JP2021162579A - Heat transmission coefficient measuring apparatus and method - Google Patents

Heat transmission coefficient measuring apparatus and method Download PDF

Info

Publication number
JP2021162579A
JP2021162579A JP2021039510A JP2021039510A JP2021162579A JP 2021162579 A JP2021162579 A JP 2021162579A JP 2021039510 A JP2021039510 A JP 2021039510A JP 2021039510 A JP2021039510 A JP 2021039510A JP 2021162579 A JP2021162579 A JP 2021162579A
Authority
JP
Japan
Prior art keywords
heat
heating
wall portion
peripheral wall
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021039510A
Other languages
Japanese (ja)
Inventor
隆博 筒本
Takahiro Tsutsumoto
浩治 長谷川
Koji Hasegawa
紘志 末村
Hiroshi Suemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Original Assignee
Hiroshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture filed Critical Hiroshima Prefecture
Publication of JP2021162579A publication Critical patent/JP2021162579A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

To provide a heat transmission coefficient measuring apparatus and method capable of easily measuring a heat transmission coefficient while, for example, each component having a complicated shape of an automobile is mounted on the automobile.SOLUTION: A heating box provided internally with heating means and blowing means to have non-permeability and heat insulation performance, a plurality of temperature measuring means for respectively measuring atmospheric temperature on a high temperature side of a heat insulation performance measuring object and atmospheric temperature on a low temperature side of the heat insulation performance measuring object, and a control part are provided and arranged so as to form a circuit in which a plurality of thermopiles or a plurality of heat flowmeters in the case that the thickness of a peripheral wall part is constant over the entire area of the peripheral wall part of the heating box, or the plurality of heat flowmeters in the case that the thickness of the peripheral wall part is not constant are serially connected at predetermined prescribed equal area intervals, the heating means and the blowing means in the heating box are controlled such that output voltage from the circuit obtained by serially connecting the plurality of thermopiles or the plurality of heat flowmeters, and a heat transmission coefficient is outputted on the basis of temperature information from the temperature measuring means.SELECTED DRAWING: Figure 1

Description

本発明は、断熱性能を測定する測定対象物の測定対象範囲の面形状が、平面、曲面又は三次元での変化がある面のいずれかの面形状であっても熱貫流率を測定することができる熱貫流率測定装置及び方法に関する。 The present invention measures the thermal transmissivity even if the surface shape of the measurement target range of the measurement target for which the heat insulation performance is measured is a plane shape, a curved surface, or a surface having a change in three dimensions. The present invention relates to a thermal transmissivity measuring device and a method capable of measuring the thermal transmission rate.

非特許文献1には、建築用構成材の断熱性測定方法として校正熱箱法及び保護熱箱法が記載され、該保護熱箱法は保護熱箱の中に加熱箱が設置され、保護熱箱は試験体表面と平行な損失熱量と加熱箱周壁部からの損失熱量を最小にするように制御され加熱箱への供給熱量に基づき試験体通過熱量を測定する技術であるが、試験体表面と平行な損失熱量と加熱箱周壁部からの損失熱量をともに0とする理想状態での測定は困難である。そこで保護熱箱法を基に改善された校正熱箱法は加熱箱への供給熱量から試験体表面と平行な損失熱量と加熱箱周壁部からの損失熱量を差し引いて試験体通過熱量を測定する技術が開示されている。 Non-Patent Document 1 describes a calibration heat box method and a protective heat box method as a method for measuring the heat insulating property of a building component, and in the protective heat box method, a heating box is installed in the protective heat box to protect heat. The box is a technology that measures the amount of heat lost through the test piece based on the amount of heat lost parallel to the surface of the test piece and the amount of heat lost from the peripheral wall of the heating box and is controlled to minimize the amount of heat supplied to the heating box. It is difficult to measure in an ideal state where both the amount of heat loss parallel to and the amount of heat loss from the peripheral wall of the heating box are zero. Therefore, the calibration heat box method, which has been improved based on the protective heat box method, measures the amount of heat passing through the test piece by subtracting the amount of heat loss parallel to the surface of the test piece and the amount of heat loss from the peripheral wall of the test piece from the amount of heat supplied to the heating box. The technology is disclosed.

また、「8.3サーモパイル」に記載されているようにサーモパイルは加熱箱周壁部の熱流を監視するために用いられ、「8.5温度制御」には加熱箱、保護熱箱及び冷却チャンバー内の空気温度の変動を連続した2回の測定期間で試験体両側の空気温度差の1%以内と記載されている。他方、校正熱箱法の装置は「5.2校正熱箱法」に記載されているように装置全体が恒温室内に設置される。「7.2.1箱の構造」には加熱箱は気密材で試験体に密着させると記載されている。 Further, as described in "8.3 Thermopile", the thermopile is used to monitor the heat flow in the peripheral wall of the heating box, and in "8.5 temperature control", the inside of the heating box, the protective heat box and the cooling chamber is used. It is described that the fluctuation of the air temperature in the above is within 1% of the air temperature difference on both sides of the test piece in two consecutive measurement periods. On the other hand, as for the equipment of the calibration heat box method, the entire equipment is installed in the constant temperature room as described in "5.2 Calibration heat box method". "7.2.1 Box structure" states that the heating box is made of an airtight material and is brought into close contact with the test piece.

非特許文献2には、建具の断熱性試験方法について記載され、「図3 校正熱箱法試験装置(断面)」に記載されているように、高温室と低温室の境界に試験体が設置され、その試験体の高温室側に熱箱が設置されて、日本産業規格JIS A1420の規定に従って造られかつ該規定に従って試験体の熱貫流率を測定する方法が開示されている。 Non-Patent Document 2 describes a heat insulating test method for fittings, and as described in "Fig. 3 Calibration Heat Box Method Test Device (Cross Section)", a test piece is installed at the boundary between a high temperature chamber and a low temperature chamber. A method is disclosed in which a heat box is installed on the high temperature chamber side of the test piece, the test piece is manufactured in accordance with the provisions of Japanese Industrial Standard JIS A1420, and the thermal transmission rate of the test piece is measured in accordance with the provisions.

特許文献1には、保冷車体の外形寸法等の寸法、保冷車体内の温度等の温度情報、保冷車体内に設置された伝熱ヒータの電圧をデジタル量にして検出するヒータ電圧トランスジューサ等から熱貫流率を演算する保冷車体の熱貫流率自動測定装置が開示されている。 Patent Document 1 describes heat from dimensions such as the external dimensions of a cold insulation vehicle body, temperature information such as the temperature inside the cold insulation vehicle body, and a heater voltage transducer that detects the voltage of a heat transfer heater installed in the cold insulation vehicle body as a digital quantity. An automatic thermal transmission rate measuring device for a cold-insulated vehicle body that calculates the thermal transmission rate is disclosed.

特開平2−272334号公報Japanese Unexamined Patent Publication No. 2-272334

日本産業規格JIS A1420Japanese Industrial Standard JIS A1420 日本産業規格JIS A4710Japanese Industrial Standard JIS A4710

ハイブリッド車や電気自動車等の自動車の空調性能の効率化や燃費改善のために自動車の車内の断熱性能の向上が求められている。そこで、自動車の乗員が乗る車内の周壁を形づくる部品、例えばバックドア、フロントドア、リアドア又はルーフ等の部品ごとの断熱性能の評価が簡易にできる方法が求められつつある。 In order to improve the efficiency of air conditioning performance and fuel efficiency of automobiles such as hybrid vehicles and electric vehicles, it is required to improve the heat insulation performance inside the automobile. Therefore, there is a growing demand for a method that can easily evaluate the heat insulating performance of each part such as a back door, a front door, a rear door, or a roof, which forms a peripheral wall in a vehicle on which an automobile occupant rides.

非特許文献1では、図5(a)に示すように、試験体25の厚さ方向の高温側に接する一方の面から低温側に接する他方の面への通過熱量から熱貫流率は、加熱箱21、保護熱箱22、冷却チャンバー23、加熱手段24、送風手段26、試験体25を備えた保護熱箱法試験装置20を使用して、試験体25の熱流に対して垂直な面積Aの値と、加熱箱21側の雰囲気温度Tniから冷却側の雰囲気温度Tneを減算した値とを乗算した値で、試験体通過熱量Φ1を除算することにより求められる。また、加熱箱21側の雰囲気温度Tni及び冷却側の雰囲気温度Tneは、一定であることを要件としている。 In Non-Patent Document 1, as shown in FIG. 5A, the heat transmission coefficient is determined by the amount of heat passing from one surface of the test piece 25 in contact with the high temperature side to the other surface in contact with the low temperature side. Using the protective heat box method test device 20 including the box 21, the protective heat box 22, the cooling chamber 23, the heating means 24, the blower means 26, and the test body 25, the area A perpendicular to the heat flow of the test body 25. It is obtained by dividing the amount of heat passing through the test piece Φ1 by multiplying the value of Φ1 by the value obtained by subtracting the atmospheric temperature Tne on the cooling side from the atmospheric temperature Tni on the heating box 21 side. Further, it is required that the atmospheric temperature Tni on the heating box 21 side and the atmospheric temperature Tne on the cooling side are constant.

前記試験体通過熱量Φ1は、加熱箱21内に内設した加熱手段24及び送風手段26の発熱量Φpから、加熱箱21の周壁部から保護熱箱22側に向けて通過する熱量Φ3と試験体25表面と平行な損失熱量Φ2を減算する。非特許文献1の「5.1 保護熱箱法」には「理想的にはΦ2=Φ3=0であるが、実際の測定においてはΦ2=Φ3=0とすることは困難であり、Φpに対してΦ2及びΦ3の校正が必要になる。」と記載されている。このため、損失熱量Φ2及び通過熱量Φ3を予め校正しなければならない煩わしさがあるという問題があった。 The amount of heat passing through the test body Φ1 is tested as the amount of heat Φ3 passing from the peripheral wall portion of the heating box 21 toward the protective heat box 22 side from the heat generation amount Φp of the heating means 24 and the blowing means 26 installed inside the heating box 21. The amount of heat loss Φ2 parallel to the surface of the body 25 is subtracted. According to "5.1 Protective Heat Box Method" of Non-Patent Document 1, "Ideally Φ2 = Φ3 = 0, but it is difficult to set Φ2 = Φ3 = 0 in actual measurement, so Φp On the other hand, it is necessary to calibrate Φ2 and Φ3. " Therefore, there is a problem that it is troublesome to calibrate the heat loss amount Φ2 and the passing heat amount Φ3 in advance.

非特許文献2の校正熱箱法試験装置30は、図5(b)に示すように、高温室32、低温室33の境に設置され、加熱箱31、加熱箱31内に内設する加熱手段34、送風手段35及びバッフル36、低温室33内に設置するバッフル38及び送風手段37、試験体40を装着する高い断熱性を有する取付パネル39を備えている。熱流の流れは図5(a)に示す保護熱箱法試験装置20とほぼ同じであるが、試験体40の表面と平行な損失熱量Φ2に該当する損失が高い断熱性を有する取付パネル39によりほぼ無視できるようにしている。よって、非特許文献2についても加熱箱31の周壁部から高温室32側に向けて通過する熱量Φ3については、事前に熱抵抗が既知の校正板を用いて校正しておかねばならない煩わしさがあるという問題があった。 As shown in FIG. 5B, the calibration heat box method test apparatus 30 of Non-Patent Document 2 is installed at the boundary between the high temperature chamber 32 and the low temperature chamber 33, and is internally provided in the heating box 31 and the heating box 31 for heating. The means 34, the blowing means 35 and the baffle 36, the baffle 38 and the blowing means 37 installed in the low temperature chamber 33, and the mounting panel 39 having a high heat insulating property for mounting the test body 40 are provided. The flow of heat flow is almost the same as that of the protective heat box method test apparatus 20 shown in FIG. It is almost negligible. Therefore, also in Non-Patent Document 2, the amount of heat Φ3 passing from the peripheral wall portion of the heating box 31 toward the high temperature chamber 32 side has to be calibrated in advance using a calibration plate having a known thermal resistance. There was a problem.

また、図5(a)又は(b)に示すように、非特許文献1に規定する熱貫流率測定装置20及び非特許文献2に規定する熱貫流率測定装置30はいずれも建築用構成材を測定する目的で規定されており、基本的にはいずれも平板状体を測定することから、加熱箱21又は31の上端縁部形状は凹凸がない直線状の形状である。したがって、自動車部品のバックドア等の三次元で変化する形状を持つ試験体すなわち断熱性能測定対象物10の熱貫流率を測定するためには、例えば図11又は図12に示すように、加熱箱71の上端縁部形状や加熱箱71を囲繞する保護熱箱72の上端縁部形状を自動車部品のバックドア等の三次元で変化する形状に合わせて専用の加熱箱71や保護熱箱72を製作しなければならなかった。 Further, as shown in FIGS. 5A or 5B, the thermal transmissivity measuring device 20 specified in Non-Patent Document 1 and the thermal transmissivity measuring device 30 specified in Non-Patent Document 2 are both building components. The shape of the upper end edge of the heating box 21 or 31 is a straight shape without unevenness because it is basically measured for a flat plate-like body. Therefore, in order to measure the thermal transmission rate of a test piece having a three-dimensionally changing shape such as a back door of an automobile part, that is, an object 10 for measuring heat insulation performance, a heating box is used, for example, as shown in FIG. 11 or FIG. A dedicated heating box 71 or protective heat box 72 is provided according to the shape of the upper end edge of 71 and the shape of the upper end edge of the protective heat box 72 surrounding the heating box 71 so as to match the shape of the back door of automobile parts that changes in three dimensions. I had to make it.

例えば、自動車のバックドアの熱貫流率を測定するには、図11に示すように加熱手段3及び送風手段4を備えた加熱・送風手段73を内設した加熱箱71の上縁部形状、及び、保護熱箱72の上面形状をバックドア74の形状に合うようにバックドア専用の形状を有する熱貫流率測定装置70を製作し、図12(a)又は(b)に示すように熱貫流率測定装置70の開口部にバックドア74を載置して加熱箱71内を閉塞状態にして熱貫流率を測定する。このことは、特定部品専用の熱貫流率測定装置を異なる形状を有する部品ごとに製作しなければならないことから、投資効率が極めて低く、かつ多くの種類の熱貫流率測定装置の置き場に困るという問題があった。 For example, in order to measure the thermal transmission rate of the back door of an automobile, as shown in FIG. 11, the shape of the upper edge of the heating box 71 in which the heating / blowing means 73 provided with the heating means 3 and the blowing means 4 is installed. Further, a thermal transmissivity measuring device 70 having a shape dedicated to the back door is manufactured so that the upper surface shape of the protective heat box 72 matches the shape of the back door 74, and heat is shown as shown in FIGS. 12 (a) or 12 (b). A back door 74 is placed in the opening of the thermal transmissivity measuring device 70 to close the inside of the heating box 71, and the thermal transmissivity is measured. This means that the thermal transmission rate measuring device dedicated to a specific part must be manufactured for each part having a different shape, so the investment efficiency is extremely low and it is difficult to store many types of thermal transmission rate measuring devices. There was a problem.

また、非特許文献1に規定する熱貫流率測定装置20、又は非特許文献2に規定する熱貫流率測定装置30は、恒温室等の部屋においての測定、及び、測定対象部品を単体で持ち込み熱貫流率測定装置に取り付けて測定することを前提としているので、例えば自動車部品のバックドア等を自動車から取り外して持ち込まなければ測定できないという煩わしい問題があった。 Further, the thermal transmissivity measuring device 20 specified in Non-Patent Document 1 or the thermal transmissivity measuring device 30 specified in Non-Patent Document 2 can be used for measurement in a room such as a constant temperature room, and the parts to be measured are brought in as a single unit. Since it is premised that it is attached to a thermal transmissivity measuring device for measurement, there is a troublesome problem that measurement cannot be performed unless, for example, the back door of an automobile part is removed from the automobile and brought in.

