JP2021162498A - Signal processing device of rotor electric runout measuring device, rotor electric runout measuring device, and rotor electric runout measuring method - Google Patents
Signal processing device of rotor electric runout measuring device, rotor electric runout measuring device, and rotor electric runout measuring method Download PDFInfo
- Publication number
- JP2021162498A JP2021162498A JP2020065731A JP2020065731A JP2021162498A JP 2021162498 A JP2021162498 A JP 2021162498A JP 2020065731 A JP2020065731 A JP 2020065731A JP 2020065731 A JP2020065731 A JP 2020065731A JP 2021162498 A JP2021162498 A JP 2021162498A
- Authority
- JP
- Japan
- Prior art keywords
- average value
- outputs
- integrator
- rotor
- signal processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012545 processing Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims description 11
- 238000005259 measurement Methods 0.000 claims abstract description 30
- 238000006073 displacement reaction Methods 0.000 claims description 19
- 230000010354 integration Effects 0.000 claims description 12
- 230000003321 amplification Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 10
- 238000000691 measurement method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
本発明は、回転子電気的振れ測定装置の信号処理装置、これを用いた回転子電気的振れ測定装置および回転子電気的振れ測定方法に関する。 The present invention relates to a signal processing device of a rotor electric runout measuring device, a rotor electric runout measuring device using the signal processing device, and a rotor electric runout measuring method.
電動機および発電機などの運転中の状態監視には、非接触式センサーによる回転子の振動測定が用いられている(特許文献1参照)。振動値は、センサーが照射された部位の変位(μmP−P)で表される。非接触式センサーによる振動測定では、規格により許容値は異なるが、回転子電気的振れをできるだけ小さくすることが求められる。回転機の組立後(完成状態)では、電気的振れの修復が困難なため、回転子の製造工程において、電気的振れの検査が行われている。
回転子電気的振れとは、本来得られるべき距離に応じた出力電圧に対し、回転子の材質や表面組織、凹凸により変動した出力電圧との差異である。また、振動値は、回転子の静的または動的不釣合いが主な要因で、回転速度に応じて変化する。一方、回転子電気的振れは、回転子個々の性質であり、回転速度に応じて変化しない。
Vibration measurement of the rotor by a non-contact sensor is used for monitoring the state of an electric motor, a generator, or the like during operation (see Patent Document 1). The vibration value is represented by the displacement (μmP−P) of the portion irradiated with the sensor. In vibration measurement using a non-contact sensor, the permissible value differs depending on the standard, but it is required to minimize the electrical runout of the rotor. After assembling the rotor (completed state), it is difficult to repair the electrical runout, so the electrical runout is inspected in the rotor manufacturing process.
Rotor electrical runout is the difference between the output voltage according to the distance that should be originally obtained and the output voltage that fluctuates due to the material, surface structure, and unevenness of the rotor. In addition, the vibration value changes according to the rotation speed, mainly due to the static or dynamic imbalance of the rotor. On the other hand, the electric runout of the rotor is a property of each rotor and does not change according to the rotation speed.
測定装置は、対象とする回転子との相対位置が変化することから、非接触での測定方式として、通常、渦電流式変位計を用いた計測が行われる。 Since the position of the measuring device with respect to the target rotor changes, measurement using an eddy current type displacement meter is usually performed as a non-contact measurement method.
ここで、対象とする回転子と渦電流式変位計との間隔(初期GAP電圧)に比べて、回転子の表面の凹凸または表面組織による電圧変化の程度は極めて僅かである。このため、単に回転子と渦電流式変位計との間隔の変化を読み取るのでは、十分な精度が確保できない。 Here, the degree of voltage change due to the unevenness of the surface of the rotor or the surface structure is extremely small as compared with the distance between the target rotor and the eddy current type displacement meter (initial GAP voltage). Therefore, sufficient accuracy cannot be ensured by simply reading the change in the distance between the rotor and the eddy current displacement meter.
