1 (en) Method, chip, device and system for extraction of biological materials
RU2617947C2 (en) Nucleic acids isolation
Tan et al. DNA, RNA, and protein extraction: the past and the present
Eun et al. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation
US5376527A (en) Process for lysing mycobacteria
JP5165383B2 (en) Molecular diagnostic system and method
King et al. Bioaerosol sampling with a wetted wall cyclone: cell culturability and DNA integrity of Escherichia coli bacteria
US10907146B2 (en) Nucleic acid extraction method using solid subject
JPH0430279B2 (en)
Vulto et al. A microfluidic approach for high efficiency extraction of low molecular weight RNA
CN104769111B (en) Method for one-step nucleic acid amplification of non-eluted samples
JP2016535994A (en) Fabrication of hierarchical silica nanomembranes and their use for solid-phase extraction of nucleic acids
JP2000300262A (en) Extraction of nucleic acid using particule carrier
JP2013521804A (en) Use of achromopeptidase for lysis at room temperature
JP7409944B2 (en) Extraction method of intracellular constituents
WO2022145354A1 (en) Method and kit for detecting target nucleic acid fragment
Lee et al. Chemical trends in sample preparation for nucleic acid amplification testing (NAAT): a Review
EP3456839A1 (en) Method of enrichment of micro-organisms in a metagenomics workflow
US20090142798A1 (en) Method of selectively lysing non-viable cells in cell population in sample
CN103874766A (en) Molecular detection assay
WO2013117968A1 (en) Methods for lysing bacteria from sample and isolating cellular components therefrom, and kits therefor
Wassermann A Novel sample preparation technology for sepsis diagnosis
VENNISON Laboratory manual for genetic engineering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7409944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150