JP2021161246A - Method for producing porous cellulose beads - Google Patents

Method for producing porous cellulose beads Download PDF

Info

Publication number
JP2021161246A
JP2021161246A JP2020064177A JP2020064177A JP2021161246A JP 2021161246 A JP2021161246 A JP 2021161246A JP 2020064177 A JP2020064177 A JP 2020064177A JP 2020064177 A JP2020064177 A JP 2020064177A JP 2021161246 A JP2021161246 A JP 2021161246A
Authority
JP
Japan
Prior art keywords
cellulose
solution
beads
cellulose beads
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020064177A
Other languages
Japanese (ja)
Inventor
優 平野
Yu Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2020064177A priority Critical patent/JP2021161246A/en
Publication of JP2021161246A publication Critical patent/JP2021161246A/en
Pending legal-status Critical Current

Links

Abstract

To provide a method for easily producing cellulose beads suitable for antibody adsorption without using an auxiliary raw material having high toxicity and corrosiveness and without going through a complicated process which is industrially disadvantageous.SOLUTION: There is provided a method for producing porous cross-linked cellulose beads including the steps of: (a) dissolving cellulose in a mixed solution of sodium hydroxide, lithium hydroxide, urea and water at a temperature of 5°C or lower and -20°C or higher to prepare a cellulose solution; (b) heating the cellulose solution to 10°C or higher and 40°C or lower; (c) dispersing the cellulose solution into a dispersion medium of 10°C or higher and 40°C or lower to prepare an emulsion; (d) bringing the emulsion into contact with a coagulation solvent to precipitate cellulose beads; and (e) cross-linking the precipitated cellulose beads, wherein a molar ratio of sodium hydroxide/lithium hydroxide in the step (a) is 0.3/0.7 to 0.8/0.2.SELECTED DRAWING: None

Description

本発明は、多孔質セルロースビーズを製造するための方法に関する。 The present invention relates to a method for producing porous cellulose beads.

多孔質セルロースビーズは、他の合成系高分子を用いる場合に比べて安全性が高く、非特異的吸着が少ないという利点があり、多孔質セルロースビーズは、各種クロマトグラフィー用吸着体やアフィニティー吸着体などの各種吸着体用の基材として用いられている。特に、アフィニティー吸着体は、効率よく目的物を精製でき、且つ不要物濃度を低減できることから、医療用吸着体や抗体医薬品精製用吸着体として利用されてきている。特に、リウマチ、血友病、拡張型心筋症の治療用吸着体または医療用吸着体として、プロテインAをアフィニティーリガンドとして多孔質担体に固定化した吸着体が注目されている(例えば非特許文献1、非特許文献2)。 Porous cellulose beads have the advantages of higher safety and less non-specific adsorption than when other synthetic polymers are used, and porous cellulose beads have various chromatographic adsorbents and affinity adsorbents. It is used as a base material for various adsorbents such as. In particular, affinity adsorbents have been used as medical adsorbents and adsorbents for purifying antibody drugs because they can efficiently purify the target substance and reduce the concentration of unnecessary substances. In particular, as a therapeutic adsorbent or a medical adsorbent for rheumatism, hemophilia, and dilated cardiomyopathy, an adsorbent in which protein A is immobilized on a porous carrier as an affinity ligand has been attracting attention (for example, Non-Patent Document 1). , Non-Patent Document 2).

多孔質セルロースビーズの製造は、セルロースの溶解が困難であるとされていたことから、通常の合成ポリマーと比べて煩雑な工程を含むものが多い。その一つとして、チオシアン酸カルシウム水溶液など腐食性や毒性が高く、設備化の難易度を高くしてしまう溶媒に溶解し、凝固する方法が開示されている(例えば特許文献1)。この方法で用いられるセルロース溶液が特異な挙動を示し、また、この方法で得られる多孔質セルロースビーズは、かなり大きい細孔を有しており、また細孔径分布も広いことが知られている(例えば非特許文献3)。よって、当該方法で得られた多孔質セルロースビーズを抗体などの吸着体として用いる場合、比表面積が小さいことから、高い吸着性能を示すことは期待できない。一方、セルロースの溶解性を上げるためにセルロースの水酸基に置換基を付与し、汎用の溶媒に溶解させて造粒を行い、造粒後に置換基を脱離させて多孔質セルロース系担体を得る方法が例示されている(例えば特許文献2)が、工程が煩雑であり、置換基を付与したり脱離させたりする過程で分子量の低下が起こり、近年求められている高速処理や大スケールで使用するのに適切な機械的強度が得られ難い傾向がある。 Since it has been said that it is difficult to dissolve cellulose in the production of porous cellulose beads, many of them include complicated steps as compared with ordinary synthetic polymers. As one of them, a method of dissolving and coagulating in a solvent such as an aqueous solution of calcium thiocyanate, which is highly corrosive and toxic and increases the difficulty of equipment installation, is disclosed (for example, Patent Document 1). It is known that the cellulose solution used in this method behaves peculiarly, and that the porous cellulose beads obtained by this method have considerably large pores and a wide pore size distribution (). For example, Non-Patent Document 3). Therefore, when the porous cellulose beads obtained by this method are used as an adsorbent for an antibody or the like, high adsorption performance cannot be expected because the specific surface area is small. On the other hand, in order to increase the solubility of cellulose, a method of imparting a substituent to the hydroxyl group of cellulose, dissolving it in a general-purpose solvent for granulation, and removing the substituent after granulation to obtain a porous cellulosic carrier. (For example, Patent Document 2), but the process is complicated, the molecular weight decreases in the process of adding or removing a substituent, and it is used in high-speed processing and large scale, which have been demanded in recent years. It tends to be difficult to obtain appropriate mechanical strength to do so.

一方、セルロースを低温のアルカリ/尿素/水の混和溶液に溶解させる方法が報告されている(非特許文献4)。この溶解方法は環境負荷が低く、溶解工程も煩雑ではないので、種々の検討がなされている。 On the other hand, a method of dissolving cellulose in a low-temperature alkali / urea / water mixed solution has been reported (Non-Patent Document 4). Since this dissolution method has a low environmental load and the dissolution process is not complicated, various studies have been conducted.

特表2009−242770号公報Special Table 2009-242770 国際公開WO2006/025371International release WO 2006/025371

Annals of the New York Academy of Sciences,Vol.1051,(2005),p.635−646Annals of the New York Academy of Sciences, Vol. 1051, (2005), p. 635-646 American Heart Journal,Vol.152,Number 4,(2006),p.712e1−712e6American Heart Journal, Vol. 152, Number 4, (2006), p. 712e1-712e6 Macromolecular Bioscience, vol.5, (2005), p.539−548Macromolecular Bioscience, vol. 5, (2005), p. 539-548 Journal of Chromatography,Vol.316,(1984),p.311−332Journal of Chromatography, Vol. 316, (1984), p. 311-332

本発明は、毒性・腐食性の高い副原料を使わず、工業的に不利である煩雑な工程を経ることなく簡便に、効率良く、抗体吸着に適した細孔構造を有するセルロースビーズを開発することを目的としている。 The present invention develops cellulose beads having a pore structure suitable for antibody adsorption simply and efficiently without using highly toxic and corrosive auxiliary materials and without going through complicated steps that are industrially disadvantageous. The purpose is.

本発明者らは、上記課題を解決すべく鋭意研究を行った結果、水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液を用いることで、抗体吸着に最適な構造を持ったセルロースビーズを製造できることを見出し、本発明を完成させるに至った。 As a result of diligent research to solve the above problems, the present inventors have obtained cellulose beads having an optimum structure for antibody adsorption by using a mixed solution of sodium hydroxide, lithium hydroxide, urea and water. We have found that it can be manufactured, and have completed the present invention.

したがって、本発明の一態様は、(a)−5℃以下、−20℃以上の水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液にセルロースを溶解させ、セルロース溶液を調製する工程、(b)前記セルロース溶液を10℃以上、40℃以下に加温する工程、(c)前記セルロース溶液を10℃以上、40℃以下の分散媒に分散させてエマルションを作製する工程、(d)前記エマルションを凝固溶媒に接触させ、セルロースビーズを析出させる工程、(e)析出したセルロースビーズを架橋する工程を含む多孔質架橋セルロースビーズの製造方法であり、前記工程(a)の水酸化ナトリウム/水酸化リチウムのモル比が0.3/0.7〜0.8/0.2であることを特徴とする多孔質架橋セルロースビーズの製造方法に関する。 Therefore, one aspect of the present invention is (a) a step of dissolving cellulose in a mixed solution of sodium hydroxide, lithium hydroxide, urea and water at −5 ° C. or lower and −20 ° C. or higher to prepare a cellulose solution. b) A step of heating the cellulose solution to 10 ° C. or higher and 40 ° C. or lower, (c) a step of dispersing the cellulose solution in a dispersion medium of 10 ° C. or higher and 40 ° C. or lower to prepare an emulsion, (d) the above. A method for producing porous crosslinked cellulose beads, which comprises a step of bringing the emulsion into contact with a coagulation solvent to precipitate cellulose beads and (e) a step of cross-linking the precipitated cellulose beads. The present invention relates to a method for producing porous crosslinked cellulose beads, which comprises a molar ratio of lithium oxide of 0.3 / 0.7 to 0.8 / 0.2.

本発明によれば、毒性・腐食性の高い副原料を使わず、工業的に不利である煩雑な工程を経ることなく簡便に、抗体吸着に適したセルロースビーズを製造することができる。 According to the present invention, cellulose beads suitable for antibody adsorption can be easily produced without using highly toxic and corrosive auxiliary raw materials and without going through complicated steps that are industrially disadvantageous.