このため、たとえば、渦電流式変位計の出力に負の直流成分のバイアスをかけて、その差分の信号を増幅して表示し、表示を見ながらそのバイアスをマニュアルで調整していた。 Therefore, for example, the output of the eddy current displacement meter is biased with a negative DC component, the difference signal is amplified and displayed, and the bias is manually adjusted while observing the display.
図8は、回転子軸ランアウト測定方法の従来例を示すフロ―図である。従来の、測定装置を用いての測定方法の例は、次の通りである。 FIG. 8 is a flow diagram showing a conventional example of the rotor shaft runout measurement method. An example of a conventional measurement method using a measuring device is as follows.
まず、測定装置において、渦電流変位計がギャップ信号を検出する(ステップS01)。渦電流式変位計と測定対象との距離を測定する。 First, in the measuring device, the eddy current displacement meter detects the gap signal (step S01). Measure the distance between the eddy current displacement meter and the object to be measured.
次に、測定者は、バイアス値を、調整つまみで調整する(ステップS02)。 Next, the measurer adjusts the bias value with the adjustment knob (step S02).
測定装置は、渦電流変位計が検出した距離信号からバイアス値を減ずる(ステップS03)。バイアス値を減ずることによって、主として、変動分が残る。 The measuring device reduces the bias value from the distance signal detected by the eddy current displacement meter (step S03). By reducing the bias value, the fluctuation remains mainly.
次に、測定者は、ゲイン調整を行う(ステップS04)。ゲイン調整では、変動分を、画面で十分に確認できるくらいまで、大きなゲインにすることを期待しており、たとえば、オシロスコープなどの表示部で、この状態を確認(ステップS05)ながら、測定者はゲイン調整の要否を判定(ステップS06)し、ステップS04からステップS06を繰り返す。 Next, the measurer adjusts the gain (step S04). In the gain adjustment, it is expected that the gain will be large enough to be sufficiently confirmed on the screen. For example, while confirming this state on a display unit such as an oscilloscope (step S05), the measurer can adjust the gain. It is determined whether or not the gain adjustment is necessary (step S06), and steps S04 to S06 are repeated.
ステップS02で調整したバイアス値が適切ではない場合は、表示部で表示される波形は、直流分がまだ大きく、変動分が十分に拡大できない状態となる。このように、測定者は、バイアス値が適正か否かを判定する(ステップS07)。 If the bias value adjusted in step S02 is not appropriate, the waveform displayed on the display unit has a large DC component, and the fluctuation component cannot be sufficiently expanded. In this way, the measurer determines whether or not the bias value is appropriate (step S07).
測定者は、バイアス値が適切と判定できない場合(ステップS07 NO)には、ステップS02ないしステップS07を繰り返す。 If the measurer cannot determine that the bias value is appropriate (step S07 NO), the measurer repeats steps S02 to S07.
上記は、ある1つの径の測定個所の場合に行うべき手順である。測定者は、測定対象の径が変化するごとに、上記の手順を繰り返す必要がある。従来は、このように、渦電流式変位計を用いた回転子軸のランアウト測定の際、初期の直流電圧成分のカットの調整、すなわちバイアス値の減算調整を、マニュアルで行っていたため、手間を要していた。
そこで、本発明は、回転子軸のランアウト測定の簡素化と時間短縮化を図ることを目的とする。
The above is a procedure to be performed in the case of a measurement point of a certain diameter. The measurer needs to repeat the above procedure every time the diameter of the object to be measured changes. Conventionally, when the runout measurement of the rotor shaft using the eddy current type displacement meter is performed, the initial adjustment of the cut of the DC voltage component, that is, the subtraction adjustment of the bias value is manually performed, which is troublesome. I needed it.
Therefore, an object of the present invention is to simplify the run-out measurement of the rotor shaft and shorten the time.