さらに、非特許文献1に規定する熱貫流率測定装置20、又は非特許文献2に規定する熱貫流率測定装置30の冷却チャンバの筐体は遮光可能な断熱材で造られる。このため、例えば自動車の外板部材には自然光からのふく射熱が発生するが、前記外板部材に該当する被熱貫流率測定対象物に対する自然光からのふく射熱の影響による熱貫流率を把握できないという問題があった。 Further, the housing of the cooling chamber of the thermal transmissivity measuring device 20 specified in Non-Patent Document 1 or the thermal transmissivity measuring device 30 specified in Non-Patent Document 2 is made of a heat insulating material capable of light shielding. For this reason, for example, the heat transmission from natural light is generated in the outer panel member of an automobile, but there is a problem that the thermal transmission rate due to the influence of the thermal radiation heat from natural light on the object to be measured for the thermal transmission rate corresponding to the outer panel member cannot be grasped. was there.

特許文献1の発明は、保冷車体全体の断熱性能の評価をするものであり、自動車を構成する部品ごとに断熱性能を示す熱貫流率を測定することはできないという問題があった。 The invention of Patent Document 1 evaluates the heat insulation performance of the entire cold insulation vehicle body, and has a problem that it is not possible to measure the thermal transmission rate indicating the heat insulation performance for each component constituting an automobile.

本発明はこうした問題に鑑み創案されたもので、例えば自動車の複雑な形状を有する部品ごとに自動車に取り付けた状態で簡易に熱貫流率を測定できる熱貫流率測定装置及び方法を提供することを課題とする。 The present invention has been devised in view of these problems. For example, it is intended to provide a thermal transmissivity measuring device and a method capable of easily measuring a thermal transmissivity while being attached to an automobile for each part having a complicated shape of an automobile. Make it an issue.

請求項1に記載の熱貫流率測定装置は、断熱性能測定対象物の厚さ方向の高温側に接する一方の面から低温側に接する他方の面への通過熱量を測定する熱貫流率測定装置であって、加熱手段及び送風手段を内設し、断熱性能測定対象物の着設により開口部が塞がれ閉塞状態となる、無通気性及び断熱性を有する加熱箱と、前記断熱性能測定対象物の高温側となる前記加熱箱の内部の雰囲気温度と、前記断熱性能測定対象物の低温側となる空間の雰囲気温度をそれぞれ測定する複数の温度測定手段と、前記加熱手段を制御し熱貫流率を算出する制御部と、を備え、前記加熱箱の周壁部の全域における内部側表面と外部側表面との温度差を出力電圧で測定可能に、複数のサーモパイル又は複数の熱流計を略等面積間隔で1つずつ配設し、前記複数のサーモパイル又は前記複数の熱流計をそれぞれ直列接続させた回路を形成し、前記制御部が、前記複数のサーモパイル又は前記複数の熱流計を直列接続させた回路からの出力電圧がゼロになるように、前記加熱箱内の前記加熱手段を制御することを特徴とする。 The heat transmission coefficient measuring device according to claim 1 is a heat transmission coefficient measuring device that measures the amount of heat passing from one surface in contact with the high temperature side in the thickness direction of the heat insulating performance measurement object to the other surface in contact with the low temperature side. A heating box having non-ventilation and heat insulating properties, in which a heating means and a blowing means are installed internally, and the opening is closed and closed by the installation of the heat insulating performance measurement object, and the heat insulating performance measurement. A plurality of temperature measuring means for measuring the ambient temperature inside the heating box on the high temperature side of the object and the atmospheric temperature of the space on the low temperature side of the heat insulating performance measurement object, and heat by controlling the heating means. It is equipped with a control unit that calculates the transmission coefficient, and can measure the temperature difference between the inner surface and the outer surface in the entire peripheral wall of the heating box with the output voltage. A circuit is formed in which the plurality of thermopile or the plurality of heat flow meters are connected in series by arranging them one by one at equal area intervals, and the control unit connects the plurality of thermopile or the plurality of heat flow meters in series. It is characterized in that the heating means in the heating box is controlled so that the output voltage from the circuit is zero.

請求項2に記載の熱貫流率測定装置は、請求項1において、前記加熱箱の周壁部の厚みが全域で略均一の場合は、前記加熱箱の周壁部の内部側全表面又は外部側全表面に亘って複数の熱流計を、又は、前記加熱箱の周壁部の内部側全表面及び外部側全表面に亘って複数のサーモパイルを、略等面積間隔で1つずつ配設したことを特徴とする。 The thermal transmissivity measuring device according to claim 2 has, in claim 1, when the thickness of the peripheral wall portion of the heating box is substantially uniform over the entire area, the entire inner surface or the entire outer side of the peripheral wall portion of the heating box. It is characterized in that a plurality of thermal flow meters are arranged over the surface, or a plurality of thermopile are arranged one by one at substantially equal area intervals over the entire inner surface and the outer outer surface of the peripheral wall portion of the heating box. And.

請求項3に記載の熱貫流率測定装置は、請求項1において、前記加熱箱の周壁部の厚みが全域で不均一の場合は、前記加熱箱の周壁部の内部側全表面又は外部側全表面に亘って複数の熱流計を略等面積間隔で1つずつ配設したことを特徴とする。 The thermal transmissivity measuring device according to claim 3, in claim 1, when the thickness of the peripheral wall portion of the heating box is non-uniform over the entire area, the entire inner surface or the entire outer side of the peripheral wall portion of the heating box. It is characterized in that a plurality of thermal flow meters are arranged one by one at substantially equal area intervals over the surface.

請求項4に記載の熱貫流率測定装置は、請求項1〜3のいずれかにおいて、前記略等面積間隔の設定は、前記サーモパイルを配設する場合は前記加熱箱の周壁部の内部側及び外部側のそれぞれの全表面を同じ等面積間隔とし、又は、前記熱流計を配設する場合は前記加熱箱の周壁部の内部側又は外部側の全表面を等面積間隔とし、ならびに、前記等面積間隔として5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積を間隔として設定することを特徴とする。 In any one of claims 1 to 3, the heat transmission coefficient measuring device according to claim 4 sets the substantially equal area spacing to the inner side of the peripheral wall portion of the heating box and when the thermopile is arranged. All surfaces on the outer side have the same equal area spacing, or when the heat flow meter is arranged, all surfaces on the inner or outer side of the peripheral wall portion of the heating box have equal area spacing, and the above, etc. It is characterized in that a substantially equal area obtained by dividing by any one of 5 equal area divisions to 80 equal area divisions as an area interval is set as an interval.

請求項5に記載の熱貫流率測定装置は、請求項1〜4のいずれかにおいて、前記加熱箱が前記箱状体から取外し可能に設置され、かつ前記加熱箱が、無通気性、断熱性及び可撓性を有する周壁部を備えた袋状の形態を有する加熱袋であることを特徴とする。 In any one of claims 1 to 4, the thermal transmissivity measuring device according to claim 5 is installed so that the heating box is removable from the box-shaped body, and the heating box is breathless and heat insulating. It is characterized in that it is a heating bag having a bag-like shape provided with a flexible peripheral wall portion.

請求項6に記載の熱貫流率測定装置は、請求項1〜5のいずれかにおいて、前記低温側の空間を形成する筐体に、熱交換器で該筐体内の空気を冷却する水冷式、又は、該筐体内に冷風を送り込む空冷式の冷却手段を備えたことを特徴とする。 The thermal transmissivity measuring device according to claim 6 is a water-cooled type according to any one of claims 1 to 5, wherein the air in the housing is cooled by a heat exchanger in the housing forming the space on the low temperature side. Alternatively, it is characterized by providing an air-cooled cooling means for sending cold air into the housing.

請求項7に記載の熱貫流率測定装置は、請求項6において、前記低温側の空間を形成する筐体の、前記断熱性能測定対象物と対向する側の壁部に、前記筐体の外方に設けた光源からの前記筐体内の前記断熱性能測定対象物に対するふく射を可能とするガラス壁部を設けたことを特徴とする。 According to claim 6, the thermal transmissivity measuring device according to claim 7 is located on a wall portion of the housing forming the space on the low temperature side, which faces the object of heat insulation performance measurement, and is outside the housing. It is characterized by providing a glass wall portion capable of radiating the object to be measured for heat insulation performance in the housing from a light source provided on the side.

請求項8に記載の熱貫流率測定装置は、請求項7において、前記ガラス壁部と前記断熱性能測定対象物との間に、前記断熱性能測定対象物に略平行に設けた板状のバッフル板を、前記光源からの前記断熱性能測定対象物に対するふく射を可能とするガラス板とすることを特徴とする。 The thermal transmissivity measuring device according to claim 8 is a plate-shaped baffle provided in claim 7 between the glass wall portion and the heat insulating performance measuring object substantially parallel to the heat insulating performance measuring object. The plate is characterized by being a glass plate capable of radiating the object to be measured for heat insulation performance from the light source.

請求項9に記載の熱貫流率測定装置は、請求項7又は8において、前記筐体内の前記断熱性能測定対象物に対する前記ふく射の強度を調整するためのふく射強度調整手段を設けたことを特徴とする。 The thermal transmissivity measuring device according to claim 9 is characterized in that, in claim 7 or 8, the radiation intensity adjusting means for adjusting the radiation intensity with respect to the heat insulating performance measurement object in the housing is provided. And.

請求項10に記載の熱貫流率測定装置は、請求項7〜9のいずれかにおいて、前記ガラス壁部と前記断熱性能測定対象物との間であって、前記ガラス壁部近傍に送風手段を設け、かつ前記送風手段により発生する気流の速度を、自然条件の風速の中から選択した風速を再現可能にする気流速度制御手段を設けたことを特徴とする。 The heat transmission coefficient measuring device according to claim 10 has, in any one of claims 7 to 9, a blower means between the glass wall portion and the heat insulating performance measurement object and in the vicinity of the glass wall portion. It is characterized in that the airflow velocity control means is provided so that the air velocity generated by the air blowing means can be reproduced by selecting the wind speed from the wind speeds under natural conditions.

請求項11に記載の熱貫流率測定方法は、加熱袋を用いて自動車のドアの熱貫流率を測定する方法であって、前記加熱袋は、略中央部に配設した加熱・送風手段と、該加熱・送風手段を囲繞可能な周壁部とを備え、前記周壁部は、無通気性、断熱性及び可撓性を有し、前記周壁部の厚みが全域で不均一である場合は、前記周壁部の内部側の全表面又は外部側の全表面にわたり、複数の熱流計を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数の熱流計を直列接続させた回路を備え、前記加熱袋を自動車のドア開口部の内部に設置し、前記加熱袋の周壁部が挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋内部を閉塞状態とし、前記自動車のドアを断熱性能測定対象物として、前記周壁部に取り付けられた前記複数の熱流計を直列接続させた回路からの出力電圧がゼロとなるように前記加熱袋内の加熱手段を制御し、さらに前記自動車の車内雰囲気温度が安定するように前記車内雰囲気温度を制御し熱貫流率を算出することを特徴とする。 The heat transmission coefficient measuring method according to claim 11 is a method of measuring the thermal transmission rate of an automobile door using a heating bag, and the heating bag is a heating / blowing means arranged in a substantially central portion. If the peripheral wall portion is provided with a peripheral wall portion capable of surrounding the heating / blowing means, the peripheral wall portion has non-ventilation, heat insulation and flexibility, and the thickness of the peripheral wall portion is uneven over the entire area. Approximately equal area obtained by dividing a plurality of thermal flow meters by the number of equal area divisions from 5 equal area divisions to 80 equal area divisions over the entire surface on the inner side or the entire surface on the outer side of the peripheral wall portion. The heating bag is installed inside the door opening of the automobile, and the peripheral wall portion of the heating bag is sandwiched. As described above, the door is closed to close the opening, the inside of the heating bag is closed, the door of the automobile is used as an object for measuring the heat insulating performance, and the plurality of thermal flow meters attached to the peripheral wall portion are connected in series. The heating means in the heating bag is controlled so that the output voltage from the circuit becomes zero, and the thermal atmosphere temperature in the vehicle is controlled so that the atmospheric temperature in the vehicle is stabilized, and the thermal transmission rate is calculated. It is a feature.

請求項12に記載の熱貫流率測定方法は、加熱袋を用いて自動車のドアの熱貫流率を測定する方法であって、前記加熱袋は、略中央部に配設した加熱・送風手段と、該加熱・送風手段を囲繞可能な周壁部とを備え、前記周壁部は、無通気性、断熱性及び可撓性を有し、前記周壁部の厚みが全域で略均一である場合は、前記周壁部の内部側及び外部側の2面それぞれの全表面にわたり、複数のサーモパイルを前記2面それぞれ5等面積分割〜80等面積分割のうちのいずれかの同じ等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数のサーモパイルを直列接続させた回路、あるいは、前記周壁部の内部側の全表面又は外部側の全表面にわたり、複数の熱流計を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数の熱流計を直列接続させた回路、を備え、前記加熱袋を自動車のドア開口部の内部に設置し、前記加熱袋の周壁部が挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋内部を閉塞状態とし、前記自動車のドアを断熱性能測定対象物として、前記周壁部に取り付けられた前記複数のサーモパイルを直列接続させた回路からの出力電圧又は前記複数の熱流計を直列接続させた回路からの出力電圧がゼロとなるように、前記加熱袋内の加熱手段を制御し、さらに前記自動車の車内雰囲気温度を安定させるように前記雰囲気温度を制御し熱貫流率を算出することを特徴とする。 The method for measuring the heat transmission coefficient according to claim 12 is a method for measuring the heat transmission coefficient of an automobile door using a heating bag, and the heating bag is a heating / blowing means arranged in a substantially central portion. If the peripheral wall portion is provided with a peripheral wall portion capable of surrounding the heating / blowing means, the peripheral wall portion has non-ventilation, heat insulation and flexibility, and the thickness of the peripheral wall portion is substantially uniform over the entire area. A plurality of thermopile is divided by the same number of equal area divisions from 5 equal area divisions to 80 equal area divisions on each of the two surfaces over the entire surfaces of the two surfaces on the inner side and the outer side of the peripheral wall portion. A plurality of heat flow meters are arranged one by one at intervals of substantially equal areas obtained, and the plurality of thermopile is connected in series, or a plurality of heat flow meters over the entire surface on the inner side or the entire surface on the outer side of the peripheral wall portion. The plurality of heat flow meters were connected in series by arranging one by one at intervals of substantially equal areas obtained by dividing by the number of equal area divisions of any of 5 equal area divisions to 80 equal area divisions. A circuit is provided, the heating bag is installed inside the door opening of an automobile, the door is closed so that the peripheral wall portion of the heating bag is sandwiched, the opening is closed, and the inside of the heating bag is closed. Then, the door of the automobile is used as an object for measuring the heat insulation performance, and the output voltage from the circuit in which the plurality of thermopile attached to the peripheral wall portion is connected in series or the output from the circuit in which the plurality of heat flow meters are connected in series. It is characterized in that the heating means in the heating bag is controlled so that the voltage becomes zero, and the atmospheric temperature is controlled so as to stabilize the atmospheric temperature inside the automobile, and the heat transmission coefficient is calculated.

請求項13に記載の熱貫流率測定方法は、請求項11又は12において、前記ドアが、フロントドア、リアドア又はバックドアのいずれかであることを特徴とする。
The thermal transmissivity measuring method according to claim 13 is characterized in that, in claim 11 or 12, the door is any of a front door, a rear door, and a back door.