本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上、B以下」を意味する。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。 An embodiment of the present invention will be described in detail below. Unless otherwise specified in the present specification, "A to B" representing a numerical range means "A or more and B or less". In addition, all of the documents described herein are incorporated herein by reference.

〔1.本発明の概要〕
本発明の一実施形態に係る多孔質セルロースビーズの製造方法(以下、「本製造方法」と称する。)は、(a)−5℃以下、−20℃以上の水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液にセルロースを溶解させ、セルロース溶液を調製する工程、(b)前記セルロース溶液を10℃以上、40℃以下に加温する工程、(c)前記セルロース溶液を10℃以上、40℃以下の分散媒に分散させてエマルションを作製する工程、(d)前記エマルションを凝固溶媒に接触させ、セルロースビーズを析出させる工程、(e)析出したセルロースビーズを架橋する工程を含む。低温の水酸化ナトリウム水溶液にセルロースを分散させ、凝固溶媒に接触させることにより、多孔質セルロースが得られることは、本出願人により開発済である(国際公開WO2012/121258など)。
[1. Outline of the present invention]
The method for producing porous cellulose beads according to an embodiment of the present invention (hereinafter, referred to as “the present production method”) is (a) sodium hydroxide at −5 ° C. or lower and −20 ° C. or higher, lithium hydroxide, and the like. A step of dissolving cellulose in a mixed solution of urea and water to prepare a cellulose solution, (b) a step of heating the cellulose solution to 10 ° C. or higher and 40 ° C. or lower, and (c) a step of heating the cellulose solution to 10 ° C. or higher. It includes a step of dispersing in a dispersion medium at 40 ° C. or lower to prepare an emulsion, (d) a step of bringing the emulsion into contact with a coagulation solvent to precipitate cellulose beads, and (e) a step of cross-linking the precipitated cellulose beads. It has been developed by the present applicant that porous cellulose can be obtained by dispersing cellulose in a low-temperature aqueous sodium hydroxide solution and contacting it with a coagulation solvent (International Publication WO 2012/121258, etc.).

理由は定かではないが、驚くべきことに、本発明者らは、単種のアルカリ性物質を使用するのではなく、複数のアルカリ性物質を併用することで抗体吸着に適した細孔を持つ架橋セルロースビーズを製造できることを初めて見出した。 For unknown reasons, surprisingly, we found that instead of using a single alkaline substance, we used a combination of multiple alkaline substances to create cross-linked cellulose with pores suitable for antibody adsorption. For the first time, I found that I could make beads.

以下、本製造方法の構成について詳説する。 Hereinafter, the configuration of this manufacturing method will be described in detail.

〔2.多孔質セルロースビーズの製造方法〕
本製造方法は、下記の工程(a)および工程(b)を必須の工程として含む方法である。
・工程(a):−5℃以下、−20℃以上の水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液にセルロースを溶解させ、セルロース溶液を調製する工程
・工程(b):前記工程(a)で調製したセルロース溶液を10℃以上、40℃以下に加温する工程
・工程(c):前記工程(b)で調製したセルロース溶液を10℃以上、40℃以下の分散媒に分散させてエマルションを作製する工程
・工程(d):前記工程(c)で作製したエマルションを凝固溶媒に接触させ、セルロースビーズを析出させる工程
・工程(e):前記工程(d)で析出させたセルロースビーズを架橋する工程
以下、本発明方法を工程ごとに説明する。
[2. Method for manufacturing porous cellulose beads]
This manufacturing method is a method including the following steps (a) and (b) as essential steps.
-Step (a): A step of dissolving cellulose in a mixed solution of sodium hydroxide, lithium hydroxide, urea and water at -5 ° C or lower and -20 ° C or higher to prepare a cellulose solution.-Step (b): The step. Step / Step (c) of heating the cellulose solution prepared in (a) to 10 ° C. or higher and 40 ° C. or lower: Disperse the cellulose solution prepared in the step (b) in a dispersion medium of 10 ° C. or higher and 40 ° C. or lower. Step / Step (d): The emulsion prepared in the step (c) was brought into contact with a coagulation solvent to precipitate cellulose beads. Step / Step (e): Precipitated in the step (d). Steps for Crossing Cellulose Beads The method of the present invention will be described below for each step.

(工程(a))
本製造方法における工程(a)では、−5℃以下、−20℃以上の水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液にセルロースを溶解させ、セルロース溶液を作製する。
(Step (a))
In the step (a) of the present production method, cellulose is dissolved in a mixed solution of sodium hydroxide, lithium hydroxide, urea and water at −5 ° C. or lower and −20 ° C. or higher to prepare a cellulose solution.

ここで水酸化ナトリウム/水酸化リチウムのモル比は0.3/0.7〜0.8/0.2であることが好ましい。さらに好ましくは、0.4/0.6〜0.7/0.3であり、より好ましくは、0.45/0.55〜0.65/0.35である。水酸化ナトリウムモル比が高くなりすぎると、細孔半径が抗体吸着にとって大きくなりすぎ、水酸化ナトリウムモル比が低くなりすぎると細孔半径が抗体吸着にとって小さくなる。 Here, the molar ratio of sodium hydroxide / lithium hydroxide is preferably 0.3 / 0.7 to 0.8 / 0.2. It is more preferably 0.4 / 0.6 to 0.7 / 0.3, and more preferably 0.45 / 0.55 to 0.65 / 0.35. If the sodium hydroxide molar ratio is too high, the pore radius becomes too large for antibody adsorption, and if the sodium hydroxide molar ratio is too low, the pore radius becomes small for antibody adsorption.

本発明の一実施形態において、水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液中の水酸化ナトリウム及び水酸化リチウムの合計濃度は5重量%〜20重量%が好ましい。さらに好ましくは6重量%〜15重量%であり、より好ましくは7重量%〜12重量%である。上記濃度範囲であれば、セルロースを良好に溶解させることができる。 In one embodiment of the present invention, the total concentration of sodium hydroxide and lithium hydroxide in the mixed solution of sodium hydroxide, lithium hydroxide, urea and water is preferably 5% by weight to 20% by weight. It is more preferably 6% by weight to 15% by weight, and more preferably 7% by weight to 12% by weight. Within the above concentration range, cellulose can be satisfactorily dissolved.

本発明の一実施形態において、水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液の尿素濃度は10重量%〜20重量%であることが好ましい。さらに好ましくは11重量%〜18重量%であり、より好ましくは11重量%〜16重量%である。上記濃度範囲であれば、セルロースを良好に溶解させることができる。 In one embodiment of the present invention, the urea concentration of the mixed solution of sodium hydroxide, lithium hydroxide, urea and water is preferably 10% by weight to 20% by weight. It is more preferably 11% by weight to 18% by weight, and even more preferably 11% by weight to 16% by weight. Within the above concentration range, cellulose can be satisfactorily dissolved.

本発明の本発明の一実施形態において、セルロース溶液のセルロース濃度は3重量%以上、9重量%以下であることが好ましい。上記濃度範囲であれば、セルロースを良好に溶解させることができる。 In one embodiment of the present invention of the present invention, the cellulose concentration of the cellulose solution is preferably 3% by weight or more and 9% by weight or less. Within the above concentration range, cellulose can be satisfactorily dissolved.

本発明の一実施形態において、用いるセルロース原料の分子量は特に制限されないが、重合度としては100〜1000であることが好ましい。さらに好ましくは、150〜900であり、より好ましくは200〜800である。セルロース分子量が上記範囲であれば、セルロースが溶解しやすい。 In one embodiment of the present invention, the molecular weight of the cellulose raw material used is not particularly limited, but the degree of polymerization is preferably 100 to 1000. More preferably, it is 150 to 900, and more preferably 200 to 800. When the molecular weight of cellulose is in the above range, cellulose is easily dissolved.

本発明の一実施形態において、セルロース溶液の温度は−5℃〜−20℃であることが好ましい。さらに好ましくは、−8℃〜−19℃であり、より好ましくは−10℃〜−17℃である。−5℃以上の温度であれば、セルロースが溶解しにくく、−20℃以下であれば、セルロース溶液が凍結してしまい、操作性が悪くなる。 In one embodiment of the present invention, the temperature of the cellulose solution is preferably −5 ° C. to −20 ° C. More preferably, it is −8 ° C. to −19 ° C., and more preferably −10 ° C. to −17 ° C. At a temperature of −5 ° C. or higher, cellulose is difficult to dissolve, and at a temperature of −20 ° C. or lower, the cellulose solution freezes, resulting in poor operability.

(工程(b))
本製造方法における工程(b)では、工程(a)で調製したセルロース溶液を加温し、10℃〜40℃とする。さらに好ましくは、15℃〜30℃であり、より好ましくは20℃〜28℃である。加温温度が上記範囲であれば、セルロースが析出せず、また溶液粘性が高くならないので、好適に操作することができる。
(Step (b))
In the step (b) of the present production method, the cellulose solution prepared in the step (a) is heated to 10 ° C. to 40 ° C. More preferably, it is 15 ° C to 30 ° C, and more preferably 20 ° C to 28 ° C. When the heating temperature is within the above range, cellulose does not precipitate and the viscosity of the solution does not increase, so that the operation can be preferably performed.

(工程(c))
本製造方法における工程(c)では、工程(b)で調製したセルロース溶液を分散媒に分散させてエマルションを作製する。
(Step (c))
In the step (c) of this production method, the cellulose solution prepared in the step (b) is dispersed in a dispersion medium to prepare an emulsion.