上述の目的を達成するため、本発明に係る信号処理装置は、測定されたギャップ信号を受け入れて平均値を出力する平均値演算部と、前記ギャップ信号から前記平均値を減じて差分を出力する減算器と、前記差分を増幅する増幅器と、を具備し、前記平均値演算部は、測定されたギャップ信号を受け入れて積分値を出力する積分器と、測定時間をカウントし出力する時間カウンタと、前記積分値および前記測定時間を受け入れて、前記積分値を前記測定時間で除した結果を平均値として出力する除算器と、を有することを特徴とする。 In order to achieve the above object, the signal processing apparatus according to the present invention has an average value calculation unit that accepts a measured gap signal and outputs an average value, and outputs a difference by subtracting the average value from the gap signal. It includes a subtractor and an amplifier that amplifies the difference, and the average value calculation unit includes an integrator that receives the measured gap signal and outputs an integrator, and a time counter that counts and outputs the measurement time. It is characterized by having an integrator that accepts the integrator and the measurement time and outputs the result of dividing the integrator by the measurement time as an average value.
また、本発明に係る回転子電気的振れ測定装置は、測定対象である回転子とのギャップを検出する渦電流式変位計と、上述の信号処理装置と、前記信号処理装置からの出力を表示する表示装置と、を備えることを特徴とする。 Further, the rotor electrical runout measuring device according to the present invention displays an eddy current type displacement meter for detecting a gap with a rotor to be measured, the above-mentioned signal processing device, and an output from the signal processing device. It is characterized in that it is provided with a display device.
また、本発明に係る回転子電気的振れ測定方法は、測定対象である回転子とのギャップを検出する検出ステップと、平均値演算部が測定されたギャップ信号を受け入れて平均値を出力する平均値演算ステップと、減算器が前記ギャップ信号から前記平均値を減じて差分を出力する減算ステップと、増幅器が前記差分を増幅する増幅ステップと、を有することを特徴とする。 Further, the rotor electrical runout measuring method according to the present invention includes a detection step of detecting a gap with the rotor to be measured, and an average value calculation unit that accepts the measured gap signal and outputs an average value. It is characterized by having a value calculation step, a subtraction step in which the subtractor subtracts the average value from the gap signal and outputs a difference, and an amplification step in which the amplifier amplifies the difference.
本発明によれば、回転子軸のランアウト測定の簡素化と時間短縮化を図ることができる。 According to the present invention, it is possible to simplify the run-out measurement of the rotor shaft and shorten the time.
以下、図面を参照して、本発明の実施形態に係る回転電機の回転子電気的振れ測定装置の信号処理装置、回転子電気的振れ測定装置および回転子電気的振れ測定方法について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複する説明は省略する。 Hereinafter, the signal processing device, the rotor electric runout measuring device, and the rotor electric runout measuring method of the rotor electric runout measuring device of the rotary electric machine according to the embodiment of the present invention will be described with reference to the drawings. Here, parts that are the same as or similar to each other are designated by a common reference numeral, and redundant description will be omitted.