請求項1〜4のいずれかに記載の熱貫流率測定装置は、加熱箱の周壁部から箱状体側への熱流収支をゼロとみなすことが実現できたことから、非特許文献1の保護熱箱法試験装置で規定する「加熱箱の周壁部からの損失熱量Φ3」を事前に把握して校正しておくことをしなくてもよいという顕著な効果を奏する。これにより、前記保護熱箱法試験装置の構成要件である保護熱箱を加熱箱と一体的に組み立てたものでなければならないという制約を解除することができ、例えば、前記保護熱箱を自動車のボディで代用させることができるようになった。 The thermal transmissivity measuring device according to any one of claims 1 to 4 has realized that the heat flow balance from the peripheral wall portion of the heating box to the box-shaped body side can be regarded as zero, and therefore the protective heat of Non-Patent Document 1 It has a remarkable effect that it is not necessary to grasp and calibrate the "heat loss from the peripheral wall of the heating box Φ3" specified by the box method test apparatus in advance. This makes it possible to release the restriction that the protective heat box, which is a constituent requirement of the protective heat box method test apparatus, must be integrally assembled with the heating box. For example, the protective heat box can be used in an automobile. The body can now be used as a substitute.

また、非特許文献1の保護熱箱法試験で測定した熱貫流率と、本発明の熱貫流率測定装置により測定した熱貫流率との測定誤差を最小化できるという効果を奏する。 In addition, it is possible to minimize the measurement error between the thermal transmissivity measured in the protective heat box method test of Non-Patent Document 1 and the thermal transmissivity measured by the thermal transmissivity measuring device of the present invention.

請求項5に記載の熱貫流率測定装置は、従来ならば3次元で形状変化する断熱性能測定対象物を測定するときは、無通気性と断熱性を有する材料で断熱性能測定対象物の外面形状に合わせた保護熱箱及び加熱箱を製作しなければならず、その断熱性能測定対象物のみしか使用できないのを、加熱箱の周壁部の材質を可撓性を有する部材にすることが実現できたことにより、1つの加熱袋で3次元で変化する形状を有する断熱性能測定対象物に対応できるので、加熱箱を形状の異なる断熱性能測定対象物ごとに専用で製作しなくても1つの加熱袋でよいという効果を奏する。 The thermal transmissivity measuring device according to claim 5 is conventionally made of a material having non-breathability and heat insulating properties when measuring a heat insulating performance measuring object whose shape changes in three dimensions, and is an outer surface of the heat insulating performance measuring object. It is necessary to manufacture a protective heat box and a heating box that match the shape, and it is possible to make the material of the peripheral wall of the heating box a flexible member so that only the object whose heat insulation performance is to be measured can be used. By doing so, it is possible to handle heat insulation performance measurement objects that have a shape that changes in three dimensions with one heating bag, so one heating box does not have to be specially manufactured for each heat insulation performance measurement object with a different shape. It has the effect that a heating bag is sufficient.

請求項6に記載の熱貫流率測定装置は、冷却手段を手軽に持ち運びできるので、低温の恒温室で測定しなくとも、あるいは、非特許文献1又は非特許文献2に規定する加熱箱と一体的な冷却チャンバーを用いなくても、部屋の内外のいずれの測定場所であっても精度の高い熱貫流率を得ることができるという効果を奏する。 Since the thermal transmission rate measuring device according to claim 6 can easily carry the cooling means, it does not need to be measured in a low temperature constant temperature room, or it is integrated with the heating box specified in Non-Patent Document 1 or Non-Patent Document 2. There is an effect that a highly accurate thermal transmission rate can be obtained at any measurement location inside or outside the room without using a conventional cooling chamber.

請求項7〜9に記載の熱貫流率測定装置は、例えば自動車の外板部材に発生する、太陽等の自然光から発生するふく射熱の影響を受けたときの熱貫流率を測定できるという効果を奏する。 The thermal transmissivity measuring device according to claims 7 to 9 has an effect of being able to measure the thermal transmissivity when affected by the radiant heat generated from natural light such as the sun, which is generated on the outer panel member of an automobile, for example. ..

請求項10に記載の熱貫流率測定装置は、自然条件である風速の影響を受けたときの熱貫流率を測定できるという効果を奏する。 The thermal transmissivity measuring device according to claim 10 has an effect of being able to measure the thermal transmissivity when affected by wind speed, which is a natural condition.

請求項11〜13のいずれかに記載の自動車のドアの熱貫流率測定方法は、自動車にドアを装着した状態で加熱袋を装着して熱貫流率を測定することができるという効果を奏する。 The method for measuring the thermal transmission rate of an automobile door according to any one of claims 11 to 13 has an effect that the thermal transmission rate can be measured by attaching a heating bag to the automobile with the door attached.

本発明の熱貫流率測定装置の説明図で、加熱箱の周壁部の材質を、可撓性を有する部材とした形態の説明図で、(a)がサーモパイルを等面積間隔で配設した、拡げた場合の平面視の説明図で、(b)が(a)のA−A断面の説明図である。In the explanatory view of the thermal transmissivity measuring device of the present invention, in the explanatory view of the form in which the material of the peripheral wall portion of the heating box is a flexible member, (a) is a thermopile arranged at equal area intervals. It is an explanatory view of the plan view when it is expanded, and (b) is the explanatory view of the AA cross section of (a). 本発明の熱貫流率測定装置の加熱箱の周壁部の全域に亘って、(a)が複数のサーモパイルを配設した説明図で、(b)が複数の熱流計を配設した説明図である。(A) is an explanatory view in which a plurality of thermopile is arranged over the entire peripheral wall portion of the heating box of the thermal transmissivity measuring device of the present invention, and (b) is an explanatory view in which a plurality of heat flow meters are arranged. be. 本発明の熱貫流率測定装置の加熱箱の可撓性を有する部材からなる周壁部の全域に亘って、(a)がサーモパイルを配設した説明図で、(b)が複数の熱流計を配設した説明図である。(A) is an explanatory view in which a thermopile is arranged over the entire peripheral wall portion made of a flexible member of the heating box of the thermal transmissivity measuring device of the present invention, and (b) is a plurality of heat flow meters. It is explanatory drawing which arranged. 低温側に設ける可搬式の冷却箱の説明図で、(a)が水冷方式の説明図で、(b)が空冷方式の説明図である。An explanatory diagram of a portable cooling box provided on the low temperature side, (a) is an explanatory diagram of a water cooling system, and (b) is an explanatory diagram of an air cooling system. 日本産業規格の説明図で、(a)が非特許文献1の日本産業規格JIS A1420の保護熱箱法試験装置の説明図で、(b)が非特許文献2の日本産業規格JIS A4710の校正熱箱法試験装置の説明図である。In the explanatory diagram of the Japanese Industrial Standards, (a) is an explanatory diagram of the protective heat box method test apparatus of the Japanese Industrial Standards JIS A1420 of Non-Patent Document 1, and (b) is the calibration of the Japanese Industrial Standards JIS A4710 of Non-Patent Document 2. It is explanatory drawing of the hot box method test apparatus. 加熱箱に配設するサーモパイル等の配設間隔と測定誤差の試験をする装置の説明図である。It is explanatory drawing of the apparatus which tests the arrangement interval and the measurement error of the thermopile and the like arranged in a heating box. 図6に示す加熱箱の展開図と等面積間隔の説明図で、(a)は1面が1等面積間隔で全面で5等面積間隔の説明図で、(b)は1面が4等面積間隔で全面で20等面積間隔の説明図で、(c)は1面が9等面積間隔で全面で45等面積間隔の説明図である。It is an explanatory view of the development view of the heating box shown in FIG. It is an explanatory diagram of 20 equal area intervals on the entire surface with an area interval, and (c) is an explanatory diagram of 45 equal area intervals on the entire surface with 9 equal area intervals on one surface. サーモパイルの配設間隔を決める、壁面部の全表面に対する等面積分割数と、該サーモパイル測定誤差との関係を示す図である。It is a figure which shows the relationship between the number of equal area divisions with respect to the whole surface of a wall surface part which determines the arrangement interval of a thermopile, and the thermopile measurement error. 熱伝導率が既知の試験体を使用して本発明の熱貫流率測定装置の測定値の信頼性の試験結果を示す図である。It is a figure which shows the test result of the reliability of the measured value of the thermal conductivity measuring apparatus of this invention using the test body which knows the thermal conductivity. 自動車の熱貫流率測定対象部品の説明図で、自動車に加熱袋装着可能な部品と、自動車から外さないと加熱袋を装着できない部品の説明図である。It is explanatory drawing of the part to measure thermal transmission rate of an automobile, and it is explanatory drawing of the part which can attach a heating bag to an automobile, and the part which cannot attach a heating bag unless it is removed from an automobile. 上縁部を例えばバックドアの外周縁形状に合うように製作した加熱箱の説明図である。It is explanatory drawing of the heating box which made the upper edge part to fit the shape of the outer peripheral edge of a back door, for example. 図11に示す加熱箱にバックドアを装着した図で、(a)はバックドア装着した斜視説明図で、(b)が(a)のB−B断面説明図である。11 is a view in which a back door is attached to the heating box shown in FIG. 11, FIG. 11A is a perspective explanatory view with the back door attached, and FIG. 11B is a cross-sectional explanatory view taken along line BB in FIG. 11A. 本発明の熱貫流率測定装置の加熱袋を自動車のバックドアに装着させた図で、(a)は車内側から見たバックドアに装着した加熱袋の状態の説明図で、(b)は車外側から見たバックドアを開にして加熱袋を装着させた状態の説明図である。The heating bag of the thermal transmissivity measuring device of the present invention is attached to the back door of an automobile, (a) is an explanatory view of the state of the heating bag attached to the back door as seen from the inside of the automobile, and (b) is It is explanatory drawing of the state in which the back door seen from the outside of a car is opened and a heating bag is attached. 加熱箱の展開図と等面積間隔の説明図で、1つの面が全面となる場合の全面で36等面積間隔の説明図である。It is the development view of the heating box and the explanatory view of the equal area spacing, and is the explanatory view of 36 equal area spacing on the whole surface when one surface becomes the whole surface. 光源及びガラス壁部等を追加設置した熱貫流率測定装置の説明図である。It is explanatory drawing of the thermal transmission rate measuring apparatus which additionally installed a light source, a glass wall part and the like. ふく射熱がある状況下での送風機の風量と熱貫流率の関係を示す図である。It is a figure which shows the relationship between the air volume of a blower, and a thermal transmission rate under the condition of radiant heat. ふく射熱がない状況、及びライト照射によるふく射熱がある状況での熱貫流率の変化を示す図である。It is a figure which shows the change of the thermal transmission rate in the situation where there is no thermal radiation, and when there is the thermal heat by light irradiation.

本発明である熱貫流率測定装置1及び方法は、断熱性能測定対象物10の熱貫流率を測定する装置及び方法である。非特許文献1又は非特許文献2で問題であった、第一に加熱箱2の周壁部から保護熱箱6側に向けて通過する熱量Φ3を事前に熱抵抗が既知の校正板を用いて校正しておかねばならないという煩わしさの問題、及び、第二に加熱箱2及び保護熱箱6のそれぞれの断熱性能測定対象物10を受ける上縁部形状を断熱性能測定対象物10の三次元で変化する形状に合わせて専用の加熱箱2や保護熱箱6を製作しなければならないという問題を解決させるべく、発明者は本発明の熱貫流率測定装置1及び方法を想到した。 The thermal transmissivity measuring device 1 and the method of the present invention are devices and methods for measuring the thermal transmissivity of the heat insulating performance measurement object 10. Using a calibration plate whose thermal resistance is known in advance, the amount of heat Φ3 that first passes from the peripheral wall of the heating box 2 toward the protective heat box 6 side, which was a problem in Non-Patent Document 1 or Non-Patent Document 2. The troublesome problem of having to calibrate, and secondly, the shape of the upper edge that receives the heat insulation performance measurement object 10 of each of the heating box 2 and the protective heat box 6 is three-dimensional of the heat insulation performance measurement object 10. In order to solve the problem that a dedicated heating box 2 and a protective heat box 6 must be manufactured according to the shape changing in the above, the inventor has conceived the thermal transmissivity measuring device 1 and the method of the present invention.

本発明の熱貫流率測定装置1は、図2(a)又は図2(b)に示すように、熱貫流率測定装置1は、断熱性能測定対象物10の厚さ方向の高温側に接する一方の面から低温側に接する他方の面への通過熱量を測定する熱貫流率測定装置1であって、加熱手段3及び送風手段4を内設し、断熱性能測定対象物10の着設により開口部が塞がれ閉塞状態となる、無通気性及び断熱性を有する加熱箱2と、前記断熱性能測定対象物10の高温側となる前記加熱箱2の内部の雰囲気温度と、前記断熱性能測定対象物10の低温側となる空間の雰囲気温度をそれぞれ測定する複数の温度測定手段15、16と、前記加熱手段3を制御し熱貫流率を算出する制御部7と、を備え、前記加熱箱2の周壁部9の全域における内部側表面と外部側表面との温度差を出力電圧で測定可能に、複数のサーモパイル11又は複数の熱流計12を略等面積間隔で1つずつ配設し、前記複数のサーモパイル11又は前記複数の熱流計12をそれぞれ直列接続させた回路を形成し、前記制御部7が、前記複数のサーモパイル11又は前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロになるように、前記加熱箱2内の前記加熱手段3を制御する。 As shown in FIG. 2A or FIG. 2B, the heat transmission coefficient measuring device 1 of the present invention is in contact with the high temperature side of the heat insulating performance measurement object 10 in the thickness direction. It is a heat transmission coefficient measuring device 1 for measuring the amount of heat passing from one surface to the other surface in contact with the low temperature side. The heating box 2 having non-ventilation and heat insulating properties in which the opening is closed and closed, the atmospheric temperature inside the heating box 2 on the high temperature side of the heat insulating performance measurement object 10, and the heat insulating performance. The heating is provided with a plurality of temperature measuring means 15 and 16 for measuring the atmospheric temperature of the space on the low temperature side of the object 10 to be measured, and a control unit 7 for controlling the heating means 3 and calculating the heat transmission coefficient. A plurality of thermopile 11s or a plurality of heat flow meters 12 are arranged one by one at substantially equal area intervals so that the temperature difference between the inner surface and the outer surface in the entire peripheral wall portion 9 of the box 2 can be measured by the output voltage. , The plurality of thermopile 11 or the plurality of heat flow meters 12 are connected in series, respectively, and the control unit 7 is from a circuit in which the plurality of thermopile 11 or the plurality of heat flow meters 12 are connected in series. The heating means 3 in the heating box 2 is controlled so that the output voltage becomes zero.

また、熱貫流率測定装置1は、前記加熱箱2の周壁部9全体を囲繞しかつ前記加熱箱2と閉塞空間を形成する箱状体6を備え、前記箱状体6内には加熱手段19及び送風手段17が内設され、前記送風手段17は作動し続け、前記制御部7は前記箱状体6内部の雰囲気温度を一定になるように前記箱状体6内部に設けた温度測定手段(図示なし)からの温度情報に基づき前記加熱手段19を制御部7により制御する。 Further, the thermal transmissivity measuring device 1 includes a box-shaped body 6 that surrounds the entire peripheral wall portion 9 of the heating box 2 and forms a closed space with the heating box 2, and the heating means is contained in the box-shaped body 6. 19 and the blower means 17 are installed internally, the blower means 17 continues to operate, and the control unit 7 is provided inside the box-shaped body 6 so as to keep the atmospheric temperature inside the box-shaped body 6 constant. The heating means 19 is controlled by the control unit 7 based on the temperature information from the means (not shown).

前記熱貫流率測定装置1は、図1に示すように加熱箱2aと箱状体6とは分離する形態Aと、図2又は図3に示すように加熱箱2と箱状体6とが一体的に組立てられる形態Bがある。前記形態Aの場合は、箱状体6は例えば自動車80の乗員が乗る車内を形成するボディが相当する。 The thermal transmissivity measuring device 1 has a form A in which the heating box 2a and the box-shaped body 6 are separated as shown in FIG. 1, and the heating box 2 and the box-shaped body 6 as shown in FIG. 2 or FIG. There is a form B that can be integrally assembled. In the case of the embodiment A, the box-shaped body 6 corresponds to, for example, a body forming the inside of the vehicle on which the occupant of the automobile 80 rides.