本発明の一実施形態において、分散媒はセルロース溶液と混和しなければ特に制限されないが、例えば、炭化水素系溶媒、動植物油脂、水素添加動植物油脂、脂肪酸グリセリド、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒を挙げることができる。また、非イオン界面活性剤などの界面活性剤を分散媒に添加してもよい。 In one embodiment of the present invention, the dispersion medium is not particularly limited as long as it is not mixed with the cellulose solution. Hydrocarbon-based solvents can be mentioned. Further, a surfactant such as a nonionic surfactant may be added to the dispersion medium.

炭化水素系溶媒としては、ヘキサン、デカン、流動パラフィンなどを挙げることができる。動植物油脂としては、パーム油、シア脂、サル脂、イリッペ脂、豚脂、牛脂、ナタネ油、米油、落花生油、オリーブ油、コーン油、大豆油、シソ油、綿実油、ヒマワリ油、月見草油、ゴマ油、サフラワー油、ヤシ油、カカオ脂、パーム核油、魚油、ワカメ油、コンブ油などを挙げることができる。水素添加動植物油脂としては、パーム硬化油、パーム極度硬化油、ナタネ硬化油、ナタネ極度硬化油、大豆硬化油、豚脂硬化油、魚油硬化油などを挙げることができる。脂肪酸グリセリドとしては、トリ−、ジ−、モノ−グリセリドのいずれでもよく、ステアリングリセリド、パルミチングリセリド、ラウリングリセリドなどを挙げることができる。脂肪族炭化水素系溶媒としては、ミツロウ、キャンデリラロウ、米ぬかロウなどを挙げることができる。芳香族炭化水素系溶媒としては、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼンなどを挙げることができる。 Examples of the hydrocarbon solvent include hexane, decane, and liquid paraffin. Animal and vegetable oils include palm oil, shea oil, monkey oil, iripe oil, pork oil, beef oil, rapeseed oil, rice oil, peanut oil, olive oil, corn oil, soybean oil, perilla oil, cottonseed oil, sunflower oil, evening primrose oil, Examples include sesame oil, safflower oil, palm oil, cacao butter, palm kernel oil, fish oil, wakame oil, and comb oil. Examples of hydrogenated animal and vegetable fats and oils include palm hardened oil, palm extremely hardened oil, rapeseed hardened oil, rapeseed extremely hardened oil, soybean hardened oil, pork fat hardened oil, and fish oil hardened oil. The fatty acid glyceride may be any of tri-, di-, and mono-glycerides, and examples thereof include stearin glyceride, palmitic acid glyceride, and lauric glyceride. Examples of the aliphatic hydrocarbon solvent include beeswax, candelilla wax, rice bran wax and the like. Examples of the aromatic hydrocarbon solvent include benzene, toluene, chlorobenzene, dichlorobenzene and the like.

エマルション作製のために、さらに界面活性剤を分散媒に適量添加してもよい。界面活性剤としては、ソルビタンラウレート、ソルビタンステアレート、ソルビタンオレエート、ソルビタントリオレエートなどのソルビタン脂肪酸エステル、ポリグリセリンポリリシノレート、デカグリセリンオレート、デカグリセリンステアレートなどのポリグリセリン脂肪酸エステルを挙げることができる。 In order to prepare an emulsion, an appropriate amount of a surfactant may be further added to the dispersion medium. Examples of the surfactant include sorbitan fatty acid esters such as sorbitan laurate, sorbitan stearate, sorbitan oleate and sorbitan trioleate, and polyglycerin fatty acid esters such as polyglycerin polylysinolate, decaglycerin oleate and decaglycerin stearate. Can be done.

本発明の一実施形態において、分散媒の使用量は特に限定されないが、工程(b)で調製したセルロース溶液を十分に分散できる量とすればよい。例えば、前記セルロース溶液に対して1体積倍〜10体積倍とすることができる。より好ましくは2体積倍〜8体積倍であり、より好ましくは4体積倍〜10体積倍である。前記範囲外の分散媒使用量となると廃液量が過剰に増えるおそれがあり得る。 In one embodiment of the present invention, the amount of the dispersion medium used is not particularly limited, but may be an amount capable of sufficiently dispersing the cellulose solution prepared in the step (b). For example, it can be 1 to 10 times by volume with respect to the cellulose solution. It is more preferably 2 volume times to 8 volume times, and more preferably 4 volume times to 10 volume times. If the amount of the dispersion medium used is out of the above range, the amount of waste liquid may increase excessively.

エマルションは、常法により調製すればよい。例えば、前記セルロース溶液、分散媒および界面活性剤を含む混合液を激しく攪拌することにより調製することができる。 The emulsion may be prepared by a conventional method. For example, it can be prepared by vigorously stirring the mixed solution containing the cellulose solution, the dispersion medium and the surfactant.

(工程(d))
本製造方法における工程(d)では、工程(c)で調製したエマルションに凝固溶媒を接触させて多孔質セルロースビーズを作製する。
(Step (d))
In the step (d) of the present production method, the emulsion prepared in the step (c) is brought into contact with a coagulation solvent to prepare porous cellulose beads.

凝固溶媒は、セルロース溶液に親和性を示すものであれば特に制限されないが、例えば、アルコール系溶媒、または水とアルコール系溶媒との混合溶媒を挙げることができる。アルコール系溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、s−ブタノール、t−ブタノールなどのC1-4アルコールを挙げることができる。水とアルコール系溶媒との混合溶媒における水とアルコール系溶媒の割合は、例えば、体積比で水:アルコール系溶媒=80:20〜1:99とすることができる。 The coagulation solvent is not particularly limited as long as it has an affinity for the cellulose solution, and examples thereof include an alcohol solvent or a mixed solvent of water and an alcohol solvent. Examples of the alcohol solvent include C 1-4 alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, and t-butanol. The ratio of water and alcohol solvent in the mixed solvent of water and alcohol solvent can be, for example, water: alcohol solvent = 80:20 to 1:99 in volume ratio.

本発明の一実施形態において、凝固方法は特に制限されないが、エマルションは不安定である場合があるので、液滴同士が結合しないよう激しく攪拌した状態で凝固溶媒を添加することが好ましい。 In one embodiment of the present invention, the coagulation method is not particularly limited, but since the emulsion may be unstable, it is preferable to add the coagulation solvent in a state of vigorous stirring so that the droplets do not bond with each other.

凝固溶媒を添加した後は、凝固した多孔質セルロースビーズを濾過や遠心分離などにより分離し、水やアルコールなどで洗浄すればよい。得られた多孔質セルロースビーズは、粒径を揃えるため、篩などを用いて分級してもよい。 After the coagulation solvent is added, the coagulated porous cellulose beads may be separated by filtration, centrifugation, or the like, and washed with water, alcohol, or the like. The obtained porous cellulose beads may be classified using a sieve or the like in order to make the particle size uniform.

(工程(e))
本製造方法における工程(e)では、工程(d)で作製したセルロースビーズに、架橋剤により架橋して多孔質架橋セルロースビーズを作製する。
(Step (e))
In the step (e) of the present production method, the cellulose beads produced in the step (d) are crosslinked with a cross-linking agent to produce porous crosslinked cellulose beads.

架橋剤は、セルロース上の水酸基と共有結合を形成できる反応性基を2以上有し、セルロース分子間を架橋できるものをいう。本発明で用いることができる架橋多孔質セルロース粒子の架橋の条件や架橋剤に特に限定は無い。例えばWO2008/146906に記載の方法を用いることができる。この国際公報の全内容が、本願に参考のため援用される。 A cross-linking agent has two or more reactive groups capable of forming a covalent bond with a hydroxyl group on cellulose and can cross-link between cellulose molecules. The conditions for cross-linking the cross-linked porous cellulose particles and the cross-linking agent that can be used in the present invention are not particularly limited. For example, the method described in WO2008 / 146906 can be used. The entire contents of this international publication are incorporated herein by reference.

架橋剤としては、例えば、エピクロロヒドリン、エピブロモヒドリン、ジクロロヒドリンなどのハロヒドリン;2官能性ビスエポキシド(ビスオキシラン);多官能性ポリエポキシド(ポリオキシラン)を挙げることができる。架橋剤は、一種のみを単独で用いてもよいし、二種以上を併用してもよい。 Examples of the cross-linking agent include halohydrins such as epichlorohydrin, epibromohydrin, and dichlorohydrin; bifunctional dichloromethane (bisoxylan); and polyfunctional polyepoxide (polyoxylan). As the cross-linking agent, only one kind may be used alone, or two or more kinds may be used in combination.

多孔質セルロースビーズを架橋剤により架橋する反応の溶媒は適宜選択すればよいが、例えば、水の他、メタノール、エタノール、イソプロパノールなどのアルコール系溶媒や、アセトニトリルなどのニトリル系溶媒などの水混和性有機溶媒を挙げることができる。また、架橋反応溶媒は、2以上を混合して用いてもよい。 The solvent for the reaction of cross-linking the porous cellulose beads with a cross-linking agent may be appropriately selected. For example, in addition to water, water miscibility with alcohol-based solvents such as methanol, ethanol and isopropanol, and nitrile-based solvents such as acetonitrile. Organic solvents can be mentioned. Further, the cross-linking reaction solvent may be used as a mixture of 2 or more.