[第1の実施形態]
図1は、第1の実施形態に係る回転子電気的振れ測定装置10の構成を示す概念図である。図1は、測定対象1と回転子電気的振れ測定装置10との配置関係も示している。
[First Embodiment]
FIG. 1 is a conceptual diagram showing the configuration of the rotor electrical
測定対象1である回転子は、軸方向に複数の径を有し、回転軸Cを回転中心とする回転体である。測定対象1は、軸方向の一端を支持部3により支持され、多端を回転駆動部2により回転可能に支持されている。
The rotor, which is the measurement target 1, is a rotating body having a plurality of diameters in the axial direction and having the rotation axis C as the rotation center. One end of the measurement target 1 in the axial direction is supported by the
回転子電気的振れ測定装置10は、渦電流式変位計11、表示装置12、移動駆動部15、レール16、および信号処理装置100を有する。回転子電気的振れ測定装置10は、測定対象1である回転子が回転することで周方向において、回転子表面の凹凸および組織に応じた電圧を出力し、表示装置で電圧の振れ幅を目視可能とする。
The rotor electric
渦電流式変位計11は、測定対象1とのギャップ、すなわちそれ自身と測定対象1との距離Dを測定する。
The eddy
レール16は、測定対象1の回転軸Cに平行に配される。移動駆動部15は、渦電流式変位計11を支持する。移動駆動部15は、レール16に搭載され、レール16上を移動する。この結果、渦電流式変位計11は、測定対象1に沿ってギャップを測定することができる。
The
渦電流式変位計11で測定したギャップ信号は、信号処理装置100に出力される。信号処理装置100は受け入れたギャップ信号を処理し、結果を表示部12に出力し、表示部12が表示する。
The gap signal measured by the eddy
図2は、第1の実施形態に係る回転子電気的振れ測定装置10の信号処理装置100の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a
信号処理装置100は、受信部110、平均値演算部120、減算器130、および増幅器140を有する。
The
受信部110は、渦電流式変位計11で測定したギャップ信号を受け入れて、必要に応じて増幅するとともに、信号処理しやすい形態に変換する。たとえば、受け入れたギャップ信号が電流信号の場合には電圧信号に変換する。あるいは、たとえば、アナログ信号をディジタル信号に変換する。
The receiving
受信部110は、変換した結果を平均値演算部120および減算器130に出力する。
The receiving
平均値演算部120は、受信部110の出力を受け入れて、その平均値を演算する。
The average
減算器130は、受信部110の出力および平均値演算部120の出力を受け入れて、受信部110の出力から平均値演算部120の出力である平均値を減じて差分信号を算出する。
The
増幅器140は、減算器130の出力を増幅し、表示装置12に出力する。
The
平均値演算部120は、積分器121、時間カウンタ123、および除算器124を有する。積分器121は、受信器110の出力を受け入れて積分演算を行う。時間カウンタ123は、積分器121が受信器110の出力を受け入れている間の時間をカウントする。除算器124は、積分器121の出力および時間カウンタ123の出力を受け入れて、積分器121の出力である積分値を時間カウンタ123の出力である時間カウント値で除して平均値を算出する。
The average
図3は、第1の実施形態に係る回転子電気的振れ測定方法の手順を示すフロ―図である。 FIG. 3 is a flow diagram showing the procedure of the rotor electrical runout measuring method according to the first embodiment.
まず、渦電流式変位計11が、ギャップ信号を検出する(ステップS01)。
First, the eddy
次に、信号処理装置100の平均値演算部120が、平均値を算出する(ステップS12)。
Next, the average
次に、信号処理装置100の減算器130が、ギャップ信号から平均値を減じて、差分信号を算出する(ステップS13)。
Next, the
次に、信号処理装置100の増幅器140が、差分信号を増幅する(ステップS14)。表示部は、増幅された信号を表示する(ステップS15)。
Next, the
図4は、第1の実施形態に係る回転子電気的振れ測定装置の効果を説明するための第1の画面である。第1の画面は、第1の実施形態に係る回転子電気的振れ測定装置によらない場合である。すなわち、平均値に近いが平均値ではない値をギャップ信号から減じた場合を示している。この場合、差分信号には直流分が残っているため、表示部で確認できる範囲でゲインを大きくしても変動分を十分に確認できるに至っていない。すなわち、表示部、たとえばメモリハイコーダなどのダイナミックレンジの制限により、GAP電圧(直流分)を減じなければ、変動電圧(交流分)が抽出できない。 FIG. 4 is a first screen for explaining the effect of the rotor electrical runout measuring device according to the first embodiment. The first screen is a case where the rotor electrical runout measuring device according to the first embodiment is not used. That is, it shows a case where a value close to the average value but not the average value is subtracted from the gap signal. In this case, since the DC component remains in the difference signal, the fluctuation component cannot be sufficiently confirmed even if the gain is increased within the range that can be confirmed on the display unit. That is, the variable voltage (AC component) cannot be extracted unless the GAP voltage (DC component) is reduced due to the limitation of the dynamic range of the display unit, for example, the memory high coder.