すなわち、前記熱貫流率測定装置1は、前記形態Aの場合は、前記箱状体6の筐体を自動車80のボディで代用することができ、加熱手段19、送風手段17、車内雰囲気温度測定手段及び制御手段を備えた車内温度安定化手段を自動車80の車内に持ち込むことにより、前記箱状体6の機能と同じ機能を発揮させることができる。 That is, in the case of the embodiment A, the thermal transmissivity measuring device 1 can substitute the housing of the box-shaped body 6 with the body of the automobile 80, and measures the heating means 19, the blower means 17, and the temperature inside the vehicle. By bringing the vehicle interior temperature stabilizing means provided with the means and the control means into the vehicle of the automobile 80, the same function as that of the box-shaped body 6 can be exhibited.

前記熱貫流率測定装置1は、図2又は図3に示すように、断熱性能測定対象物10は加熱箱2の断熱性を有する周壁9のみで支持され箱状体6とは隔離されているので断熱性能測定対象物10の表面と平行な損失熱量をゼロとみなすことができ、かつ、前記加熱箱2の周壁部9の全域における内部側表面と外部側表面との温度差を表す出力電圧をゼロに制御するので加熱箱2の周壁部9から箱状体6側への熱流収支をゼロとみなすことができる。これによって、第一の問題であった「加熱箱2の周壁部から保護熱箱6側に向けて通過する熱量Φ3及び試験体表面と平行な損失熱量Φ2を事前に熱抵抗が既知の校正板を用いて校正しておかねばならないという煩わしさ」を解消できた。 In the thermal transmissivity measuring device 1, as shown in FIG. 2 or 3, the heat insulating performance measurement object 10 is supported only by the peripheral wall 9 having heat insulating properties of the heating box 2 and is isolated from the box-shaped body 6. Therefore, the amount of heat loss parallel to the surface of the heat insulating performance measurement object 10 can be regarded as zero, and the output voltage representing the temperature difference between the inner surface and the outer surface in the entire peripheral wall portion 9 of the heating box 2. Is controlled to zero, so that the heat flow balance from the peripheral wall portion 9 of the heating box 2 to the box-shaped body 6 side can be regarded as zero. As a result, the first problem is "a calibration plate whose thermal resistance is known in advance for the amount of heat Φ3 passing from the peripheral wall of the heating box 2 toward the protective heat box 6 side and the amount of heat loss Φ2 parallel to the surface of the test piece. I was able to eliminate the annoyance of having to calibrate using.

したがって、前記熱貫流率測定装置1は、前記加熱手段3及び前記送風手段4において消費される電力の計測値から算出される、前記加熱箱2の内部から前記断熱性能測定対象物10の厚さ方向に沿って前記低温側となる空間へ前記断熱性能測定対象物10を通過する熱量と、前記断熱性能測定対象物10における熱流に対して垂直な面積と、前記加熱箱2の内部の雰囲気温度と、前記断熱性能測定対象物10の低温側となる空間の雰囲気の温度とを用いて、前記断熱性能測定対象物10の熱貫流率を算出できる。したがって、前記熱貫流率測定装置1を使用すると、前記加熱手段3及び前記送風手段4において消費される電力の計測値から算出される加熱箱内供給熱量Φpを把握すれば、前記通過熱量Φ3及び前記損失熱量Φ2を考慮しなくても前記通過熱量Φ1を容易に求められるという顕著な効果を奏する。 Therefore, the thermal transmissivity measuring device 1 is calculated from the measured values of the power consumed by the heating means 3 and the blower means 4, and the thickness of the heat insulating performance measurement object 10 from the inside of the heating box 2. The amount of heat that passes through the adiabatic performance measurement object 10 to the space on the low temperature side along the direction, the area perpendicular to the heat flow in the adiabatic performance measurement object 10, and the ambient temperature inside the heating box 2. And the temperature of the atmosphere of the space on the low temperature side of the adiabatic performance measurement object 10, the thermal transmissivity of the adiabatic performance measurement object 10 can be calculated. Therefore, when the thermal transmissivity measuring device 1 is used, if the amount of heat supplied in the heating box Φp calculated from the measured values of the electric power consumed by the heating means 3 and the blowing means 4 is grasped, the passing heat amount Φ3 and the passing heat amount Φ3 It has a remarkable effect that the passing heat amount Φ1 can be easily obtained without considering the heat loss amount Φ2.

本発明の熱貫流率測定装置1の前記加熱箱2は、図2に示すように、加熱手段3と送風手段4を内設し、前記断熱性能測定対象物10の着設により開口部が塞がれ閉塞状態となる。前記加熱箱2の周壁部9は無通気性及び断熱性を有し、前記加熱箱2の内部の温度は一定に維持される。前記加熱手段3は加熱できるものであればよく例えばヒータがあり、前記送風手段4は送風ができるものであればよく例えばファンがある。前記加熱手段3は前記制御部7で制御されるが、前記送風手段4は前記制御部7で制御することなく常時作動させる。 As shown in FIG. 2, the heating box 2 of the thermal transmissivity measuring device 1 of the present invention is provided with a heating means 3 and a blowing means 4 internally, and the opening is closed by the attachment of the heat insulating performance measurement object 10. It becomes a debris blockage state. The peripheral wall portion 9 of the heating box 2 has non-ventilation and heat insulating properties, and the temperature inside the heating box 2 is maintained constant. The heating means 3 may have a heater, for example, as long as it can heat, and the blower means 4 may have a fan, for example, as long as it can blow air. The heating means 3 is controlled by the control unit 7, but the ventilation means 4 is always operated without being controlled by the control unit 7.

前記加熱箱2は、図2、図3に示すように、上部に開口部を有する筐体であり、上部開口部の周縁部に前記断熱性能測定対象物10を載置する構成にし、前記断熱性能測定対象物10が箱状体6と接触しないように隔離するようにしている。そして、加熱箱2の周壁部9は少なくとも無通気性及び断熱性を有する部材から造られる。前記加熱箱2内には、加熱手段3、送風手段4、温度測定手段15が内設されている。 As shown in FIGS. 2 and 3, the heating box 2 is a housing having an opening at the upper portion, and has a configuration in which the heat insulating performance measurement object 10 is placed on the peripheral edge of the upper opening, and the heat insulating box 2 is heat-insulated. The performance measurement object 10 is isolated so as not to come into contact with the box-shaped body 6. The peripheral wall portion 9 of the heating box 2 is made of at least a non-breathable and heat-insulating member. A heating means 3, a blower means 4, and a temperature measuring means 15 are internally provided in the heating box 2.

この前記断熱性能測定対象物10を加熱箱2の周縁部9のみで支持し前記周縁部9としか接触しないようにする構成により、前記断熱性能測定対象物10の側面での損失熱量をゼロとみなすことができる。 The amount of heat lost on the side surface of the heat insulating performance measurement object 10 is set to zero by the configuration in which the heat insulating performance measurement object 10 is supported only by the peripheral edge portion 9 of the heating box 2 and is in contact with only the peripheral edge portion 9. Can be regarded.

前記複数の温度測定手段15、16は、少なくとも前記断熱性能測定対象物10の高温側となる前記加熱箱2の内部の雰囲気温度を測定する温度センサー15と、前記断熱性能測定対象物10の低温側となる空間の雰囲気の温度を測定する温度センサー16を備える。前記温度センサー15、16からの温度情報は制御部7内に設置したデータロガー(図示なし)に記憶される。前記加熱箱2の内部の雰囲気温度と低温側となる空間の雰囲気の温度は熱貫流率を算出するためのデータとして制御部7で演算される。 The plurality of temperature measuring means 15 and 16 include a temperature sensor 15 for measuring at least the ambient temperature inside the heating box 2 on the high temperature side of the heat insulating performance measuring object 10 and a low temperature of the heat insulating performance measuring object 10. A temperature sensor 16 for measuring the temperature of the atmosphere of the space on the side is provided. The temperature information from the temperature sensors 15 and 16 is stored in a data logger (not shown) installed in the control unit 7. The atmospheric temperature inside the heating box 2 and the temperature of the atmosphere in the space on the low temperature side are calculated by the control unit 7 as data for calculating the thermal transmissivity.

次に、前記制御部7は、前記複数のサーモパイル11を直列接続させた回路からの出力電圧又は前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロになるように、加熱箱2内に内設した加熱手段3を制御し、温度センサー15からの加熱箱2内部の雰囲気温度及び温度センサー16からの前記断熱性能測定対象物10の低温側となる空間の雰囲気の温度をデータロガー(図示なし)に入力して記憶させ、予め既知の前記断熱性能測定対象物10の伝熱面積(前記断熱性能測定対象物10における熱流に対して垂直な面積)、前記加熱手段3及び送風手段4の供給熱量をもとに熱貫流率を導き出し出力する制御を行う。前記出力は制御部7に設けたディスプレイや接続させたパソコンの画面に表示することができる。 Next, the control unit 7 heats the heating box so that the output voltage from the circuit in which the plurality of thermopile 11s are connected in series or the output voltage from the circuit in which the plurality of heat flow meters 12 are connected in series becomes zero. The heating means 3 installed inside the 2 is controlled, and the temperature of the atmosphere inside the heating box 2 from the temperature sensor 15 and the temperature of the atmosphere of the space on the low temperature side of the heat insulating performance measurement object 10 from the temperature sensor 16 are data. It is input to a logger (not shown) and stored, and the heat transfer area of the heat insulation performance measurement object 10 (the area perpendicular to the heat flow in the heat insulation performance measurement object 10), the heating means 3, and the blower are known in advance. Control is performed to derive and output the heat transfer coefficient based on the amount of heat supplied by the means 4. The output can be displayed on a display provided in the control unit 7 or a screen of a connected personal computer.

前記箱状体6は、前記加熱箱2の周壁部9の全体を囲繞しかつ前記加熱箱2と閉塞空間を形成する。非特許文献1における保護熱箱22や、非特許文献2における高温室32を本発明では改良を行ったものであり、本発明では加熱箱2と閉塞空間を形成可能なものであればよく、保護熱箱や高温室でなく自動車の車内でもよいようにできた。例えば図10に示すようにドア類をすべて閉にした自動車80の車内81に加熱箱2を設置して測定可能にできる。前記箱状体6は自動車80のボディに該当し、前記加熱箱2と前記箱状体6との間の閉塞空間は前記自動車80の全ドアを全閉した車内に該当する。 The box-shaped body 6 surrounds the entire peripheral wall portion 9 of the heating box 2 and forms a closed space with the heating box 2. The protective heat box 22 in Non-Patent Document 1 and the high temperature chamber 32 in Non-Patent Document 2 are improved in the present invention, and in the present invention, any one capable of forming a closed space with the heating box 2 is sufficient. It was made possible to use it inside a car instead of a protective heat box or a high temperature room. For example, as shown in FIG. 10, the heating box 2 can be installed in the vehicle interior 81 of the automobile 80 with all the doors closed so that the measurement can be performed. The box-shaped body 6 corresponds to the body of the automobile 80, and the closed space between the heating box 2 and the box-shaped body 6 corresponds to the inside of the vehicle in which all the doors of the automobile 80 are fully closed.

次に、サーモパイル11又は熱流計12について説明する。前記加熱箱2の周壁部9の厚みが全域で略均一の場合は、図1(a)、(b)、図2(a)、(b)、又は、図3(a)、(b)に示すように、前記加熱箱2の周壁部9の内部側全表面又は外部側全表面に亘って複数の熱流計12、又は、前記加熱箱2の周壁部9の内部側全表面及び外部側全表面に亘って複数のサーモパイル11を、略等面積間隔で1つずつ配設する。 Next, the thermopile 11 or the heat flow meter 12 will be described. When the thickness of the peripheral wall portion 9 of the heating box 2 is substantially uniform over the entire area, FIGS. 1 (a), (b), 2 (a), (b), or 3 (a), (b). As shown in the above, a plurality of heat flow meters 12 over the entire inner surface or outer surface of the peripheral wall portion 9 of the heating box 2, or the entire inner surface and outer side of the peripheral wall portion 9 of the heating box 2. A plurality of thermopile 11s are arranged one by one at substantially equal area intervals over the entire surface.

また、図2(b)又は図3(b)に示すように、前記加熱箱2の周壁部9の厚みが全域で不均一の場合は、前記加熱箱2の周壁部9の内部側全表面又は外部側全表面に亘って複数の熱流計12を略等面積間隔で1つずつ配設する。 Further, as shown in FIG. 2B or FIG. 3B, when the thickness of the peripheral wall portion 9 of the heating box 2 is non-uniform over the entire area, the entire inner surface of the peripheral wall portion 9 of the heating box 2 is formed. Alternatively, a plurality of heat flow meters 12 are arranged one by one at substantially equal area intervals over the entire surface on the outer side.

前記複数のサーモパイル11を直列接続させた回路からの出力電圧又は前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロになった状態では、前記加熱箱2の周壁部9を通した、箱状体6により形成する空間に対する熱流収支がゼロの状態とみなせる。これにより、図5(a)に示すような非特許文献1の保護熱箱法に規定された「加熱箱周壁からの損失熱量Φ3」を事前に把握して校正しておくという煩わしいことをしなくてもよい。 When the output voltage from the circuit in which the plurality of thermopile 11s are connected in series or the output voltage from the circuit in which the plurality of heat flow meters 12 are connected in series becomes zero, the peripheral wall portion 9 of the heating box 2 is passed through. It can be considered that the heat flow balance with respect to the space formed by the box-shaped body 6 is zero. As a result, it is troublesome to grasp and calibrate the "heat loss from the peripheral wall of the heating box Φ3" specified in the protective heat box method of Non-Patent Document 1 as shown in FIG. 5 (a) in advance. It does not have to be.

次に、複数のサーモパイル11を前記周壁部9の内部側全表面及び外部側全表面の表裏に略等面積間隔に配設して複数のサーモパイル11による出力電圧をゼロに制御することによって、高い精度の熱貫流率を得られることを、図6に示すようなサーモパイル配設検討用の熱貫流率測定装置1cを使用し検証した。前記熱貫流率測定装置1cは加熱箱2の周壁部9や箱状体6を備えて、前記周壁部9の5面はすべて1面が1m四方の大きさにした。加熱箱2の周壁部9の熱伝導率と厚みは既知であるので前記周壁部9の通過熱量Q2は計算上求められる。また、試験体10aの熱貫流率、伝熱面積、加熱箱内雰囲気温度と冷却側雰囲気温度は把握できるので、試験体10aの通過熱量Q1は求められる。そこで、試験体10aの通過熱量Q1を分母とし、加熱箱2の周壁部9の通過熱量Q2からサーモパイル11又は熱流計12による全熱流収支値Q3を減算した値を分子として除算した値を測定誤差として算出する。 Next, a plurality of thermopile 11s are arranged on the front and back surfaces of the inner side and the outer side of the peripheral wall portion 9 at substantially equal area intervals, and the output voltage due to the plurality of thermopile 11s is controlled to zero. It was verified that an accurate thermal transmissivity could be obtained by using a thermal transmissivity measuring device 1c for studying thermopile arrangement as shown in FIG. The thermal transmissivity measuring device 1c includes a peripheral wall portion 9 and a box-shaped body 6 of the heating box 2, and all five surfaces of the peripheral wall portion 9 have a size of 1 m square. Since the thermal conductivity and thickness of the peripheral wall portion 9 of the heating box 2 are known, the amount of heat passing through the peripheral wall portion 9 Q2 can be calculated. Further, since the thermal transmission rate, heat transfer area, atmospheric temperature inside the heating box, and atmospheric temperature on the cooling side of the test body 10a can be grasped, the heat passing amount Q1 of the test body 10a can be obtained. Therefore, the measured error is the value obtained by subtracting the total heat flow balance value Q3 by the thermopile 11 or the heat flow meter 12 from the passing heat amount Q2 of the peripheral wall portion 9 of the heating box 2 with the passing heat amount Q1 of the test body 10a as the denominator. Calculate as.