架橋反応は、複数回実施してもよく、各回で反応溶媒や架橋剤を変更してもよい。例えば、1回目の架橋反応を水混和性有機溶媒中で行い、最終回の架橋反応を水中で行ってもよい。この場合、途中の溶媒組成は、1回目と最終回のどちらかと同じであっても異なっていてもよく、それらの中間組成であってもよい。さらには全ての回を水溶媒中で実施してもよい。架橋剤についても同様である。なお、架橋反応を複数回繰り返す場合、各架橋反応の間では、架橋多孔質セルロースビーズを水などで洗浄して架橋剤を除去することが好ましい。 The cross-linking reaction may be carried out a plurality of times, and the reaction solvent and the cross-linking agent may be changed each time. For example, the first cross-linking reaction may be carried out in a water-miscible organic solvent, and the final cross-linking reaction may be carried out in water. In this case, the solvent composition in the middle may be the same as or different from that of either the first round or the final round, or may be an intermediate composition between them. Furthermore, all times may be carried out in an aqueous solvent. The same applies to the cross-linking agent. When the cross-linking reaction is repeated a plurality of times, it is preferable to wash the cross-linked porous cellulose beads with water or the like to remove the cross-linking agent between the cross-linking reactions.

架橋反応を促進するために、反応液には塩基を添加してもよい。かかる塩基としては、水酸化ナトリウムや水酸化カリウムなどのアルカリ金属水酸化物;炭酸水素ナトリウムや炭酸水素カリウムなどアルカリ金属の炭酸水素塩;炭酸ナトリウムや炭酸カリウムなどアルカリ金属の炭酸塩;トリエチルアミンやピリジンなどの有機塩基を挙げることができる。 A base may be added to the reaction solution to promote the cross-linking reaction. Such bases include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal bicarbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; alkali metal carbonates such as sodium carbonate and potassium carbonate; triethylamine and pyridine. Organic bases such as.

架橋反応後は、多孔質架橋セルロースビーズは不溶性であることから、水などの溶媒で洗浄すればよい。 After the cross-linking reaction, the porous cross-linked cellulose beads are insoluble and may be washed with a solvent such as water.

本製造方法によると、高い生産性で、抗体吸着に優れた架橋多孔質セルロースビーズを得ることができる。 According to this production method, crosslinked porous cellulose beads having high productivity and excellent antibody adsorption can be obtained.

〔3.多孔質架橋セルロースビーズ〕
本発明の一実施形態に係る多孔質架橋セルロースビーズ(以下、「本ビーズ」と称する。)は粒子内空孔率が90%以上であり、細孔半径が35〜50nmであり、体積メジアン径が45〜70μmである。
[3. Porous cross-linked cellulose beads]
The porous crosslinked cellulose beads (hereinafter referred to as “the present beads”) according to the embodiment of the present invention have an intraparticle pore ratio of 90% or more, a pore radius of 35 to 50 nm, and a volume median diameter. Is 45 to 70 μm.

本ビーズは、本製造方法により製造されるため、抗体吸着能に優れるという利点を有する。 Since the beads are produced by the production method, they have an advantage of being excellent in antibody adsorption ability.

本ビーズの体積メジアン径は、特に限定されないが、優れた動的抗体吸着能が達成されるという観点から、45〜70μmが好ましく、50〜65μmがより好ましく、55〜63μmがさらに好ましい。本ビーズの体積メジアン径は、実施例に記載の方法により測定される。 The volume median diameter of the beads is not particularly limited, but is preferably 45 to 70 μm, more preferably 50 to 65 μm, still more preferably 55 to 63 μm from the viewpoint of achieving excellent dynamic antibody adsorption ability. The volume median diameter of the beads is measured by the method described in Examples.

本ビーズの粒子内空孔率は、優れた動的抗体吸着能が達成されるという観点から、90%以上が好ましく、91%以上がより好ましく、92%以上がさらに好ましい。本ビーズの粒子内空孔率は、実施例に記載の方法により測定される。 The porosity in the particles of the beads is preferably 90% or more, more preferably 91% or more, still more preferably 92% or more, from the viewpoint of achieving excellent dynamic antibody adsorption ability. The intra-particle porosity of the beads is measured by the method described in Examples.

本ビーズの細孔半径は、優れた動的抗体吸着能が達成されるという観点から、35〜50nmが好ましく、37〜48nmがより好ましく、40〜45nmがさらに好ましい。本ビーズの平均細孔半径は、実施例に記載の方法により測定される。 The pore radius of the beads is preferably 35 to 50 nm, more preferably 37 to 48 nm, and even more preferably 40 to 45 nm from the viewpoint of achieving excellent dynamic antibody adsorption ability. The average pore radius of the beads is measured by the method described in Examples.

本ビーズは抗体を特異的に吸着させるために、プロテインAリガンドを結合させることができ、その結合条件やプロテインAリガンドに特に限定は無い。例えばWO2012/133349に記載の方法を用いることができる。この国際公報の全内容が、本願に参考のため援用される。 In order to specifically adsorb the antibody, the beads can bind a protein A ligand, and the binding conditions and the protein A ligand are not particularly limited. For example, the method described in WO2012 / 133349 can be used. The entire contents of this international publication are incorporated herein by reference.

本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the embodiment obtained by appropriately combining the technical means disclosed in each of the different embodiments. Is also included in the technical scope of the present invention.

すなわち、本発明の一実施形態は、以下である。
<1>(a)−5℃以下、−20℃以上の水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液にセルロースを溶解させ、セルロース溶液を調製する工程、
(b)前記セルロース溶液を10℃以上、40℃以下に加温する工程、
(c)前記セルロース溶液を10℃以上、40℃以下の分散媒に分散させてエマルションを作製する工程、
(d)前記エマルションを凝固溶媒に接触させ、セルロースビーズを析出させる工程、
(e)析出したセルロースビーズを架橋する工程を含むことを特徴とする、多孔質架橋セルロースビーズの製造方法であり、
前記工程(a)の水酸化ナトリウム/水酸化リチウムのモル比が0.3/0.7〜0.8/0.2であることを特徴とする多孔質架橋セルロースビーズの製造方法。
<2>前記工程(a)の水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液の尿素濃度が10重量%〜20重量%であることを特徴とする多孔質架橋セルロースビーズの製造方法。
<3>前期セルロース溶液のセルロース濃度が3重量%以上、9重量%以下であることを特徴とする、多孔質架橋セルロースビーズ製造方法
<4>前記凝固溶媒が、アルコール系溶媒、または水とアルコール系溶媒との混合溶媒であることを特徴とする多孔質架橋セルロースビーズの製造方法。
<5>粒子内空孔率が90%以上、細孔半径が35nm〜50nm、及び体積メジアン径が45μm〜70μmであることを特徴とする多孔質架橋セルロースビーズ。
That is, one embodiment of the present invention is as follows.
<1> (a) A step of preparing a cellulose solution by dissolving cellulose in a mixed solution of sodium hydroxide, lithium hydroxide, urea and water at -5 ° C or lower and -20 ° C or higher.
(B) A step of heating the cellulose solution to 10 ° C. or higher and 40 ° C. or lower.
(C) A step of preparing an emulsion by dispersing the cellulose solution in a dispersion medium having a temperature of 10 ° C. or higher and 40 ° C. or lower.
(D) A step of bringing the emulsion into contact with a coagulation solvent to precipitate cellulose beads.
(E) A method for producing porous crosslinked cellulose beads, which comprises a step of crosslinking the precipitated cellulose beads.
A method for producing porous crosslinked cellulose beads, wherein the molar ratio of sodium hydroxide / lithium hydroxide in the step (a) is 0.3 / 0.7 to 0.8 / 0.2.
<2> A method for producing porous crosslinked cellulose beads, wherein the urea concentration of the mixed solution of sodium hydroxide, lithium hydroxide, urea and water in the step (a) is 10% by weight to 20% by weight.
<3> A method for producing porous crosslinked cellulose beads, which comprises a cellulose concentration of 3% by weight or more and 9% by weight or less in the early stage cellulose solution. <4> The coagulation solvent is an alcohol solvent or water and alcohol. A method for producing porous crosslinked cellulose beads, which is a mixed solvent with a system solvent.
<5> Porous crosslinked cellulose beads having a porosity in particles of 90% or more, a pore radius of 35 nm to 50 nm, and a volume median diameter of 45 μm to 70 μm.

以下、本発明を実施例に基づいてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.

〔測定および評価方法〕
実施例、比較例および製造例における測定および評価を、以下の方法で行った。
[Measurement and evaluation method]
Measurements and evaluations in Examples, Comparative Examples and Production Examples were performed by the following methods.

(体積メジアン径)
本ビーズの体積メジアン径は、HORIBA製レーザ回折/散乱式粒子径分布測定装置LA−950を用いて測定した。
(Volume median diameter)
The volume median diameter of the beads was measured using a laser diffraction / scattering type particle size distribution measuring device LA-950 manufactured by HORIBA.

(細孔半径)
本ビーズ22.8mLを蒸留水に分散させ、30分間脱気した。脱気した多孔質セルロースビーズをカラム(GEヘルスケア・ジャパン社製「Tricorn 10/300」)に充填した。島津製作所社製のサイズ排除クロマトグラフィーシステム(「DGU−20A3」、「RID−10A」、「LC−20AD」、「SIL−20AC」、「CTO−20AC」を含み、ソフトウェアとしては「LCSolution」を使用)を用いて測定を行った。
(Pore radius)
22.8 mL of the beads were dispersed in distilled water and degassed for 30 minutes. The degassed porous cellulose beads were packed in a column (“Tricorn 10/300” manufactured by GE Healthcare Japan Co., Ltd.). Shimadzu size exclusion chromatography system ("DGU-20A3", "RID-10A", "LC-20AD", "SIL-20AC", "CTO-20AC" included, "LCSolution" as software (Use) was used for measurement.

マーカーとしては、表1に示すデキストランまたはグルコースを、0.2M NaClを含む20mMリン酸バッファ(pH7.5)に溶解して用いた。 As a marker, dextran or glucose shown in Table 1 was dissolved in a 20 mM phosphate buffer (pH 7.5) containing 0.2 M NaCl and used.