図5は、第1の実施形態に係る回転子電気的振れ測定装置10の効果を説明するための第2の画面である。第1の画面は、第1の実施形態に係る回転子電気的振れ測定装置10による場合である。すなわち、平均値をギャップ信号から減じた場合を示している。この場合、差分信号は変動分のみなので、表示部は、変動分のみを十分に拡大した結果を表示することができる。
FIG. 5 is a second screen for explaining the effect of the rotor electrical
以上のように、本実施形態に係る回転子電気的振れ測定装置10によれば、回転子軸のランアウト測定が自動的に行われ、かつ高い精度を確保することができ、測定の簡素化と時間短縮化を図ることができる。
As described above, according to the rotor electrical
[第2の実施形態]
図6は、第2の実施形態に係る回転子電気的振れ測定装置の信号処理装置100aの構成を示すブロック図である。
[Second Embodiment]
FIG. 6 is a block diagram showing a configuration of a
本実施形態は、第1の実施形態の変形であり、信号処理装置100aの平均値演算部120aの構成が、第1の実施形態における平均値演算部120と異なる。その他の点では、第1の実施形態と同様である。
This embodiment is a modification of the first embodiment, and the configuration of the average
本実施形態における平均値演算部120aは、積分器121、選択器122、および除算器124を有する。
The average
積分器121は、第1積分器121aおよび第2積分器121bを有する。第1積分器121aの積分時間は、第2積分器121bの積分時間よりも短くなっている。すなわち、たとえば、積分器が線形増幅器とキャパシタとで構成される場合には、第1積分器121aのキャパシタの容量が第2積分器121bのキャパシタの容量より小さい関係にある。
The
選択器122は、第1積分器121aの出力と第2積分器121bの出力を受け入れて、両者間を互いに切り替えて、選択した側から受け入れた出力を、出力する。なお、切り替えに際しては、両者の出力がバンプレス、すなわち一方が使用状態のときに他方の出力が追従し出力の変動なしに切り替え可能に構成されている。
The
除算器124は、選択器122からの出力を、時間カウンタ123からの時間カウント値で除して、平均値を出力する。
The
以上のように構成された本実施形態による平均値演算部120aでは、積分器121の積分動作の立ち上がり時には、当初は、積分時間の短い第1積分器121aによる積分値に基づいて平均値が算出され、目標値に近づいた時点で、積分時間のこれより長い第2積分器121bによる積分値に基づいて平均値が算出される。この結果、平均値の算出の開始時に、平均値を算出するまでの時間を短縮することができる。
In the average
なお、選択器122が、第1積分器121aの出力から第2積分器121bの出力に切り替えるタイミングは、図5に図示してはいないが、以下のように可能である。
The timing at which the
すなわち、平均値を算出する積分に要する時間が、それまでのギャップDから新たなギャップDに変化する際の変化幅に比例することから、受信部110でこの変化幅を算出して、たとえば標準変化幅に対する既知の積分時間に基づいてタイミングを算出し、選択器122に出力することにより、適切に切り替えることができる。
That is, since the time required for integration to calculate the average value is proportional to the change width when changing from the previous gap D to the new gap D, the receiving
以上のように、本実施形態に係る信号処理装置100aによれば、さらなる時間短縮化を図ることができる。
As described above, according to the
[第3の実施形態]
図7は、第3の実施形態に係る回転子電気的振れ測定装置の信号処理装置100bの構成を示すブロック図である。本実施形態は、第2の実施形態の変形である。
[Third Embodiment]
FIG. 7 is a block diagram showing a configuration of a
本第3の実施形態は、信号処理装置100bが、リセット部150を有する点が第2の実施形態と異なっており、平均値演算部120aを含めて、その他は第2の実施形態と同様である。
The third embodiment is different from the second embodiment in that the
リセット部150は、差分判定部151およびリセット指示部152を有する。
The
差分判定部151は、減算器130の出力の絶対値が、所定の値εより大きいか否かを判定し、所定の値εより大きいと判定した場合は論理値「YES」を、また所定の値εより大きくないと判定した場合は論理値「NO」を出力する。
The
差分判定部151が「NO」を出力した場合は、減算器130の出力が増幅器に140に出力される。
When the
差分判定部151が「YES」を出力した場合は、リセット指令部152に出力される。リセット指令部152は、積分器121(第1積分器121aおよび第2積分器121b)および時間カウンタ123に、リセット信号を出力する。
When the
積分器121および時間カウンタ123は、リセット信号を受けると、その出力値を一旦、ゼロにリセットする。
When the
このように構成された本実施形態による信号処理装置100bによれば、軸方向に径の変化する場合においても、連続的に測定を続けることができ、大幅な時間短縮を図ることができる。