すなわち、計算上で求められる通過熱量Q2と、サーモパイル11又は熱流計12で測定されたQ3との比較を行った。通過熱量Q2と全熱流収支値Q3との差が大きいと測定誤差が多くなり、通過熱量Q2と全熱流収支値Q3との差が小さくなると測定誤差は小さくなる。 That is, the calculated amount of heat passing through Q2 was compared with Q3 measured by the thermopile 11 or the heat flow meter 12. If the difference between the passing heat amount Q2 and the total heat flow balance value Q3 is large, the measurement error becomes large, and if the difference between the passing heat amount Q2 and the total heat flow balance value Q3 becomes small, the measurement error becomes small.

試験例1は、周壁部9の展開図である図7(a)に示すように1m四方の1面の中心に1個のサーモパイルを配置した全面で5等面積分割で等面積の場合であり、5面に配置したそれぞれのサーモパイル同士を直列接続させ5つのサーモパイルからなる複数のサーモパイル11とした。試験例2は、周壁部9の展開図である図7(b)に示すように1m四方の1面を4つに等面積分割しそれぞれの中心に1個のサーモパイルを配置した全面で20等面積分割で等面積の場合であり、5面に配置したサーモパイル同士を直列接続させた20個のサーモパイルからなる複数のサーモパイル11とした。試験例3は、周壁部9の展開図である図7(c)に示すように1m四方の1面を9つに等面積分割しそれぞれの中心に1個のサーモパイルを配置した全面で45等面積分割で等面積の場合であり、5面に配置したサーモパイル同士を直列接続させた45個のサーモパイルからなる複数のサーモパイル11とした。 Test Example 1 is a case where one thermopile is arranged at the center of one surface of 1 m square as shown in FIG. 7 (a) which is a developed view of the peripheral wall portion 9, and the entire surface is divided into 5 equal areas and equal areas. Each thermopile arranged on the five surfaces was connected in series to form a plurality of thermopile 11 composed of five thermopile. In Test Example 2, as shown in FIG. 7 (b), which is a developed view of the peripheral wall portion 9, one surface of 1 m square is divided into four equal areas, and one thermopile is arranged at the center of each surface. In the case of equal area by area division, a plurality of thermopile 11 composed of 20 thermopile in which thermopile arranged on 5 surfaces is connected in series was used. In Test Example 3, as shown in FIG. 7 (c), which is a developed view of the peripheral wall portion 9, one surface of 1 m square is divided into nine equal areas, and one thermopile is arranged at the center of each surface. In the case of equal area by area division, a plurality of thermopile 11 composed of 45 thermopile in which thermopile arranged on five surfaces is connected in series was used.

試験例として実施しなかったが、前記サーモパイル11を熱流計12に変えても前記サーモパイル11の場合と同じ等面積間隔を当てはめることができる。また、図7に示すように周壁部9が5面となる形態に限らず、図14に示すように周壁部9の全体が1面の形態でもよい。図14に示すように周壁部9の全体が1面の形態の場合は、例えば36等面積分割ができ、複数のサーモパイル11又は複数の熱流計12を等面積間隔で配設することができる。すなわち、縦横の分割数を変えれば、例えば80等面積分割、70等面積分割、60等面積分割、50等面積分割等のように任意に設定することができる。 Although it was not carried out as a test example, even if the thermopile 11 is changed to the heat flow meter 12, the same area spacing as in the case of the thermopile 11 can be applied. Further, the form is not limited to the form in which the peripheral wall portion 9 has five surfaces as shown in FIG. 7, and the entire peripheral wall portion 9 may have a single surface as shown in FIG. As shown in FIG. 14, when the entire peripheral wall portion 9 is in the form of one surface, for example, 36 equal areas can be divided, and a plurality of thermopile 11s or a plurality of heat flow meters 12 can be arranged at equal area intervals. That is, if the number of vertical and horizontal divisions is changed, for example, 80 equal area division, 70 equal area division, 60 equal area division, 50 equal area division, and the like can be arbitrarily set.

また、前記試験体10aの熱貫流率を1W/mK(図8において符号△)、2W/mK(図8において符号□)、4W/mK(図8において符号〇)と変化させて前記等面積分割数による測定誤差を検証し、その結果を図8に示す。図8において、分割記号Lは45等面積分割の場合を示し、分割記号Mは20等面積分割の場合を示し、分割記号Nは5等面積分割の場合を示している。なお、等面積分割をせず全面で1つしかサーモパイル11を設けなかった場合は、熱貫流率が1W/mKの場合の測定誤差は79.3%、熱貫流率が2W/mKの場合の測定誤差は39.6%、熱貫流率が4W/mKの場合の測定誤差は19.8%であった。 Further, the thermal transmissivity of the test body 10a is set to 1 W / m 2 K (reference numeral Δ in FIG. 8), 2 W / m 2 K (reference numeral □ in FIG. 8), and 4 W / m 2 K (reference numeral 〇 in FIG. 8). The measurement error due to the number of equal area divisions was verified by changing the value, and the result is shown in FIG. In FIG. 8, the division symbol L indicates the case of 45 equal area division, the division symbol M indicates the case of 20 equal area division, and the division symbol N indicates the case of 5 equal area division. If only one thermopile 11 is provided on the entire surface without dividing the area into equal areas, the measurement error when the thermal transmissivity is 1 W / m 2 K is 79.3%, and the thermal transmissivity is 2 W / m 2. The measurement error in the case of K was 39.6%, and the measurement error in the case of thermal transmission rate of 4 W / m 2 K was 19.8%.

図8から、等面積分割数が5の場合より等面積分割数が20(等分割面積0.25m)の場合の方が、さらには等面積分割数が45の場合(等分割面積0.11m)の方が、すなわち等面積分割数が増加する場合の方が測定誤差が小さくなることが示されている。また、試験体10aの熱貫流率が大きい部材ほど測定誤差が小さいことが示されている。これにより、サーモパイル11を配設する等面積間隔は、測定誤差をより小さくするためには、等面積分割数は20以上が好ましく、等面積分割数は45以上がより好ましく、さらに等面積分割数は80が一層好ましい。なお、図7(a)に示すように1m四方の1面を5つ合わせた5面とした場合の等面積は、0.25m以下が好ましく、分割面積0.11m以下がより好ましい。 From FIG. 8, when the number of equal area divisions is 20 (equal division area 0.25m 2 ), and further, when the number of equal area divisions is 45 (equal division area 0. It is shown that the measurement error is smaller in 11 m 2 ), that is, when the number of equal area divisions increases. Further, it is shown that the larger the thermal transmission rate of the test body 10a, the smaller the measurement error. As a result, the equal area spacing for arranging the thermopile 11 is preferably 20 or more equal area divisions, more preferably 45 or more equal area divisions, and further equal area division number in order to further reduce the measurement error. Is more preferably 80. Incidentally, equal area in the case of the one surface of 1m square five combined 5 side as shown in FIG. 7 (a) is preferably 0.25 m 2 or less, divided area 0.11 m 2 or less being more preferred.

したがって、前記略等面積間隔の設定は、前記サーモパイル11を配設する場合は前記加熱箱2の周壁部9の内部側及び外部側のそれぞれの全表面を同じ等面積間隔とし、又は、前記熱流計12を配設する場合は前記加熱箱2の周壁部9の内部側又は外部側の全表面を等面積間隔とし、ならびに、前記等面積間隔として5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積を間隔として設定する。 Therefore, in the setting of the substantially equal area spacing, when the thermopile 11 is arranged, the entire surfaces of the inner side and the outer side of the peripheral wall portion 9 of the heating box 2 are set to the same equal area spacing, or the heat flow is set. When a total of 12 is arranged, the entire surface on the inner side or the outer side of the peripheral wall portion 9 of the heating box 2 is set to equal area spacing, and the equal area spacing is divided into 5 equal areas to 80 equal areas. The approximately equal area obtained by dividing by any of the equal area divisions is set as the interval.

前記5等面積未満の等面積分割では測定誤差が大きすぎて問題となり、前記80等面積分割超では測定誤差が極小になるがサーモパイル11又は熱流計12を配設するのに多大の時間がかかり高価になるという問題があることから、前記等面積間隔として5等面積分割〜80等面積分割のうちのいずれかの等面積分割数が好ましい。 In the case of equal area division of less than 5 equal areas, the measurement error is too large and becomes a problem. Since there is a problem of high cost, the number of equal area divisions is preferably any one of 5 equal area divisions to 80 equal area divisions as the equal area interval.

次に、図2に示すような熱貫流率測定装置1で、温度センサー16で測定した外気温(図5(a)に示す保護熱箱法試験装置20の冷却チャンバー23の気温に相当し、図5(b)に示す校正熱箱法試験装置30の低温室33の気温に相当し、本発明の断熱性能測定対象物10の低温側となる空間の気温に該当する。)と、温度センサー15で測定した加熱箱2の内部の雰囲気の温度との温度差が、熱貫流率測定に与える影響を試験した。断熱性能測定対象物10は、熱伝導率が0.02W/mKと既知の建築用断熱材を使用し、略分割面積0.11mの略等面積間隔で配設したサーモパイル11を直列接続させた回路からの出力電圧がゼロになる制御を制御部7で実施した。外気温と加熱箱内雰囲気温度との温度差を、温度差10℃をグラフQで、温度差20℃をグラフR,温度差30℃をグラフSで表し、その結果を図9に示す。なお、この断熱性能測定対象物10が厚み均一の平板状体であることから、図9では熱貫流率を熱伝導率に換算して表示している。 Next, the outside air temperature measured by the temperature sensor 16 with the heat transmission coefficient measuring device 1 as shown in FIG. 2 (corresponds to the air temperature of the cooling chamber 23 of the protective heat box method test device 20 shown in FIG. 5A). It corresponds to the air temperature of the low temperature chamber 33 of the calibration heat box method test apparatus 30 shown in FIG. 5 (b), and corresponds to the air temperature of the space on the low temperature side of the heat insulating performance measurement object 10 of the present invention) and the temperature sensor. The effect of the temperature difference from the air temperature inside the heating box 2 measured in No. 15 on the heat transmission coefficient measurement was tested. The heat insulating performance measurement object 10 uses a building heat insulating material known to have a thermal conductivity of 0.02 W / mK, and thermopile 11 arranged at substantially equal area intervals of approximately 0.11 m 2 is connected in series. The control unit 7 controlled the output voltage from the circuit to be zero. The temperature difference between the outside air temperature and the atmospheric temperature inside the heating box is shown in Graph Q for a temperature difference of 10 ° C., Graph R for a temperature difference of 20 ° C., and Graph S for a temperature difference of 30 ° C., and the results are shown in FIG. Since the heat insulating performance measurement object 10 is a flat plate having a uniform thickness, the thermal transmission rate is converted into the thermal conductivity and displayed in FIG.

図9から、前記温度差が20℃以上になると、試験に使用した建築用断熱材の熱伝導率0.02W/mKにほぼ近い値が得られている。よって、加熱箱2内の雰囲気温度と、断熱性能測定対象物10の低温側となる空間の気温との温度差を20℃以上にして熱貫流率を測定することが好ましい。 From FIG. 9, when the temperature difference is 20 ° C. or higher, a value substantially close to the thermal conductivity of 0.02 W / mK of the building heat insulating material used in the test is obtained. Therefore, it is preferable to measure the thermal transmissivity by setting the temperature difference between the atmospheric temperature in the heating box 2 and the air temperature in the space on the low temperature side of the heat insulating performance measurement object 10 to 20 ° C. or more.

次に、図3に示すように、前記加熱箱2が前記箱状体6から取外し可能に設置され、かつ前記加熱箱2が、無通気性、断熱性及び可撓性を有する周壁部9aを備えた袋状の形態を有する加熱袋2aとすることができる。前記加熱袋2aを前記箱状体6から取り外すと、熱貫流率測定装置1aは図1(a)、(b)に示すような形態となる。 Next, as shown in FIG. 3, the heating box 2 is detachably installed from the box-shaped body 6, and the heating box 2 has a peripheral wall portion 9a that is breathless, heat-insulating, and flexible. It can be a heating bag 2a having a provided bag-like shape. When the heating bag 2a is removed from the box-shaped body 6, the thermal transmissivity measuring device 1a has a form as shown in FIGS. 1A and 1B.

すなわち、図3に示すような熱貫流率測定装置1の前記加熱袋2aの周壁部9aの材質を可撓性を有する部材とし、前記部材としては例えば無通気性、断熱性及び可撓性を有する発砲シール材やゴム材があり、その例として厚さ20mmのエプトシーラー(日東電工株式会社製)などがある。前記周壁部9aの厚みは、サーモパイル11又は熱流計12の装着可能性及び断熱性を考慮して少なくとも10mm以上、好ましくは20mm以上がより好ましい。 That is, the material of the peripheral wall portion 9a of the heating bag 2a of the thermal transmissivity measuring device 1 as shown in FIG. 3 is a flexible member, and the member is, for example, non-breathable, heat-insulating and flexible. There are foam sealing materials and rubber materials that have a foam seal material, and examples thereof include an Ept sealer (manufactured by Nitto Denko KK) with a thickness of 20 mm. The thickness of the peripheral wall portion 9a is more preferably at least 10 mm or more, preferably 20 mm or more in consideration of the mountability and heat insulating properties of the thermopile 11 or the heat flow meter 12.

加熱袋2aの周壁部9aを無通気性、断熱性及び可撓性を有する部材にすると、平面視の図1(a)又は側面視の図1(b)に示すように、平面状に拡げることができ、加熱手段3、送風手段4を内設させ、上面側に開口部8aを設けた加熱・送風手段8(加熱手段3及び送風手段4を内設している。)を中央部に配設し、無通気性、断熱性及び可撓性を有する部材にサーモパイル11又は熱流計12を等面積間隔で直列接続で配設している。可撓性を有する袋状体となることから、平板状に拡げたり、折り曲げて包み込んだ袋状体に変化させることができる。 When the peripheral wall portion 9a of the heating bag 2a is made of a non-breathable, heat-insulating and flexible member, it expands in a plane shape as shown in FIG. 1 (a) in a plan view or FIG. 1 (b) in a side view. It is possible to install the heating means 3 and the blowing means 4 internally, and the heating / blowing means 8 (the heating means 3 and the blowing means 4 are provided internally) having an opening 8a on the upper surface side is provided in the central portion. The thermopile 11 or the heat flow meter 12 is arranged in series at equal area intervals on the non-breathable, heat-insulating and flexible member. Since it becomes a flexible bag-like body, it can be expanded into a flat plate shape or changed into a bag-like body that is bent and wrapped.

加熱袋2aの周壁部9aが無通気性、断熱性及び可撓性を有する部材であるので、袋状体として使用できることから、図3(a)に示すようにサーモパイル11を備えた袋状体、又は、図3(b)に示すように熱流計12を備えた袋状体で使用することができる。これにより、周壁部9aを袋状にしてフレキシブル性を持たすことで、断熱性能測定対象物10への取り付け部も自由度が高くなり、形状が三次元で変化する、複数の形状が異なる断熱性能測定対象物10の断熱性能を、1つの加熱袋2aを備えた熱貫流率測定装置1aで測定可能とすることができる。これにより、第二の問題であった「加熱箱2及び保護熱箱6のそれぞれの断熱性能測定対象物10を受ける上縁部形状を断熱性能測定対象物10の三次元で変化する形状に合わせて専用の加熱箱2や保護熱箱6を製作しなければならない」を解消できた。 Since the peripheral wall portion 9a of the heating bag 2a is a member having non-breathability, heat insulation, and flexibility, it can be used as a bag-like body. Therefore, as shown in FIG. 3A, a bag-like body provided with a thermopile 11 Or, as shown in FIG. 3 (b), it can be used in a bag-like body provided with a heat flow meter 12. As a result, the peripheral wall portion 9a is made into a bag shape to have flexibility, so that the attachment portion to the heat insulating performance measurement object 10 also has a high degree of freedom, and the shape changes in three dimensions. The heat insulating performance of the object 10 to be measured can be measured by a thermal transmissivity measuring device 1a provided with one heating bag 2a. As a result, the second problem, "the shape of the upper edge of the heating box 2 and the protective heat box 6 that receives the heat insulating performance measurement target 10 is matched with the shape that changes in three dimensions of the heat insulating performance measurement target 10. It was possible to solve the problem of having to manufacture a dedicated heating box 2 and a protective heat box 6.