Figure 2021161246
Figure 2021161246

カラムに0.2M NaClを含む20mMリン酸バッファ(pH7.5)を流速0.33mL/minで通液しながら、先ず、カラム中のビーズ部分以外の体積を求めるために、分子量4×107のデキストランの溶液を注入し、注入からRIモニターでピークが観測されるまでの通液量を求めた。分子量4×107のデキストランの溶液の濃度は10mg/mL、注入量は40μLとした。次いで、各マーカーの溶液でも同様に通液量を求めた。測定値を下記式に代入し、KDの値を算出した。
D=(VR−V0)/(Vt−V0
[式中、VRは各マーカー溶液を注入してからピークが観測されるまでの通液量(mL)を示し、V0は分子量4×107のデキストラン溶液を注入してからピークが観測されるまでの通液量(mL)を示し、Vtはカラム内のビーズ細孔の体積(mL)を示す。Vtは分子量180のマーカーより測定される。]
粒子内空孔率は(Vt−V0)/V0で表される。
While passing a 20 mM phosphate buffer (pH 7.5) containing 0.2 M NaCl in the column at a flow rate of 0.33 mL / min, first, in order to determine the volume other than the bead portion in the column, the molecular weight is 4 × 10 7. The solution of dextran was injected, and the flow rate from the injection to the peak observed by the RI monitor was determined. The concentration of the dextran solution having a molecular weight of 4 × 10 7 was 10 mg / mL, and the injection amount was 40 μL. Next, the flow rate of each marker solution was determined in the same manner. The measured values were substituted into the following equation to calculate the value of K D.
K D = (V R -V 0 ) / (V t -V 0)
Wherein, V R represents the liquid passing amount (mL) to peak from the injection of the marker solution is observed, V 0 is injected peaks from observation dextran solution having a molecular weight of 4 × 10 7 The amount of liquid to be passed (mL) is indicated, and V t indicates the volume (mL) of the bead pores in the column. V t is measured from a marker having a molecular weight of 180. ]
The porosity in the particles is represented by (V t − V 0 ) / V 0.

Dの値より非特許文献4記載の下記式で細孔半径を算出した。 It was calculated pore radius by the following formula in Non-Patent Document 4 described from the value of K D.

Figure 2021161246
Figure 2021161246

は平均細孔半径を、sは標準偏差を示す。 a r p is the average pore radius, s p represents the standard deviation.

(動的吸着量の測定)
(1) 溶液調製
下記A〜E液及び中和液を調製し、使用前に脱泡した。
A液: シグマ社製「Phosphate buffered saline」と蒸留水を用いてpH7.4のPBS緩衝液を調製した。
B液: 酢酸、酢酸ナトリウム、および蒸留水を用いてpH3.5の35mM酢酸ナトリウム水溶液を調製した。
C液: 酢酸と蒸留水を用いて1M酢酸水溶液を調製した。
D液: ポリクロナール抗体(「ガンマガード」バクスター社製)と前記A液を用いて濃度3mg/mLのIgG水溶液を調製した。
E液: 和光純薬社製の水酸化ナトリウムと塩化ナトリウムの濃度が、それぞれ0.1N水酸化ナトリウムと1M塩化ナトリウムとなる水溶液を作製し、アルカリ洗浄液とした。
中和液: トリス(ヒドロキシメチル)アミノメタンと超純水で2Mのトリス(ヒドロキシメチル)アミノメタン水溶液を調製した。
(Measurement of dynamic adsorption amount)
(1) Solution preparation The following solutions A to E and neutralizing solution were prepared and defoamed before use.
Liquid A: A PBS buffer solution having a pH of 7.4 was prepared using "Phosphate buffered saline" manufactured by Sigma and distilled water.
Liquid B: A 35 mM sodium acetate aqueous solution having a pH of 3.5 was prepared using acetic acid, sodium acetate, and distilled water.
Solution C: A 1M aqueous acetic acid solution was prepared using acetic acid and distilled water.
Liquid D: An IgG aqueous solution having a concentration of 3 mg / mL was prepared using a polyclonal antibody (manufactured by “Gamma Guard” Baxter) and the above liquid A.
Solution E: An aqueous solution manufactured by Wako Pure Chemical Industries, Ltd., in which the concentrations of sodium hydroxide and sodium chloride were 0.1N sodium hydroxide and 1M sodium chloride, respectively, was prepared and used as an alkaline cleaning solution.
Neutralizing solution: A 2M aqueous solution of tris (hydroxymethyl) aminomethane was prepared with tris (hydroxymethyl) aminomethane and ultrapure water.

(2) 充填、準備
カラムクロマトグラフィー用装置としてAKTA Pure 150(GEヘルスケア社製)を用い、内径0.5cmのカラムに吸着体試料を3mL入れ、吸着体層高さを15cmとした。塩化ナトリウムと蒸留水から調製した0.2MのNaCl水溶液を流速3mL/分で10分間通液して吸着体をカラムに充填した。フラクションコレクターに15mLの採取用チューブをセットし、溶出液の採取用チューブにはあらかじめ中和液を入れておいた。
(2) Filling and preparation Using AKTA Pure 150 (manufactured by GE Healthcare) as a column chromatography device, 3 mL of an adsorbent sample was placed in a column having an inner diameter of 0.5 cm, and the height of the adsorbent layer was set to 15 cm. A 0.2 M aqueous NaCl solution prepared from sodium chloride and distilled water was passed through the column at a flow rate of 3 mL / min for 10 minutes to fill the column with the adsorbent. A 15 mL collection tube was set in the fraction collector, and a neutralizing solution was previously put in the eluate collection tube.

(3) IgG精製
前記カラムにA液を15mL通液し、次いでD液を必要量通液した。次いで、A液を12mL通液後、B液を12mL通液してIgGを溶出させた。次にC液を9mL、A液を15mL、E液を9mL、A液を15mL通液した。なお流速はD液以外は1mL/minとし、D液の流速は所定の滞留時間(RT)に合わせた。例えばRT4分の流速は0.75mL/minに調整した。
(3) IgG purification 15 mL of solution A was passed through the column, and then the required amount of solution D was passed. Next, 12 mL of solution A was passed through, and then 12 mL of solution B was passed to elute IgG. Next, 9 mL of C solution, 15 mL of A solution, 9 mL of E solution, and 15 mL of A solution were passed. The flow rate was 1 mL / min except for the D solution, and the flow rate of the D solution was adjusted to a predetermined residence time (RT). For example, the flow rate for RT 4 minutes was adjusted to 0.75 mL / min.

(4) 動的吸着量
IgGが5%破過するまでに吸着体に吸着したIgG量と吸着体体積からIgGの動的吸着量を求めた。当該動的吸着量を5%DBCという。
(4) Dynamic adsorbed amount The dynamic adsorbed amount of IgG was determined from the amount of IgG adsorbed on the adsorbent and the volume of the adsorbent before IgG broke by 5%. The amount of dynamic adsorption is called 5% DBC.

〔実施例1〕
(セルロース溶液の調製)
48.0wt%水酸化ナトリウム(ナカライテスク株式会社製)水溶液30.2gと水酸化リチウム1水和物(キシダ化学株式会社製)15.4g、尿素(和光純薬株式会社製)57.5g、純水200gを混合、溶解させ10℃に保持し、アルカリ水溶液を作製した。粉末状のセルロース(日本製紙製、W200G)17gを80gの水に分散させ、前記アルカリ水溶液に添加した後、−12℃まで温度を下げ、セルロースを溶解させた。セルロース重量を除いた溶媒の水酸化ナトリウム濃度は3.8重量%、水酸化リチウム濃度は2.3重量%、尿素濃度は15重量%であり、水酸化ナトリウムモル量/水酸化リチウムモル量は0.5/0.5である。セルロース溶液を60分間、−12℃で保持した後、40℃に加温し30分間保持した。
[Example 1]
(Preparation of cellulose solution)
48.0 wt% sodium hydroxide (manufactured by Nakaraitesk Co., Ltd.) 30.2 g, lithium hydroxide monohydrate (manufactured by Kishida Chemical Co., Ltd.) 15.4 g, urea (manufactured by Wako Pure Chemical Industries, Ltd.) 57.5 g, 200 g of pure water was mixed and dissolved and kept at 10 ° C. to prepare an alkaline aqueous solution. 17 g of powdered cellulose (Nippon Paper Industries, Ltd., W200G) was dispersed in 80 g of water, added to the alkaline aqueous solution, and then the temperature was lowered to -12 ° C. to dissolve the cellulose. The sodium hydroxide concentration of the solvent excluding the cellulose weight was 3.8% by weight, the lithium hydroxide concentration was 2.3% by weight, the urea concentration was 15% by weight, and the sodium hydroxide molar amount / lithium hydroxide molar amount was It is 0.5 / 0.5. The cellulose solution was held at −12 ° C. for 60 minutes, then heated to 40 ° C. and held for 30 minutes.