According to the
[その他の実施形態]
以上、本発明の実施形態を説明したが、実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。たとえば、第3の実施形態では、平均値演算部の構成が第2の実施形態と同様となっているが、第1の実施形態における平均値演算部と同様の構成であってもよい。
[Other Embodiments]
Although the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention. For example, in the third embodiment, the configuration of the average value calculation unit is the same as that of the second embodiment, but the configuration may be the same as that of the average value calculation unit in the first embodiment.
また、各実施形態の特徴を組み合わせてもよい。また、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。 Moreover, you may combine the features of each embodiment. In addition, the embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention.
実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 The embodiments and modifications thereof are included in the scope and the gist of the invention as well as the invention described in the claims and the equivalent scope thereof.
1…測定対象、2…回転駆動部、3…支持部、10…回転子電気的振れ測定装置、11…渦電流式変位計、12…表示装置、15…移動駆動部、16…レール、100…信号処理装置、110…受信部、120、120a…平均値演算部、121…積分器、121a…第1積分器、121b…第2積分器、122…選択器、123…時間カウンタ、124…除算器、130…減算器、140…増幅器、150…リセット部、151…差分判定部、152…リセット指示部 1 ... Measurement target, 2 ... Rotation drive unit, 3 ... Support unit, 10 ... Rotor electrical runout measuring device, 11 ... Turbine current type displacement meter, 12 ... Display device, 15 ... Moving drive unit, 16 ... Rail, 100 ... signal processing device, 110 ... receiver, 120, 120a ... average value calculation unit, 121 ... integrator, 121a ... first integrator, 121b ... second integrator, 122 ... selector, 123 ... time counter, 124 ... Divider, 130 ... subtractor, 140 ... amplifier, 150 ... reset unit, 151 ... difference judgment unit, 152 ... reset indicator unit
Claims (6)
前記ギャップ信号から前記平均値を減じて差分を出力する減算器と、
前記差分を増幅する増幅器と、
を具備し、
前記平均値演算部は、
測定されたギャップ信号を受け入れて積分値を出力する積分器と、
測定時間をカウントし出力する時間カウンタと、
前記積分値および前記測定時間を受け入れて、前記積分値を前記測定時間で除した結果を平均値として出力する除算器と、
を有することを特徴とする回転子電気的振れ測定装置の信号処理装置。 An average value calculation unit that accepts the measured gap signal and outputs the average value,
A subtractor that subtracts the average value from the gap signal and outputs the difference,
An amplifier that amplifies the difference and
Equipped with
The average value calculation unit is
An integrator that accepts the measured gap signal and outputs an integral value,
A time counter that counts and outputs the measurement time,
A divider that accepts the integral value and the measurement time and outputs the result of dividing the integral value by the measurement time as an average value.