例えば図10に示すように自動車80におけるフロントドア83等の開閉可能なドアは自動車80に装着した状態で熱貫流率を測定することができ、図13(b)に示すようにバックドア74の開口部に、加熱・送風手段8と可撓性を有する周壁部9aを備える熱貫流率測定装置1aをセットし、図13(a)に示すように前記周壁部9aの周縁部をバックドア74の開口部の縁部に挟着するようにバックドア74を閉じた状態で熱貫流率を測定することができる。 For example, as shown in FIG. 10, the openable and closable doors such as the front door 83 in the automobile 80 can measure the thermal transmission rate in the state of being attached to the automobile 80, and as shown in FIG. 13B, the back door 74 A thermal transmissivity measuring device 1a provided with a heating / blowing means 8 and a flexible peripheral wall portion 9a is set in the opening, and as shown in FIG. 13A, the peripheral portion of the peripheral wall portion 9a is a back door 74. The thermal transmissivity can be measured with the back door 74 closed so as to be sandwiched between the edges of the opening.

また、例えば図10に示すようにフロントガラス82は開閉不可であるので自動車80から取り外すが、フロントガラス82の三次元形状に合わせた新たな専用の形状の周壁部を有する加熱箱2を製作することがなく、可撓性を有する加熱袋2aを用いて熱貫流率を測定することができる。 Further, for example, as shown in FIG. 10, since the windshield 82 cannot be opened and closed, it is removed from the automobile 80, but a heating box 2 having a new specially shaped peripheral wall portion that matches the three-dimensional shape of the windshield 82 is manufactured. The thermal transmission rate can be measured using the flexible heating bag 2a.

次に、図4に示すように、前記低温側の空間を形成する筐体18に、熱交換器43で該筐体18内の空気を冷却する水冷式、又は、該筐体18内に冷風を送り込む空冷式の冷却手段50を備える。 Next, as shown in FIG. 4, a water-cooled type in which the air in the housing 18 is cooled by a heat exchanger 43 in the housing 18 forming the space on the low temperature side, or cold air in the housing 18 The air-cooled cooling means 50 is provided.

前記筐体18内の空間は、本発明の断熱性能測定対象物10の低温側となる空間に該当し、図5(a)に示す保護熱箱法試験装置20の冷却チャンバー23の改良になり、又は、図5(b)に示す校正熱箱法試験装置30の低温室33の改良になる。前記保護熱箱法試験装置20及び前記校正熱箱法試験装置30は、大型の建具も測定対象としていることから、恒温室等の部屋においての測定を前提としているため、前記冷却チャンバー23又は前記低温室33は大型になり容易に持ち運びできないものであった。本発明の熱貫流率測定装置1又は1aは持ち運び可能とすることができたので、これに合わせて持ち運び可能な冷却手段50を想到した。 The space inside the housing 18 corresponds to the space on the low temperature side of the heat insulating performance measurement object 10 of the present invention, which is an improvement of the cooling chamber 23 of the protective heat box method test apparatus 20 shown in FIG. 5 (a). Or, it is an improvement of the low temperature chamber 33 of the calibration hot box method test apparatus 30 shown in FIG. 5 (b). Since the protective heat box method test device 20 and the calibration heat box method test device 30 also measure large fittings, they are premised on measurement in a room such as a constant temperature room. Therefore, the cooling chamber 23 or the above. The low greenhouse 33 was large and could not be easily carried. Since the thermal transmissivity measuring device 1 or 1a of the present invention could be made portable, a portable cooling means 50 was conceived accordingly.

水冷式の冷却手段50は、図4(a)に示すように、循環水冷却装置41で冷却させた冷水が配管42内を流動し筐体18内に設けられた熱交換器43で筐体18内の空気を冷却し、その冷却空気Gが送風手段45でバッフル44のガイドにより断熱性能測定対象物10に向けて層流となって流動させている。加熱箱6内の雰囲気温度と前記冷却空気Gの温度とは20℃以上の差をつけることが好ましい。 As shown in FIG. 4A, the water-cooled cooling means 50 is housed by a heat exchanger 43 provided in the case 18 in which cold water cooled by the circulating water cooling device 41 flows in the pipe 42. The air inside the 18 is cooled, and the cooling air G is flowed as a laminar flow toward the adiabatic performance measurement object 10 by the guide of the baffle 44 by the blowing means 45. It is preferable that the atmospheric temperature in the heating box 6 and the temperature of the cooling air G have a difference of 20 ° C. or more.

空冷式の冷却手段50は、図4(b)に示すように、循環空気冷却装置41aで冷却させた冷却空気Gが、ダクト46内を流動し筐体18内に設けられた仕切り板47でガイドされながら断熱性能測定対象物10に向けて層流となって流動させている。加熱箱2内の雰囲気温度と前記冷却空気Gの温度とは20℃以上の差をつけることが好ましい。 In the air-cooled cooling means 50, as shown in FIG. 4B, the cooling air G cooled by the circulating air cooling device 41a flows in the duct 46 through the partition plate 47 provided in the housing 18. While being guided, it flows as a laminar flow toward the heat insulating performance measurement object 10. It is preferable that the atmospheric temperature in the heating box 2 and the temperature of the cooling air G have a difference of 20 ° C. or more.

可搬式の冷却手段50により、熱貫流率測定をする場所の制限、例えば校正熱箱法試験装置30で規定されている低温室33という制限がなくなり、大掛かりな恒温室も必要としないので、断熱性能測定対象物10が取り付けられている場所で加熱箱2内の雰囲気温度と前記冷却空気Gの温度とは20℃以上の差をつけることが容易にできることから、断熱性能測定対象物10が取り付けられている場所での測定の精度を高めることができる。 The portable cooling means 50 eliminates the limitation of the place where the thermal transmissivity is measured, for example, the limitation of the low temperature chamber 33 defined by the calibration thermal box method test device 30, and does not require a large-scale constant temperature room. Since it is possible to easily make a difference of 20 ° C. or more between the ambient temperature in the heating box 2 and the temperature of the cooling air G at the place where the performance measurement object 10 is attached, the heat insulation performance measurement object 10 is attached. It is possible to improve the accuracy of measurement in the place where it is located.

次に、低温側を自然条件である太陽からのふく射及び風速の影響を受けたときとの熱貫流率を測定可能な熱貫流率測定装置1bについて説明する。前記熱貫流率測定装置1bは、図15に示すように、前記低温側の空間を形成する筐体18の、前記断熱性能測定対象物10と対向する側の壁部に、前記筐体18の外方に設けた光源60からの前記筐体18内の前記断熱性能測定対象物10に対するふく射を可能とするガラス壁部61を設けている。 Next, a thermal transmissivity measuring device 1b capable of measuring the thermal transmissivity when the low temperature side is affected by radiation from the sun and wind speed, which are natural conditions, will be described. As shown in FIG. 15, the thermal transmissivity measuring device 1b has the housing 18 on the wall portion of the housing 18 forming the space on the low temperature side facing the heat insulating performance measurement object 10. A glass wall portion 61 that enables radiation from the light source 60 provided on the outside to the object 10 for measuring the heat insulating performance in the housing 18 is provided.

そして、筐体18内で一様な空気温度分布を得るためにバッフル板44aを設置する場合は、前記ガラス壁部61と前記断熱性能測定対象物10との間に、前記断熱性能測定対象物10に略平行に設けた板状のバッフル板44aを、前記光源60からの前記断熱性能測定対象物10に対するふく射を可能とするガラス板とする。 When the baffle plate 44a is installed in the housing 18 in order to obtain a uniform air temperature distribution, the heat insulating performance measurement object is placed between the glass wall portion 61 and the heat insulating performance measurement object 10. A plate-shaped baffle plate 44a provided substantially parallel to the 10 is used as a glass plate capable of radiating the heat insulating performance measurement object 10 from the light source 60.

そして、例えば自動車の外板が自然条件である太陽からのふく射による影響を受けたときの熱貫流率を測定可能とするためにふく射強度調整手段を設けている。前記ふく射強度調整手段は、例えば、ふく射強度を高くする、すなわちふく射熱を高くするときは前記光源温度を高くする制御を行い、ふく射強度を低くする、すなわちふく射熱を低くするときは前記光源温度を低くする制御を行う手段である。前記ふく射強度調整手段としては、前記光源60の温度を制御する、例えば制御部7内に設けた、前記光源60に印加する電圧の大きさを変換するスライダック等がある。前記ふく射強度調整手段を調整することにより、前記筐体18内の前記断熱性能測定対象物10に対する前記ふく射強度を調整する。 Then, for example, a radiation intensity adjusting means is provided so that the thermal transmission rate when the outer panel of the automobile is affected by radiation from the sun, which is a natural condition, can be measured. The radiant intensity adjusting means controls, for example, to increase the radiant intensity, that is, to increase the light source temperature when increasing the radiant heat, and to decrease the radiant intensity, that is, to decrease the light source temperature when the radiant heat is decreased. It is a means for controlling the radiation. The radiation intensity adjusting means includes a slidac for controlling the temperature of the light source 60, for example, a slidac provided in the control unit 7 for converting the magnitude of the voltage applied to the light source 60. By adjusting the radiation intensity adjusting means, the radiation intensity of the heat insulating performance measurement object 10 in the housing 18 is adjusted.

また、例えば自動車の外板が自然条件である風による影響を受けたときの熱貫流率を測定可能とするために、前記ガラス壁部61と前記断熱性能測定対象物10との間であって、前記ガラス壁部61近傍に送風手段45を設け、かつ自然条件の風速の中から選択した風速を再現可能にする気流速度制御手段を制御部7内に設け、前記送風手段45により発生する気流の速度を調整している。 Further, for example, in order to make it possible to measure the heat transmission coefficient when the outer panel of the automobile is affected by the wind, which is a natural condition, it is between the glass wall portion 61 and the heat insulating performance measurement object 10. An airflow velocity control means 45 is provided in the vicinity of the glass wall portion 61, and an airflow velocity control means capable of reproducing a wind speed selected from natural wind speeds is provided in the control unit 7, and an airflow generated by the blower means 45 is provided. Adjusting the speed of.

まず、熱貫流率測定装置1bを使用して得られた、前記送風機45の風量と熱貫流率の関係を説明する。図16に示すように、前記断熱性能測定対象物10として、アルミニウム板(厚さ3mm、△印)、ポリプロピレン板(厚さ0.7mm、□印)及びガラス板(厚さ4mm、〇印)の各平板状を使用した。横軸に風量を縦軸に熱貫流率を示している。なお、自然条件を再現させるために、太陽光によるふく射の影響を検証するため、光源60をライトONさせてふく射センサ63のふく射熱をモニターし、光源60のふく射強度を調整した。 First, the relationship between the air volume of the blower 45 and the thermal transmissivity obtained by using the thermal transmissivity measuring device 1b will be described. As shown in FIG. 16, as the heat insulating performance measurement object 10, an aluminum plate (thickness 3 mm, △ mark), a polypropylene plate (thickness 0.7 mm, □ mark) and a glass plate (thickness 4 mm, ○ mark) Each flat plate of was used. The horizontal axis shows the air volume and the vertical axis shows the thermal transmission rate. In order to reproduce the natural conditions, in order to verify the influence of radiation by sunlight, the light source 60 was turned on, the radiation heat of the radiation sensor 63 was monitored, and the radiation intensity of the light source 60 was adjusted.

図16から、風量が増加するほど、すなわち気流の速度が速くなるほど、断熱性能測定対象物10の材質にかかわらず熱貫流率が緩やかに上昇していることが示されている。このことは自然条件で風があるときは、例えば自動車の外板を通した自動車室内からの熱の流れは、風量が増加するほど増加することを示している。よって、発明の熱貫流率測定装置1bを使用して風の影響を考慮した自動車ドア構造体の断熱性能を評価することができる。 From FIG. 16, it is shown that as the air volume increases, that is, as the speed of the air flow increases, the thermal transmission rate gradually increases regardless of the material of the heat insulating performance measurement object 10. This indicates that when there is wind under natural conditions, for example, the heat flow from the vehicle interior through the outer panel of the vehicle increases as the air volume increases. Therefore, it is possible to evaluate the heat insulating performance of the automobile door structure in consideration of the influence of wind by using the thermal transmissivity measuring device 1b of the present invention.

次に、熱貫流率測定装置1bを使用して得られた、太陽光を再現させるライト照射によるふく射と熱貫流率の関係を説明する。図17に示すように、自然条件に近いふく射の影響を検証するため、光源60をライトONさせて自然条件に近いふく射のある昼間の時間帯と、光源60をライトOFFさせてふく射のない夜の時間帯をつくって検証した。前記断熱性能測定対象物10として、アルミニウム板(厚み3mm、△印)、ポリプロピレン板(厚み0.7mm、□印)及びガラス板(厚み4mm、〇印)の各平板状を使用した。横軸に経過時間を縦軸に熱貫流率を示している。 Next, the relationship between the radiation by light irradiation that reproduces sunlight and the thermal transmissivity obtained by using the thermal transmissivity measuring device 1b will be described. As shown in FIG. 17, in order to verify the effect of radiation close to natural conditions, the light source 60 is turned on during the daytime with radiation close to natural conditions, and the light source 60 is turned off at night without radiation. I made a time zone of and verified it. As the heat insulating performance measurement object 10, each flat plate of an aluminum plate (thickness 3 mm, Δ mark), a polypropylene plate (thickness 0.7 mm, □ mark) and a glass plate (thickness 4 mm, ◯ mark) was used. The horizontal axis shows the elapsed time and the vertical axis shows the thermal transmission rate.

図17に示すように、光源60によるふく射熱が発生しないときは、断熱性能測定対象物10の熱貫流率はいずれの材質も略同じレベルであるが、光源60によるふく射熱が発生したときは、断熱性能測定対象物10の熱貫流率は、材質により相違が発生することが示されている。例えば、アルミニウム板(△印)の場合は光源60によるふく射熱が発生するときも発生していないときも略一定であるのに対して、ポリプロピレン板(□印)やガラス板(〇印)の場合は光源60によるふく射熱が発生すると発生していないときに比較して見かけの熱貫流率が低下することが示された。これは、ふく射熱に対する遮熱性能がアルミニウム板に比べポリプロピレン板及びガラス板では悪いことを示している。 As shown in FIG. 17, when the light source 60 does not generate thermal heat, the thermal transmission coefficient of the heat insulating performance measurement object 10 is substantially the same level for all materials, but when the light source 60 generates thermal heat, heat insulation is performed. It has been shown that the thermal transmissivity of the performance measurement object 10 varies depending on the material. For example, in the case of an aluminum plate (△ mark), the thermal heat generated by the light source 60 is substantially constant regardless of whether it is generated or not, whereas in the case of a polypropylene plate (□ mark) or a glass plate (○ mark). It was shown that when the radiant heat generated by the light source 60 is generated, the apparent thermal transmission rate is lowered as compared with the case where it is not generated. This indicates that the heat shielding performance against radiant heat is worse in the polypropylene plate and the glass plate than in the aluminum plate.

次に、熱貫流率測定方法を説明する。周壁部9aの厚みが全域で不均一である場合は、熱貫流率測定方法の第一の方法は、図1や図13に示すように、加熱袋2aを用いて自動車80のドアの熱貫流率を測定する方法であって、前記加熱袋2aは、略中央部に配設した加熱・送風手段8と、該加熱・送風手段8を囲繞可能な周壁部9aとを備え、前記周壁部9aは、無通気性、断熱性及び可撓性を有し、かつ、前記周壁部9aの内部側の全表面又は外部側の全表面にわたり、複数の熱流計12を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数の熱流計12を直列接続させた回路を備え、前記加熱袋2aを自動車80のドア開口部の内部に設置し、前記加熱袋2aの周壁部9aが挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋2a内部を閉塞状態とし、前記自動車80のドアを断熱性能測定対象物10として、前記周壁部9aに取り付けられた前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロとなるように前記加熱袋2a内の加熱手段3を制御し、さらに前記自動車80の車内雰囲気温度が安定するように前記車内雰囲気温度を制御し熱貫流率を算出する方法である。 Next, a method for measuring the thermal transmissivity will be described. When the thickness of the peripheral wall portion 9a is non-uniform over the entire area, the first method of measuring the thermal transmission rate is, as shown in FIGS. 1 and 13, the heat transmission of the door of the automobile 80 using the heating bag 2a. A method for measuring the rate, the heating bag 2a includes a heating / blowing means 8 arranged at a substantially central portion and a peripheral wall portion 9a capable of surrounding the heating / blowing means 8, and the peripheral wall portion 9a is provided. Is breathless, heat-insulating, and flexible, and divides a plurality of heat flow meters 12 into 5 equal areas to 80 equal areas over the entire inner surface or the outer surface of the peripheral wall portion 9a. The heating bag 2a is provided with a circuit in which the plurality of heat flow meters 12 are connected in series by arranging one by one at intervals of substantially equal areas obtained by dividing by the number of equal area divisions of any one of the divisions. Is installed inside the door opening of the automobile 80, the door is closed so that the peripheral wall portion 9a of the heating bag 2a is sandwiched, the opening is closed, the inside of the heating bag 2a is closed, and the automobile is closed. The heating means in the heating bag 2a so that the output voltage from the circuit in which the plurality of heat flow meters 12 attached to the peripheral wall portion 9a are connected in series is zero, using the door of 80 as the heat insulating performance measurement object 10. This is a method of calculating the thermal transmissivity by controlling No. 3 and further controlling the temperature inside the vehicle so that the temperature inside the vehicle 80 becomes stable.

また、周壁部9aの厚みが全域で略均一である場合は、熱貫流率測定方法の第二の方法は、加熱袋2aを用いて自動車80のドアの熱貫流率を測定する方法であって、前記加熱袋2aは、略中央部に配設した加熱・送風手段8と、該加熱・送風手段8を囲繞可能な周壁部9aとを備え、前記周壁部9aは、無通気性、断熱性及び可撓性を有し、かつ、前記周壁部9aの内部側及び外部側の2面それぞれの全表面にわたり、複数のサーモパイル11を前記2面それぞれ5等面積分割〜80等面積分割のうちのいずれかの同じ等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数のサーモパイル11を直列接続させた回路、あるいは、前記周壁部9aの内部側の全表面又は外部側の全表面にわたり、複数の熱流計12を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数のサーモパイル11を直列接続させた回路、を備え、前記加熱袋2aを自動車80のドア開口部の内部に設置し、前記加熱袋2aの周壁部9aが挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋2a内部を閉塞状態とし、前記自動車80のドアを断熱性能測定対象物10として、前記周壁部9aに取り付けられた前記複数のサーモパイル11を直列接続させた回路からの出力電圧又は前記複数の熱流計12を直列接続させた回路からの出力電圧がゼロとなるように、前記加熱袋2a内の加熱手段3を制御し、さらに前記自動車80の車内雰囲気温度を安定させるように前記雰囲気温度を制御し熱貫流率を算出する方法である。 When the thickness of the peripheral wall portion 9a is substantially uniform over the entire area, the second method of measuring the heat transmission coefficient is a method of measuring the heat transmission coefficient of the door of the automobile 80 using the heating bag 2a. The heating bag 2a includes a heating / blowing means 8 arranged in a substantially central portion and a peripheral wall portion 9a capable of surrounding the heating / blowing means 8, and the peripheral wall portion 9a is breathless and has heat insulating properties. And flexible, and over the entire surface of each of the two inner and outer surfaces of the peripheral wall portion 9a, a plurality of thermopile 11 is divided into 5 equal areas to 80 equal areas on each of the two surfaces. A circuit in which the plurality of thermopile 11s are connected in series by arranging one by one at intervals of substantially equal areas obtained by dividing by the same number of equal area divisions, or on the inner side of the peripheral wall portion 9a. Over the entire surface or the entire surface on the outer side, a plurality of heat flow meters 12 are divided by the number of equal area divisions of any of 5 equal area divisions to 80 equal area divisions, one by one at intervals of substantially equal areas. The heating bag 2a is installed inside the door opening of the automobile 80, and the peripheral wall portion 9a of the heating bag 2a is sandwiched. As described above, the door is closed to close the opening, the inside of the heating bag 2a is closed, the door of the automobile 80 is used as the heat insulating performance measurement object 10, and the plurality of thermopile 11 attached to the peripheral wall portion 9a are used. The heating means 3 in the heating bag 2a is controlled so that the output voltage from the circuit connected in series or the output voltage from the circuit in which the plurality of heat flow meters 12 are connected in series becomes zero, and the automobile 80 is further controlled. This is a method of calculating the heat transmission coefficient by controlling the atmospheric temperature so as to stabilize the atmospheric temperature inside the vehicle.

前記熱貫流率測定方法の第一の方法及び第二の方法とも、前記自動車80の車内の閉塞空間の温度は、自動車80を屋内に入庫させて屋外の太陽光の影響を受けないようにして、車内に加熱手段(図示なし)及び送風手段(図示なし)を備えた車内温度安定化手段(図示なし)を持ち込み、持ち込んだ前記送風手段を測定中は常時作動させ、持ち込んだ前記加熱手段の作動を車内雰囲気温度が安定するように制御し、車内の雰囲気温度を安定させ略一定化させる。 In both the first method and the second method of the thermal transmissivity measuring method, the temperature of the closed space inside the vehicle 80 is set so that the vehicle 80 is stored indoors and is not affected by the sunlight outdoors. , A vehicle interior temperature stabilizing means (not shown) equipped with a heating means (not shown) and a blowing means (not shown) is brought into the vehicle, and the brought-in blowing means is always operated during measurement, and the brought-in heating means is used. The operation is controlled so that the ambient temperature inside the vehicle is stable, and the ambient temperature inside the vehicle is stabilized and substantially constant.

自動車80の車内に持ち込む車内温度安定化手段には、加熱手段、送風手段、車内雰囲気温度測定手段、及び、前記車内雰囲気温度測定手段からの温度情報に基づき持ち込んだ加熱手段の作動を制御する制御手段が備えられている。 The vehicle interior temperature stabilizing means brought into the vehicle of the automobile 80 includes a heating means, a blowing means, a vehicle interior atmosphere temperature measuring means, and a control for controlling the operation of the heating means brought in based on the temperature information from the vehicle interior atmosphere temperature measuring means. Means are provided.

前記ドアは、加熱袋2aの周壁部9aを挟んで閉じられるドアが適しており、フロントドア、リアドア又はバックドアが該当する。 The door is preferably a door that is closed by sandwiching the peripheral wall portion 9a of the heating bag 2a, and corresponds to a front door, a rear door, or a back door.

次に、図13に示すように自動車80にバックドア74を装着した状態で熱貫流率を測定する熱貫流率測定装置1の使用例を説明する。まず、図1に示すような、無通気性、断熱性及び可撓性を有する周壁部9aを備えた袋状の形態の加熱袋2aと、前記加熱袋2aの略中央部に配設した、加熱手段3及び送風手段4を内設した加熱・送風手段8と、加熱袋2a内部の雰囲気温度を測定する温度測定手段15と、外部の雰囲気温度を測定する温度測定手段16と、制御部7とを備える熱貫流率測定装置1aを準備する。 Next, an example of using the thermal transmissivity measuring device 1 that measures the thermal transmissivity in a state where the back door 74 is attached to the automobile 80 as shown in FIG. 13 will be described. First, as shown in FIG. 1, a bag-shaped heating bag 2a provided with a peripheral wall portion 9a having non-breathability, heat insulation and flexibility, and a heating bag 2a arranged at a substantially central portion of the heating bag 2a. A heating / blowing means 8 having a heating means 3 and a blowing means 4 inside, a temperature measuring means 15 for measuring the atmospheric temperature inside the heating bag 2a, a temperature measuring means 16 for measuring the external atmospheric temperature, and a control unit 7 A thermal transmissivity measuring device 1a including the above is prepared.

前記周壁部9aの厚みは全域で略同一の場合であるので、前記加熱箱2aの周壁部9aの内部側全表面及び外部側全表面に亘って複数のサーモパイルを、等面積間隔として45等面積分割で分割して得られる略等面積の間隔で1つずつ配設したものを使用した。 Since the thickness of the peripheral wall portion 9a is substantially the same over the entire area, a plurality of thermopile is spread over the entire inner surface and the outer outer surface of the peripheral wall portion 9a of the heating box 2a with an equal area interval of 45 equal areas. The ones arranged one by one at intervals of substantially equal areas obtained by dividing by division were used.

次に、太陽光の影響を受けないようにするために自動車80を屋内に移動する。そして、図13(b)に示すように、バックドア74を開にして、加熱・送風手段8をバックドア74側にくるように可撓性を有する周壁部9aを拡げバックドア74の開口部を覆い、その状態を維持したままでバックドア74を閉じる。これにより、図13(a)に示すように、加熱袋2a内部は閉塞空間が形成される。 Next, the automobile 80 is moved indoors so as not to be affected by sunlight. Then, as shown in FIG. 13B, the back door 74 is opened, the peripheral wall portion 9a having flexibility is expanded so that the heating / blowing means 8 is on the back door 74 side, and the opening of the back door 74 is opened. And close the back door 74 while maintaining that state. As a result, as shown in FIG. 13A, a closed space is formed inside the heating bag 2a.

そして、加熱手段(図示なし)及び送風手段(図示なし)を備えた車内温度安定化手段(図示なし)を車内に持ち込み、背もたれを倒した上に前記車内温度安定化手段を載置し、全ドアを閉状態にする。車内も全ドアを閉とすることにより閉塞空間が形成される。この閉塞空間が保護熱箱の閉塞空間に相当する。そして、前記送風手段を作動させ、前記加熱手段の作動を車内雰囲気温度情報に基づいて制御して車内の雰囲気の温度を安定化させた。 Then, a vehicle interior temperature stabilizing means (not shown) equipped with a heating means (not shown) and a blowing means (not shown) is brought into the vehicle, the backrest is laid down, and the vehicle interior temperature stabilizing means is placed. Close the door. A closed space is also formed inside the vehicle by closing all the doors. This closed space corresponds to the closed space of the protective heat box. Then, the ventilation means was operated, and the operation of the heating means was controlled based on the temperature information of the atmosphere inside the vehicle to stabilize the temperature of the atmosphere inside the vehicle.

そして、加熱袋2a内に設置した加熱・送風手段8の送風手段4を作動させ、前記複数のサーモパイルを直列接続させた回路からの出力電圧がゼロになるように、前記加熱袋2a内の前記加熱手段3を制御する。 Then, the blower means 4 of the heating / blower means 8 installed in the heating bag 2a is operated so that the output voltage from the circuit in which the plurality of thermopile is connected in series becomes zero. The heating means 3 is controlled.

そして、前記バックドア74の高温側となる前記加熱袋2aの内部の雰囲気温度と、前記バックドア74の低温側となる車外の空間の雰囲気温度と、前記加熱手段3及び前記送風手段4において消費される電力の計測値から算出される、前記加熱袋2aの内部から前記バックドア74の厚さ方向に沿って前記低温側となる空間へ前記バックドア74を通過する熱量と、前記バックドア74における熱流に対して垂直な面積とを用いて、前記バックドア74の熱貫流率を制御部7により算出する。 Then, the ambient temperature inside the heating bag 2a on the high temperature side of the back door 74, the ambient temperature of the space outside the vehicle on the low temperature side of the back door 74, and the heating means 3 and the blowing means 4 consume. The amount of heat that passes through the back door 74 from the inside of the heating bag 2a to the space on the low temperature side along the thickness direction of the back door 74, which is calculated from the measured value of the electric power, and the back door 74. The thermal transmission rate of the back door 74 is calculated by the control unit 7 using the area perpendicular to the heat flow in.

このときに、高温側となる前記加熱袋2aの内部の雰囲気温度と、前記バックドア74の低温側となる車外の空間の雰囲気温度との差を20℃以上にすると精度の高い貫流率を算出できる。 At this time, if the difference between the atmospheric temperature inside the heating bag 2a on the high temperature side and the atmospheric temperature in the space outside the vehicle on the low temperature side of the back door 74 is set to 20 ° C. or higher, a highly accurate thermal transmission rate is calculated. can.

前記熱貫流率測定方法は、加熱袋2aの周壁部9aに取り付けられた前記複数のサーモパイル11を直列接続させた回路からの出力電圧又は前記複数の熱流計12を直列接続させた回路からの出力電圧をゼロになるように前記加熱袋2a内の加熱手段3を制御することによって、非特許文献1に規定する保護熱箱の筐体が、全ドアを閉にした状態の自動車に該当し、自動車にドアを装着した状態で熱貫流率を測定することができるという顕著な効果を有する。 The thermal transmissivity measuring method is an output voltage from a circuit in which the plurality of thermopile 11s attached to the peripheral wall portion 9a of the heating bag 2a are connected in series or an output from a circuit in which the plurality of heat flow meters 12 are connected in series. By controlling the heating means 3 in the heating bag 2a so that the voltage becomes zero, the housing of the protective heat box specified in Non-Patent Document 1 corresponds to an automobile in a state where all the doors are closed. It has a remarkable effect that the thermal transmission rate can be measured with the door attached to the automobile.

1 熱貫流率測定装置
1a 熱貫流率測定装置
1b 熱貫流率測定装置
1c 熱貫流率測定装置
2 加熱箱
2a 加熱箱
3 加熱手段
4 送風手段
6 箱状体
7 制御部
8 加熱・送風手段
8a 開口部
9 周壁部
10 断熱性能測定対象物
10a 試験体
11 サーモパイル
12 熱流計
15 温度センサー
16 温度センサー
18 筐体
41 循環水冷却装置
41a 循環空気冷却装置
42 配管
43 熱交換器
44 バッフル
44a バッフル
45 送風手段
46 ダクト
47 仕切り板
50 冷却手段
60 光源
61 ガラス壁部
63 ふく射センサ
70 熱貫流率測定装置
71 加熱箱
72 保護熱箱
73 加熱・送風手段
74 バックドア
80 自動車
81 車内
82 フロントガラス
83 フロントドア
G 冷却空気
1 Heat transmission rate measuring device 1a Heat transmission rate measuring device 1b Heat transmission rate measuring device 1c Heat transmission rate measuring device 2 Heating box 2a Heating box 3 Heating means 4 Blower means 6 Box-shaped body 7 Control unit 8 Heating / blowing means 8a Opening Part 9 Peripheral wall part 10 Insulation performance measurement object 10a Specimen 11 Thermopile 12 Heat flow meter 15 Temperature sensor 16 Temperature sensor 18 Housing 41 Circulating water cooling device 41a Circulating air cooling device 42 Piping 43 Heat exchanger 44 Baffle 44a Baffle 45 Blower means 46 Duct 47 Partition plate 50 Cooling means 60 Light source 61 Glass wall 63 Floating sensor 70 Heat transmission coefficient measuring device 71 Heating box 72 Protective heat box 73 Heating / blowing means 74 Back door 80 Car 81 Interior 82 Front glass 83 Front door G Cooling air

Claims (13)

断熱性能測定対象物の厚さ方向の高温側に接する一方の面から低温側に接する他方の面への通過熱量を測定する熱貫流率測定装置であって、
加熱手段及び送風手段を内設し、断熱性能測定対象物の着設により開口部が塞がれ閉塞状態となる、無通気性及び断熱性を有する加熱箱と、
前記断熱性能測定対象物の高温側となる前記加熱箱の内部の雰囲気温度と、前記断熱性能測定対象物の低温側となる空間の雰囲気温度をそれぞれ測定する複数の温度測定手段と、
前記加熱手段を制御し熱貫流率を算出する制御部と、を備え、
前記加熱箱の周壁部の全域における内部側表面と外部側表面との温度差を出力電圧で測定可能に、複数のサーモパイル又は複数の熱流計を略等面積間隔で1つずつ配設し、前記複数のサーモパイル又は前記複数の熱流計をそれぞれ直列接続させた回路を形成し、
前記制御部が、前記複数のサーモパイル又は前記複数の熱流計を直列接続させた回路からの出力電圧がゼロになるように、前記加熱箱内の前記加熱手段を制御することを特徴とする熱貫流率測定装置。
Thermal insulation performance measurement A thermal transmissivity measuring device that measures the amount of heat passing from one surface in contact with the high temperature side in the thickness direction to the other surface in contact with the low temperature side.
A heating box with non-breathable and heat-insulating properties, in which a heating means and a ventilation means are installed internally, and the opening is closed and closed by the installation of an object for measuring heat insulation performance.
A plurality of temperature measuring means for measuring the ambient temperature inside the heating box on the high temperature side of the adiabatic performance measurement object and the atmospheric temperature of the space on the low temperature side of the adiabatic performance measurement object, respectively.
A control unit that controls the heating means and calculates the thermal transmissivity is provided.
A plurality of thermopile or a plurality of heat flow meters are arranged one by one at substantially equal area intervals so that the temperature difference between the inner surface and the outer surface in the entire peripheral wall portion of the heating box can be measured by the output voltage. A circuit in which a plurality of thermopile or the plurality of heat flow meters are connected in series is formed.
The thermal transmission unit controls the heating means in the heating box so that the output voltage from the plurality of thermopile or the circuit in which the plurality of heat flow meters are connected in series becomes zero. Rate measuring device.
前記加熱箱の周壁部の厚みが全域で略均一の場合は、前記加熱箱の周壁部の内部側全表面又は外部側全表面に亘って複数の熱流計を、又は、前記加熱箱の周壁部の内部側全表面及び外部側全表面に亘って複数のサーモパイルを、略等面積間隔で1つずつ配設したことを特徴とする請求項1に記載の熱貫流率測定装置。 When the thickness of the peripheral wall portion of the heating box is substantially uniform over the entire area, a plurality of thermal flow meters are used over the entire inner surface or the outer surface of the peripheral wall portion of the heating box, or the peripheral wall portion of the heating box. The thermal transmissivity measuring device according to claim 1, wherein a plurality of thermopile is arranged one by one at substantially equal area intervals over the entire inner surface and the outer outer surface. 前記加熱箱の周壁部の厚みが全域で不均一の場合は、前記加熱箱の周壁部の内部側全表面又は外部側全表面に亘って複数の熱流計を略等面積間隔で1つずつ配設したことを特徴とする請求項1に記載の熱貫流率測定装置。 If the thickness of the peripheral wall portion of the heating box is non-uniform over the entire area, a plurality of thermal flow meters are arranged one by one at substantially equal area intervals over the entire inner surface or the outer outer surface of the peripheral wall portion of the heating box. The thermal transmissivity measuring device according to claim 1, wherein the device is provided. 前記略等面積間隔の設定は、前記サーモパイルを配設する場合は前記加熱箱の周壁部の内部側及び外部側のそれぞれの全表面を同じ等面積間隔とし、又は、前記熱流計を配設する場合は前記加熱箱の周壁部の内部側又は外部側の全表面を等面積間隔とし、ならびに、前記等面積間隔として5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積を間隔として設定することを特徴とする請求項1〜3のいずれかに記載の熱貫流率測定装置。 In the setting of the substantially equal area spacing, when the thermopile is arranged, the entire surfaces on the inner side and the outer side of the peripheral wall portion of the heating box are set to the same equal area spacing, or the heat flow meter is arranged. In the case, the entire surface on the inner side or the outer side of the peripheral wall portion of the heating box is set to equal area intervals, and the equal area division is any one of 5 equal area divisions to 80 equal area divisions. The heat transmission coefficient measuring device according to any one of claims 1 to 3, wherein a substantially equal area obtained by division is set as an interval. 前記加熱箱が前記箱状体から取外し可能に設置され、かつ前記加熱箱が、無通気性、断熱性及び可撓性を有する周壁部を備えた袋状の形態を有する加熱袋であることを特徴とする請求項1〜4のいずれかに記載の熱貫流率測定装置。 The heating box is detachably installed from the box-shaped body, and the heating box is a heating bag having a bag-like shape having a peripheral wall portion having non-breathability, heat insulation, and flexibility. The thermal transmissivity measuring device according to any one of claims 1 to 4. 前記低温側の空間を形成する筐体に、熱交換器で該筐体内の空気を冷却する水冷式、又は、該筐体内に冷風を送り込む空冷式の冷却手段を備えたことを特徴とする請求項1〜5のいずれかに記載の熱貫流率測定装置。 A claim characterized in that the housing forming the space on the low temperature side is provided with a water-cooled cooling means for cooling the air in the housing with a heat exchanger or an air-cooled cooling means for sending cold air into the housing. Item 4. The thermal transmissivity measuring device according to any one of Items 1 to 5. 前記低温側の空間を形成する筐体の、前記断熱性能測定対象物と対向する側の壁部に、前記筐体の外方に設けた光源からの前記筐体内の前記断熱性能測定対象物に対するふく射を可能とするガラス壁部を設けたことを特徴とする請求項6に記載の熱貫流率測定装置。 With respect to the heat insulating performance measurement object in the housing from a light source provided on the outside of the housing on the wall portion of the housing forming the space on the low temperature side facing the heat insulating performance measurement target. The thermal transmissivity measuring device according to claim 6, further comprising a glass wall portion capable of radiating. 前記ガラス壁部と前記断熱性能測定対象物との間に、前記断熱性能測定対象物に略平行に設けた板状のバッフル板を、前記光源からの前記断熱性能測定対象物に対するふく射を可能とするガラス板とすることを特徴とする請求項7に記載の熱貫流率測定装置。 A plate-shaped baffle plate provided substantially parallel to the heat insulating performance measurement object between the glass wall portion and the heat insulating performance measurement object can be radiated from the light source to the heat insulating performance measurement object. The thermal transmissivity measuring device according to claim 7, wherein the glass plate is used. 前記筐体内の前記断熱性能測定対象物に対する前記ふく射の強度を調整するためのふく射強度調整手段を設けたことを特徴とする請求項7又は8に記載の熱貫流率測定装置。 The thermal transmissivity measuring device according to claim 7 or 8, wherein the radiation intensity adjusting means for adjusting the radiation intensity with respect to the heat insulating performance measurement object in the housing is provided. 前記ガラス壁部と前記断熱性能測定対象物との間であって、前記ガラス壁部近傍に送風手段を設け、かつ前記送風手段により発生する気流の速度を、自然条件の風速の中から選択した風速を再現可能にする気流速度制御手段を設けたことを特徴とする請求項7〜9のいずれかに記載の熱貫流率測定装置。 A blowing means is provided between the glass wall portion and the object for measuring the heat insulating performance in the vicinity of the glass wall portion, and the velocity of the airflow generated by the blowing means is selected from the wind speeds under natural conditions. The thermal transmissivity measuring device according to any one of claims 7 to 9, further comprising an air flow velocity controlling means capable of reproducing the wind speed. 加熱袋を用いて自動車のドアの熱貫流率を測定する方法であって、
前記加熱袋は、略中央部に配設した加熱・送風手段と、該加熱・送風手段を囲繞可能な周壁部とを備え、
前記周壁部は、無通気性、断熱性及び可撓性を有し、
前記周壁部の厚みが全域で不均一である場合は、
前記周壁部の内部側の全表面又は外部側の全表面にわたり、複数の熱流計を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数の熱流計を直列接続させた回路を備え、
前記加熱袋を自動車のドア開口部の内部に設置し、前記加熱袋の周壁部が挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋内部を閉塞状態とし、前記自動車のドアを断熱性能測定対象物として、
前記周壁部に取り付けられた前記複数の熱流計を直列接続させた回路からの出力電圧がゼロとなるように前記加熱袋内の加熱手段を制御し、さらに前記自動車の車内雰囲気温度が安定するように前記車内雰囲気温度を制御し熱貫流率を算出することを特徴とする熱貫流率測定方法。
This is a method of measuring the thermal transmission rate of automobile doors using a heating bag.
The heating bag includes a heating / blowing means arranged at a substantially central portion and a peripheral wall portion capable of surrounding the heating / blowing means.
The peripheral wall portion has non-breathable, heat insulating and flexible properties.
If the thickness of the peripheral wall is uneven over the entire area,
A substantially equal area obtained by dividing a plurality of heat flow meters by the number of equal area divisions of any of 5 equal area divisions to 80 equal area divisions over the entire surface on the inner side or the entire surface on the outer side of the peripheral wall portion. A circuit in which the plurality of heat flow meters are connected in series by arranging them one by one at intervals of
The heating bag is installed inside the door opening of the automobile, the door is closed so that the peripheral wall portion of the heating bag is sandwiched, the opening is closed, and the inside of the heating bag is closed. Using the door as an object for measuring heat insulation performance
The heating means in the heating bag is controlled so that the output voltage from the circuit in which the plurality of thermal flow meters attached to the peripheral wall portion are connected in series is zero, and the ambient temperature inside the automobile is stabilized. A method for measuring thermal transmission rate, which comprises controlling the temperature of the atmosphere inside the vehicle and calculating the thermal transmission rate.
加熱袋を用いて自動車のドアの熱貫流率を測定する方法であって、
前記加熱袋は、略中央部に配設した加熱・送風手段と、該加熱・送風手段を囲繞可能な周壁部とを備え、
前記周壁部は、無通気性、断熱性及び可撓性を有し、
前記周壁部の厚みが全域で略均一である場合は、
前記周壁部の内部側及び外部側の2面それぞれの全表面にわたり、複数のサーモパイルを前記2面それぞれ5等面積分割〜80等面積分割のうちのいずれかの同じ等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数のサーモパイルを直列接続させた回路、あるいは、前記周壁部の内部側の全表面又は外部側の全表面にわたり、複数の熱流計を5等面積分割〜80等面積分割のうちのいずれかの等面積分割数で分割して得られる略等面積の間隔で1つずつ配設して、前記複数の熱流計を直列接続させた回路、を備え、
前記加熱袋を自動車のドア開口部の内部に設置し、前記加熱袋の周壁部が挟着されるように前記ドアを閉じて開口部を塞ぎ、前記加熱袋内部を閉塞状態とし、前記自動車のドアを断熱性能測定対象物として、
前記周壁部に取り付けられた前記複数のサーモパイルを直列接続させた回路からの出力電圧又は前記複数の熱流計を直列接続させた回路からの出力電圧がゼロとなるように、前記加熱袋内の加熱手段を制御し、さらに前記自動車の車内雰囲気温度を安定させるように前記雰囲気温度を制御し熱貫流率を算出することを特徴とする熱貫流率測定方法。
This is a method of measuring the thermal transmission rate of automobile doors using a heating bag.
The heating bag includes a heating / blowing means arranged at a substantially central portion and a peripheral wall portion capable of surrounding the heating / blowing means.
The peripheral wall portion has non-breathable, heat insulating and flexible properties.
When the thickness of the peripheral wall portion is substantially uniform over the entire area,
A plurality of thermopile is divided by the same number of equal area divisions from 5 equal area divisions to 80 equal area divisions on each of the two surfaces over the entire surfaces of the two surfaces on the inner side and the outer side of the peripheral wall portion. A plurality of thermoflow meters are arranged one by one at intervals of substantially equal areas to be obtained, or a circuit in which the plurality of thermopile is connected in series, or a plurality of heat flow meters over the entire surface on the inner side or the entire surface on the outer side of the peripheral wall portion. Was arranged one by one at intervals of substantially equal areas obtained by dividing by the number of equal area divisions of any of 5 equal area divisions to 80 equal area divisions, and the plurality of heat flow meters were connected in series. With a circuit,
The heating bag is installed inside the door opening of the automobile, the door is closed so that the peripheral wall portion of the heating bag is sandwiched, the opening is closed, and the inside of the heating bag is closed. Using the door as an object for measuring heat insulation performance
Heating inside the heating bag so that the output voltage from the circuit in which the plurality of thermopile attached to the peripheral wall portion is connected in series or the output voltage from the circuit in which the plurality of thermal flow meters are connected in series becomes zero. A method for measuring thermal conductivity, which comprises controlling the means and further controlling the atmospheric temperature so as to stabilize the ambient temperature inside the automobile to calculate the thermal transmissivity.
前記ドアが、フロントドア、リアドア又はバックドアのいずれかであることを特徴とする請求項11又は12に記載の熱貫流率測定方法。 The method for measuring thermal transmission rate according to claim 11 or 12, wherein the door is any of a front door, a rear door, and a back door.
JP2021039510A 2020-03-31 2021-03-11 Heat transmission coefficient measuring apparatus and method Pending JP2021162579A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061759 2020-03-31
JP2020061759 2020-03-31

Publications (1)

Publication Number Publication Date
JP2021162579A true JP2021162579A (en) 2021-10-11

Family

ID=78003246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021039510A Pending JP2021162579A (en) 2020-03-31 2021-03-11 Heat transmission coefficient measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP2021162579A (en)

Similar Documents

Publication Publication Date Title
Mao et al. Experimental and numerical study of air flow and temperature variations in an electric vehicle cabin during cooling and heating
ES2625495T3 (en) Determination of the coefficient of thermal loss of a room
JP2005265844A (en) Temperature sensing device
CN106705348A (en) Model based automatic climate control system for an improved thermal comfort
JP5292403B2 (en) Sensor device for detecting vehicle interior temperature of vehicle with motor
CN107257922A (en) The determination of the heat resist power of wall
US9857209B2 (en) Measurement device for measuring airflow volume and ventilation resistance of wind-blowing apparatus
JP2021162579A (en) Heat transmission coefficient measuring apparatus and method
Lin et al. An experimental and computational study of cooling in a simplified GM-10 passenger compartment
Davoodi et al. Experimental and numerical study of natural convection heat transfer from arrays of zigzag fins
KR20140034204A (en) Method for multizone regulation of the temperature of the interior of a motor vehicle and associated air??conditioning system
Burch et al. Use of infra-red thermography for automotive climate control analysis
Singh et al. Effect of dynamic vents on the thermal comfort of a passenger car
US20070227717A1 (en) Method and system for controlling an automotive multizone HVAC system
CN113916389A (en) Method for calculating temperature in automobile
Krusaa et al. Experimental investigation of integrated radiant ceiling panel and diffuse ceiling ventilation under cooling conditions
Horn Experimental and numerical characterization of a steady-state cylindrical blackbody cavity at 1100 degrees celsius
Hager Absolute differential radiometer
Özcan et al. Measuring ventilation rate through naturally ventilated air openings by introducing heat flux
Melikov et al. Comparison of methods for determining teq under welldefined conditions
Möller et al. Thermodynamical modeling of a car cabin
Sukamto et al. Thermal performance evaluation of a bioclimatic ventilated wall using a Hot Box
JP2559203B2 (en) Radiant cooling system with ice heat storage tank
McAllister et al. Experimentally Determining the Convection Coefficient over a Vehicle’s Surface
Orzechowski Thermal analysis of the car windscreen

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240701