(多孔質セルロースビーズの作製)
ハイコールK―230(流動パラフィン、カネダ株式会社製)234.5gとハイコールK―290(流動パラフィン、カネダ株式会社製)404.5g、PR−100(理研ビタミン製)9.8gを内径85 mmの円筒型容器に入れ、300rpmで攪拌し、40℃とし、上記セルロース溶液161gを添加、攪拌することでエマルションを作製した。攪拌は3段攪拌翼を用い、上から傾斜パドル、フラットタービン、ディスクタービンである。20分撹拌し、メタノール/純水体積比70/30の凝固溶媒を150 ml添加し、セルロースビーズを得た。得られたセルロースビーズはイソプロパノールで洗浄した後、水で洗浄した。
(Preparation of porous cellulose beads)
HYCOAL K-230 (liquid paraffin, manufactured by Kaneda Co., Ltd.) 234.5 g, HYCOAL K-290 (liquid paraffin, manufactured by Kaneda Co., Ltd.) 404.5 g, PR-100 (manufactured by RIKEN Vitamin) 9.8 g, inner diameter 85 mm An emulsion was prepared by placing the mixture in a cylindrical container, stirring at 300 rpm to 40 ° C., adding 161 g of the above cellulose solution, and stirring. Stirring uses a three-stage stirring blade, and from the top, a slanted paddle, a flat turbine, and a disc turbine. The mixture was stirred for 20 minutes, and 150 ml of a coagulation solvent having a methanol / pure water volume ratio of 70/30 was added to obtain cellulose beads. The obtained cellulose beads were washed with isopropanol and then with water.

(セルロースビーズの分級)
得られた残りのセルロースビーズを櫛目開き38μmと櫛目開き90μmメッシュを用いて篩分けし、38μmから90μmの範囲のビーズを集めた。
(Classification of cellulose beads)
The remaining cellulose beads obtained were sieved using a mesh with a comb opening of 38 μm and a comb opening of 90 μm, and beads in the range of 38 μm to 90 μm were collected.

(セルロースビーズの架橋)
分級後の多孔質セルロースビーズに含まれる液体部100mLをエタノールで置換した後、反応容器に移し、セルロース粒子とエタノールの合計量が125gとなるようにし、そこにエピクロロヒドリン80mLを添加した。溶液温度を40℃に調整し、1.8N NaOH水溶液(ナカライテスク社製水酸化ナトリウムと蒸留水で調製)を96mL添加し、架橋反応を開始させた。反応開始から1.5時間後に17.0N NaOH水溶液を9.6mL添加し、反応開始から3時間後と4.5時間後にも17.0N NaOH水溶液を9.6mL添加した。反応開始から6時間後にゲルを回収し、ビーズの20倍体積量以上の蒸留水で洗浄した。
(Crosslinking of cellulose beads)
After replacing 100 mL of the liquid portion contained in the classified porous cellulose beads with ethanol, the mixture was transferred to a reaction vessel so that the total amount of cellulose particles and ethanol was 125 g, and 80 mL of epichlorohydrin was added thereto. The solution temperature was adjusted to 40 ° C., 96 mL of a 1.8 N NaOH aqueous solution (prepared with sodium hydroxide and distilled water manufactured by Nacalai Tesque) was added, and the crosslinking reaction was started. 9.6 mL of 17.0 N NaOH aqueous solution was added 1.5 hours after the start of the reaction, and 9.6 mL of 17.0 N NaOH aqueous solution was added 3 hours and 4.5 hours after the start of the reaction. Six hours after the start of the reaction, the gel was collected and washed with distilled water having a volume of 20 times or more the volume of the beads.

上記架橋反応で得られた架橋セルロースビーズを反応容器に移し、セルロースビーズと蒸留水の合計量が116.7gとなるようにした。そこに硫酸ナトリウムを37.8g添加、溶解させた後、エピクロロヒドリンを33mL添加し、40℃で保持した。17.0N NaOH水溶液を21mL添加し、架橋反応を開始させ、反応開始から2.5時間後に17.0N NaOH水溶液を5mL添加した。反応開始から5時間後に粒子を回収し、粒子の20倍体積量以上の蒸留水で洗浄した。 The crosslinked cellulose beads obtained by the above crosslinking reaction were transferred to a reaction vessel so that the total amount of the cellulose beads and distilled water was 116.7 g. After adding 37.8 g of sodium sulfate and dissolving it, 33 mL of epichlorohydrin was added and the temperature was maintained at 40 ° C. 21 mL of 17.0 N NaOH aqueous solution was added to initiate the cross-linking reaction, and 5 mL of 17.0 N NaOH aqueous solution was added 2.5 hours after the start of the reaction. After 5 hours from the start of the reaction, the particles were collected and washed with distilled water having a volume of 20 times or more the volume of the particles.

(多孔質架橋セルロースビーズの分級)
得られた残りのセルロースビーズを櫛目開き38μmと櫛目開き75μmメッシュを用いて篩分けし、38μmから75μmの範囲のビーズを集めた。得られた架橋セルロースビーズの体積メジアン径は61μm、平均細孔半径は45.0nm、粒子内空孔率は98%だった。
(Classification of porous crosslinked cellulose beads)
The remaining cellulose beads obtained were sieved using a mesh with a mesh opening of 38 μm and a mesh with a comb opening of 75 μm, and beads in the range of 38 μm to 75 μm were collected. The volume median diameter of the obtained crosslinked cellulose beads was 61 μm, the average pore radius was 45.0 nm, and the porosity in the particles was 98%.

〔実施例2〕
セルロース溶液調製時の加温温度と多孔質セルロースビーズの作製の温度を25℃にした以外は実施例1と同様の方法で、架橋セルロースビーズを得た。得られた架橋セルロースビーズの体積メジアン径は60μm、平均細孔半径は38.4nm、粒子内空孔率は97%だった。
[Example 2]
Crosslinked cellulose beads were obtained in the same manner as in Example 1 except that the heating temperature at the time of preparing the cellulose solution and the temperature for producing the porous cellulose beads were set to 25 ° C. The volume median diameter of the obtained crosslinked cellulose beads was 60 μm, the average pore radius was 38.4 nm, and the porosity in the particles was 97%.

〔実施例3〕
セルロース溶液調製時の尿素濃度を11.5重量%以外は実施例1と同様の方法で、架橋セルロースビーズを得た。得られた架橋セルロースビーズの体積メジアン径は60μm、平均細孔半径は41.9nm、粒子内空孔率は98%だった。
[Example 3]
Crosslinked cellulose beads were obtained in the same manner as in Example 1 except that the urea concentration at the time of preparing the cellulose solution was 11.5% by weight. The volume median diameter of the obtained crosslinked cellulose beads was 60 μm, the average pore radius was 41.9 nm, and the porosity in the particles was 98%.

〔実施例4〕
48.0wt%水酸化ナトリウム水溶液45.3gと水酸化リチウム1水和物7.7g、尿素57.5g、純水200gを混合、溶解させ10℃に保持し、アルカリ水溶液を作製した。粉末状のセルロース17gを80gの水に分散させ、前記アルカリ水溶液に添加した後、−12℃まで温度を下げ、セルロースを溶解させた。セルロース重量を除いた溶媒の水酸化ナトリウム濃度は5.6重量%、水酸化リチウム濃度は1.1重量%、尿素濃度は15重量%であり、水酸化ナトリウムモル量/水酸化リチウムモル量は0.25/0.75である。セルロース溶液を60分間、−12℃で保持した後、40℃に加温し30分間保持した。それ以外は実施例1と同様の方法で、架橋セルロースビーズを得た。得られた架橋セルロースビーズの体積メジアン径は60μm、平均細孔半径は39.9nm、粒子内空孔率は98%だった。
[Example 4]
45.3 g of a 48.0 wt% sodium hydroxide aqueous solution, 7.7 g of lithium hydroxide monohydrate, 57.5 g of urea, and 200 g of pure water were mixed and dissolved and kept at 10 ° C. to prepare an alkaline aqueous solution. 17 g of powdered cellulose was dispersed in 80 g of water, added to the alkaline aqueous solution, and then the temperature was lowered to -12 ° C. to dissolve the cellulose. The sodium hydroxide concentration of the solvent excluding the cellulose weight was 5.6% by weight, the lithium hydroxide concentration was 1.1% by weight, the urea concentration was 15% by weight, and the sodium hydroxide molar amount / lithium hydroxide molar amount was It is 0.25 / 0.75. The cellulose solution was held at −12 ° C. for 60 minutes, then heated to 40 ° C. and held for 30 minutes. Crosslinked cellulose beads were obtained in the same manner as in Example 1 except for the above. The volume median diameter of the obtained crosslinked cellulose beads was 60 μm, the average pore radius was 39.9 nm, and the porosity in the particles was 98%.

〔実施例5〕
多孔質セルロースビーズの作製時にメタノール/純水体積比45/55の凝固溶媒を150 ml添加した以外は、実施例4と同様の方法で、架橋セルロースビーズを得た。得られた架橋セルロースビーズの体積メジアン径は62μm、平均細孔半径は40.7nm、粒子内空孔率は94%だった。
[Example 5]
Crosslinked cellulose beads were obtained in the same manner as in Example 4 except that 150 ml of a coagulation solvent having a methanol / pure water volume ratio of 45/55 was added at the time of producing the porous cellulose beads. The volume median diameter of the obtained crosslinked cellulose beads was 62 μm, the average pore radius was 40.7 nm, and the porosity in the particles was 94%.

〔実施例6〕
多孔質セルロースビーズの作製時にセルロース量を14gとした以外は、実施例1と同様の方法で、架橋セルロースビーズを得た。得られた架橋セルロースビーズの体積メジアン径は58μm、平均細孔半径は44.9nm、粒子内空孔率は97%だった。
[Example 6]
Crosslinked cellulose beads were obtained in the same manner as in Example 1 except that the amount of cellulose was 14 g at the time of producing the porous cellulose beads. The volume median diameter of the obtained crosslinked cellulose beads was 58 μm, the average pore radius was 44.9 nm, and the porosity in the particles was 97%.