A signal processing device for a rotor electrical runout measuring device, which comprises.
前記平均値演算部は、前記第1の積分器による積分から前記第2の積分器による積分に切り替えて、積分値を前記除算器に出力する選択器をさらに有する、
ことを特徴とする請求項1に記載の回転子電気的振れ測定装置の信号処理装置。 The integrator has a first integrator having a short integration time and a second integrator having a long integration time.
The average value calculation unit further includes a selector that switches from the integration by the first integrator to the integration by the second integrator and outputs the integrated value to the divider.
The signal processing device for the rotor electrical runout measuring device according to claim 1.
前記差分判定部により前記差分が所定の値より大きいと判定された場合に、前記平均値演算部をリセットするリセット指令部と、
をさらに具備することを特徴とする請求項1または請求項2に記載の回転子電気的振れ測定装置の信号処理装置。 A difference determination unit that accepts the difference from the subtractor and determines whether or not it is larger than a predetermined value.
A reset command unit that resets the average value calculation unit when the difference determination unit determines that the difference is larger than a predetermined value.
The signal processing device of the rotor electrical runout measuring device according to claim 1 or 2, further comprising.
請求項1ないし請求項4のいずれか一項に記載の信号処理装置と、
前記信号処理装置からの出力を表示する表示装置と、
を備えることを特徴とする回転子電気的振れ測定装置。 An eddy current displacement meter that detects the gap with the rotor to be measured,
The signal processing device according to any one of claims 1 to 4.
A display device that displays the output from the signal processing device, and
A rotor electrical runout measuring device comprising.
平均値演算部が測定されたギャップ信号を受け入れて平均値を出力する平均値演算ステップと、
減算器が前記ギャップ信号から前記平均値を減じて差分を出力する減算ステップと、
増幅器が前記差分を増幅する増幅ステップと、
を有することを特徴とする回転子電気的振れ測定方法。 A detection step that detects the gap with the rotor to be measured, and
The average value calculation step that the average value calculation unit accepts the measured gap signal and outputs the average value,
A subtraction step in which the subtractor subtracts the average value from the gap signal and outputs a difference.
An amplification step in which the amplifier amplifies the difference,
A method for measuring electric runout of a rotor, which comprises.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020065731A JP7228540B2 (en) | 2020-04-01 | 2020-04-01 | Signal processor for rotor electrical run-out measuring device, rotor electrical run-out measuring device, and rotor electrical run-out measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020065731A JP7228540B2 (en) | 2020-04-01 | 2020-04-01 | Signal processor for rotor electrical run-out measuring device, rotor electrical run-out measuring device, and rotor electrical run-out measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021162498A true JP2021162498A (en) | 2021-10-11 |
JP7228540B2 JP7228540B2 (en) | 2023-02-24 |
Family
ID=78004837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020065731A Active JP7228540B2 (en) | 2020-04-01 | 2020-04-01 | Signal processor for rotor electrical run-out measuring device, rotor electrical run-out measuring device, and rotor electrical run-out measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7228540B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114812417A (en) * | 2022-04-19 | 2022-07-29 | 天津大学 | Rotor and stator gap error compensation method and device based on rotor position synchronization |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63285408A (en) * | 1987-05-19 | 1988-11-22 | Canon Inc | Vibration detector |
JPH0251096A (en) * | 1988-08-12 | 1990-02-21 | Toshiba Corp | Rotary condition detector for internal pump |
JPH04130019U (en) * | 1991-05-22 | 1992-11-30 | 株式会社ミツトヨ | Integral type high amplification detection device |
JP2003042879A (en) * | 2001-07-26 | 2003-02-13 | Yamatake Corp | Sensor signal processing circuit |
JP2010164357A (en) * | 2009-01-14 | 2010-07-29 | Mitsubishi Electric Corp | Device for measuring amount of eccentricity in rotor |