〔比較例1〕
48.0wt%水酸化ナトリウム水溶液52.5g、尿素46.0gを混合、溶解させ10℃に保持し、アルカリ水溶液を作製した。粉末状のセルロース17gを283.5gの水に分散させ、前記アルカリ水溶液に添加した後、−12℃まで温度を下げ、セルロースを溶解させた。セルロース重量を除いた溶媒の水酸化ナトリウム濃度は6.7重量%、尿素濃度は12重量%である。セルロース溶液を60分間、−12℃で保持した後、40℃に加温し30分間保持した。それ以外は実施例1と同様の方法で、架橋セルロースビーズを得た。得られた架橋セルロースビーズの体積メジアン径は60μm、平均細孔半径は51.2nm、粒子内空孔率は90%だった。
[Comparative Example 1]
52.5 g of a 48.0 wt% sodium hydroxide aqueous solution and 46.0 g of urea were mixed and dissolved and kept at 10 ° C. to prepare an alkaline aqueous solution. 17 g of powdered cellulose was dispersed in 283.5 g of water, added to the alkaline aqueous solution, and then the temperature was lowered to -12 ° C. to dissolve the cellulose. The sodium hydroxide concentration of the solvent excluding the cellulose weight is 6.7% by weight, and the urea concentration is 12% by weight. The cellulose solution was held at −12 ° C. for 60 minutes, then heated to 40 ° C. and held for 30 minutes. Crosslinked cellulose beads were obtained in the same manner as in Example 1 except for the above. The volume median diameter of the obtained crosslinked cellulose beads was 60 μm, the average pore radius was 51.2 nm, and the porosity in the particles was 90%.

〔比較例2〕
水酸化リチウム1水和物31.0g、尿素57.5g、純水210gを混合、溶解させ10℃に保持し、アルカリ水溶液を作製した。粉末状のセルロース17gを80gの水に分散させ、前記アルカリ水溶液に添加した後、−12℃まで温度を下げ、セルロースを溶解させた。セルロース重量を除いた溶媒の水酸化リチウム濃度は4.7重量%、尿素濃度は15.2重量%である。それ以外は実施例2と同様の方法で、架橋セルロースビーズを得た。得られた架橋セルロースビーズの体積メジアン径は58μm、平均細孔半径は28.0nm、粒子内空孔率は95%だった。
[Comparative Example 2]
31.0 g of lithium hydroxide monohydrate, 57.5 g of urea, and 210 g of pure water were mixed and dissolved and kept at 10 ° C. to prepare an alkaline aqueous solution. 17 g of powdered cellulose was dispersed in 80 g of water, added to the alkaline aqueous solution, and then the temperature was lowered to -12 ° C. to dissolve the cellulose. The concentration of lithium hydroxide in the solvent excluding the weight of cellulose is 4.7% by weight, and the concentration of urea is 15.2% by weight. Crosslinked cellulose beads were obtained in the same manner as in Example 2 except for the above. The volume median diameter of the obtained crosslinked cellulose beads was 58 μm, the average pore radius was 28.0 nm, and the porosity in the particles was 95%.

〔比較例3〕
水酸化リチウム1水和物31.5g、尿素46.0g、純水137.3gを混合、溶解させ10℃に保持し、アルカリ水溶液を作製した。粉末状のセルロース17gを170gの水に分散させ、前記アルカリ水溶液に添加した後、−12℃まで温度を下げ、セルロースを溶解させた。セルロース重量を除いた溶媒の水酸化リチウム濃度は4.7重量%、尿素濃度は12.0重量%である。セルロース溶液を60分間、−12℃で保持した後、40℃に加温し30分間保持した。それ以外は実施例1と同様の方法で、架橋セルロースビーズを得た。得られた架橋セルロースビーズの体積メジアン径は60μm、平均細孔半径は33.8nm、粒子内空孔率は98%だった。
[Comparative Example 3]
31.5 g of lithium hydroxide monohydrate, 46.0 g of urea, and 137.3 g of pure water were mixed and dissolved, and kept at 10 ° C. to prepare an alkaline aqueous solution. 17 g of powdered cellulose was dispersed in 170 g of water, added to the alkaline aqueous solution, and then the temperature was lowered to -12 ° C. to dissolve the cellulose. The concentration of lithium hydroxide in the solvent excluding the weight of cellulose is 4.7% by weight, and the concentration of urea is 12.0% by weight. The cellulose solution was held at −12 ° C. for 60 minutes, then heated to 40 ° C. and held for 30 minutes. Crosslinked cellulose beads were obtained in the same manner as in Example 1 except for the above. The volume median diameter of the obtained crosslinked cellulose beads was 60 μm, the average pore radius was 33.8 nm, and the porosity in the particles was 98%.

〔試験例〕
実施例1から5、比較例1から2で得られた多孔質架橋セルロースビーズを下記方法で、プロテインAリガンドを結合させた。
[Test example]
The porous crosslinked cellulose beads obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were bound with a protein A ligand by the following method.

(エポキシ開環処理)
得られた架橋ビーズと水の50%スラリーをオートクレーブにて121℃、60分間加熱することでエポキシ基を開環し、ジオール基とした。エポキシ基が無くなっていることは、フェノールフタレイン指示薬にて確認することができる。
(Epoxy ring opening treatment)
The obtained crosslinked beads and a 50% slurry of water were heated in an autoclave at 121 ° C. for 60 minutes to open the epoxy group to obtain a diol group. The absence of the epoxy group can be confirmed with a phenolphthalein indicator.

(アルデヒド化反応)
クエン酸一水和物0.165gとクエン酸三ナトリウム二水和物0.0646gに水を加えて100mLとし、pH3.4のバッファーを作製した。
(Aldehyde reaction)
Water was added to 0.165 g of citric acid monohydrate and 0.0646 g of trisodium citrate dihydrate to make 100 mL, and a buffer having a pH of 3.4 was prepared.

架橋後のセルロースビーズ3.5mLに対して上記バッファーを3倍量以上用いて液体部分を上記バッファーで置換し、更に上記バッファーを加えて総量を6.0mLとした。11.2mg/mLの過ヨウ素酸ナトリウム水溶液を2.01mL投入し、25℃で35分間攪拌した。その後、#3のグラスフィルターにて濾過を行ない、蒸留水で濾液の電気伝導度が1μS/cm以下となるまで洗浄し、アルデヒド基含有ビーズを得た。洗浄濾液の電気伝導度は、導電率計(「ECTester10 Pure+」EUTECH INSTRUMENTS社製)で測定した。本反応条件にて、架橋多孔質セルロースビーズ1mLあたり約30μmolのアルデヒド基が導入される。 The liquid portion was replaced with the above buffer by using 3 times or more the amount of the above buffer with respect to 3.5 mL of the cellulose beads after cross-linking, and the above buffer was further added to bring the total volume to 6.0 mL. 2.01 mL of 11.2 mg / mL sodium periodate aqueous solution was added, and the mixture was stirred at 25 ° C. for 35 minutes. Then, the mixture was filtered through a glass filter of # 3, and washed with distilled water until the electric conductivity of the filtrate became 1 μS / cm or less to obtain aldehyde group-containing beads. The electrical conductivity of the washing filtrate was measured with a conductivity meter (“ECTester10 Pure +” manufactured by EUTECH INSTRUMENTS). Under these reaction conditions, about 30 μmol of aldehyde group is introduced per 1 mL of crosslinked porous cellulose beads.

(プロテインA固定化反応)
<配向制御型アルカリ耐性プロテインAの調製>
WO2012/133349を参照して、配向制御型アルカリ耐性プロテインAとして、WO2012/133349に記載の改変Cドメイン5連結体を調製した。配向制御型アルカリ耐性プロテインAは、配列番号2で示されるアミノ酸配列を有する。なお、このWO2012/133349の全内容が、本願に参考のため援用される。以下、「プロテインA」を「PA」と略記する。
(Protein A immobilization reaction)
<Preparation of orientation-controlled alkali-resistant protein A>
With reference to WO2012 / 133349, the modified C domain 5 conjugate described in WO2012 / 133349 was prepared as an orientation controlled alkali resistant protein A. The orientation-controlled alkali-resistant protein A has the amino acid sequence shown in SEQ ID NO: 2. The entire contents of WO2012 / 133349 are incorporated herein by reference. Hereinafter, "protein A" is abbreviated as "PA".

<イミノ化反応−PA仕込量が20mg/mLの場合>
クエン酸三ナトリウム二水和物2.941gに水を加えて100mLとし、pH8のバッファーを作製した。#3のグラスフィルター上でアルデヒド基含有ビーズの全量(3.5mL)に対して3倍量の前記バッファーを通液して、ビーズ内の液体部分を上記バッファーで置換した。置換後のアルデヒド基含有ビーズを反応容器に入れ、総体積が7.5mLとなるようにPA固定化バッファーを添加した。プロテインAをビーズ1mLに対して20mg(正味量)添加した。6℃に温調後、0.08Nの水酸化ナトリウム水溶液を用いて、pHを12に調整した後、6℃にて一晩攪拌した。
<Iminization reaction-when the amount of PA charged is 20 mg / mL>
Water was added to 2.941 g of trisodium citrate dihydrate to make 100 mL, and a buffer having a pH of 8 was prepared. The liquid portion in the beads was replaced with the above buffer by passing 3 times the amount of the buffer with respect to the total amount (3.5 mL) of the aldehyde group-containing beads on the glass filter of # 3. The replaced aldehyde group-containing beads were placed in a reaction vessel, and PA-immobilized buffer was added so that the total volume was 7.5 mL. 20 mg (net amount) of protein A was added to 1 mL of beads. After adjusting the temperature to 6 ° C., the pH was adjusted to 12 with a 0.08 N aqueous sodium hydroxide solution, and the mixture was stirred overnight at 6 ° C.

<中和および還元反応>
一晩反応後のイミノ化反応液を濾過し、濾液をUV測定してPA固定化量を求めた。前記pH8.0のクエン酸Naバッファーに、0.1Mのクエン酸水溶液を加えて、pHを5.0に調整したバッファーを作製し、前記濾過ビーズに対して3倍量の当該バッファーを用い、ビーズ内の液体部分を置換した。p5.0のバッファーで総量を7.0mLに調整しながら反応器に移し、4時間6℃で中和を保持しながら攪拌した。
<Neutralization and reduction reaction>
The iminization reaction solution after the overnight reaction was filtered, and the filtrate was measured by UV to determine the amount of PA immobilized. A 0.1 M aqueous solution of citric acid was added to the Na buffer of citric acid having a pH of 8.0 to prepare a buffer having a pH adjusted to 5.0, and the buffer was used in an amount three times as much as that of the filtered beads. The liquid portion in the beads was replaced. The mixture was transferred to a reactor while adjusting the total volume to 7.0 mL with a buffer of p5.0, and stirred at 6 ° C. for 4 hours while maintaining neutralization.

その後、5.5%ジメチルアミンボラン水溶液を1.93mL加えた後、反応温度を25℃に上昇させ、25℃で一晩攪拌した。反応後のビーズを#3のグラスフィルター上で、ビーズの3倍体積量の水で洗浄した。 Then, after adding 1.93 mL of a 5.5% aqueous solution of dimethylamine borane, the reaction temperature was raised to 25 ° C., and the mixture was stirred at 25 ° C. overnight. The beads after the reaction were washed on a # 3 glass filter with 3 times the volume of water as the beads.

<洗浄>
#3のグラスフィルター上でPA固定化ビーズ1mLに対して3mLの0.1Mクエン酸(以下「酸バッファー」と略記する)を通液して、ビーズ内の液体部分を酸バッファーで置換した。置換後のPA固定化ビーズを容器に移し、酸バッファーを加えて全量を2mL以上とし、25℃で30分間攪拌し、酸洗浄とした。
<Washing>
3 mL of 0.1 M citric acid (hereinafter abbreviated as "acid buffer") was passed through 1 mL of PA-immobilized beads on a glass filter of # 3, and the liquid portion in the beads was replaced with an acid buffer. The replaced PA-immobilized beads were transferred to a container, acid buffer was added to bring the total volume to 2 mL or more, and the mixture was stirred at 25 ° C. for 30 minutes to carry out acid washing.

次いで、上記酸バッファーの代わりに0.05N水酸化ナトリウム+1M硫酸ナトリウム水溶液を用いた以外は同様の方法でアルカリ洗浄を行なった。 Then, alkaline washing was carried out in the same manner except that 0.05N sodium hydroxide + 1M sodium sulfate aqueous solution was used instead of the acid buffer.

次いで、上記酸バッファーの代わりに、0.1Mクエン酸と0.1Mクエン酸ナトリウムを混合してpHを5.9に調整した液を用いた以外は、同様の方法で中性洗浄を行なった。 Next, neutral washing was carried out in the same manner except that a solution prepared by mixing 0.1 M citric acid and 0.1 M sodium citrate to adjust the pH to 5.9 was used instead of the above acid buffer. ..

中性洗浄後のビーズを蒸留水を用いて洗浄濾液の電導度が10μs/cm以下になるまで洗浄し、プロテインAが固定化された吸着体を得た。 The beads after neutral washing were washed with distilled water until the conductivity of the washing filtrate became 10 μs / cm or less to obtain an adsorbent on which protein A was immobilized.

得られた吸着体のRT4分の5%DBCを表2に示す。 Table 2 shows the RT 5/4% DBC of the obtained adsorbent.

Figure 2021161246
Figure 2021161246

〔結果〕
表2より、実施例では、比較例に比して、高い抗体吸着性能を持つことが示された。また、セルロース溶液の水酸化ナトリウムモル量/水酸化リチウムモル量が特定の範囲でのみ、抗体吸着にとって好適な細孔半径を持つことが示された。
〔result〕
From Table 2, it was shown that the examples had higher antibody adsorption performance as compared with the comparative examples. It was also shown that the molar amount of sodium hydroxide / molar amount of lithium hydroxide in the cellulose solution has a pore radius suitable for antibody adsorption only in a specific range.

以上より、本製造方法によると、高い抗体吸着能力を有する多孔質架橋セルロースビーズを製造することができることが分かった。 From the above, it was found that according to this production method, porous crosslinked cellulose beads having a high antibody adsorption capacity can be produced.

Claims (5)

(a)−5℃以下、−20℃以上の水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液にセルロースを溶解させ、セルロース溶液を調製する工程、
(b)前記セルロース溶液を10℃以上、40℃以下に加温する工程、
(c)前記セルロース溶液を10℃以上、40℃以下の分散媒に分散させてエマルションを作製する工程、
(d)前記エマルションを凝固溶媒に接触させ、セルロースビーズを析出させる工程、
(e)析出したセルロースビーズを架橋する工程を含むことを特徴とする、多孔質架橋セルロースビーズの製造方法であり、
前記工程(a)の水酸化ナトリウム/水酸化リチウムのモル比が0.3/0.7〜0.8/0.2であることを特徴とする多孔質架橋セルロースビーズの製造方法。
(A) A step of preparing a cellulose solution by dissolving cellulose in a mixed solution of sodium hydroxide, lithium hydroxide, urea and water at −5 ° C. or lower and −20 ° C. or higher.
(B) A step of heating the cellulose solution to 10 ° C. or higher and 40 ° C. or lower.
(C) A step of preparing an emulsion by dispersing the cellulose solution in a dispersion medium having a temperature of 10 ° C. or higher and 40 ° C. or lower.
(D) A step of bringing the emulsion into contact with a coagulation solvent to precipitate cellulose beads.
(E) A method for producing porous crosslinked cellulose beads, which comprises a step of crosslinking the precipitated cellulose beads.
A method for producing porous crosslinked cellulose beads, wherein the molar ratio of sodium hydroxide / lithium hydroxide in the step (a) is 0.3 / 0.7 to 0.8 / 0.2.
前記工程(a)の水酸化ナトリウム、水酸化リチウム、尿素及び水の混和溶液の尿素濃度が10重量%〜20重量%であることを特徴とする、請求項1記載の多孔質架橋セルロースビーズの製造方法。 The porous crosslinked cellulose beads according to claim 1, wherein the urea concentration of the mixed solution of sodium hydroxide, lithium hydroxide, urea and water in the step (a) is 10% by weight to 20% by weight. Production method. 前期セルロース溶液のセルロース濃度が3重量%以上、9重量%以下であることを特徴とする、請求項1〜2記載の多孔質架橋セルロースビーズ製造方法。 The method for producing porous crosslinked cellulose beads according to claim 1, wherein the cellulose concentration of the cellulose solution in the first half is 3% by weight or more and 9% by weight or less. 前記凝固溶媒が、アルコール系溶媒、または水とアルコール系溶媒との混合溶媒であることを特徴とする請求項1〜3のいずれか一項に記載の多孔質架橋セルロースビーズの製造方法。 The method for producing a porous crosslinked cellulose bead according to any one of claims 1 to 3, wherein the coagulation solvent is an alcohol solvent or a mixed solvent of water and an alcohol solvent. 粒子内空孔率が90%以上、平均細孔半径が35nm〜50nm、及び体積メジアン径が45μm〜70μmであることを特徴とする多孔質架橋セルロースビーズ。
Porous crosslinked cellulose beads having a porosity in particles of 90% or more, an average pore radius of 35 nm to 50 nm, and a volume median diameter of 45 μm to 70 μm.
JP2020064177A 2020-03-31 2020-03-31 Method for producing porous cellulose beads Pending JP2021161246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064177A JP2021161246A (en) 2020-03-31 2020-03-31 Method for producing porous cellulose beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064177A JP2021161246A (en) 2020-03-31 2020-03-31 Method for producing porous cellulose beads

Publications (1)

Publication Number Publication Date
JP2021161246A true JP2021161246A (en) 2021-10-11

Family

ID=78004499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064177A Pending JP2021161246A (en) 2020-03-31 2020-03-31 Method for producing porous cellulose beads

Country Status (1)

Country Link
JP (1) JP2021161246A (en)

Similar Documents

Publication Publication Date Title
US10457705B2 (en) Carrier for ligand immobilization
JP5785553B2 (en) Porous particle production method, porous particle, adsorbent, and protein purification method
JP6018043B2 (en) Method for producing porous cellulose beads
JP6506554B2 (en) Adsorbent and purification method using the same
JP2016153449A (en) Method for manufacturing porous cellulose particle
US20180056271A1 (en) Method for producing porous cellulose beads, and adsorbent using same
JP2015187255A (en) Method for producing porous cellulose particles, and porous cellulose particles
JP6440320B2 (en) Method for producing porous cellulose beads and adsorbent using the same
WO2019220866A1 (en) Porous cellulose beads and method for producing adsorbent
JP2021161246A (en) Method for producing porous cellulose beads
Fan et al. Preparation of a silk fibroin/gelatin composite hydrogel for high-selectively adsorbing bovine hemoglobin
WO2015056680A1 (en) Method for manufacturing porous cellulose beads
JP6517145B2 (en) Method of producing porous cellulose beads and adsorbent using the same
WO2018186222A1 (en) Porous cellulose beads and adsorbent
CN1062739A (en) Improved cellulose chromatography support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240426