JP2014032196A (en) * | 2012-08-01 | 2014-02-20 | Freescale Semiconductor Inc | Variable reluctance sensor interface and method with integration based arming threshold |
JP2018025398A (en) * | 2016-08-08 | 2018-02-15 | 三菱重工工作機械株式会社 | Electromagnetic induction position detector |
-
2020
- 2020-04-01 JP JP2020065731A patent/JP7228540B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63285408A (en) * | 1987-05-19 | 1988-11-22 | Canon Inc | Vibration detector |
JPH0251096A (en) * | 1988-08-12 | 1990-02-21 | Toshiba Corp | Rotary condition detector for internal pump |
JPH04130019U (en) * | 1991-05-22 | 1992-11-30 | 株式会社ミツトヨ | Integral type high amplification detection device |
JP2003042879A (en) * | 2001-07-26 | 2003-02-13 | Yamatake Corp | Sensor signal processing circuit |
JP2010164357A (en) * | 2009-01-14 | 2010-07-29 | Mitsubishi Electric Corp | Device for measuring amount of eccentricity in rotor |
JP2014032196A (en) * | 2012-08-01 | 2014-02-20 | Freescale Semiconductor Inc | Variable reluctance sensor interface and method with integration based arming threshold |
JP2018025398A (en) * | 2016-08-08 | 2018-02-15 | 三菱重工工作機械株式会社 | Electromagnetic induction position detector |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114812417A (en) * | 2022-04-19 | 2022-07-29 | 天津大学 | Rotor and stator gap error compensation method and device based on rotor position synchronization |
Also Published As
Publication number | Publication date |
---|---|
JP7228540B2 (en) | 2023-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4518917A (en) | Plural sensor apparatus for monitoring turbine blading with undesired component elimination | |
US4644270A (en) | Apparatus for monitoring housed turbine blading to obtain blading-to-housing distance | |
JP4667186B2 (en) | Rotational accuracy measurement method | |
US8272246B2 (en) | Electronic self-calibration for sensor clearance | |
JP4578045B2 (en) | Method and position sensor for determining the position of a rotor of an electric machine | |
JP2008129018A (en) | Device for measuring position | |
CA1037286A (en) | Adjustable probe holder | |
WO2016052039A1 (en) | Runout measurement device | |
JP2021162498A (en) | Signal processing device of rotor electric runout measuring device, rotor electric runout measuring device, and rotor electric runout measuring method | |
CN106643576B (en) | Method and device for measuring non-concentricity | |
JP2013101030A (en) | Torque measurement device | |
US7256586B2 (en) | Method and device for measuring the repeatable and non-repeatable runout of rotating components of a spindle motor | |
WO2015170296A1 (en) | Method and auxiliary apparatus for balancing a rotor of a gas turbine | |
JP2019035714A (en) | Vibration detection method for machine tool | |
JP3900234B2 (en) | Shape measuring apparatus and method | |
JP4912017B2 (en) | Rolling bearing runout signal analyzer and rolling bearing production system | |
US6560547B1 (en) | Real time sampling system and method for measuring an interrupted surface | |
CA2956948C (en) | Electronic self-calibration for sensor clearance | |
EP2312266B1 (en) | Electronic self-calibration for turbine blade clearance sensor | |
RU2331043C1 (en) | Method of contactless measurement of controlled surface profile in dynamic conditions | |
CN211785618U (en) | Measuring and tracing standard device of contact type and non-contact type linear velocity measuring instrument | |
CN115962938B (en) | Non-contact testing method for air film rigidity of H-shaped dynamic pressure bearing gyro motor of gyroscope | |
Rath et al. | Optoelectronic Strain-Measurement System Demonstrated on Scaled-Down Flywheels | |
KR100631020B1 (en) | Apparatus for diagnosing concentricity state in induction motor | |
JPH08233565A (en) | Method and device for measuring shake of rotating body in radial direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20200528 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220506 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7228540 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |