JP2021161092A - Novel cdp-ribitol derivative - Google Patents

Novel cdp-ribitol derivative Download PDF

Info

Publication number
JP2021161092A
JP2021161092A JP2020067017A JP2020067017A JP2021161092A JP 2021161092 A JP2021161092 A JP 2021161092A JP 2020067017 A JP2020067017 A JP 2020067017A JP 2020067017 A JP2020067017 A JP 2020067017A JP 2021161092 A JP2021161092 A JP 2021161092A
Authority
JP
Japan
Prior art keywords
cdp
ribitol
group
added
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020067017A
Other languages
Japanese (ja)
Other versions
JP7510663B2 (en
Inventor
基 金川
Motoi Kanagawa
達史 戸田
Tatsufumi Toda
千浩 小林
Kazuhiro Kobayashi
秀紀 徳岡
Hidenori Tokuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2020067017A priority Critical patent/JP7510663B2/en
Publication of JP2021161092A publication Critical patent/JP2021161092A/en
Application granted granted Critical
Publication of JP7510663B2 publication Critical patent/JP7510663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To provide a novel CDP-ribitol derivative effective for treatment of dystroglycanopathy, a pharmaceutical containing the CDP-ribitol derivative, and a dystroglycanopathy treatment agent containing the CDP-ribitol derivative.SOLUTION: A CDP-ribitol derivative is represented by the formula (I) [where R1-R4 independently represent a C1-6 alkyl-carbonyl group or the like, R5 and R6 independently represent H or the like, R7 and R8 independently represent OH or the like].SELECTED DRAWING: None

Description

本発明は、ジストログリカン異常症の治療に有効な新規CDP−リビトール誘導体、当該CDP−リビトール誘導体を含む医薬、および当該CDP−リビトール誘導体を含むジストログリカン異常症治療剤に関するものである。 The present invention relates to a novel CDP-libitol derivative effective for the treatment of dystroglycan abnormality, a drug containing the CDP-libitol derivative, and a therapeutic agent for dystroglycan abnormality containing the CDP-libitol derivative.

筋ジストロフィーは、進行性の筋力低下が認められる遺伝性疾患の総称であり、50以上の原因遺伝子が解明されている。筋ジストロフィーのうち福山型筋ジストロフィーは日本に多くみられ、その原因はフクチン(fukutinまたはFKTN)遺伝子の異常であることが知られている。肢帯型筋ジストロフィー、先天型筋ジストロフィー、Walker−Warburg症候群など、福山型筋ジストロフィーの類縁疾患は世界中にみられ、福山型も含めてジストログリカン異常症と呼ばれている。 Muscular dystrophy is a general term for hereditary diseases in which progressive muscle weakness is observed, and more than 50 causative genes have been elucidated. Of the muscular dystrophy, Fukuyama-type muscular dystrophy is common in Japan, and the cause is known to be an abnormality in the fukutin (FKTN) gene. Fukuyama-type muscular dystrophy-related diseases such as limb-girdle-type muscular dystrophy, congenital muscular dystrophy, and Walker-Warburg syndrome are found all over the world, and are called dystroglycan abnormalities including Fukuyama-type.

ジストログリカンは膜タンパク質であり、ジストロフィンを介して細胞内の細胞骨格と結合していると共に、糖鎖とラミニンを介して細胞外の基底膜とも結合しており、筋収縮に伴う筋細胞の損傷を防ぐ杭のような役割を果たしている。ジストログリカンは、糖鎖形成など様々な翻訳後修飾を受け、本発明者らは、リビトールリン酸という糖アルコールリン酸がジストログリカンの糖鎖の中に存在し、その生合成障害によりジストログリカン異常症が生じることを報告している(非特許文献1)。ジストログリカンの糖鎖中には2分子のリビトールリン酸が含まれており、これらリビトールリン酸は、シチジン二リン酸(CDP)−リビトールからフクチン(FKTN)とFKRPにより糖鎖中に組み込まれる。 Dystroglycan is a membrane protein that binds to the intracellular cytoskeleton via dystrophin and also to the extracellular basal membrane via sugar chains and laminin, resulting in damage to muscle cells associated with muscle contraction. It acts like a dystrophin to prevent. Dystroglycan undergoes various post-translational modifications such as sugar chain formation. (Non-Patent Document 1). Two molecules of ribitol phosphate are contained in the sugar chain of dystroglycan, and these ribotor phosphates are incorporated into the sugar chain from cytidine diphosphate (CDP) -ribitol by fukutin (FKTN) and FKRP.

また、本発明者らは、ISPD(IsoPrenoid synthase Domain containing)がシチジン三リン酸(CTP)とリビトール−5−リン酸からCDP−リビトールを生合成する酵素であることも明らかにしている(非特許文献1)。つまり、ISPD、フクチン、FKRPの遺伝子異常を原因とする疾患は、リビトールリン酸不全症ということができる。そこで本発明者らは、CDP−リビトールを有効成分として含有するジストログリカン糖修飾異常に伴う疾患の治療剤を開発している(特許文献1)。 The present inventors have also clarified that ISPD (IsoPrenoid synchase Domain contouring) is an enzyme that biosynthesizes CDP-libitol from cytidine triphosphate (CTP) and ribitol-5-phosphate (non-patent). Document 1). That is, the disease caused by the genetic abnormality of ISPD, fukutin, and FKRP can be said to be ribitol phosphate deficiency. Therefore, the present inventors have developed a therapeutic agent for a disease associated with dystroglycan sugar modification abnormality containing CDP-ribitol as an active ingredient (Patent Document 1).

国際公開第2018/034334号パンフレットInternational Publication No. 2018/034343 Pamphlet

Kanagawa Mら,Cell Rep.,2016,14(9),2209−2223Kanagawa M et al., Cell Rep. , 2016, 14 (9), 2209-2223

上述したように、本発明者らは、ジストログリカン異常症などジストログリカン糖修飾異常に伴う疾患の治療剤を開発している。しかし、より一層優れたジストログリカン異常症の治療のための有効成分が求められている。
そこで本発明は、ジストログリカン異常症の治療に有効な新規CDP−リビトール誘導体、当該CDP−リビトール誘導体を含む医薬、および当該CDP−リビトール誘導体を含むジストログリカン異常症治療剤を提供することを目的とする。
As described above, the present inventors have developed therapeutic agents for diseases associated with dystroglycan sugar modification abnormalities such as dystroglycan abnormalities. However, there is a need for an even better active ingredient for the treatment of dystroglycan disorders.
Therefore, an object of the present invention is to provide a novel CDP-libitol derivative effective for the treatment of dystroglycan dysfunction, a drug containing the CDP-libitol derivative, and a therapeutic agent for dystroglycan dysfunction containing the CDP-libitol derivative. do.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、CDP−リビトールの特定の誘導体が、CDP−リビトール生合成酵素(ISPD)遺伝子をノックダウンした細胞やマウスにおけるジストログリカンの糖鎖形成を回復させることを見出して、本発明を完成した。
以下、本発明を示す。
The present inventors have conducted intensive studies to solve the above problems. As a result, they have found that a specific derivative of CDP-ribitol restores the sugar chain formation of dystroglycan in cells and mice in which the CDP-ribitol biosynthetic enzyme (ISPD) gene is knocked down, and completed the present invention.
Hereinafter, the present invention will be shown.

[1] 下記式(I1)で表されることを特徴とするCDP−リビトール誘導体またはその薬学的に許容される塩。

Figure 2021161092
[式中、
1〜R4は、独立して、H、C1-6アルキル−カルボニル基、またはC1-6アルコキシ−カルボニル基を示し、
5とR6は、独立して、H、C1-6アルキル基、置換基を有していてもよいC6-12アリール基、C6-12アリール基上に置換基を有していてもよいC6-12アリール−アミノ基、またはC6-12アリール基上に置換基を有していてもよいC6-12アリール−メチル基を示し、
6-12アリール基上の置換基は、C1-6アルコキシ基、またはC1-6アルキル−カルボニルオキシ基を示し、
7とR8は、独立して、OH、C1-6アルキル−カルボニルオキシ基、C1-6アルコキシ−カルボニルオキシ基、C1-6アルコキシ基、またはハロゲノ基を示し、
但し、R1〜R6がHである場合、R7とR8は、独立して、C1-6アルキル−カルボニルオキシ基、C1-6アルコキシ−カルボニルオキシ基、C1-6アルコキシ基、またはハロゲノ基を示す。]
[2] CDP−リビトール誘導体が下記式(I2)で表されるCDP−リビトール誘導体である上記[1]に記載のCDP−リビトール誘導体またはその薬学的に許容される塩。
Figure 2021161092
[式中、R1〜R8は上記と同義を示す。]
[3] R1〜R4が、独立して、C1-4アルキル−カルボニル基である上記[1]または[2]に記載のCDP−リビトール誘導体またはその薬学的に許容される塩。
[4] R5とR6がHである上記[1]〜[3]のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩。
[5] R5とR6が、独立して、C6-12アリール基上に置換基を有していてもよいC6-12アリール−メチル基である上記[1]〜[3]のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩。
[6] R5とR6が、独立して、フェニル基上に置換基としてC1-6アルキル−カルボニルオキシ基を有するベンジル基である上記[1]〜[3]のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩。
[7] R7とR8がOHである上記[1]〜[6]のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩。
[8] 上記[1]〜[7]のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩を含有することを特徴とする医薬。
[9] 上記[1]〜[7]のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩を有効成分として含有することを特徴とするジストログリカン異常症治療剤。 [1] A CDP-ribitol derivative or a pharmaceutically acceptable salt thereof, which is represented by the following formula (I 1).
Figure 2021161092
[During the ceremony,
R 1 to R 4 independently represent H, C 1-6 alkyl-carbonyl groups, or C 1-6 alkoxy-carbonyl groups.
R 5 and R 6 are independently, H, C 1-6 alkyl group which may have a substituent C 6-12 aryl group, optionally having a substituent on the C 6-12 aryl group which may be C 6-12 aryl - amino group or C 6-12 aryl group optionally C 6-12 aryl optionally having substituent on, - a methyl group,
Substituents on the C 6-12 aryl group represent a C 1-6 alkoxy group or a C 1-6 alkyl-carbonyloxy group.
R 7 and R 8 independently represent OH, C 1-6 alkyl-carbonyloxy group, C 1-6 alkoxy-carbonyloxy group, C 1-6 alkoxy group, or halogeno group.
However, when R 1 to R 6 are H, R 7 and R 8 independently have a C 1-6 alkyl-carbonyloxy group, a C 1-6 alkoxy-carbonyloxy group, and a C 1-6 alkoxy group. , Or a halogeno group. ]
[2] The CDP-ribitol derivative according to the above [1] or a pharmaceutically acceptable salt thereof, wherein the CDP-ribitol derivative is a CDP-ribitol derivative represented by the following formula (I 2).
Figure 2021161092
[In the formula, R 1 to R 8 have the same meaning as above. ]
[3] The CDP-libitol derivative or a pharmaceutically acceptable salt thereof according to the above [1] or [2], wherein R 1 to R 4 are independently C 1-4 alkyl-carbonyl groups.
[4] The CDP-ribitol derivative according to any one of the above [1] to [3], wherein R 5 and R 6 are H, or a pharmaceutically acceptable salt thereof.
[5] Of the above [1] to [3], where R 5 and R 6 are C 6-12 aryl-methyl groups which may independently have a substituent on the C 6-12 aryl group. The CDP-libitol derivative according to any one or a pharmaceutically acceptable salt thereof.
[6] The above-mentioned [1] to [3], wherein R 5 and R 6 are independently benzyl groups having a C 1-6 alkyl-carbonyloxy group as a substituent on the phenyl group. CDP-libitol derivative or pharmaceutically acceptable salt thereof.
[7] The CDP-ribitol derivative according to any one of the above [1] to [6] or a pharmaceutically acceptable salt thereof, wherein R 7 and R 8 are OH.
[8] A drug comprising the CDP-ribitol derivative according to any one of the above [1] to [7] or a pharmaceutically acceptable salt thereof.
[9] A therapeutic agent for dystroglycan dysfunction, which comprises the CDP-ribitol derivative according to any one of the above [1] to [7] or a pharmaceutically acceptable salt thereof as an active ingredient.

本発明に係る新規CDP−リビトール誘導体は、CDP−リビトールに比べて、CDP−リビトール生合成酵素(ISPD)遺伝子をノックダウンした細胞やマウスにおけるジストログリカンの糖鎖形成の回復活性が優れていた。よって本発明に係る新規CDP−リビトール誘導体は、ジストログリカンの糖鎖形成異常を原因とするジストログリカン異常症の治療に有効である。 The novel CDP-ribitol derivative according to the present invention was superior to CDP-ribitol in the recovery activity of sugar chain formation of dystroglycan in cells and mice in which the CDP-ribitol biosynthetic enzyme (ISPD) gene was knocked down. Therefore, the novel CDP-ribitol derivative according to the present invention is effective for the treatment of dystroglycan dysfunction caused by dystroglycan sugar chain dysplasia.

図1は、本発明に係る新規CDP−リビトール誘導体のジストログリカン糖鎖形成の回復効果を示すウェスタンブロット写真である。FIG. 1 is a Western blot photograph showing the recovery effect of dystroglycan sugar chain formation of the novel CDP-ribitol derivative according to the present invention. 図2は、本発明に係る新規CDP−リビトール誘導体のジストログリカン糖鎖形成の回復効果を示すウェスタンブロット写真である。FIG. 2 is a Western blot photograph showing the recovery effect of dystroglycan sugar chain formation of the novel CDP-ribitol derivative according to the present invention. 図3は、本発明に係る新規CDP−リビトール誘導体のジストログリカン糖鎖形成の回復効果を示すウェスタンブロット写真である。FIG. 3 is a Western blot photograph showing the recovery effect of dystroglycan sugar chain formation of the novel CDP-ribitol derivative according to the present invention. 図4は、被検マウスの筋組織のH&E染色写真と、ジストログリカン(DG)の糖鎖に結合する抗体IIH6を用いた免疫染色写真である。FIG. 4 is an H & E-stained photograph of the muscle tissue of the test mouse and an immunostained photograph using the antibody IIH6 that binds to the sugar chain of dystroglycan (DG). 図5は、生理食塩水、CDP−リビトール水溶液、または本発明に係る新規CDP−リビトール誘導体を投与したCDP−リビトール合成酵素(ISPD)遺伝子ノックアウトマウスの筋組織試料のウェスタンブロット写真である。FIG. 5 is a western blot photograph of a muscle tissue sample of a CDP-libitol synthase (ISPD) gene knockout mouse administered with physiological saline, an aqueous solution of CDP-libitol, or a novel CDP-libitol derivative according to the present invention. 図6は、被検マウスの筋組織試料をラミニンにより免疫染色して求めた平均筋線維径を示すグラフ[(1)]と筋線維径分布を示すグラフ[(2)]である。FIG. 6 is a graph [(1)] showing the average muscle fiber diameter obtained by immunostaining a muscle tissue sample of the test mouse with laminin and a graph [(2)] showing the muscle fiber diameter distribution. 図7は、被検マウスの筋組織試料のF4/80による免疫染色結果を示すグラフ[(1)]と、collagen Iによる免疫染色結果を示すグラフ[(2)]である。FIG. 7 is a graph [(1)] showing the results of immunostaining with F4 / 80 of the muscle tissue sample of the test mouse and a graph [(2)] showing the results of immunostaining with collagen I.

式(I1)で表されるCDP−リビトール誘導体(以下、「CDP−リビトール誘導体(I1)」という)において、絶対構造に関して、還元糖部分はリビトールが好ましく、フラノース部分はリボースが好ましい。即ち、CDP−リビトール誘導体(I1)は生体内で加水分解されて、ヌクレアーゼ耐性および/または活性がCDP−リビトールよりも優れるヌクレオシド二リン酸−還元糖となる可能性もあるが、生体内でCDP−リビトールに変換される式(I2)で表されるCDP−リビトール誘導体(以下、「CDP−リビトール誘導体(I2)」という)が好ましい。以下、CDP−リビトール誘導体(I1)とCDP−リビトール誘導体(I2)をまとめてCDP−リビトール誘導体(I)という。 In the CDP-ribitol derivative represented by the formula (I 1 ) (hereinafter referred to as "CDP-ribitol derivative (I 1 )"), the reducing sugar moiety is preferably ribitol and the furanose moiety is preferably ribose in terms of absolute structure. That is, the CDP-ribitol derivative (I 1 ) may be hydrolyzed in vivo to a nucleoside diphosphate-reducing sugar with nuclease resistance and / or activity superior to that of CDP-ribitol, but in vivo. A CDP-ribitol derivative represented by the formula (I 2 ) converted to CDP-ribitol (hereinafter referred to as "CDP-ribitol derivative (I 2 )") is preferable. Hereinafter, the CDP-ribitol derivative (I 1 ) and the CDP-ribitol derivative (I 2 ) are collectively referred to as a CDP-ribitol derivative (I).

CDP−リビトール誘導体(I)において、R1〜R4は、水酸基を構成するH、またはリビトール部分の水酸基の保護基である。R1〜R4がHである場合、CDP−リビトール誘導体(I)の親水性は比較的高く、毒性が比較的低いと考えられる。一方、R1〜R4がC1-6アルキル−カルボニル基またはC1-6アルコキシ−カルボニル基である場合、CDP−リビトール誘導体(I)の脂溶性は高くなり、細胞内に取り込まれ易くなる一方で、C1-6アルキル−カルボニル基またはC1-6アルコキシ−カルボニル基は、細胞内に取り込まれた後、細胞内のエステラーゼ等の加水分解酵素により除去されると考えられる。特にC1-6アルコキシ−カルボニル基は炭酸エステル構造のため加水分解され易いと考えられる。 In the CDP-ribitol derivative (I), R 1 to R 4 are H constituting the hydroxyl group or a protecting group for the hydroxyl group of the ribitol moiety. When R 1 to R 4 are H, it is considered that the hydrophilicity of the CDP-ribitol derivative (I) is relatively high and the toxicity is relatively low. On the other hand, when R 1 to R 4 are C 1-6 alkyl-carbonyl group or C 1-6 alkoxy-carbonyl group, the lipophilicity of the CDP-libitol derivative (I) becomes high and it is easily taken up into cells. On the other hand, it is considered that the C 1-6 alkyl-carbonyl group or the C 1-6 alkoxy-carbonyl group is taken up into the cell and then removed by an intracellular hydrolyzing enzyme such as esterase. In particular, the C 1-6 alkoxy-carbonyl group is considered to be easily hydrolyzed due to its carbonic acid ester structure.

「C1-6アルキル基」は、炭素数1以上、6以下の直鎖状または分枝鎖状の一価飽和脂肪族炭化水素基をいう。例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、n−ヘキシル等である。 The "C 1-6 alkyl group" refers to a linear or branched monovalent saturated aliphatic hydrocarbon group having 1 or more carbon atoms and 6 or less carbon atoms. For example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, n-hexyl and the like.

「C1-6アルコキシ基」は、炭素数1以上、6以下の直鎖状または分枝鎖状の脂肪族炭化水素オキシ基をいう。例えば、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、t−ブトキシ、n−ペントキシ、n−ヘキソキシ等である。 "C 1-6 alkoxy group" refers to a linear or branched aliphatic hydrocarbon oxy group having 1 or more carbon atoms and 6 or less carbon atoms. For example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, t-butoxy, n-pentoxy, n-hexoxy and the like.

1〜R4のC1-6アルキル−カルボニル基またはC1-6アルコキシ−カルボニル基を構成するC1-6アルキル基またはC1-6アルコキシ基の炭素数が少ないほど毒性が低下する可能性があるため、これら基の炭素数としては1以上、4以下が好ましく、1または2がより好ましく、1がより更に好ましい。特にアセチル基およびメトキシカルボニル基は、生体適合性が高いといえる。但し、これら基の炭素数が多いほど脂溶性が上がり、細胞内取込量が増加する可能性もある。 C 1-6 alkyl R 1 to R 4 - carbonyl group or a C 1-6 alkoxy - constitute a carbonyl group C 1-6 alkyl group or a C 1-6 possible toxicity smaller the number of carbon atoms in the alkoxy group is reduced Because of their properties, the carbon number of these groups is preferably 1 or more and 4 or less, more preferably 1 or 2, and even more preferably 1. In particular, the acetyl group and the methoxycarbonyl group can be said to have high biocompatibility. However, as the number of carbon atoms in these groups increases, the lipophilicity increases, and the intracellular uptake amount may increase.

CDP−リビトール誘導体(I)においてR5およびR6がHであるか、更にリン酸基が薬学的に許容される塩になっている場合、CDP−リビトール誘導体(I)の親水性が高く、水溶液または懸濁液である液状医薬へ製剤化し易く、また、毒性が比較的低いと考えられる。一方、R5およびR6の少なくとも一方が、C1-6アルキル基、置換基を有していてもよいC6-12アリール基、C6-12アリール基上に置換基を有していてもよいC6-12アリール−アミノ基、またはC6-12アリール基上に置換基を有していてもよいC6-12アリール−メチル基である場合、CDP−リビトール誘導体(I)の脂溶性が上がり、細胞内取込量が増加する可能性がある。 When R 5 and R 6 are H in the CDP-libitol derivative (I), or when the phosphate group is a pharmaceutically acceptable salt, the hydrophilicity of the CDP-libitol derivative (I) is high. It is easy to formulate into a liquid drug which is an aqueous solution or a suspension, and it is considered that the toxicity is relatively low. On the other hand, at least one of R 5 and R 6, C 1-6 alkyl group which may have a substituent C 6-12 aryl group, optionally having substituent on C 6-12 aryl group which may C 6-12 aryl - fat when it is methyl group, CDP-ribitol derivative (I) - amino or C 6-12 aryl group optionally C 6-12 aryl optionally having substituent on, Increased solubility may increase intracellular uptake.

「C6-12アリール基」とは、炭素数が6以上、12以下の一価芳香族炭化水素基をいう。例えば、フェニル、ナフチル、インデニル、ビフェニル等であり、好ましくはフェニルである。 The "C 6-12 aryl group" refers to a monovalent aromatic hydrocarbon group having 6 or more and 12 or less carbon atoms. For example, phenyl, naphthyl, indenyl, biphenyl and the like, preferably phenyl.

リン酸基の保護基であるC1-6アルキル基、置換基を有していてもよいC6-12アリール基、C6-12アリール基上に置換基を有していてもよいC6-12アリール−アミノ基、およびC6-12アリール基上に置換基を有していてもよいC6-12アリール−メチル基のうち、C6-12アリール基上に置換基を有していてもよいC6-12アリール−アミノ基、およびC6-12アリール基上に置換基を有していてもよいC6-12アリール−メチル基が細胞内で除去され易く、C6-12アリール基上に置換基を有していてもよいC6-12アリール−メチル基が細胞内でより除去され易く、フェニル基上に置換基を有していてもよいベンジル基が細胞内でより更に除去され易い。特にC6-12アリールまたはフェニル基が置換基としてC1-6アルコキシ基、またはC1-6アルキル−カルボニルオキシ基を有する場合には、その置換位置によって除去され易くなる。例えばベンジル基のp位および/またはo位にC1-6アルコキシ基、またはC1-6アルキル−カルボニルオキシ基、特にC1-6アルキル−カルボニルオキシ基が置換していると、生体内で先ずこれら基が除去されてフェノール性水酸基が生じると、当該フェノール性水酸基が電子を引張り、結果としてリン酸基からこれら基が脱離する。 C 1-6 alkyl group which is a protecting group of a phosphate group, which may have a substituent C 6-12 aryl group which may have a substituent on the C 6-12 aryl group C 6 -12 aryl - amino groups, and C 6-12 aryl optionally having a substituent on a base C 6-12 aryl - among methyl group, have a substituent on the C 6-12 aryl group The C 6-12 aryl-amino group, which may have a substituent, and the C 6-12 aryl-methyl group, which may have a substituent on the C 6-12 aryl group, are easily removed intracellularly, and C 6-12 C 6-12 aryl-methyl groups, which may have substituents on aryl groups, are more likely to be removed intracellularly, and benzyl groups, which may have substituents on phenyl groups, are more intracellular. It is even easier to remove. In particular, when the C 6-12 aryl or phenyl group has a C 1-6 alkoxy group or a C 1-6 alkyl-carbonyloxy group as a substituent, it is easily removed depending on the substitution position. For example, if the p-position and / or o-position of the benzyl group is substituted with a C 1-6 alkoxy group or a C 1-6 alkyl-carbonyloxy group, particularly a C 1-6 alkyl-carbonyloxy group, in vivo. First, when these groups are removed to generate a phenolic hydroxyl group, the phenolic hydroxyl group pulls an electron, and as a result, these groups are eliminated from the phosphate group.

5およびR6としてのC1-6アルキル基としては、C1-4アルキル基が好ましく、C1-2アルキル基がより好ましく、メチルがより更に好ましい。また、C6-12アリール基またはフェニル基上の置換基であるC1-6アルコキシ基、またはC1-6アルキル−カルボニルオキシ基の炭素数としては1以上、4以下が好ましく、1または2がより好ましく、1がより更に好ましい。 As the C 1-6 alkyl group as R 5 and R 6 , a C 1-4 alkyl group is preferable, a C 1-2 alkyl group is more preferable, and methyl is even more preferable. The carbon number of the C 1-6 alkoxy group, which is a substituent on the C 6-12 aryl group or the phenyl group, or the C 1-6 alkyl-carbonyloxy group is preferably 1 or more and 4 or less, preferably 1 or 2. Is more preferable, and 1 is even more preferable.

7およびR8がOHである場合、リボース本来の機能がそのまま発揮され、また、毒性が低いと考えられる。R7およびR8がC1-6アルキル−カルボニルオキシ基またはC1-6アルコキシ−カルボニルオキシ基である場合、脂溶性が比較的高くなり細胞内に取り込まれ易くなる一方で、細胞内に取り込まれた後は加水分解されてOHとなり、リボース本来の機能が発揮されると考えられる。また、R7およびR8がC1-6アルキル−カルボニルオキシ基、C1-6アルコキシ−カルボニルオキシ基、C1-6アルコキシ基、またはハロゲノ基である場合には、CDP−リビトール誘導体(I)のヌクレアーゼ耐性が向上すると考えられる。 When R 7 and R 8 are OH, the original function of ribose is exhibited as it is, and it is considered that the toxicity is low. When R 7 and R 8 are C 1-6 alkyl-carbonyloxy group or C 1-6 alkoxy-carbonyloxy group, they are relatively lipophilic and easily taken up into cells, while being taken up into cells. After being hydrolyzed, it is hydrolyzed to OH, and it is considered that the original function of ribose is exhibited. When R 7 and R 8 are a C 1-6 alkyl-carbonyloxy group, a C 1-6 alkoxy-carbonyloxy group, a C 1-6 alkoxy group, or a halogeno group, a CDP-libitol derivative (I). ) Is considered to improve nuclease resistance.

7およびR8に含まれるC1-6アルキル基およびC1-6アルコキシの炭素数としては1以上、4以下が好ましく、1または2がより好ましく、1がより更に好ましい。 The number of carbon atoms of the C 1-6 alkyl group and C 1-6 alkoxy contained in R 7 and R 8 is preferably 1 or more and 4 or less, more preferably 1 or 2, and even more preferably 1.

CDP−リビトール誘導体(I)において、R1〜R6が全てHである場合、R7とR8は、独立して、C1-6アルキル−カルボニルオキシ基、C1-6アルコキシ−カルボニルオキシ基、C1-6アルコキシ基、またはハロゲノ基を示す。即ち、CDP−リビトール誘導体(I)には、無置換のCDP−リビトールは含まれない。 In the CDP-ribitol derivative (I), when R 1 to R 6 are all H, R 7 and R 8 are independently C 1-6 alkyl-carbonyloxy group and C 1-6 alkoxy-carbonyloxy. Shows a group, C 1-6 alkoxy group, or halogeno group. That is, the CDP-ribitol derivative (I) does not contain the unsubstituted CDP-ribitol.

CDP−リビトール誘導体(I)は、ピロリン酸基により塩を形成することができるが、当該塩は薬学的に許容される塩である。CDP−リビトール誘導体(I)の薬学的に許容される塩を構成するカウンターカチオンとしては、薬学的に許容されるものであれば特に制限されないが、例えば、ナトリウムイオン、カリウムイオン等のアルカリ金属塩イオンや、マグネシウムイオン、カルシウムイオン等の第2族金属イオンが挙げられる。リン酸基の少なくとも一方は、例えば溶液中で、−O−P(=O)(O-)−O−の状態にあってもよい。また、CDP−リビトール誘導体(I)が全体として塩基性を示し、シトシンのアミノ基により塩が形成される可能性がある。かかる塩は、薬学的に許容される塩であれば特に制限されないが、例えば、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硝酸塩、過塩素酸塩、リン酸塩などの無機酸塩;シュウ酸塩、マロン酸塩、マレイン酸塩、フマル酸塩、乳酸塩、リンゴ酸塩、クエン酸塩、酒石酸塩、安息香酸塩、トリフルオロ酢酸塩、酢酸塩、メタンスルホン酸塩、p−トルエンスルホン酸塩、トリフルオロメタンスルホン酸塩、グルタミン酸塩、アスパラギン酸塩などの有機酸塩が挙げられる。 The CDP-ribitol derivative (I) can form a salt with a pyrophosphate group, and the salt is a pharmaceutically acceptable salt. The counter cation constituting the pharmaceutically acceptable salt of the CDP-libitol derivative (I) is not particularly limited as long as it is pharmaceutically acceptable, but for example, alkali metal salts such as sodium ion and potassium ion. Examples thereof include Group 2 metal ions such as ions, magnesium ions and calcium ions. At least one of the phosphate groups may be in the -O-P (= O) (O - )-O- state, for example, in solution. In addition, the CDP-ribitol derivative (I) is generally basic, and there is a possibility that a salt may be formed by the amino group of cytosine. The salt is not particularly limited as long as it is a pharmaceutically acceptable salt, and for example, hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, perchlorate, phosphate and the like. Inorganic acid salts; oxalate, malonate, maleate, fumarate, lactate, malate, citrate, tartrate, benzoate, trifluoroacetate, acetate, methanesulfonic acid. Examples include salts, p-toluene sulfonates, trifluoromethane sulfonates, glutamates, asparaginates and other organic acid salts.

CDP−リビトール誘導体(I)は、例えば下記スキームにより合成することができる。

Figure 2021161092
The CDP-ribitol derivative (I) can be synthesized, for example, by the following scheme.
Figure 2021161092

上記反応では、溶媒中、還元糖モノリン酸エステル(II)とモルフォリデート(III)を反応させる。モルフォリデート(III)のリン酸基はモルホリン基により活性化されているため、還元糖に水酸基が残っていたり、R7およびR8が水酸基である場合であっても、容易に還元糖モノリン酸エステル(II)と反応してピロリン酸基を形成する。 In the above reaction, the reducing sugar monophosphate (II) and morpholidate (III) are reacted in a solvent. Since the phosphate group of morpholidate (III) is activated by the morpholine group, it is easy to reduce the reducing sugar monophosphorus even when the reducing sugar has a hydroxyl group or R 7 and R 8 are hydroxyl groups. It reacts with the acid ester (II) to form a pyrophosphate group.

上記反応で用いる溶媒としては、ジメチルホルムアミドやピリジン等、塩基性を呈する溶媒が好ましい。また、反応の促進のために、テトラゾール、ベンズイミダゾリウムトリフラート、トリクロロ酢酸などを用いてもよい。 As the solvent used in the above reaction, a solvent exhibiting basicity such as dimethylformamide or pyridine is preferable. In addition, tetrazole, benzimidazolium triflate, trichloroacetic acid and the like may be used to promote the reaction.

反応条件は適宜調整すればよい。例えば、溶媒としては脱水したものを用い、水分や酸素の混入を抑制するために、窒素ガスやアルゴンガス等の不活性ガス雰囲気下で反応を行うことが好ましい。また、反応温度は常温でよく、例えば0℃以上、40℃以下とすることができる。反応温度としては、10℃以上または15℃以上が好ましく、20℃以上がより好ましく、また、35℃以下が好ましく、30℃以下がより好ましい。反応時間は、予備実験で決定したり、目的化合物の増量が認められなくなるまでや、クロマトグラフィー等で還元糖モノリン酸エステル(II)またはモルフォリデート(III)の一方が消費されるまでとすればよいが、例えば、10時間以上、10日以下とすることができる。 The reaction conditions may be adjusted as appropriate. For example, it is preferable to use a dehydrated solvent and carry out the reaction in an atmosphere of an inert gas such as nitrogen gas or argon gas in order to suppress the mixing of water and oxygen. The reaction temperature may be room temperature, for example, 0 ° C. or higher and 40 ° C. or lower. The reaction temperature is preferably 10 ° C. or higher or 15 ° C. or higher, more preferably 20 ° C. or higher, more preferably 35 ° C. or lower, and even more preferably 30 ° C. or lower. The reaction time should be determined by a preliminary experiment, until an increase in the amount of the target compound is not observed, or until either the reducing sugar monophosphate (II) or the morpholidate (III) is consumed by chromatography or the like. However, for example, it may be 10 hours or more and 10 days or less.

反応終了後は、通常の後処理を行えばよい。例えば、溶媒を留去した後、クロマトグラフィーや再結晶などで目的化合物を精製すればよい。また、水酸基やリン酸基の保護や脱保護、また、R1〜R8の変更などを行ってもよい。 After completion of the reaction, normal post-treatment may be performed. For example, after distilling off the solvent, the target compound may be purified by chromatography, recrystallization or the like. Further, the hydroxyl group and the phosphoric acid group may be protected or deprotected, and R 1 to R 8 may be changed.

還元糖モノリン酸エステル(II)は、容易に合成することができる。例えば下記スキームの通り、アルドン酸またはその誘導体のカルボキシ基を還元し、塩化ホスホリル(POCl3)を使って5位にリン酸基を導入する。この際、アルドン酸の水酸基を保護しておくことにより、5位へ選択的にリン酸基を導入することが可能になる。 The reducing sugar monophosphate ester (II) can be easily synthesized. For example, as shown in the scheme below, the carboxy group of aldonic acid or its derivative is reduced, and a phosphoric acid group is introduced at the 5-position using phosphoryl chloride (POCl 3). At this time, by protecting the hydroxyl group of aldonic acid, it becomes possible to selectively introduce the phosphoric acid group to the 5-position.

Figure 2021161092
Figure 2021161092

また、モルフォリデート(III)は、ヌクレオシドまたはその2’位および/または3’位における誘導体の5’−モノホスフェート体から、常法により合成可能である。 In addition, morpholidate (III) can be synthesized by a conventional method from a 5'-monophosphate form of a nucleoside or a derivative at the 2'and / or 3'position thereof.

本発明に係るCDP−リビトール誘導体(I)またはその薬学的に許容される塩は、細胞に取り込まれた後、細胞内の酵素により加水分解されてCDP−リビトールに変換される。ジストログリカン異常症の原因の一つとして、α−ジストログリカンの糖鎖に2分子のリビトールリン酸が導入されず、糖鎖が完全に形成されないことがある。α−ジストログリカンの糖鎖へのリビトールリン酸の導入は、先ずCDP−リビトール生合成酵素であるISPDによりリビトールリン酸とシチジン三リン酸(CTP)からCDP−リビトールが合成され、次にCDP−リビトールからフクチン(FKTN)とFKRPの作用により実施される。よってジストログリカン異常症は、ISPD、FKTNおよび/またはFKRPの遺伝子の異常により発症すると考えられる。それに対して、本発明に係るCDP−リビトール誘導体(I)またはその薬学的に許容される塩の投与により、ISPD遺伝子に異常があっても細胞内にCDP−リビトールが供給され、また、FKTNとFKRPが完全に欠損していれば生存できないため、ジストログリカン異常症患者は僅かであってもFKTNとFKRPの活性を有しているはずであり、十分量のCDP−リビトールの供給により、FKTNとFKRPの活性が低くてもα−ジストログリカンの糖鎖が形成され、症状が軽減されると考えられる。よって、本発明に係るCDP−リビトール誘導体(I)またはその薬学的に許容される塩は、医薬の有効成分として、特にジストログリカン異常症治療剤の有効成分として利用できる。 The CDP-ribitol derivative (I) according to the present invention or a pharmaceutically acceptable salt thereof is taken up by cells and then hydrolyzed by an intracellular enzyme to be converted to CDP-ribitol. One of the causes of dystroglycan abnormality is that two molecules of ribitol phosphate are not introduced into the sugar chain of α-dystroglycan, and the sugar chain is not completely formed. The introduction of ribitol phosphate into the sugar chain of α-dystroglycan is as follows: first, CDP-ribitol is synthesized from ribitol phosphate and cytidine triphosphate (CTP) by ISPD, which is a CDP-libitol biosynthetic enzyme, and then from CDP-libitol. It is carried out by the action of fukutin (FKTN) and FKRP. Therefore, dystroglycan abnormalities are considered to be caused by abnormalities in the genes of ISPD, FKTN and / or FKRP. On the other hand, by administration of the CDP-ribitol derivative (I) according to the present invention or a pharmaceutically acceptable salt thereof, CDP-ribitol is supplied intracellularly even if there is an abnormality in the ISPD gene, and FKTN and FKTN Patients with dystroglycan dysfunction should have even a small amount of FKTN and FKRP activity because they cannot survive if FKRP is completely deficient, and by supplying a sufficient amount of CDP-ribitol, FKTN and Even if the activity of FKRP is low, sugar chains of α-dystroglycan are formed, and it is considered that the symptoms are alleviated. Therefore, the CDP-ribitol derivative (I) according to the present invention or a pharmaceutically acceptable salt thereof can be used as an active ingredient of a drug, particularly as an active ingredient of a therapeutic agent for dystroglycan abnormality.

ジストログリカン異常症は、上記の通りα−ジストログリカンの糖鎖が形成不良により引き起こされる疾患であり、例えば、福山型筋ジストロフィー、肢帯型筋ジストロフィー、先天型筋ジストロフィー、Walker−Warburg症候群が挙げられる。 Dystroglycan dysfunction is a disease caused by malformation of the sugar chain of α-dystroglycan as described above, and examples thereof include Fukuyama-type muscular dystrophy, limb-girdle-type muscular dystrophy, congenital muscular dystrophy, and Walker-Warburg syndrome.

本発明に係るCDP−リビトール誘導体(I)またはその薬学的に許容される塩を含有する医薬の形態は特に制限されず、経口剤や非経口剤とすることができる。経口剤としては、例えば、錠剤、カプセル剤、顆粒剤、散剤、細粒剤、丸剤、トローチ剤、舌下剤、乳剤、懸濁剤、シロップ剤などが挙げられる。非経口剤としては、注射剤、軟膏剤、坐剤、クリーム剤などが挙げられる。注射剤は、静脈内投与、皮下投与、筋肉内投与などすることができ、軟膏剤やクリーム剤は、粘膜や局所に塗布すればよい。 The form of the drug containing the CDP-ribitol derivative (I) according to the present invention or a pharmaceutically acceptable salt thereof is not particularly limited, and can be an oral preparation or a parenteral preparation. Examples of the oral preparation include tablets, capsules, granules, powders, fine granules, pills, troches, sublingual preparations, emulsions, suspensions, syrups and the like. Parenteral preparations include injections, ointments, suppositories, creams and the like. The injection can be administered intravenously, subcutaneously, intramuscularly, or the like, and the ointment or cream may be applied to the mucous membrane or locally.

本発明に係る医薬は、CDP−リビトール誘導体(I)またはその薬学的に許容される塩に加えて、医薬添加剤を含んでいてもよい。医薬添加剤としては、例えば、溶媒、pH調整剤、賦形剤、崩壊剤、結合剤、滑沢剤、コーティング剤、色素などが挙げられるが、特に制限されない。 The medicament according to the present invention may contain a pharmaceutical additive in addition to the CDP-ribitol derivative (I) or a pharmaceutically acceptable salt thereof. Examples of the pharmaceutical additive include a solvent, a pH adjuster, an excipient, a disintegrant, a binder, a lubricant, a coating agent, a dye, and the like, but are not particularly limited.

本発明に係る医薬としては、注射剤が好ましい。注射剤の溶媒としては、水の他、緩衝液や生理食塩水を用いてもよい。また、注射剤は等張または略等張である必要があるため、ナトリウムイオン、カリウムイオン、カルシウムイオン、塩化物イオン、酢酸イオン、炭酸水素イオン、乳酸、ブドウ糖などを含んでいてもよい。 As the medicine according to the present invention, an injection is preferable. As the solvent for the injection, in addition to water, a buffer solution or physiological saline may be used. Further, since the injection needs to be isotonic or substantially isotonic, it may contain sodium ion, potassium ion, calcium ion, chloride ion, acetate ion, hydrogen carbonate ion, lactic acid, glucose and the like.

本発明に係るCDP−リビトール誘導体(I)またはその薬学的に許容される塩の投与量は、患者の症状、重篤度、年齢、性別などに応じて適宜調整すればよいが、例えば、1日あたり0.01mg以上、60g以下とすることができる。当該投与量としては、0.1mg以上が好ましく、また、24g以下が好ましく、6g以下がより好ましい。また、1日の投与回数は1回以上、5回以下とすることができ、4回以下または3回以下が好ましく、2回以下がより好ましい。また、経過を観察しつつ、1日以上、2週間以下の投与間隔をあけてもよい。 The dose of the CDP-ribitol derivative (I) or a pharmaceutically acceptable salt thereof according to the present invention may be appropriately adjusted according to the patient's symptoms, severity, age, gender, etc., but for example, 1 It can be 0.01 mg or more and 60 g or less per day. The dose is preferably 0.1 mg or more, preferably 24 g or less, and more preferably 6 g or less. Further, the number of administrations per day can be 1 time or more and 5 times or less, preferably 4 times or less or 3 times or less, and more preferably 2 times or less. In addition, the administration interval may be 1 day or more and 2 weeks or less while observing the progress.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the gist of the above and the following. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.

実施例1: CDP−リビトール ジアセテートの合成
(1)2’,3’−ジ−O−アセチル−シチジン 5’−モノホスフェートの合成

Figure 2021161092
シチジン 5’−モノホスフェート(2.5g)を水(100mL)に懸濁し、次にトリエチルアミン(2.15mL)を加えて溶解し、pHを7〜8に調整した。これに1−アセチルイミダゾール(8.5g)を加えて室温で約3時間攪拌した。次いでトリエチルアミン(215μL)と1−アセチルイミダゾール(2.0g)を追加した。反応溶液を濾過した後に、逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥により目的化合物を得た(粗収量:3.0g(トリエチルアミンを含む)。
1H−NMR(400MHz,D2O):δ7.95(d,1H,J=7.8Hz),6.22(d,1H,J=5.5Hz),6.13(d,1H,J=7.3Hz),5.47(dd,1H,J=3.7,5.5Hz),5.44(dd,1H,J=5.5,5.5Hz),4.51(m,1H),4.16(ddd,1H,J=2.7,4.6,11.9Hz),4.08(ddd,1H,J=2.7,5.0,11.9Hz),2.18(s,3H),2.11(s,3H) Example 1: Synthesis of CDP-ribitol diacetate (1) Synthesis of 2', 3'-di-O-acetyl-cytidine 5'-monophosphate
Figure 2021161092
Cytidine 5'-monophosphate (2.5 g) was suspended in water (100 mL), then triethylamine (2.15 mL) was added to dissolve it, and the pH was adjusted to 7-8. 1-Acetylimidazole (8.5 g) was added thereto, and the mixture was stirred at room temperature for about 3 hours. Then triethylamine (215 μL) and 1-acetylimidazole (2.0 g) were added. The reaction solution was filtered and then purified by reverse phase HPLC. The desired fraction was collected and lyophilized to give the desired compound (crude yield: 3.0 g (including triethylamine).
1 1 H-NMR (400 MHz, D 2 O): δ7.95 (d, 1H, J = 7.8 Hz), 6.22 (d, 1H, J = 5.5 Hz), 6.13 (d, 1H, J = 7.3Hz), 5.47 (dd, 1H, J = 3.7, 5.5Hz), 5.44 (dd, 1H, J = 5.5, 5.5Hz), 4.51 (m) , 1H), 4.16 (ddd, 1H, J = 2.7, 4.6, 11.9Hz), 4.08 (ddd, 1H, J = 2.7, 5.0, 11.9Hz), 2.18 (s, 3H), 2.11 (s, 3H)

(2)2’,3’−ジ−O−アセチル−シチジン 5’−モノホスフェート モルフォリデート 4−モルホリン−N,N’−ジイソプロピルカルボキシアミジン塩の合成

Figure 2021161092
2’,3’−ジ−O−アセチル−シチジン 5’−モノホスフェート(2.5g)とモルホリン(1.8mL)をt−ブタノール(50mL)と水(50mL)の混合溶媒に懸濁し、還流した。これにN,N’−ジイソプロピルカルボジイミド(2.7mL)をt−ブタノール(50mL)に溶解した溶液を滴下した。室温に戻した後に、減圧濃縮した。得られた残渣に水を加えて凍結乾燥した。凍結乾燥品(5.2g)を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥により目的化合物を得た(粗収量:2.0g(溶媒や塩を含む))。
1H−NMR(400MHz,D2O):δ7.92(d,1H,J=7.3Hz),6.21(d,1H,J=5.0Hz),6.11(d,1H,J=7.8Hz),5.48−5.44(m,2H),4.52(m,1H),4.11(ddd,1H,J=2.3,4.1,11.9Hz),4.05(ddd,1H,J=3.2,5.0,11.9Hz),3.79(br.t,4H,J=4.8Hz),3.75(m,2H),3.67(br.t,4H,J=4.3Hz),3.44(br.t,4H,J=5.0Hz),3.06(m,4H),2.19(s,3H),2.12(s,3H),1.25(d,12H,J=6.4Hz) (2) Synthesis of 2', 3'-di-O-acetyl-cytidine 5'-monophosphate morpholidate 4-morpholin-N, N'-diisopropylcarboxyamidine salt
Figure 2021161092
2', 3'-di-O-acetyl-cytidine 5'-monophosphate (2.5 g) and morpholine (1.8 mL) are suspended in a mixed solvent of t-butanol (50 mL) and water (50 mL) and refluxed. bottom. A solution prepared by dissolving N, N'-diisopropylcarbodiimide (2.7 mL) in t-butanol (50 mL) was added dropwise thereto. After returning to room temperature, the mixture was concentrated under reduced pressure. Water was added to the obtained residue and lyophilized. The lyophilized product (5.2 g) was purified by reverse phase HPLC. The desired fraction was collected and lyophilized to give the desired compound (crude yield: 2.0 g (including solvent and salt)).
1 1 H-NMR (400 MHz, D 2 O): δ7.92 (d, 1H, J = 7.3 Hz), 6.21 (d, 1H, J = 5.0 Hz), 6.11 (d, 1H, J = 7.8Hz), 5.48-5.44 (m, 2H), 4.52 (m, 1H), 4.11 (ddd, 1H, J = 2.3, 4.1, 11.9Hz) ), 4.05 (ddd, 1H, J = 3.2,5.0, 11.9Hz), 3.79 (br.t, 4H, J = 4.8Hz), 3.75 (m, 2H) , 3.67 (br.t, 4H, J = 4.3Hz), 3.44 (br.t, 4H, J = 5.0Hz), 3.06 (m, 4H), 2.19 (s, 3H), 2.12 (s, 3H), 1.25 (d, 12H, J = 6.4Hz)

(3)CDP−リビトール ジアセテート

Figure 2021161092
参考文献(J.Med.Chem.,1984,27,717−726)の方法でD−リボース 5−ホスフェートから得られるD−リビトール 5−ホスフェート(970mg)と、トリ−n−オクチルアミン(2.05mL)に脱水DMF(50mL)を加えて減圧濃縮する操作を2回繰り返した。得られた残渣にアルゴン雰囲気下で脱水DMF(50mL)を加えて溶解した(A液)。別途、2’,3’−ジ−O−アセチル−シチジン 5’−モノホスフェート モルフォリデート(2.0g)に脱水DMF(50mL)を加えて減圧濃縮した。得られた残渣にアルゴン雰囲気下で脱水ピリジン(50mL)を加えて溶解した(B液)。A液とB液の2つの溶液を混合し、アルゴン雰囲気下で1H−テトラゾール(294mg)を加えて室温で攪拌した。5日後に反応混合物を減圧濃縮した。得られた残渣を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥及びイオン交換樹脂に通すことにより、白色粉末であるCDP−リビトール ジアセテートの2Na塩を得た(収量:113mg,収率:4.3%)。
1H−NMRスペクトル(400MHz,D2O):δ7.94(d,1H,J=7.3Hz),6.22(d,1H,J=5.5Hz),6.15(d,1H,J=7.8Hz),5.48(dd,1H,J=4.1,5.5Hz),5.44(dd,1H,J=5.5,5.5Hz),4.53(m,1H),4.29(ddd,1H,J=2.3,5.0,11.9Hz),4.21(ddd,1H,J=3.2,5.0,11.9Hz),4.15(ddd,1H,J=3.0,5.7,11.0Hz),4.06(m,1H),3.91(m,1H),3.87(m,1H),3.80(dd,1H,J=3.2,11.9Hz),3.76(dd,1H,J=5.9,6.9Hz),3.64(dd,1H,J=6.9,11.9Hz),2.18(s,3H),2.12(s,3H)
ESI−MSスペクトル(negative mode) C18283172:[M−H]-,calcd:620.09,found:620.1 (3) CDP-ribitol diacetate
Figure 2021161092
D-ribitol 5-phosphate (970 mg) obtained from D-ribose 5-phosphate by the method of reference (J. Med. Chem., 1984, 27, 717-726) and tri-n-octylamine (2. The operation of adding dehydrated DMF (50 mL) to (05 mL) and concentrating under reduced pressure was repeated twice. Dehydrated DMF (50 mL) was added to the obtained residue under an argon atmosphere and dissolved (Liquid A). Separately, dehydrated DMF (50 mL) was added to 2', 3'-di-O-acetyl-cytidine 5'-monophosphate morpholidate (2.0 g), and the mixture was concentrated under reduced pressure. Dehydrated pyridine (50 mL) was added to the obtained residue under an argon atmosphere and dissolved (Liquid B). Two solutions, solution A and solution B, were mixed, 1H-tetrazole (294 mg) was added under an argon atmosphere, and the mixture was stirred at room temperature. After 5 days, the reaction mixture was concentrated under reduced pressure. The obtained residue was purified by reverse phase HPLC. The desired fractions were collected, lyophilized and passed through an ion exchange resin to give a 2Na salt of CDP-ribitol diacetate, which is a white powder (yield: 113 mg, yield: 4.3%).
1 1 H-NMR spectrum (400 MHz, D 2 O): δ7.94 (d, 1H, J = 7.3 Hz), 6.22 (d, 1H, J = 5.5 Hz), 6.15 (d, 1H) , J = 7.8Hz), 5.48 (dd, 1H, J = 4.1,5.5Hz), 5.44 (dd, 1H, J = 5.5,5.5Hz), 4.53 ( m, 1H), 4.29 (ddd, 1H, J = 2.3, 5.0, 11.9Hz), 4.21 (ddd, 1H, J = 3.2, 5.0, 11.9Hz) , 4.15 (ddd, 1H, J = 3.0, 5.7, 11.0Hz), 4.06 (m, 1H), 3.91 (m, 1H), 3.87 (m, 1H) , 3.80 (dd, 1H, J = 3.2, 11.9Hz), 3.76 (dd, 1H, J = 5.9, 6.9Hz), 3.64 (dd, 1H, J = 6) 9.9, 11.9Hz), 2.18 (s, 3H), 2.12 (s, 3H)
ESI-MS spectrum (negative mode) C 18 H 28 N 3 O 17 P 2 : [MH] - , calcd: 620.09, found: 620.1

実施例2: CDP−リビトール テトラアセテートの合成
(1)2,3,4,5−テトラ−O−アセチル−L−リボン酸

Figure 2021161092
L−リボン酸−1,4−ラクトン(2.0g)を水(10mL)に溶解し、1M NaOH水溶液(14.2mL)を加えた。20分後に反応溶液を減圧濃縮した(残渣A)。別の容器に無水酢酸(30mL)を入れて氷冷した。これに70%HClO4水溶液(1.5mL)を加えることで、淡黄色溶液が得られた。前記残渣Aを0℃以下に冷却し、この淡黄色溶液を加えた。反応混合物を40℃まで昇温した後に、さらに1時間攪拌した。反応溶液を氷冷し、酢酸ナトリウム(2.4g)と水(40mL)を順次加えた。減圧濃縮により得られた残渣に水を加えて再度減圧濃縮した。残渣を逆相系のHPLCで精製し、目的のフラクションを集め、凍結乾燥により白色粉末である目的化合物を得た(収量:3.78g,収率:83%)。
1H−NMR(400MHz,CDCl3):δ5.63(dd,1H,J=2.7,9.2Hz),5.46(d,1H,J=2.3Hz),5.36(ddd,1H,J=2.5,4.3,9.2Hz),4.35(dd,1H,J=2.5,12.6Hz),4.17(dd,1H,J=4.3,12.6Hz),2.17(s,3H),2.10(s,3H),2.07(s,3H),2.03(s,3H) Example 2: Synthesis of CDP-Ribitol Tetra Acetate (1) 2,3,4,5-Tetra-O-Acetyl-L-Ribbon Acid
Figure 2021161092
L-Ribbon acid-1,4-lactone (2.0 g) was dissolved in water (10 mL) and a 1 M aqueous NaOH solution (14.2 mL) was added. After 20 minutes, the reaction solution was concentrated under reduced pressure (residue A). Acetic anhydride (30 mL) was placed in another container and ice-cooled. A pale yellow solution was obtained by adding a 70% HClO 4 aqueous solution (1.5 mL) to this. The residue A was cooled to 0 ° C. or lower, and this pale yellow solution was added. The reaction mixture was heated to 40 ° C. and then stirred for an additional hour. The reaction solution was ice-cooled, and sodium acetate (2.4 g) and water (40 mL) were sequentially added. Water was added to the residue obtained by concentration under reduced pressure, and the mixture was concentrated under reduced pressure again. The residue was purified by reverse phase HPLC, the desired fraction was collected, and freeze-dried to obtain the desired compound as a white powder (yield: 3.78 g, yield: 83%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ5.63 (dd, 1H, J = 2.7, 9.2 Hz), 5.46 (d, 1H, J = 2.3 Hz), 5.36 (ddd) , 1H, J = 2.5, 4.3, 9.2Hz), 4.35 (dd, 1H, J = 2.5, 12.6Hz), 4.17 (dd, 1H, J = 4.3) , 12.6Hz), 2.17 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H)

(2)1,2,3,4−テトラ−O−アセチル−D−リビトールの合成

Figure 2021161092
2,3,4,5−テトラ−O−アセチル−L−リボン酸(3.78g)を脱水THF(50mL)に溶解し、−10℃に冷却した。これにN−メチルモルホリン(1.36mL)とクロロギ酸イソブチル(1.61mL)を順次加えて10分間攪拌した。さらにNaBH4(1.28g)を加えた後に、−50℃に冷却した。これにメタノール(80mL)を10分間で滴下した。氷浴し、6M塩酸(2.7mL)を加えてpHを4に調整した。減圧濃縮し、得られた残渣に酢酸エチルと水を加えて抽出した。有機層を合わせ、無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせて減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。目的のフラクションを集めて減圧濃縮、乾燥することで白色粉末として目的化合物を得た(収量:2.66g,収率:73%)。なお、目的化合物である2,3,4,5−テトラ−O−アセチル−L−リビトールは、1,2,3,4−テトラ−O−アセチル−D−リビトールともいう。
1H−NMR(400MHz,CDCl3):δ5.37(dd,1H,J=4.6,5.9Hz),5.33(ddd,1H,J=3.2,4.6,6.9Hz),5.07(ddd,1H,J=3.7,5.5,5.5Hz),4.38(dd,1H,J=3.2,11.9Hz),4.16(dd,1H,J=6.9,11.9Hz),3.84(m,1H),3.69(dd,1H,J=5.0,12.8Hz),2.14(s,3H),2.11(s,3H),2.10(s,3H),2.05(s,3H) (2) Synthesis of 1,2,3,4-tetra-O-acetyl-D-ribitol
Figure 2021161092
2,3,4,5-Tetra-O-acetyl-L-ribbon acid (3.78 g) was dissolved in dehydrated THF (50 mL) and cooled to −10 ° C. N-Methylmorpholine (1.36 mL) and isobutyl chloroformate (1.61 mL) were sequentially added thereto, and the mixture was stirred for 10 minutes. After further adding NaBH 4 (1.28 g), the mixture was cooled to −50 ° C. Methanol (80 mL) was added dropwise thereto for 10 minutes. The pH was adjusted to 4 by bathing in ice and adding 6M hydrochloric acid (2.7 mL). The mixture was concentrated under reduced pressure, and ethyl acetate and water were added to the obtained residue for extraction. The organic layers were combined and dried over anhydrous sodium sulfate. This was filtered, and the filtrate and the washing liquid were combined and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography. The target fraction was collected, concentrated under reduced pressure, and dried to obtain the target compound as a white powder (yield: 2.66 g, yield: 73%). The target compound 2,3,4,5-tetra-O-acetyl-L-ribitol is also referred to as 1,2,3,4-tetra-O-acetyl-D-ribitol.
1 1 H-NMR (400 MHz, CDCl 3 ): δ5.37 (dd, 1H, J = 4.6, 5.9 Hz), 5.33 (ddd, 1H, J = 3.2, 4.6, 6. 9Hz), 5.07 (ddd, 1H, J = 3.7, 5.5, 5.5Hz), 4.38 (dd, 1H, J = 3.2, 11.9Hz), 4.16 (dd) , 1H, J = 6.9, 11.9Hz), 3.84 (m, 1H), 3.69 (dd, 1H, J = 5.0, 12.8Hz), 2.14 (s, 3H) , 2.11 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H)

(3)1,2,3,4−テトラ−O−アセチル−D−リビトール 5−ホスフェートの合成

Figure 2021161092
1,2,3,4−テトラ−O−アセチル−D−リビトール(1.0g)を脱水THF(20mL)に溶解し、−10℃以下に冷却した。これにジイソプロピルエチルアミン(4.2mL)とPOCl3(2.0mL)を順次加えて30分間攪拌した。反応混合物を−78℃に冷却し、水(20mL)を徐々に加えた。室温で飽和炭酸水素ナトリウム水溶液を加えて中和し、減圧濃縮によりTHFを留去した。得られた残渣(水層)に飽和炭酸水素ナトリウム水溶液とクロロホルムを加えて分液した。有機層に水を加えて抽出し、水層を合わせた。減圧濃縮により液量を減じた。6M塩酸(1.5mL)を加えてpHを1〜2に調整した後、逆相HPLCで精製した。目的のフラクションを集めて凍結乾燥し、得られた残渣に水を加えて溶解して再度凍結乾燥し、含水軟性油状物として目的化合物を得た(粗収量:1.11g(水を含む))。
1H−NMR(400MHz,D2O):δ5.41(dd,1H,J=5.5,5.5Hz),5.35−5.28(m,2H),4.44(dd,1H,J=3.2,12.4Hz),4.31(dd,1H,J=5.9,12.4Hz),4.14(ddd,1H,J=3.2,5.9,11.9Hz),4.04(ddd,1H,J=5.9,6.9,11.9Hz),2.16(s,3H),2.15(s,3H),2.13(s,3H),2.08(s,3H) (3) Synthesis of 1,2,3,4-tetra-O-acetyl-D-ribitol 5-phosphate
Figure 2021161092
1,2,3,4-tetra-O-acetyl-D-ribitol (1.0 g) was dissolved in dehydrated THF (20 mL) and cooled to −10 ° C. or lower. Diisopropylethylamine (4.2 mL) and POCl 3 (2.0 mL) were sequentially added thereto, and the mixture was stirred for 30 minutes. The reaction mixture was cooled to −78 ° C. and water (20 mL) was added slowly. A saturated aqueous sodium hydrogen carbonate solution was added at room temperature for neutralization, and THF was distilled off by concentration under reduced pressure. A saturated aqueous sodium hydrogen carbonate solution and chloroform were added to the obtained residue (aqueous layer) to separate the liquids. Water was added to the organic layer for extraction, and the aqueous layers were combined. The amount of liquid was reduced by concentration under reduced pressure. After adjusting the pH to 1-2 by adding 6M hydrochloric acid (1.5 mL), the mixture was purified by reverse phase HPLC. The target fraction was collected and freeze-dried, water was added to the obtained residue, dissolved, and freeze-dried again to obtain the target compound as a water-containing soft oil (crude yield: 1.11 g (including water)). ..
1 1 H-NMR (400 MHz, D 2 O): δ5.41 (dd, 1H, J = 5.5, 5.5 Hz), 5.35-5.28 (m, 2H), 4.44 (dd, dd, 1H, J = 3.2, 12.4Hz), 4.31 (dd, 1H, J = 5.9, 12.4Hz), 4.14 (ddd, 1H, J = 3.2,5.9, 11.9Hz), 4.04 (ddd, 1H, J = 5.9, 6.9, 11.9Hz), 2.16 (s, 3H), 2.15 (s, 3H), 2.13 ( s, 3H), 2.08 (s, 3H)

(4)CDP−リビトール テトラアセテートの合成

Figure 2021161092
1,2,3,4−テトラ−O−アセチル−D−リビトール 5−ホスフェート(1.11g)を脱水DMFに溶解し、トリエチルアミン(0.69mL)を加えて減圧濃縮した。得られた残渣に脱水DMFを加えて減圧濃縮する操作を2回繰り返した。アルゴン雰囲気下、得られた残渣を脱水ピリジンに溶解し、トリエチルアミン(0.69mL)を加えた(A液)。1H−テトラゾール(0.27g)と、別途調製したシチジン 5’−モノホスフェート モルフォリデート(定法によりシチジン 5’−モノホスフェートから調製が可能)(1.89g)をそれぞれ別の容器Bと容器Cに入れ、脱水DMFを加えて減圧濃縮する操作を2回繰り返した。それぞれ得られた残渣をアルゴン雰囲気下で脱水ピリジンに溶解した(順にB液およびC液)。続いてアルゴン雰囲気下でA液に対してB液とC液を順次加えた。溶媒量は合計で約20mLであった。アルゴン雰囲気下、室温で5日間攪拌した。反応混合物を減圧濃縮した。得られた残渣に脱水DMFを加えて再度減圧濃縮した。残渣を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥、およびイオン交換樹脂に通すことにより、白色粉末として目的化合物の2Na塩を得た(収量:548mg,収率:28%)。
1H−NMR(400MHz,D2O):δ8.00(d,1H,J=7.3Hz),6.12(d,1H,J=7.3Hz),5.97(d,1H,J=4.1Hz),5.36(dd,1H,J=5.5,5.5Hz),5.31−5.26(m,2H),4.40(dd,1H,J=3.2,12.4Hz),4.35−4.23(m,5H),4.20−4.15(m,2H),4.06(m,1H),2.129(s,3H),2.118(s,3H),2.118(s,3H),2.071(s,3H)
ESI−MSスペクトル(negative mode) C22323192:[M−H]-,calcd:704.11,found:704.0 (4) Synthesis of CDP-ribitol tetraacetate
Figure 2021161092
1,2,3,4-Tetra-O-acetyl-D-ribitol 5-phosphate (1.11 g) was dissolved in dehydrated DMF, triethylamine (0.69 mL) was added, and the mixture was concentrated under reduced pressure. The operation of adding dehydrated DMF to the obtained residue and concentrating under reduced pressure was repeated twice. The obtained residue was dissolved in dehydrated pyridine under an argon atmosphere, and triethylamine (0.69 mL) was added (Liquid A). Separate container B and container C for 1H-tetrazole (0.27 g) and separately prepared cytidine 5'-monophosphate morpholidate (which can be prepared from cytidine 5'-monophosphate by a conventional method) (1.89 g), respectively. The operation of adding dehydrated DMF and concentrating under reduced pressure was repeated twice. The obtained residues were dissolved in dehydrated pyridine under an argon atmosphere (solutions B and C in that order). Subsequently, liquid B and liquid C were sequentially added to liquid A under an argon atmosphere. The total amount of solvent was about 20 mL. The mixture was stirred at room temperature for 5 days under an argon atmosphere. The reaction mixture was concentrated under reduced pressure. Dehydrated DMF was added to the obtained residue, and the mixture was concentrated again under reduced pressure. The residue was purified by reverse phase HPLC. The desired fraction was collected, lyophilized and passed through an ion exchange resin to obtain a 2Na salt of the target compound as a white powder (yield: 548 mg, yield: 28%).
1 1 H-NMR (400 MHz, D 2 O): δ8.00 (d, 1H, J = 7.3 Hz), 6.12 (d, 1H, J = 7.3 Hz), 5.97 (d, 1H, J = 4.1Hz), 5.36 (dd, 1H, J = 5.5, 5.5Hz), 5.31-5.26 (m, 2H), 4.40 (dd, 1H, J = 3) .2,12.4Hz), 4.35-4.23 (m, 5H), 4.20-4.15 (m, 2H), 4.06 (m, 1H), 2.129 (s, 3H) ), 2.118 (s, 3H), 2.118 (s, 3H), 2.071 (s, 3H)
ESI-MS spectrum (negative mode) C 22 H 32 N 3 O 19 P 2 : [MH] - , calcd: 704.11, found: 704.0

実施例3: CDP−リビトール ヘキサアセテートの合成

Figure 2021161092
CDP−リビトール テトラアセテート(250mg)を水(3.34mL)に溶解し、1−アセチルイミダゾール(368mg)を加えて室温で攪拌した。その後、4回に分けて1−アセチルイミダゾール(合計で626mg)を追加した。反応開始から約4時間後に反応混合物を水で希釈して、逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥、およびイオン交換樹脂に通すことにより、白色粉末である目的化合物の2Na塩を得た(収量:228mg,収率:75%)。
1H−NMR(400MHz,D2O):δ7.97(d,1H,J=7.3Hz),6.22(d,1H,J=5.5Hz),6.16(d,1H,J=7.3Hz),5.46(dd,1H,J=4.1,5.5Hz),5.41(dd,1H,J=5.5,5.5Hz),5.36(dd,1H,J=5.5,5.5Hz),5.31−5.26(m,2H),4.52(m,1H),4.41(dd,1H,J=3.2,12.4Hz),4.31−4.26(m,2H),4.20−4.16(m,2H),4.07(m,1H),2.18(s,3H),2.14(s,3H),2.13(s,3H),2.120(s,3H),2.118(s,3H),2.08(s,3H)
ESI−MSスペクトル(negative mode) C26363212:[M−H]-,calcd:788.13,found:788.1 Example 3: Synthesis of CDP-Ribitol Hexaacetate
Figure 2021161092
CDP-ribitol tetraacetate (250 mg) was dissolved in water (3.34 mL), 1-acetylimidazole (368 mg) was added, and the mixture was stirred at room temperature. Then, 1-acetylimidazole (626 mg in total) was added in 4 portions. Approximately 4 hours after the start of the reaction, the reaction mixture was diluted with water and purified by reverse phase HPLC. The desired fractions were collected, lyophilized and passed through an ion exchange resin to give a 2Na salt of the target compound as a white powder (yield: 228 mg, yield: 75%).
1 1 H-NMR (400 MHz, D 2 O): δ7.97 (d, 1H, J = 7.3 Hz), 6.22 (d, 1H, J = 5.5 Hz), 6.16 (d, 1H, J = 7.3Hz), 5.46 (dd, 1H, J = 4.1,5.5Hz), 5.41 (dd, 1H, J = 5.5,5.5Hz), 5.36 (dd) , 1H, J = 5.5, 5.5Hz), 5.31-5.26 (m, 2H), 4.52 (m, 1H), 4.41 (dd, 1H, J = 3.2, 12.4Hz), 4.31-4.26 (m, 2H), 4.20-4.16 (m, 2H), 4.07 (m, 1H), 2.18 (s, 3H), 2 .14 (s, 3H), 2.13 (s, 3H), 2.120 (s, 3H), 2.118 (s, 3H), 2.08 (s, 3H)
ESI-MS spectrum (negative mode) C 26 H 36 N 3 O 21 P 2 : [MH] - , calcd: 788.13, found: 788.1

実施例4: CDP−リビトール テトラブチレートの合成
(1)1,2,3,4−テトラ−O−ブチリル−5−O−トリチル−D−リビトールの合成

Figure 2021161092
参考文献(WO2016/044164)の方法などによりD−リボースから得られる5−O−トリチル−D−リビトール(6.0g)を脱水ピリジン(60mL)に溶解し、4−ジメチルアミノピリジン(0.93g)を加えて氷冷した。これにブタン酸無水物(14.9mL)を加え、続いて脱水クロロホルム(50mL)と脱水ピリジン(60mL)を加えた。反応容器を氷浴からはずして室温で攪拌した。40分後に減圧濃縮し、得られた残渣にジメチルエーテルと水を加えて分液、抽出した。有機層を合わせ、飽和炭酸水素ナトリウム水、水、および飽和食塩水で順次洗浄した後に、無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせて減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。目的のフラクションを集めて減圧濃縮し、得られた残渣にn−ヘキサンを加えて減圧濃縮および乾燥することで、無色油状物として目的化合物を得た(粗収量:6.73g(溶媒及び試薬由来物を含む))。
1H−NMR(400MHz,CDCl3):δ7.40−7.20(m,15H),5.42(dd,1H,J=5.0,5.9Hz),5.34(ddd,1H,J=3.2,5.9,5.9Hz),5.28(ddd,1H,J=3.2,5.0,6.9Hz),4.32(dd,1H,J=3.2,12.4Hz),4.10(dd,1H,J=6.9,12.4Hz),3.29(dd,1H,J=3.2,10.5Hz),3.16(dd,1H,J=5.9,10.5Hz),2.41−2.06(m,8H),1.75−1.46(m,8H),0.976(t,3H,J=7.3Hz),0.910(t,3H,J=7.3Hz),0.905(t,3H,J=7.3Hz),0.873(t,3H,J=7.3Hz) Example 4: Synthesis of CDP-ribitol tetrabutyrate (1) Synthesis of 1,2,3,4-tetra-O-butyryl-5-O-trityl-D-ribitol
Figure 2021161092
5-O-trityl-D-ribitol (6.0 g) obtained from D-ribose by the method of Reference (WO2016 / 044164) is dissolved in dehydrated pyridine (60 mL), and 4-dimethylaminopyridine (0.93 g) is dissolved. ) Was added and ice-cooled. To this was added butanoic anhydride (14.9 mL), followed by dehydrated chloroform (50 mL) and dehydrated pyridine (60 mL). The reaction vessel was removed from the ice bath and stirred at room temperature. After 40 minutes, the mixture was concentrated under reduced pressure, dimethyl ether and water were added to the obtained residue, and the mixture was separated and extracted. The organic layers were combined, washed successively with saturated aqueous sodium hydrogen carbonate, water, and saturated brine, and dried over anhydrous sodium sulfate. This was filtered, and the filtrate and the washing liquid were combined and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography. The desired fraction was collected and concentrated under reduced pressure, n-hexane was added to the obtained residue, concentrated under reduced pressure and dried to obtain the desired compound as a colorless oil (crude yield: 6.73 g (derived from solvent and reagent). (Including things)).
1 1 H-NMR (400 MHz, CDCl 3 ): δ7.40-7.20 (m, 15H), 5.42 (dd, 1H, J = 5.0, 5.9 Hz), 5.34 (ddd, 1H) , J = 3.2,5.9,5.9Hz), 5.28 (ddd, 1H, J = 3.2,5.0, 6.9Hz), 4.32 (dd, 1H, J = 3) .2,12.4Hz), 4.10 (dd, 1H, J = 6.9, 12.4Hz), 3.29 (dd, 1H, J = 3.2, 10.5Hz), 3.16 ( dd, 1H, J = 5.9, 10.5Hz), 2.41-2.06 (m, 8H), 1.75-1.46 (m, 8H), 0.976 (t, 3H, J) = 7.3Hz), 0.910 (t, 3H, J = 7.3Hz), 0.905 (t, 3H, J = 7.3Hz), 0.873 (t, 3H, J = 7.3Hz)

(2)1,2,3,4−テトラ−O−butyryl−D−リビトールの合成

Figure 2021161092
1,2,3,4−テトラ−O−ブチリル−5−O−トリチル−D−リビトール(3.84g)を酢酸(40mL)に溶解し、55℃に加温すると共に水(9mL)を加えた。55℃で3時間攪拌した後に、反応混合物を減圧濃縮した。得られた残渣にジエチルエーテルを加え、飽和炭酸水素ナトリウム水、水および飽和食塩水で順次洗浄した後に、無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせて減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。目的のフラクションを集めて減圧濃縮し、残渣にn−ヘキサンを加えて減圧濃縮、乾燥することで、無色油状物である目的化合物を得た(収量:1.51g,収率:61%)。
1H−NMR(400MHz,CDCl3):δ5.39−5.33(m,2H),5.08(ddd,1H,J=3.7,5.5,5.5Hz),4.39(dd,1H,J=3.2,12.4Hz),4.15(dd,1H,J=6.9,12.4Hz),3.83(dd,1H,J=3.7,12.4Hz),3.68(dd,1H,J=5.5,12.4Hz),2.39−2.25(m,8H),1.73−1.60(m,8H),0.968(t,3H,J=7.3Hz),0.967(t,3H,J=7.3Hz),0.954(t,3H,J=7.3Hz),0.935(t,3H,J=7.3Hz)
ESI−MSスペクトル(positive mode) C21369Na:[M+Na]+,calcd:455.23,found:455.2 (2) Synthesis of 1,2,3,4-tetra-O-butyryl-D-ribitol
Figure 2021161092
Dissolve 1,2,3,4-tetra-O-butyryl-5-O-trityl-D-ribitol (3.84 g) in acetic acid (40 mL), heat to 55 ° C and add water (9 mL). rice field. After stirring at 55 ° C. for 3 hours, the reaction mixture was concentrated under reduced pressure. Diethyl ether was added to the obtained residue, and the mixture was washed successively with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. This was filtered, and the filtrate and the washing liquid were combined and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography. The target fraction was collected and concentrated under reduced pressure, n-hexane was added to the residue, concentrated under reduced pressure, and dried to obtain the target compound as a colorless oil (yield: 1.51 g, yield: 61%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ5.39-5.33 (m, 2H), 5.08 (ddd, 1H, J = 3.7, 5.5, 5.5 Hz), 4.39 (Dd, 1H, J = 3.2, 12.4Hz), 4.15 (dd, 1H, J = 6.9, 12.4Hz), 3.83 (dd, 1H, J = 3.7, 12) .4Hz), 3.68 (dd, 1H, J = 5.5, 12.4Hz), 2.39-2.25 (m, 8H), 1.73-1.60 (m, 8H), 0 .968 (t, 3H, J = 7.3Hz), 0.967 (t, 3H, J = 7.3Hz), 0.954 (t, 3H, J = 7.3Hz), 0.935 (t, 3H, J = 7.3Hz)
ESI-MS spectrum (positive mode) C 21 H 36 O 9 Na: [M + Na] + , calcd: 455.23, found: 455.2

(3)1,2,3,4−テトラ−O−ブチリル−D−リビトール 5−ホスフェートの合成

Figure 2021161092
1,2,3,4−テトラ−O−ブチリル−D−リビトール(1.51g)を脱水THF(30mL)に溶解し、−10℃以下に冷却した。これにジイソプロピルエチルアミン(4.86mL)とPOCl3(2.27mL)を順次加えて40分間攪拌した。反応混合物を−78℃に冷却し、水(20mL)を徐々に加えた。室温で飽和炭酸水素ナトリウム水溶液を加えて中和後に減圧濃縮により液量を減じ、残渣(水層)をn−ヘキサンで2回洗浄し、ジエチルエーテル(150mL)を加えて氷冷、攪拌した。6M塩酸(14mL)を加えてpHを1〜2に調整した後に分液した。分離した水層にジエチルエーテルを加えて抽出し、有機層を合わせた。これを水と飽和食塩水で順次洗浄後に、無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせ、トリエチルアミン(0.48mL)を加えて減圧濃縮、乾燥することで、無色油状物である目的化合物を得た(粗収量:1.95g(トリエチルアミンを含む))。
1H−NMR(400 MHz,D2O):δ5.44(dd,1H,J=5.5,5.5Hz),5.37(ddd,1H,J=2.7,5.9,5.9Hz),5.31(m,1H),4.51(dd,1H,J=2.7,12.4Hz),4.30(dd,1H,J=5.9,12.4Hz),4.10(ddd,1H,J=3.2,5.5,11.4Hz),3.98(ddd,1H,J=6.4,6.4,11.4Hz),2.45−2.33(m,8H),1.69−1.55(m,8H),0.936(t,3H,J=7.3Hz),0.929(t,3H,J=7.3Hz),0.923(t,3H,J=7.3Hz),0.900(t,3H,J=7.3Hz)
ESI−MSスペクトル(negative mode) C213612P:[M−H]-,calcd:511.19,found:511.2 (3) Synthesis of 1,2,3,4-tetra-O-butyryl-D-ribitol 5-phosphate
Figure 2021161092
1,2,3,4-tetra-O-butyryl-D-ribitol (1.51 g) was dissolved in dehydrated THF (30 mL) and cooled to −10 ° C. or lower. Diisopropylethylamine (4.86 mL) and POCl 3 (2.27 mL) were sequentially added thereto, and the mixture was stirred for 40 minutes. The reaction mixture was cooled to −78 ° C. and water (20 mL) was added slowly. After neutralization by adding saturated aqueous sodium hydrogen carbonate solution at room temperature, the amount of the liquid was reduced by concentration under reduced pressure, the residue (aqueous layer) was washed twice with n-hexane, diethyl ether (150 mL) was added, and the mixture was ice-cooled and stirred. The pH was adjusted to 1 to 2 by adding 6M hydrochloric acid (14 mL), and then the liquid was separated. Diethyl ether was added to the separated aqueous layer for extraction, and the organic layers were combined. This was washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. This was filtered, the filtrate and the washing solution were combined, triethylamine (0.48 mL) was added, concentrated under reduced pressure, and dried to obtain the target compound as a colorless oil (crude yield: 1.95 g (including triethylamine)). ).
1 1 H-NMR (400 MHz, D 2 O): δ5.44 (dd, 1H, J = 5.5, 5.5 Hz), 5.37 (ddd, 1H, J = 2.7, 5.9, 5.9Hz), 5.31 (m, 1H), 4.51 (dd, 1H, J = 2.7, 12.4Hz), 4.30 (dd, 1H, J = 5.9, 12.4Hz) ), 4.10 (ddd, 1H, J = 3.2,5.5,11.4Hz), 3.98 (ddd, 1H, J = 6.4,6.4,11.4Hz), 2. 45-2.33 (m, 8H), 1.69-1.55 (m, 8H), 0.936 (t, 3H, J = 7.3Hz), 0.929 (t, 3H, J = 7) .3Hz), 0.923 (t, 3H, J = 7.3Hz), 0.900 (t, 3H, J = 7.3Hz)
ESI-MS spectrum (negative mode) C 21 H 36 O 12 P: [MH] - , calcd: 511.19, found: 511.2

(4)CDP−リビトール テトラブチレートの合成

Figure 2021161092
1,2,3,4−テトラ−O−ブチリル−D−リビトール 5−ホスフェート(1.95g)を脱水DMFに溶解し、減圧濃縮した。得られた残渣に脱水DMFを加えて減圧濃縮した。得られた残渣をアルゴン雰囲気下で脱水ピリジンに溶解した(A液)。これとは別に、1H−テトラゾール(0.38g)、および別途調製したシチジン 5’−モノホスフェート ホルホリン塩(定法によりシチジン 5’−モノホスフェートから調製が可能)(2.63g)をそれぞれ別の容器Bと容器Cに入れ、同じく脱水DMFを加えて減圧濃縮する操作を2回繰り返し、それぞれ得られた残渣をアルゴン雰囲気下で脱水ピリジンに溶解した(順にB液とC液)。続いてアルゴン雰囲気下でA液に対してB液とC液を順次加えた。更に脱水DMF(5mL)を加え、アルゴン雰囲気下、室温で19時間攪拌した。脱水DMFを加えて減圧濃縮する操作を2回繰り返して得られたシチジン 5’−モノホスフェート モルフォリデート(0.44g)を脱水DMF(5mL)に溶解して反応混合物に加え、アルゴン雰囲気下室温で終夜攪拌した。減圧濃縮により得られた残渣を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥により得られた1.12gのうちの0.87gをイオン交換樹脂に通すことにより、白色粉末である目的化合物の2Na塩を得た(収量:710mg,収率:47%)。
1H−NMR(400MHz,D2O):δ8.02(d,1H,J=7.3Hz),6.13(d,1H,J=7.3Hz),5.96(d,1H,J=3.7Hz),5.39(dd,1H,J=4.6,5.9Hz),5.31(m,2H),4.48(dd,1H,J=2.7,12.4Hz),4.33−4.15(m,7H),4.05(ddd,1H,J=6.4,6.4,11.4Hz),2.40−2.32(m,8H),1.65−1.54(m,8H),0.91(br.t,3H+3H+3H,J=7.3Hz),0.89(t,3H,J=7.3Hz)
ESI−MSスペクトル(negative mode) C30483192:[M−H]-,calcd:816.24,found:816.2 (4) Synthesis of CDP-ribitol tetrabutyrate
Figure 2021161092
1,2,3,4-tetra-O-butyryl-D-ribitol 5-phosphate (1.95 g) was dissolved in dehydrated DMF and concentrated under reduced pressure. Dehydrated DMF was added to the obtained residue and concentrated under reduced pressure. The obtained residue was dissolved in dehydrated pyridine under an argon atmosphere (Liquid A). Separately, 1H-tetrazole (0.38 g) and separately prepared cytidine 5'-monophosphate forphorin salt (which can be prepared from cytidine 5'-monophosphate by a conventional method) (2.63 g) are placed in separate containers. The operation of placing B and container C in the same manner, adding dehydrated DMF and concentrating under reduced pressure was repeated twice, and the obtained residues were dissolved in dehydrated pyridine under an argon atmosphere (solutions B and C in that order). Subsequently, liquid B and liquid C were sequentially added to liquid A under an argon atmosphere. Further, dehydrated DMF (5 mL) was added, and the mixture was stirred at room temperature for 19 hours under an argon atmosphere. Cytidine 5'-monophosphate morpholidate (0.44 g) obtained by repeating the operation of adding dehydrated DMF and concentrating under reduced pressure twice was dissolved in dehydrated DMF (5 mL), added to the reaction mixture, and added to the reaction mixture at room temperature under an argon atmosphere. Stirred overnight. The residue obtained by concentration under reduced pressure was purified by reverse phase HPLC. The target fraction was collected and 0.87 g of 1.12 g obtained by freeze-drying was passed through an ion exchange resin to obtain a 2Na salt of the target compound as a white powder (yield: 710 mg, yield:). 47%).
1 1 H-NMR (400 MHz, D 2 O): δ8.02 (d, 1H, J = 7.3 Hz), 6.13 (d, 1H, J = 7.3 Hz), 5.96 (d, 1H, J = 3.7Hz), 5.39 (dd, 1H, J = 4.6, 5.9Hz), 5.31 (m, 2H), 4.48 (dd, 1H, J = 2.7, 12) .4Hz), 4.33-4.15 (m, 7H), 4.05 (ddd, 1H, J = 6.4,6.4,11.4Hz), 2.40-2.32 (m, 8H), 1.65-1.54 (m, 8H), 0.91 (br.t, 3H + 3H + 3H, J = 7.3Hz), 0.89 (t, 3H, J = 7.3Hz)
ESI-MS spectrum (negative mode) C 30 H 48 N 3 O 19 P 2 : [MH] - , calcd: 816.24, found: 816.2

実施例5: CDP−リビトール テトラブチレート,ジアセテートの合成

Figure 2021161092
CDP−リビトール テトラブチレート(257mg)を水(15mL)に溶解し、トリエチルアミン(10μL)を加えてpHを7〜8に調整した。これに1−アセチルイミダゾール(277mg)を加えて室温で攪拌した。その後、8回に分けて1−アセチルイミダゾール(合計で2.22g)を追加した。反応開始から約7時間後に反応混合物が入った容器を約6℃の低温下で終夜(約16時間)保管した。翌日、反応混合物を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥、およびイオン交換樹脂に通すことにより、白色粉末である目的化合物の2Na塩を得た(収量:126mg,収率:52%)。
1H−NMR(400MHz,D2O):δ7.99(d,1H,J=7.3Hz),6.21(d,1H,J=5.5Hz),6.16(d,1H,J=7.3Hz),5.45(dd,1H,J=4.1,5.0Hz),5.41−5.37(m,2H),5.32−5.29(m,2H),4.51(m,1H),4.47(dd,1H,J=2.3,12.4Hz),4.31−4.15(m,4H),4.05(ddd,1H,J=5.9,5.9,11.9Hz),2.41−2.32(m,8H),2.17(s,3H),2.12(s,3H),1.65−1.54(m,8H),0.91(br.t,3H+3H+3H,J=7.3Hz),0.89(t,3H,J=7.3Hz)
ESI−MSスペクトル(negative mode) C34523212:[M−H]-,calcd:900.26,found:900.3 Example 5: Synthesis of CDP-ribitol tetrabutyrate, diacetate
Figure 2021161092
CDP-ribitol tetrabutyrate (257 mg) was dissolved in water (15 mL) and triethylamine (10 μL) was added to adjust the pH to 7-8. 1-Acetylimidazole (277 mg) was added thereto, and the mixture was stirred at room temperature. Then, 1-acetylimidazole (2.22 g in total) was added in 8 portions. Approximately 7 hours after the start of the reaction, the container containing the reaction mixture was stored overnight (about 16 hours) at a low temperature of about 6 ° C. The next day, the reaction mixture was purified by reverse phase HPLC. The desired fractions were collected, lyophilized and passed through an ion exchange resin to give a 2Na salt of the target compound as a white powder (yield: 126 mg, yield: 52%).
1 1 H-NMR (400 MHz, D 2 O): δ7.99 (d, 1H, J = 7.3 Hz), 6.21 (d, 1H, J = 5.5 Hz), 6.16 (d, 1H, J = 7.3Hz), 5.45 (dd, 1H, J = 4.1,5.0Hz), 5.41-5.37 (m, 2H), 5.32-5.29 (m, 2H) ), 4.51 (m, 1H), 4.47 (dd, 1H, J = 2.3, 12.4Hz), 4.31-4.15 (m, 4H), 4.05 (ddd, 1H) , J = 5.9, 5.9, 11.9Hz), 2.41-2.32 (m, 8H), 2.17 (s, 3H), 2.12 (s, 3H), 1.65 -1.54 (m, 8H), 0.91 (br.t, 3H + 3H + 3H, J = 7.3Hz), 0.89 (t, 3H, J = 7.3Hz)
ESI-MS spectrum (negative mode) C 34 H 52 N 3 O 21 P 2 : [MH] - , calcd: 900.26, found: 900.3

実施例6: CDP−リビトール ヘキサブチレートの合成

Figure 2021161092
CDP−リビトール テトラブチレートを水(20mL)に溶解し、トリエチルアミン(10μL)を加えてpHを7〜8に調整した。これに別途調製した1−ブチリルイミダゾール(0.39mL)を加えて室温で攪拌した。その後、6回に分けて1−ブチリルイミダゾール(合計で1.35mL)を追加した。反応開始から約6時間後に反応混合物が入った容器を約13℃の低温下で終夜(約15時間)保管した。翌日、反応混合物を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥、およびイオン交換樹脂に通すことにより、白色粉末である目的化合物の2Na塩を得た(収量:89mg,収率:36%)。
1H−NMR(400MHz,D2O):δ7.99(d,1H,J=7.8Hz),6.21(d,1H,J=5.9Hz),6.16(d,1H,J=7.8Hz),5.48(m,1H),5.42(m,1H),5.38(m,1H),5.34−5.28(m,2H),4.50−4.45(m,2H),4.30−4.24(m,2H),4.21−4.15(m,2H),4.05(ddd,1H,J=5.9,5.9,11.9Hz),2.45(t,2H,J=7.3Hz),2.40−2.32(m,10H),1.70−1.54(m,12H),0.97−0.86(m,18H)
ESI−MSスペクトル(negative mode) C38603212:[M−H]-,calcd:956.32,found:956.3 Example 6: Synthesis of CDP-Ribitol Hexabutyrate
Figure 2021161092
CDP-ribitol tetrabutyrate was dissolved in water (20 mL) and triethylamine (10 μL) was added to adjust the pH to 7-8. To this, 1-butyryl imidazole (0.39 mL) prepared separately was added, and the mixture was stirred at room temperature. Then, 1-butyrylimidazole (1.35 mL in total) was added in 6 portions. Approximately 6 hours after the start of the reaction, the container containing the reaction mixture was stored overnight (about 15 hours) at a low temperature of about 13 ° C. The next day, the reaction mixture was purified by reverse phase HPLC. The desired fractions were collected, lyophilized and passed through an ion exchange resin to give a 2Na salt of the target compound as a white powder (yield: 89 mg, yield: 36%).
1 1 H-NMR (400 MHz, D 2 O): δ7.99 (d, 1H, J = 7.8 Hz), 6.21 (d, 1H, J = 5.9 Hz), 6.16 (d, 1H, J = 7.8Hz), 5.48 (m, 1H), 5.42 (m, 1H), 5.38 (m, 1H), 5.34-5.28 (m, 2H), 4.50 -4.45 (m, 2H), 4.30-4.24 (m, 2H), 4.21-4.15 (m, 2H), 4.05 (ddd, 1H, J = 5.9, 5.9, 11.9Hz), 2.45 (t, 2H, J = 7.3Hz), 2.40-2.32 (m, 10H), 1.70-1.54 (m, 12H), 0.97-0.86 (m, 18H)
ESI-MS spectrum (negative mode) C 38 H 60 N 3 O 21 P 2 : [MH] - , calcd: 956.32, found: 956.3

実施例7: CDP−リビトール テトライソブチレート,ジアセテートの合成
(1)1,2,3,4−テトラ−O−イソブチリル−5−O−トリチル−D−リビトールの合成

Figure 2021161092
D−リボースから誘導した5−O−トリチル−D−リビトール(1.76g,4.46mmol)を脱水ピリジン(18mL)に溶解し、N,N−4−ジメチルアミノピリジン(545mg,4.46mmol)を加えて氷冷した。これにイソブタン酸無水物(4.46mL,26.8mmol)を加え、反応容器を氷浴からはずして室温で攪拌した。1時間30分後にN,N−ジメチル−1,3−プロパンジアミン(1.39mL,11.15mmol)を加えて未反応のイソブタン酸無水物を分解させた後に減圧濃縮した。得られた残渣にn−ヘキサン−酢酸エチル(2:1)の混合溶媒を加え、水、1M塩酸、水、飽和炭酸水素ナトリウム水、水、および飽和食塩水で順次洗浄した後に、無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせて減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。目的のフラクションを集めて減圧濃縮、乾燥することで、無色油状物である目的化合物を得た(収量:1.89g,収率:63%)。
1H−NMR(400MHz,CDCl3):δ7.40−7.20(m,15H),5.40(dd,1H,J=5.5,5.5Hz),5.37(ddd,1H,J=3.2,5.9,5.9Hz),5.26(ddd,1H,J=2.8,5.0,7.3Hz),4.31(dd,1H,J=3.2,11.9Hz),4.11(dd,1H,J=7.3,11.9Hz),3.29(dd,1H,J=3.2,10.5Hz),3.19(dd,1H,J=6.4,10.5Hz),2.64(qq,1H,J=6.9,6.9Hz),2.50(qq,1H,J=6.9,6.9Hz),2.44−2.33(m,2H),1.24(d,3H,J=6.9Hz),1.22(d,3H,J=6.9Hz),1.12(d,3H,J=7.3Hz),1.11(d,3H,J=7.3Hz),1.09(d,3H,J=7.3Hz),1.08(d,3H,J=6.9Hz),1.04(d,3H,J=6.9Hz),1.01(d,3H,J=7.3Hz)
ESI−MSスペクトル(positive mode) C40509Na:[M+Na]+,calcd:697.34,found:697.3 Example 7: Synthesis of CDP-ribitol tetraisobutyrate and diacetate (1) Synthesis of 1,2,3,4-tetra-O-isobutyryl-5-O-trityl-D-ribitol
Figure 2021161092
5-O-trityl-D-ribitol (1.76 g, 4.46 mmol) derived from D-ribose was dissolved in dehydrated pyridine (18 mL) and N, N-4-dimethylaminopyridine (545 mg, 4.46 mmol). Was added and ice-cooled. Isobutane anhydride (4.46 mL, 26.8 mmol) was added thereto, and the reaction vessel was removed from the ice bath and stirred at room temperature. After 1 hour and 30 minutes, N, N-dimethyl-1,3-propanediamine (1.39 mL, 11.15 mmol) was added to decompose the unreacted isobutane anhydride, and then the mixture was concentrated under reduced pressure. A mixed solvent of n-hexane-ethyl acetate (2: 1) was added to the obtained residue, and the mixture was washed successively with water, 1M hydrochloric acid, water, saturated aqueous sodium hydrogen carbonate water, water, and saturated brine, and then anhydrous sodium sulfate. It was dried with. This was filtered, and the filtrate and the washing liquid were combined and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography. The desired fraction was collected, concentrated under reduced pressure, and dried to obtain the desired compound as a colorless oil (yield: 1.89 g, yield: 63%).
1 H-NMR (400MHz, CDCl 3 ): δ7.40-7.20 (m, 15H), 5.40 (dd, 1H, J = 5.5, 5.5Hz), 5.37 (ddd, 1H) , J = 3.2, 5.9, 5.9Hz), 5.26 (ddd, 1H, J = 2.8, 5.0, 7.3Hz), 4.31 (dd, 1H, J = 3) .2, 11.9Hz), 4.11 (dd, 1H, J = 7.3, 11.9Hz), 3.29 (dd, 1H, J = 3.2, 10.5Hz), 3.19 ( dd, 1H, J = 6.4, 10.5Hz), 2.64 (qq, 1H, J = 6.9, 6.9Hz), 2.50 (qq, 1H, J = 6.9, 6. 9Hz), 2.44-2.33 (m, 2H), 1.24 (d, 3H, J = 6.9Hz), 1.22 (d, 3H, J = 6.9Hz), 1.12 ( d, 3H, J = 7.3Hz), 1.11 (d, 3H, J = 7.3Hz), 1.09 (d, 3H, J = 7.3Hz), 1.08 (d, 3H, J) = 6.9Hz), 1.04 (d, 3H, J = 6.9Hz), 1.01 (d, 3H, J = 7.3Hz)
ESI-MS spectrum (positive mode) C 40 H 50 O 9 Na: [M + Na] + , calcd: 697.34, found: 697.3

(2)1,2,3,4−テトラ−O−イソブチリル−D−リビトールの合成

Figure 2021161092
1,2,3,4−テトラ−O−イソブチリル−5−O−トリチル−D−リビトール(1.42g,2.10mmol)に90%ギ酸水(15mL)を加え、さらにメタノール(2mL)を加えて均一な溶液として室温で攪拌した。20分後に反応混合物を減圧濃縮した。得られた残渣をn−ヘキサン:酢酸エチル=1:1の混合溶媒に溶解し、飽和炭酸水素ナトリウム水、水、および飽和食塩水で順次洗浄した後に、無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせて減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。目的のフラクションを集めて減圧濃縮、乾燥することで、目的化合物を得た(収量:604mg,収率:67%)。
1H−NMR(400MHz,CDCl3):δ5.39−5.34(m,2H),5.07(ddd,1H,J=3.7,5.5,5.5Hz),4.40(dd,1H,J=2.7,12.4Hz),4.16(dd,1H,J=6.9,12.4Hz),3.84(ddd,1H,J=3.7,7.3,12.4Hz),3.68(ddd,1H,J=5.5,5.5,12.4Hz),2.68−2.48(m,4H),2.07(dd,1H,J=6.0,7.3Hz),1.22−1.16(m,18H),1.15(d,3H,J=7.3Hz),1.14(d,3H,J=6.9Hz)
ESI−MSスペクトル(positive mode) C21369Na:[M+Na]+,calcd:455.23,found:455.2 (2) Synthesis of 1,2,3,4-tetra-O-isobutyryl-D-ribitol
Figure 2021161092
Add 90% formic acid water (15 mL) to 1,2,3,4-tetra-O-isobutyryl-5-O-trityl-D-ribitol (1.42 g, 2.10 mmol), and then add methanol (2 mL). The mixture was stirred at room temperature as a uniform solution. After 20 minutes, the reaction mixture was concentrated under reduced pressure. The obtained residue was dissolved in a mixed solvent of n-hexane: ethyl acetate = 1: 1 and washed successively with saturated aqueous sodium hydrogen carbonate solution, water and saturated brine, and then dried over anhydrous sodium sulfate. This was filtered, and the filtrate and the washing liquid were combined and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography. The target compound was collected, concentrated under reduced pressure, and dried to obtain the target compound (yield: 604 mg, yield: 67%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ5.39-5.34 (m, 2H), 5.07 (ddd, 1H, J = 3.7, 5.5, 5.5 Hz), 4.40 (Dd, 1H, J = 2.7, 12.4Hz), 4.16 (dd, 1H, J = 6.9, 12.4Hz), 3.84 (ddd, 1H, J = 3.7, 7) .3, 12.4Hz), 3.68 (ddd, 1H, J = 5.5, 5.5, 12.4Hz), 2.68-2.48 (m, 4H), 2.07 (dd, dd, 1H, J = 6.0, 7.3Hz), 1.22-1.16 (m, 18H), 1.15 (d, 3H, J = 7.3Hz), 1.14 (d, 3H, J) = 6.9Hz)
ESI-MS spectrum (positive mode) C 21 H 36 O 9 Na: [M + Na] + , calcd: 455.23, found: 455.2

(3)1,2,3,4−テトラ−O−イソブチリル−D−リビトール 5−ホスフェートの合成

Figure 2021161092
1,2,3,4−テトラ−O−イソブチリル−D−リビトール(300mg,0.694mmol)を脱水THF(6mL)に溶解し、−10℃以下に冷却した。これにジイソプロピルエチルアミン(944μL,5.55mmol)とPOCl3(452μL,4.86mmol)を順次加えて2時間攪拌した。反応混合物を−78℃に冷却し、水(計4mL)を加えた。室温で飽和炭酸水素ナトリウム水(計8mL)を加えて中和し、減圧濃縮によりTHFをほぼ留去する際には、途中で飽和炭酸水素ナトリウム水を加えてpHを中性にした。得られた残渣(水層)をn−ヘキサンで洗浄した後に、6M塩酸を加えてpHを1〜2に調整した後に、ジエチルエーテルを加えて分液した。分離した水層にジエチルエーテルを加えて抽出し、有機層を合わせた。水および飽和食塩水で順次洗浄後に無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせ、トリエチルアミンを加えて減圧濃縮、乾燥することで、無色油状物である目的化合物を得た(収量:324mg,収率:91%)。
1H−NMR(400MHz,D2O):δ5.45(dd,1H,J=5.0,5.9Hz),5.37(ddd,1H,J=2.8,6.0,6.0Hz),5.30(ddd,1H,J=3.7,4.6,6.9Hz),4.52(dd,1H,J=2.8,12.4Hz),4.30(dd,1H,J=6.0,12.4Hz),4.13(ddd,1H,J=3.2,5.5,11.4Hz),4.00(ddd,1H,J=6.4,6.4,11.4Hz),2.76−2.62(m,3H),2.61(qq,1H,J=6.9,6.9Hz),1.19−1.15(m,18H),1.13(d,3H,J=7.3Hz),1.12(d,3H,J=6.9Hz)
ESI−MSスペクトル(negative mode) C213612P:[M−H]-,calcd:511.19,found:511.2 (3) Synthesis of 1,2,3,4-tetra-O-isobutyryl-D-ribitol 5-phosphate
Figure 2021161092
1,2,3,4-Tetra-O-isobutyryl-D-ribitol (300 mg, 0.694 mmol) was dissolved in dehydrated THF (6 mL) and cooled to −10 ° C. or lower. To this, diisopropylethylamine (944 μL, 5.55 mmol) and POCl 3 (452 μL, 4.86 mmol) were sequentially added, and the mixture was stirred for 2 hours. The reaction mixture was cooled to −78 ° C. and water (4 mL total) was added. Saturated sodium hydrogen carbonate water (8 mL in total) was added at room temperature for neutralization, and when THF was substantially distilled off by concentration under reduced pressure, saturated sodium hydrogen carbonate water was added on the way to neutralize the pH. The obtained residue (aqueous layer) was washed with n-hexane, and then 6M hydrochloric acid was added to adjust the pH to 1-2, and then diethyl ether was added to separate the liquids. Diethyl ether was added to the separated aqueous layer for extraction, and the organic layers were combined. After washing sequentially with water and saturated brine, the mixture was dried over anhydrous sodium sulfate. This was filtered, the filtrate and the washing liquid were combined, triethylamine was added, concentrated under reduced pressure, and dried to obtain the target compound as a colorless oil (yield: 324 mg, yield: 91%).
1 1 H-NMR (400 MHz, D 2 O): δ5.45 (dd, 1H, J = 5.0, 5.9 Hz), 5.37 (ddd, 1H, J = 2.8, 6.0, 6) .0Hz), 5.30 (ddd, 1H, J = 3.7, 4.6, 6.9Hz), 4.52 (dd, 1H, J = 2.8, 12.4Hz), 4.30 ( dd, 1H, J = 6.0, 12.4Hz), 4.13 (ddd, 1H, J = 3.2,5.5,11.4Hz), 4.00 (ddd, 1H, J = 6. 4,6.4,11.4Hz), 2.76-2.62 (m, 3H), 2.61 (qq, 1H, J = 6.9, 6.9Hz), 1.19-1.15 (M, 18H), 1.13 (d, 3H, J = 7.3Hz), 1.12 (d, 3H, J = 6.9Hz)
ESI-MS spectrum (negative mode) C 21 H 36 O 12 P: [MH] - , calcd: 511.19, found: 511.2

(4)CDP−リビトール テトライソブチレート,ジアセテートの合成

Figure 2021161092
1,2,3,4−テトラ−O−イソブチリル−D−リビトール 5−ホスフェート(319mg,0.622mmol)を脱水ピリジンに溶解し、減圧濃縮する操作を3回繰り返した。得られた残渣をアルゴン雰囲気下で脱水ピリジンに溶解した(A液)。これとは別に、1H−テトラゾール(96.0mg,1.37mmol)と、別途調製した2’,3’−ジ−O−アセチル−シチジン 5’−モノホスフェート モルフォリデート(定法によりシチジン5’−モノホスフェートから調製が可能)(444mg,0.933mmol)をそれぞれ別の容器Bと容器Cに入れ、同じく脱水ピリジンを加えて減圧濃縮する操作を3回繰り返し、それぞれ得られた残渣をアルゴン雰囲気下で脱水ピリジンに溶解した(順にB液とC液)。続いてアルゴン雰囲気下でA液に対してB液とC液を順次加えた。アルゴン雰囲気下、室温で終夜攪拌した。減圧濃縮により得られた残渣に脱水DMFを加えて減圧濃縮した。得られた残渣を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥、およびイオン交換樹脂に通すことにより、白色粉末である目的化合物の2Na塩を得た(収量:271mg,収率:46%)。
1H−NMR(400MHz,D2O):δ8.00(d,1H,J=7.8Hz),6.20(d,1H,J=5.5Hz),6.16(d,1H,J=7.3Hz),5.44(dd,1H,J=4.6,5.5Hz),5.41−5.37(m,2H),5.31−5.26(m,2H),4.52−4.46(m,2H),4.30−4.13(m,4H),4.06(ddd,1H,J=6.9,6.9,11.4Hz),2.68−2.54(m,4H),2.16(s,3H),2.11(s,3H),1.15−1.12(m,18H),1.11(d,3H,J=6.9Hz),1.10(d,3H,J=6.9Hz)
ESI−MSスペクトル(negative mode) C34523212:[M−H]-,calcd:900.26,found:900.2 (4) Synthesis of CDP-ribitol tetraisobutyrate and diacetate
Figure 2021161092
The operation of dissolving 1,2,3,4-tetra-O-isobutyryl-D-ribitol 5-phosphate (319 mg, 0.622 mmol) in dehydrated pyridine and concentrating under reduced pressure was repeated three times. The obtained residue was dissolved in dehydrated pyridine under an argon atmosphere (Liquid A). Separately, 1H-tetrazole (96.0 mg, 1.37 mmol) and 2', 3'-di-O-acetyl-cytidine 5'-monophosphate morpholidate prepared separately (cytidine 5'-by the conventional method). (Can be prepared from monophosphate) (444 mg, 0.933 mmol) was placed in separate containers B and C, respectively, and the operation of adding dehydrated pyridine and concentrating under reduced pressure was repeated three times, and the obtained residues were subjected to an argon atmosphere. Dissolved in dehydrated pyridine (solutions B and C in that order). Subsequently, liquid B and liquid C were sequentially added to liquid A under an argon atmosphere. The mixture was stirred overnight at room temperature under an argon atmosphere. Dehydrated DMF was added to the residue obtained by concentration under reduced pressure, and the mixture was concentrated under reduced pressure. The obtained residue was purified by reverse phase HPLC. The desired fractions were collected, lyophilized and passed through an ion exchange resin to give a 2Na salt of the target compound as a white powder (yield: 271 mg, yield: 46%).
1 1 H-NMR (400 MHz, D 2 O): δ8.00 (d, 1H, J = 7.8 Hz), 6.20 (d, 1H, J = 5.5 Hz), 6.16 (d, 1H, J = 7.3Hz), 5.44 (dd, 1H, J = 4.6, 5.5Hz), 5.41-5.37 (m, 2H), 5.31-5.26 (m, 2H) ), 4.52-4.46 (m, 2H), 4.30-4.13 (m, 4H), 4.06 (ddd, 1H, J = 6.9, 6.9, 11.4Hz) , 2.68-2.54 (m, 4H), 2.16 (s, 3H), 2.11 (s, 3H), 1.15-1.12 (m, 18H), 1.11 (d) , 3H, J = 6.9Hz), 1.10 (d, 3H, J = 6.9Hz)
ESI-MS spectrum (negative mode) C 34 H 52 N 3 O 21 P 2 : [MH] - , calcd: 900.26, found: 900.2

実施例8: CDP−リビトール テトラメトキシカルボニル,ジアセテート
(1)1,2,3,4−テトラ−O−メトキシカルボニル−5−O−トリチル−D−リビトールの合成

Figure 2021161092
D−リボースから誘導した5−O−トリチル−D−リビトール(1.50g,3.80mmol)を脱水クロロホルム(15mL)に溶解し、N,N−4−ジメチルアミノピリジン(2.79g,22.8mmol)を加えて氷冷した。これにクロロギ酸メチル(1.75mL,22.8mmol)を加え、反応容器を氷浴からはずして室温で攪拌した。2時間30分後にクロロギ酸メチル(0.292mL,3.80mmol)を追加し、更に1時間室温で攪拌した。1M塩酸、水および飽和食塩水で順次洗浄した後に、無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせて減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。目的のフラクションを集めて減圧濃縮、乾燥することで、無色油状物である目的化合物を得た(収量:1.22g,収率:51%)。
1H−NMR(400MHz,CDCl3):δ7.43−7.20(m,15H),5.35(dd,1H,J=4.1,5.9Hz),5.22(ddd,1H,J=3.2,3.7,7.3Hz),5.12(ddd,1H,J=3.7,5.5,5.5Hz),4.49(dd,1H,J=3.2,12.4Hz),4.26(dd,1H,J=6.9,12.4Hz),3.82(s,3H),3.77(s,3H),3.74(s,3H),3.72(s,3H),3.38(dd,1H,J=3.2,10.5Hz),3.26(dd,1H,J=5.5,10.5Hz)
ESI−MSスペクトル(positive mode) C323413Na:[M+Na]+,calcd:649.19,found:649.2 Example 8: CDP-Ribitol Tetramethoxycarbonyl, Diacetate (1) Synthesis of 1,2,3,4-tetra-O-methoxycarbonyl-5-O-trityl-D-ribitol
Figure 2021161092
5-O-trityl-D-ribitol (1.50 g, 3.80 mmol) derived from D-ribose was dissolved in dehydrated chloroform (15 mL) and N, N-4-dimethylaminopyridine (2.79 g, 22. 8 mmol) was added and ice-cooled. Methyl chloroformate (1.75 mL, 22.8 mmol) was added thereto, and the reaction vessel was removed from the ice bath and stirred at room temperature. After 2 hours and 30 minutes, methyl chloroformate (0.292 mL, 3.80 mmol) was added, and the mixture was further stirred at room temperature for 1 hour. After washing sequentially with 1M hydrochloric acid, water and saturated brine, the mixture was dried over anhydrous sodium sulfate. This was filtered, and the filtrate and the washing liquid were combined and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography. The target compounds were collected, concentrated under reduced pressure, and dried to obtain the target compound as a colorless oil (yield: 1.22 g, yield: 51%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ7.43-7.20 (m, 15H), 5.35 (dd, 1H, J = 4.1,5.9 Hz), 5.22 (ddd, 1H) , J = 3.2, 3.7, 7.3Hz), 5.12 (ddd, 1H, J = 3.7, 5.5, 5.5Hz), 4.49 (dd, 1H, J = 3) .2,12.4Hz), 4.26 (dd, 1H, J = 6.9, 12.4Hz), 3.82 (s, 3H), 3.77 (s, 3H), 3.74 (s) , 3H), 3.72 (s, 3H), 3.38 (dd, 1H, J = 3.2, 10.5Hz), 3.26 (dd, 1H, J = 5.5, 10.5Hz)
ESI-MS spectrum (positive mode) C 32 H 34 O 13 Na: [M + Na] + , calcd: 649.19, found: 649.2

(2)1,2,3,4−テトラ− O−メトキシカルボニル−D−リビトールの合成

Figure 2021161092
1,2,3,4−テトラ−O−メトキシカルボニル−5−O−トリチル−D−リビトール(1.19g,1.90mmol)に80%ギ酸/メタノール(15mL)を加えて室温で攪拌した。30分後に反応混合物を減圧濃縮した。得られた残渣をn−ヘキサン:酢酸エチル=1:1の混合溶媒に溶解し、飽和炭酸水素ナトリウム水、水および飽和食塩水で順次洗浄した後に無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせて減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。目的のフラクションを集めて減圧濃縮、乾燥することで目的化合物を得た(収量:388mg,収率:53%)。
1H−NMR(400MHz,CDCl3):δ5.28(dd,1H,J=4.1,5.0Hz),5.25(ddd,1H,J=2.8,4.1,6.9Hz),5.02(ddd,1H,J=4.1,5.5,5.5Hz),4.54(dd,1H,J=2.8,12.4Hz),4.31(dd,1H,J=6.9,12.4Hz),3.94(ddd,1H,J=4.1,6.4,12.4Hz),3.85−3.80(m,7H),3.82(s,3H),3.79(s,3H),2.09(dd,1H,J=6.4,6.4Hz)
ESI−MSスペクトル(positive mode) C132013Na:[M+Na]+,calcd:407.08,found:407.1 (2) Synthesis of 1,2,3,4-tetra-O-methoxycarbonyl-D-ribitol
Figure 2021161092
80% formic acid / methanol (15 mL) was added to 1,2,3,4-tetra-O-methoxycarbonyl-5-O-trityl-D-ribitol (1.19 g, 1.90 mmol), and the mixture was stirred at room temperature. After 30 minutes, the reaction mixture was concentrated under reduced pressure. The obtained residue was dissolved in a mixed solvent of n-hexane: ethyl acetate = 1: 1, washed successively with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. This was filtered, and the filtrate and the washing liquid were combined and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography. The desired fraction was collected, concentrated under reduced pressure, and dried to obtain the desired compound (yield: 388 mg, yield: 53%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ5.28 (dd, 1H, J = 4.1,5.0 Hz), 5.25 (ddd, 1H, J = 2.8, 4.1, 6. 9Hz), 5.02 (ddd, 1H, J = 4.1,5.5,5.5Hz), 4.54 (dd, 1H, J = 2.8,12.4Hz), 4.31 (dd) , 1H, J = 6.9, 12.4Hz), 3.94 (ddd, 1H, J = 4.1,6.4,12.4Hz), 3.85-3.80 (m, 7H), 3.82 (s, 3H), 3.79 (s, 3H), 2.09 (dd, 1H, J = 6.4, 6.4 Hz)
ESI-MS spectrum (positive mode) C 13 H 20 O 13 Na: [M + Na] + , calcd: 407.08, found: 407.1

(3)1,2,3,4−テトラ−O−メトキシカルボニル−D−リビトール 5−ホスフェートの合成

Figure 2021161092
1,2,3,4−テトラ− O−メトキシカルボニル−D−リビトール(335mg,0.872mmol)を脱水THF(15mL)に溶解し、−10℃以下に冷却した。これにジイソプロピルエチルアミン(1.21mL,6.98mmol)とPOCl3(567μL,6.10mmol)を順次加えて2時間攪拌した。反応混合物を−78℃に冷却し、水(計5mL)を加えた。室温で飽和炭酸水素ナトリウム水(計8mL)を加えて中和し、減圧濃縮によりTHFをほぼ留去する際には途中で飽和炭酸水素ナトリウム水を加えてpHを中性にした。得られた残渣(水層)をジエチルエーテルで洗浄した後に、6M塩酸を加えてpHを1〜2に調整した後に酢酸エチルを加えて分液した。分離した水層に酢酸エチルを加えて抽出し、有機層を合わせた。水と飽和食塩水で順次洗浄後に無水硫酸ナトリウムで乾燥させた。これを濾過し、濾液と洗浄液を合わせ、トリエチルアミンを加えて減圧濃縮、乾燥することで、無色油状物である目的化合物を得た(収量:303mg(1H−NMRの積分値からの補正収量),収率:74%)。
1H−NMR(400MHz,CDCl3):δ5.29(dd,1H,J=4.1,6.4Hz),5.23(ddd,1H,J=3.2,4.1,6.9Hz),5.12(m,1H),4.50(dd,1H,J=3.2,12.4Hz),4.31(dd,1H,J=6.9,12.4Hz),4.21(ddd,1H,J=3.2,5.5,11.9Hz),4.09(ddd,1H,J=5.0,6.9,11.9Hz),3.801(s,3H),3.795(s,3H),3.792(s,3H),3.77(s,3H)
ESI−MSスペクトル(negative mode) C132016P:[M−H]-,calcd:463.05,found: 463.0 (3) Synthesis of 1,2,3,4-tetra-O-methoxycarbonyl-D-ribitol 5-phosphate
Figure 2021161092
1,2,3,4-tetra-O-methoxycarbonyl-D-ribitol (335 mg, 0.872 mmol) was dissolved in dehydrated THF (15 mL) and cooled to −10 ° C. or lower. Diisopropylethylamine (1.21 mL, 6.98 mmol) and POCl 3 (567 μL, 6.10 mmol) were sequentially added thereto, and the mixture was stirred for 2 hours. The reaction mixture was cooled to −78 ° C. and water (5 mL total) was added. Saturated sodium hydrogen carbonate water (8 mL in total) was added at room temperature for neutralization, and when THF was substantially distilled off by concentration under reduced pressure, saturated sodium hydrogen carbonate water was added on the way to neutralize the pH. The obtained residue (aqueous layer) was washed with diethyl ether, and then 6M hydrochloric acid was added to adjust the pH to 1-2, and then ethyl acetate was added to separate the liquids. Ethyl acetate was added to the separated aqueous layer for extraction, and the organic layers were combined. After washing sequentially with water and saturated brine, it was dried over anhydrous sodium sulfate. This was filtered, the filtrate and the washing solution were combined, triethylamine was added, concentrated under reduced pressure, and dried to obtain the target compound as a colorless oil (yield: 303 mg ( corrected yield from 1 H-NMR integrated value). , Yield: 74%).
1 1 H-NMR (400 MHz, CDCl 3 ): δ5.29 (dd, 1H, J = 4.1,6.4 Hz), 5.23 (ddd, 1H, J = 3.2, 4.1, 6. 9Hz), 5.12 (m, 1H), 4.50 (dd, 1H, J = 3.2, 12.4Hz), 4.31 (dd, 1H, J = 6.9, 12.4Hz), 4.21 (ddd, 1H, J = 3.2,5.5,11.9Hz), 4.09 (ddd, 1H, J = 5.0, 6.9, 11.9Hz), 3.801 ( s, 3H), 3.795 (s, 3H), 3.792 (s, 3H), 3.77 (s, 3H)
ESI-MS spectrum (negative mode) C 13 H 20 O 16 P: [MH] - , calcd: 463.05, found: 463.0

(4)CDP−リビトール テトラメトキシカルボニル,ジアセテート

Figure 2021161092
1,2,3,4−テトラ−O−メトキシカルボニル−D−リビトール 5−ホスフェート(303mg,0.65mmol)、2’,3’−ジ−O−アセチル−シチジン 5’−モノホスフェート モルフォリデート(697mg,0.98mmol)と1H−テトラゾール(100mg,1.43mmol)を脱水ピリジン(7mL)に溶解し、アルゴン雰囲気下、室温で2日間攪拌した。反応液を減圧濃縮し、残渣に脱水DMFを加えて減圧濃縮した。得られた残渣を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥、およびイオン交換樹脂に通すことにより、白色粉末である目的化合物の2Na塩を得た(収量:325mg,収率:55%)。
1H−NMR(400MHz,D2O):δ7.98(d,1H,J=7.3Hz),6.21(d,1H,J=5.0Hz),6.16(d,1H,J=7.8Hz),5.44(dd,1H,J=4.1,5.5Hz),5.40(dd,1H,J=5.5,5.5Hz),5.29(dd,1H,J=5.0,5.0Hz),5.23−5.16(m,2H),4.55(dd,1H,J=3.2,12.8Hz),4.52(m,1H),4.38(dd,1H,J=6.0,12.4Hz),4.30(ddd,1H,J=2.3,4.1,11.9Hz),4.23(ddd,1H,J=3.2,5.5,11.9Hz),4.18(ddd,1H,J=3.2,4.1,11.9Hz),4.11(ddd,1H,J=6.0,6.0,11.9Hz),3.82(m,6H),3.81(s,3H),3.79(s,3H),2.17(s,3H),2.12(s,3H)
ESI−MSスペクトル(negative mode) C26363252:[M−H]-,calcd:852.11,found:852.1 (4) CDP-ribitol tetramethoxycarbonyl, diacetate
Figure 2021161092
1,2,3,4-tetra-O-methoxycarbonyl-D-libitol 5-phosphate (303 mg, 0.65 mmol), 2', 3'-di-O-acetyl-cytidine 5'-monophosphate morpholidate (697 mg, 0.98 mmol) and 1H-tetrazole (100 mg, 1.43 mmol) were dissolved in dehydrated pyridine (7 mL), and the mixture was stirred at room temperature for 2 days under an argon atmosphere. The reaction mixture was concentrated under reduced pressure, dehydrated DMF was added to the residue, and the mixture was concentrated under reduced pressure. The obtained residue was purified by reverse phase HPLC. The desired fractions were collected, lyophilized and passed through an ion exchange resin to give a 2Na salt of the target compound as a white powder (yield: 325 mg, yield: 55%).
1 1 H-NMR (400 MHz, D 2 O): δ7.98 (d, 1H, J = 7.3 Hz), 6.21 (d, 1H, J = 5.0 Hz), 6.16 (d, 1H, J = 7.8Hz), 5.44 (dd, 1H, J = 4.1,5.5Hz), 5.40 (dd, 1H, J = 5.5,5.5Hz), 5.29 (dd) , 1H, J = 5.0, 5.0Hz), 5.23-5.16 (m, 2H), 4.55 (dd, 1H, J = 3.2, 12.8Hz), 4.52 ( m, 1H), 4.38 (dd, 1H, J = 6.0, 12.4Hz), 4.30 (ddd, 1H, J = 2.3, 4.1, 11.9Hz), 4.23 (Ddd, 1H, J = 3.2,5.5,11.9Hz), 4.18 (ddd, 1H, J = 3.2,4.1,11.9Hz), 4.11 (ddd, 1H) , J = 6.0, 6.0, 11.9Hz), 3.82 (m, 6H), 3.81 (s, 3H), 3.79 (s, 3H), 2.17 (s, 3H) ), 2.12 (s, 3H)
ESI-MS spectrum (negative mode) C 26 H 36 N 3 O 25 P 2 : [MH] - , calcd: 852.11, found: 852.1

実施例9: CDP−リビトール ヘキサアセテート−PB1の合成
(1)2’,3’−ジ−O−アセチル−シチジン−5’−(4−ペンタノイルオキシベンジル N,N−ジイソプソピル ホスホロアミダイトの合成

Figure 2021161092
参考文献(Eur.J.Org.Chem.,2009,18,1967−1975)に記載の方法で得られる2’,3’−ジ−O−アセチル−シチジン(0.50g)を脱水DMF(20mL)に溶解し、アルゴン雰囲気下で氷冷した。これに参考文献(J.Med.Chem.,2015,58,6114−6130)に記載の方法で得られるペンタノイルオキシベンジツ ビス(ジイソプロピルアミノ)−ホスホロアミダイト(1.34g)を加え、更に4,5−ジシアノイミダゾール(0.18g)の脱水DMF(0.80mL)溶液をアルゴン雰囲気下で滴下した。アルゴン雰囲気下、室温で30分間攪拌した後に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水および飽和食塩水で順次洗浄した。無水硫酸ナトリウムで乾燥後に濾過し、濾液と洗浄液を合わせて減圧濃縮により得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。目的のフラクションを集めて減圧濃縮、乾燥することで、油状物である目的化合物を得た(粗収量:0.491g(溶媒等を含む))。
1H−NMR(400MHz,CDCl3):δ7.90(d,0.5H,J=7.8Hz),7.72(d,0.5H,J=7.3Hz),7.41(d,1H,J=8.7Hz),7.38(d,1H,J=8.7Hz),7.04(d,1H,J=8.7Hz),7.02(d,1H,J=8.7Hz),6.48(d,0.5H,J=7.3Hz),6.38(d,0.5H,J=5.5Hz),5.42(dd,0.5H,J=4.1,5.5Hz),5.39−5.36(m,1H),5.29(dd,0.5H,J=5.5,7.3Hz),5.01(d,0.5H,J=7.3Hz),4.78(dd,0.5H,J=7.3,12.4Hz),4.74−4.69(m,1H),4.57−4.52(m,1H),4.26(m,1H),4.02(ddd,0.5H,J=2.3,5.5,11.0Hz),3.83−3.81(m,1H),3.79(ddd,0.5H,J=1.4,4.6,11.0Hz),3.75−3.49(m,2H),2.59(t,1H,J=7.3Hz),2.57(t,1H,J=7.3Hz),2.101(s,1.5H),2.096(s,1.5H),2.082(s,1.5H),2.045(s,1.5H),1.77−1.69(m,2H),1.50−1.40(m,2H),1.29−1.20(m,12H),0.980(t,1.5H,J=7.3Hz),0.977(t,1.5H,J=7.3Hz)
ESI−MSスペクトル(positive mode) C3146410P:[M+H]+,calcd:665.30,found:665.3 Example 9: Synthesis of CDP-ribitol hexaacetate-PB1 (1) Synthesis of 2', 3'-di-O-acetyl-cytidine-5'-(4-pentanoyloxybenzyl N, N-diisopsopyl phosphoramidite)
Figure 2021161092
Dehydrated DMF (20 mL) of 2', 3'-di-O-acetyl-cytidine (0.50 g) obtained by the method described in Reference (Eur. J. Org. Chem., 2009, 18, 1967-1975). ), And ice-cooled in an argon atmosphere. To this, pentanoyloxybenzibis (diisopropylamino) -phosphoroamidite (1.34 g) obtained by the method described in Reference (J. Med. Chem., 2015, 58, 6114-6130) is added, and further. A dehydrated DMF (0.80 mL) solution of 4,5-dicyanoimidazole (0.18 g) was added dropwise under an argon atmosphere. After stirring at room temperature for 30 minutes under an argon atmosphere, ethyl acetate was added, and the mixture was washed successively with saturated aqueous sodium hydrogen carbonate solution, water and saturated brine. After drying over anhydrous sodium sulfate, the mixture was filtered, the filtrate and the washing solution were combined, and the residue obtained by concentration under reduced pressure was purified by silica gel column chromatography. The desired fraction was collected, concentrated under reduced pressure, and dried to obtain the target compound as an oil (crude yield: 0.491 g (including solvent and the like)).
1 H-NMR (400MHz, CDCl 3 ): δ7.90 (d, 0.5H, J = 7.8Hz), 7.72 (d, 0.5H, J = 7.3Hz), 7.41 (d) , 1H, J = 8.7Hz), 7.38 (d, 1H, J = 8.7Hz), 7.04 (d, 1H, J = 8.7Hz), 7.02 (d, 1H, J = 8.7Hz), 6.48 (d, 0.5H, J = 7.3Hz), 6.38 (d, 0.5H, J = 5.5Hz), 5.42 (dd, 0.5H, J) = 4.1, 5.5 Hz), 5.39-5.36 (m, 1H), 5.29 (dd, 0.5H, J = 5.5, 7.3 Hz), 5.01 (d, 0.5H, J = 7.3Hz), 4.78 (dd, 0.5H, J = 7.3, 12.4Hz), 4.74-4.69 (m, 1H), 4.57-4 .52 (m, 1H), 4.26 (m, 1H), 4.02 (ddd, 0.5H, J = 2.3,5.5,11.0Hz), 3.83-3.81 ( m, 1H), 3.79 (ddd, 0.5H, J = 1.4, 4.6, 11.0Hz), 3.75-3.49 (m, 2H), 2.59 (t, 1H) , J = 7.3Hz), 2.57 (t, 1H, J = 7.3Hz), 2.101 (s, 1.5H), 2.096 (s, 1.5H), 2.082 (s) , 1.5H), 2.045 (s, 1.5H), 1.77-1.69 (m, 2H), 1.50-1.40 (m, 2H), 1.29-1.20 (M, 12H), 0.980 (t, 1.5H, J = 7.3Hz), 0.977 (t, 1.5H, J = 7.3Hz)
ESI-MS spectrum (positive mode) C 31 H 46 N 4 O 10 P: [M + H] + , calcd: 665.30, found: 665.3

(2)CDP−リビトール ヘキサアセテート−PB1の合成

Figure 2021161092
アルゴン雰囲気下で1,2,3,4−テトラ−O−アセチル−D−リビトール 5−ホスフェート(232mg)、トリエチルアミン(58μL)、および2’,3’−ジ−O−アセチル−シチジン−5’−(4−ペンタノイルオキシベンジル N,N−ジイソプロピル ホスホロアミダイト)(463mg)を脱水アセトニトリル(14mL)に溶解して室温で攪拌した。これに4,5−ジシアノイミダゾール(82mg)を脱水アセトニトリル(1mL)に溶解したものを少しずつ計7回に分けて加えた。20分間攪拌した後に、約5.0M t−ブチルヒドロペルオキシド/デカン溶液(190μL)を加えた。更に40分間攪拌した後に、約5.0M t−ブチルヒドロペルオキシド/デカン溶液(80μL)を追加した。20分後にn−ヘキサンで洗浄した後に、減圧濃縮によりアセトニトリルを留去した。残渣に脱水アセトニトリルを加えて再度減圧濃縮した。得られた残渣を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥に得られた226mgのうちの140mgをイオン交換樹脂に通すことにより、白色粉末である目的化合物のNa塩を得た(収量:119mg,収率:41%)。
1H−NMR(400MHz,D2O):δ7.60(d,0.5H,J=7.8Hz),7.57(d,0.5H,J=7.3Hz),7.56−7.51(m,2H),7.18−7.12(m,2H),6.10−6.07(m,1H),5.97(d,0.5H, J=7.8 Hz), 5.90(d, 0.5H, J=7.3 Hz), 5.36(dd,0.5H,J=5.5,5.5Hz),5.33(dd,0.5H,J=5.5,5.5Hz),5.28−5.21(m,6H),4.44−4.34(m,3H),4.32−4.22(m,2H),4.20−4.12(m,1H),4.09−4.02(m,1H),2.64(t,1H,J=7.3Hz),2.63(t,1H,J=7.3Hz),2.144(s,3H),2.122(s,1.5H),2.120(s,1.5H),2.103(s,1.5H),2.098(s,3H),2.088(s,3H),2.080(s,1.5H),2.060(s,1.5H),2.057(s,1.5H),1.74−1.66(m,2H),1.46−1.36(m,2H),0.93(t,3H,J=7.3Hz)
ESI−MSスペクトル(negative mode) C38503232:[M−H]-,calcd:978.23,found:978.2 (2) Synthesis of CDP-ribitol hexaacetate-PB1
Figure 2021161092
1,2,3,4-tetra-O-acetyl-D-libitol 5-phosphate (232 mg), triethylamine (58 μL), and 2', 3'-di-O-acetyl-cytidine-5'in an argon atmosphere -(4-Pentanoyloxybenzyl N, N-diisopropylphosphoroamidite) (463 mg) was dissolved in dehydrated acetonitrile (14 mL) and stirred at room temperature. To this, 4,5-dicyanoimidazole (82 mg) dissolved in dehydrated acetonitrile (1 mL) was added little by little in 7 portions in total. After stirring for 20 minutes, about 5.0 M t-butyl hydroperoxide / decane solution (190 μL) was added. After stirring for an additional 40 minutes, about 5.0 M t-butyl hydroperoxide / decane solution (80 μL) was added. After washing with n-hexane after 20 minutes, acetonitrile was distilled off by concentration under reduced pressure. Dehydrated acetonitrile was added to the residue, and the mixture was concentrated again under reduced pressure. The obtained residue was purified by reverse phase HPLC. The target fraction was collected and 140 mg of the 226 mg obtained by freeze-drying was passed through an ion exchange resin to obtain a Na salt of the target compound as a white powder (yield: 119 mg, yield: 41%).
1 1 H-NMR (400 MHz, D 2 O): δ7.60 (d, 0.5H, J = 7.8 Hz), 7.57 (d, 0.5H, J = 7.3 Hz), 7.56- 7.51 (m, 2H), 7.18-7.12 (m, 2H), 6.10-6.07 (m, 1H), 5.97 (d, 0.5H, J = 7.8) Hz), 5.90 (d, 0.5H, J = 7.3 Hz), 5.36 (dd, 0.5H, J = 5.5, 5.5 Hz), 5.33 (dd, 0.35 Hz). 5H, J = 5.5, 5.5Hz), 5.28-5.21 (m, 6H), 4.44-4.34 (m, 3H), 4.32-4.22 (m, 2H) ), 4.20-4.12 (m, 1H), 4.09-4.02 (m, 1H), 2.64 (t, 1H, J = 7.3Hz), 2.63 (t, 1H) , J = 7.3Hz), 2.144 (s, 3H), 2.122 (s, 1.5H), 2.120 (s, 1.5H), 2.103 (s, 1.5H), 2.098 (s, 3H), 2.088 (s, 3H), 2.080 (s, 1.5H), 2.060 (s, 1.5H), 2.057 (s, 1.5H) , 1.74-1.66 (m, 2H), 1.46-1.36 (m, 2H), 0.93 (t, 3H, J = 7.3Hz)
ESI-MS spectrum (negative mode) C 38 H 50 N 3 O 23 P 2 : [MH] - , calcd: 978.23, found: 978.2

実施例10: CDP−リビトール ヘキサアセテート−PB2の合成
(1)1,2,3,4−テトラ−O−アセチル−D−リビトール−5−(4−ペンタノイルオキシベンジル N,N−ジイソプロピル ホスホロアミダイトの合成

Figure 2021161092
1,2,3,4−テトラ−O−アセチル−D−リビトール(384mg,1.20mmol)を脱水ジクロロメタン(15mL)に溶解し、アルゴン雰囲気下で氷冷した。これに参考文献(J.Med.Chem.,2015,58,6114−6130)に記載の方法で得られる4−ペンタノイルオキシベンジル ビス(ジイソプロピルアミノ)−ホスホロアミダイト(1.05g,2.40mmol)を加えた。4,5−ジシアノイミダゾール(142mg,120mmol)/脱水DMF(630μL)の溶液を滴下し、反応容器を氷浴からはずしてアルゴン雰囲気下で攪拌した。30分後に酢酸エチルで希釈し、飽和炭酸水素ナトリウム水、水および飽和食塩水で順次洗浄した。無水硫酸マグネシウムで乾燥後に濾過し、濾液と洗浄液を合わせて減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。目的のフラクションを集めて減圧濃縮、乾燥することで目的化合物を得た(粗収量:782mg,粗収率:99%)。
1H−NMR(400MHz,CDCl3):δ7.36−7.32(m,2H),7.04−7.02(m,2H),5.39(dd,0.5H,J=5.0,6.0Hz),5.35(dd,0.5H,J=5.0,5.0Hz),5.32(m,1H),5.26−5.20(m,1H),4.77−4.57(m,2H),4.34(dd,0.5H,J=3.2,11.9Hz),4.33(dd,0.5H,J=3.2,12.4Hz),4.16(dd,0.5H,J=1.8,12.4Hz),4.15(dd,0.5H,J=1.8,12.4Hz),3.84(ddd,0.5H,J=3.7,6.9,11.4Hz),3.78−3.74(m,1H),3.67(m,0.5H),3.66−3.56(m,2H),2.55(t,2H,J=7.3Hz),2.08(s,1.5H),2.062(s,1.5H),2.056(s,3H),2.046(s,3H),2.034(s,1.5H),2.030(s,1.5H),1.77−1.70(m,2H),1.49−1.40(m,2H),1.21−1.15(m,12H),0.97(t,3H,J=7.3Hz)
ESI−MSスペクトル(positive mode) C3149NO12P:[M+H]+,calcd:658.30,found:658.3 Example 10: Synthesis of CDP-ribitol hexaacetate-PB2 (1) 1,2,3,4-tetra-O-acetyl-D-ribitol-5- (4-pentanoyloxybenzyl N, N-diisopropylphosphoro) Synthesis of amidite
Figure 2021161092
1,2,3,4-tetra-O-acetyl-D-ribitol (384 mg, 1.20 mmol) was dissolved in dehydrated dichloromethane (15 mL) and ice-cooled under an argon atmosphere. To this, 4-pentanoyloxybenzylbis (diisopropylamino) -phosphoroamidite (1.05 g, 2.40 mmol) obtained by the method described in Reference (J. Med. Chem., 2015, 58, 6114-6130). ) Was added. A solution of 4,5-dicyanoimidazole (142 mg, 120 mmol) / dehydrated DMF (630 μL) was added dropwise, the reaction vessel was removed from the ice bath, and the mixture was stirred under an argon atmosphere. After 30 minutes, the mixture was diluted with ethyl acetate and washed successively with saturated aqueous sodium hydrogen carbonate solution, water and saturated brine. After drying over anhydrous magnesium sulfate, the mixture was filtered, the filtrate and washing solution were combined and concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography. The desired fraction was collected, concentrated under reduced pressure, and dried to obtain the desired compound (crude yield: 782 mg, crude yield: 99%).
1 H-NMR (400MHz, CDCl 3 ): δ7.36-7.32 (m, 2H), 7.04-7.02 (m, 2H), 5.39 (dd, 0.5H, J = 5) .0, 6.0Hz), 5.35 (dd, 0.5H, J = 5.0, 5.0Hz), 5.32 (m, 1H), 5.26-5.20 (m, 1H) , 4.77-4.57 (m, 2H), 4.34 (dd, 0.5H, J = 3.2, 11.9Hz), 4.33 (dd, 0.5H, J = 3.2) , 12.4Hz), 4.16 (dd, 0.5H, J = 1.8, 12.4Hz), 4.15 (dd, 0.5H, J = 1.8, 12.4Hz), 3. 84 (ddd, 0.5H, J = 3.7, 6.9, 11.4Hz), 3.78-3.74 (m, 1H), 3.67 (m, 0.5H), 3.66 -3.56 (m, 2H), 2.55 (t, 2H, J = 7.3Hz), 2.08 (s, 1.5H), 2.062 (s, 1.5H), 2.056 (S, 3H), 2.046 (s, 3H), 2.034 (s, 1.5H), 2.030 (s, 1.5H), 1.77-1.70 (m, 2H), 1.49-1.40 (m, 2H), 1.21-1.15 (m, 12H), 0.97 (t, 3H, J = 7.3Hz)
ESI-MS spectrum (positive mode) C 31 H 49 NO 12 P: [M + H] + , calcd: 658.30, found: 658.3

(2)CDP−リビトール ヘキサアセテート−PB2の合成

Figure 2021161092
CMP ジアセテート(270mg,0.663mmol)を脱水DMF(20mL)に溶解し、減圧濃縮する操作を2回繰り返した。得られた残渣を脱水DMF(30mL)に溶解し、トリエチルアミン(83.1μL,0.577mmol)を加えて中和した(A液)。これとは別に、1,2,3,4−テトラ−O−アセチル−D−リビトール−5−(4−ペンタノイルオキシベンジル N,N−ジイソプロピル ホスホロアミダイト)(479mg,0.729mmol)を脱水アセトニトリル(27mL)に溶解し、これに前記A液を加えた。更に脱水DMF(5mL)で2回洗浄した。続いて4,5−ジシアノイミダゾール(86.1mg,0.729mmol)の脱水DMF(1mL)溶液を室温で加えた。20分間攪拌した後に、70%t−ブチルヒドロペルオキシド水溶液(427μL,3.32mmol)を加えた。更に2時間後に70%t−ブチルヒドロペルオキシド水溶液(171μL,1.33mmol)を追加した。更に1時間30分間攪拌した後に反応混合物を減圧濃縮し、得られた残渣を逆相系のHPLCで精製した。目的のフラクションを集め、凍結乾燥、およびイオン交換樹脂に通すことにより、白色粉末である目的化合物のNa塩を得た(収量:328mg,収率:50%)。
1H−NMR(400MHz,D2O):δ7.75(d,0.5H,J=7.8Hz),7.73(d,0.5H,J=7.3Hz),7.50(d,2H,J=8.7Hz),7.15(m,2H),6.14(m,1H),5.99(d,0.5H,J=7.8Hz),5.96(d,0.5H,J=7.3Hz),5.39−5.28(m,3H),5.24−5.17(m,4H),4.46(m,1H),4.37−4.13(m,6H),2.64(t,2H,J=7.3Hz),2.155(s,1.5H),2.151(s,1.5H),2.109(s,1.5H),2.104(s,1.5H),2.100(m,3H),2.084(s,1.5H),2.076(m,4.5H),2.06(s,1.5H),2.05(s,1.5H),1.74−1.67(m,2H),1.46−1.37(m,2H),0.94(t,3H,J=7.3Hz)
ESI−MSスペクトル(negative mode) C38503232:[M−H]-,calcd:978.23,found:978.2 (2) Synthesis of CDP-ribitol hexaacetate-PB2
Figure 2021161092
The operation of dissolving CMP diacetate (270 mg, 0.663 mmol) in dehydrated DMF (20 mL) and concentrating under reduced pressure was repeated twice. The obtained residue was dissolved in dehydrated DMF (30 mL) and neutralized by adding triethylamine (83.1 μL, 0.577 mmol) (Liquid A). Separately, dehydration of 1,2,3,4-tetra-O-acetyl-D-ribitol-5- (4-pentanoyloxybenzyl N, N-diisopropylphosphoroamidite) (479 mg, 0.729 mmol) It was dissolved in acetonitrile (27 mL), and the solution A was added thereto. Further, it was washed twice with dehydrated DMF (5 mL). Subsequently, a dehydrated DMF (1 mL) solution of 4,5-dicyanoimidazole (86.1 mg, 0.729 mmol) was added at room temperature. After stirring for 20 minutes, a 70% aqueous solution of t-butyl hydroperoxide (427 μL, 3.32 mmol) was added. After an additional 2 hours, a 70% aqueous solution of t-butyl hydroperoxide (171 μL, 1.33 mmol) was added. After further stirring for 1 hour and 30 minutes, the reaction mixture was concentrated under reduced pressure, and the obtained residue was purified by reverse phase HPLC. The desired fraction was collected, lyophilized and passed through an ion exchange resin to obtain a Na salt of the target compound as a white powder (yield: 328 mg, yield: 50%).
1 1 H-NMR (400 MHz, D 2 O): δ7.75 (d, 0.5H, J = 7.8 Hz), 7.73 (d, 0.5H, J = 7.3 Hz), 7.50 ( d, 2H, J = 8.7Hz), 7.15 (m, 2H), 6.14 (m, 1H), 5.99 (d, 0.5H, J = 7.8Hz), 5.96 ( d, 0.5H, J = 7.3Hz), 5.39-5.28 (m, 3H), 5.24-5.17 (m, 4H), 4.46 (m, 1H), 4. 37-4.13 (m, 6H), 2.64 (t, 2H, J = 7.3Hz), 2.155 (s, 1.5H), 2.151 (s, 1.5H), 2. 109 (s, 1.5H), 2.104 (s, 1.5H), 2.100 (m, 3H), 2.084 (s, 1.5H), 2.076 (m, 4.5H) , 2.06 (s, 1.5H), 2.05 (s, 1.5H), 1.74-1.67 (m, 2H), 1.46-1.37 (m, 2H), 0 .94 (t, 3H, J = 7.3Hz)
ESI-MS spectrum (negative mode) C 38 H 50 N 3 O 23 P 2 : [MH] - , calcd: 978.23, found: 978.2

試験例1: In vitro解析
公知技術(Kanagawa et al,2016)に従って、CDP−リビトール合成酵素(ISPD)をノックアウトしたヒト胎児腎細胞(HEK細胞)を作製した。作製したISPD−KO HEK細胞を6wellプレートに1.0×106cells/well播種し、10%非働化ウシ胎児血清(Sigma社製)、100U/mLペニシリン、および100μg/mLストレプトマイシン(WAKO社製)を含有した高グルコースダルベッコ改変イーグル培地(WAKO社製)で一晩培養して細胞が定着した後、各濃度の被検化合物を添加した。24時間後、細胞をPBSで洗浄し、1%界面活性剤(Triton X−100)とプロテアーゼ阻害剤(Nacalai社製)を含むTBSにて細胞を剥離した。4℃で1時間撹拌した後、可溶画分に10μLのWheat Germ Agglutinin(WGA)−agarose beads(Vector Laboratories社製)を加え、4℃で16時間撹拌した。0.1%界面活性剤(Triton X−100)を含むTBSにて洗浄後、SDS−PAGE loading bufferにて溶出した。タンパク質を4〜15% linear gradient SDS gel(Bio−Rad社製)にて分離し,PVDF膜(Millipor社製)に転写した。ブロットを以下の抗体を用いて標識し、horseradish peroxidase(HRP)−enhanced chemiluminescence reagent(「Supersignal West Pico PLUS or ECL Prime」GE Healthcare社製)にて現像した。また、比較のために、被検化合物を用いない場合と、正常HEK細胞を用いた場合でも同様に実験を行った。結果を図1〜3に示す。
抗体
マウス抗完全糖鎖修飾型−DG(「IIH6」 Millipore社製)
ラット抗−DGコア(「3D7」Ohtsuka et al.,2015)
マウス抗−DG(「8D5」Novocastra社製)
なお、「IIH6」はα−ジストログリカン(DG)の糖鎖に結合し、「3D7」はα−DGのコアに結合し、「8D5」はβ−DGに結合する。
Test Example 1: In vitro analysis Human fetal kidney cells (HEK cells) in which CDP-ribitol synthase (ISPD) was knocked out were prepared according to a known technique (Kanagawa et al, 2016). The prepared ISPD-KO HEK cells were seeded on a 6- well plate at 1.0 × 10 6 cells / well, and 10% inactivated fetal bovine serum (manufactured by Sigma), 100 U / mL penicillin, and 100 μg / mL streptomycin (manufactured by WAKO). ) Was cultured overnight in a high glucose Dulbecco modified Eagle's medium (manufactured by WAKO) to allow the cells to settle, and then each concentration of the test compound was added. After 24 hours, the cells were washed with PBS and stripped with TBS containing a 1% detergent (Triton X-100) and a protease inhibitor (Nacalai). After stirring at 4 ° C. for 1 hour, 10 μL of Wheat Germ Agglutinin (WGA) -agarose beads (manufactured by Vector Laboratories) was added to the soluble fraction, and the mixture was stirred at 4 ° C. for 16 hours. After washing with TBS containing 0.1% surfactant (Triton X-100), it was eluted with SDS-PAGE loading buffer. The protein was separated by 4 to 15% linear gradient SDS gel (manufactured by Bio-Rad) and transferred to a PVDF membrane (manufactured by Millipore). Blots were labeled with the following antibodies and developed by horseradish peroxidase (HRP) -enhanced chemiluminescence reagent ("Supersignal West Pico PLUS or ECL Prime" developed by GE Healthcare). In addition, for comparison, the same experiment was conducted when the test compound was not used and when normal HEK cells were used. The results are shown in Figures 1-3.
Antibody mouse anti-complete sugar chain modified type-DG ("IIH6" manufactured by Millipore)
Rat anti-DG core (“3D7” Ohtsuka et al., 2015)
Mouse anti-DG ("8D5" manufactured by Novocastra)
In addition, "IIH6" binds to the sugar chain of α-dystroglycan (DG), "3D7" binds to the core of α-DG, and "8D5" binds to β-DG.

(1)CDP−リビトール アセテートの結果
図1に示された結果の通り、CDP−リビトール(CDP−Rbo)は500μMで糖鎖の形成が回復したが、CDP−リビトール テトラアセテート(TetA,実施例2)は200μMで糖鎖の形成が回復しており、CDP−リビトール テトラアセテートによる糖鎖回復効果はCDP−リビトールよりも強いことが示された。
(1) Results of CDP-Ribitol Acetate As shown in FIG. 1, CDP-Ribitol (CDP-Rbo) recovered the formation of sugar chains at 500 μM, but CDP-Ribitol Tetraacetate (TetA, Example 2). ) Recovered sugar chain formation at 200 μM, indicating that the sugar chain recovery effect of CDP-ribitol tetraacetate is stronger than that of CDP-ribitol.

(2)CDP−リビトール ブチレートの結果
図2に示された結果の通り、CDP−リビトール テトラアセテート(TetA,実施例2)は200μMで糖鎖の形成が回復したのに対して、CDP−リビトール テトラブチレート(TetB,実施例4)とCDP−リビトール テトラブチレート,ジアセテート(TetB/DiA,実施例5)は100μMで、CDP−リビトール ヘキサブチレート(HexB,実施例6)は50μで糖鎖の形成が回復しており、CDP−リビトール ブチレートはCDP−リビトール アセテートよりも糖鎖回復効果が強い傾向が認められた。
(2) Results of CDP-Ribitol Butyrate As shown in Fig. 2, CDP-Ribitol tetraacetate (TetA, Example 2) recovered the formation of sugar chains at 200 μM, whereas CDP-Ribitol tetra. Butyrate (TetB, Example 4) and CDP-ribitol tetrabutyrate, diacetate (TetB / DiA, Example 5) are 100 μM, CDP-ribitol hexabutyrate (HexB, Example 6) is 50 μm and sugar chain. CDP-ribitol butyrate tended to have a stronger sugar chain recovery effect than CDP-ribitol acetate.

(3)CDP−リビトール PBの結果
図3に示された結果の通り、シチジン側のリン酸がエステル化されているCDP−リビトール ヘキサアセテート−PB1CDP−リビトール イソブチレート(BP1,実施例9)は10μMで、リビトール側のリン酸がエステル化されているCDP−リビトール ヘキサアセテート−PB2(BP2,実施例10)は50μMで、糖鎖の形成が回復した。マイナス電荷を有するピロリン酸基がエステル化されることにより、CDP−リビトールの細胞内取込量が増加したことが考えられる。
(3) Results of CDP-Ribitol PB As shown in the result shown in FIG. 3, CDP-Ribitol hexaacetate-PB1 CDP-Ribitol isobutyrate (BP1, Example 9) in which phosphoric acid on the citidine side is esterified is 10 μM. CDP-ribitol hexaacetate-PB2 (BP2, Example 10) in which the phosphoric acid on the ribitol side was esterified was 50 μM, and the formation of sugar chains was restored. It is considered that the intracellular uptake of CDP-ribitol increased due to the esterification of the negatively charged pyrophosphate group.

試験例2: In vivo解析 − 筋組織観察
(1)モデルマウスの作製
マウスIspd遺伝子exon2の5’側および3’側にloxP配列をそれぞれ挿入したIspdlox/loxマウス(Lee,et al.,2014)に、筋前駆細胞特異的に発現するMyf5をプロモーターに持つCre発現ノックイン(CreKI)マウスを交配した(Jackson Lab,B6.129S4−Myf5tm3(cre)Sor/J)。更にMyf5−Creを持つIspdloxP/+ヘテロマウスをIspdlox/loxマウスと交配し、Myf5の発現と共にCDP−リビトール合成酵素(ISPD)がノックアウトされたMyf5−Ispd−cKOマウスを作成した。以下、[Ispdlox/lox:Myf5−CreKI(+)]をcKO、[Ispdlox/+:Myf5−CreKI(+)]をHET、[Ispdlox/lox:Myf5−CreKI(−)]をWTと表記する。動物実験は、神戸大学大学院動物実験管理委員会の許可を得て実施した。
なお、cKOはWTに比べて低体重で、WTとHETに比べて短命であり、WTとHETに比べて4週齢でも握力が弱く、筋機能が低かった。
また、cKOはWTとHETに比べて筋重量が低く筋萎縮傾向にあり、且つ筋破壊の指標であるクレアチンキナーゼ(CK)値が高かった。
更に、ウェスタンブロットによれば、WTとHETでは完全に糖鎖化されたジストログリカン(DG)が検出されたが、cKOでは検出されなかった。また、WTとHETでもDGのコアタンパク質は認められたが、糖鎖修飾されたDGのバンドの方が濃く検出された。それに対してcKOでは、糖鎖修飾されていないコアタンパク質のバンドのみが認められた。かかる結果より、cKOの筋組織においてはDGの糖鎖が脱落していることが示された。
Test Example 2: In vivo analysis-Muscle tissue observation (1) Preparation of model mouse Ispd lox / lox mice (Lee, et al., 2014) in which loxP sequences are inserted into the 5'side and 3'side of the mouse Ispd gene exon2, respectively. ) Was crossed with Cre-expressing knock-in (CreKI) mice having Myf5 specifically expressed in muscle progenitor cells as a promoter (Jackson Lab, B6.129S4-Myf5 tm3 (cre) Sor / J). Furthermore, Ispd loxP / + heterozygous mice having Myf5-Cre were crossed with Ispd lox / lox mice to generate Myf5-Ispd-cKO mice in which CDP-ribitol synthase (ISPD) was knocked out with the expression of Myf5. Hereinafter, [Ispd lox / lox : Myf5-CreKI (+)] is referred to as cKO, [Ispd lox / + : Myf5-CreKI (+)] is referred to as HET, and [Ispd lox / lox : Myf5-CreKI (-)] is referred to as WT. write. Animal experiments were conducted with the permission of the Kobe University Graduate School Animal Experiment Management Committee.
In addition, cKO had a lower weight than WT, a shorter life than WT and HT, and had weaker grip strength and lower muscle function than WT and HT even at 4 weeks of age.
In addition, cKO had a lower muscle weight and a tendency toward muscular atrophy than WT and HET, and had a high creatine kinase (CK) value, which is an index of muscle destruction.
Furthermore, Western blots detected fully sugar-chained dystroglycan (DG) in WT and HET, but not in cKO. The core protein of DG was also observed in WT and HET, but the sugar chain-modified DG band was detected more intensely. On the other hand, in cKO, only the band of the core protein without sugar chain modification was observed. From these results, it was shown that the sugar chain of DG was shed in the muscle tissue of cKO.

(2)筋組織試料の作製
マウスから摘出した筋組織をOTCコンパウンド(Sakura Fintek社製)に包埋し、液体窒素で冷却したイソペンタン(Nacalai社製)中で凍結処理した。クリオスタットを用いて7μmの凍結切片を作製し、組織解析と蛍光免疫染色に用いた。
(2) Preparation of muscle tissue sample The muscle tissue removed from the mouse was embedded in an OTC compound (manufactured by Sakura Fintek) and frozen in isopentane (manufactured by Nakarai) cooled in liquid nitrogen. Frozen sections of 7 μm were prepared using a cryostat and used for histological analysis and fluorescent immunostaining.

(3)H&E染色と免疫染色による病理解析
H&E染色では,ヘマトキシリンで2分間、エオジンで1分間の染色を行った後、エタノールとキシレンで脱水した。
IIH6による免疫染色では、切片を冷エタノール:酢酸=1:1の混合溶媒で1分固定した後、5%ヤギ血清を含むMOMブロッキング試薬(Vector Laboratories社製)を用いて室温で1時間ブロッキングした。MOM希釈液に希釈した1次抗体を用いて、4℃で一晩反応させた。
H&E染色については凍結切片作製用包埋剤として「Permount」Fisher Scientific社製で、免疫染色については「TISSU MOUNT」Shiraimatsu Kikai社製で封入した。切片は蛍光顕微鏡(「Leica DMR」Leica Microsystems社製)で観察した。結果を図4に示す。
図4に示される結果の通り、cKOの組織では、WTとHETに比べて、筋線維の大小不同、中心核の増加、および線維化の増加など筋ジストロフィーに特徴的な所見が認められた。また、α−ジストログリカン(DG)の糖鎖に結合するIIH6を用いた免疫染色では蛍光信号が低下しており、DGの糖鎖が脱落していることが示された。
(3) Pathological analysis by H & E staining and immunostaining In H & E staining, hematoxylin was stained for 2 minutes and eosin was stained for 1 minute, and then dehydrated with ethanol and xylene.
In immunostaining with IIH6, the sections were fixed in a mixed solvent of cold ethanol: acetic acid = 1: 1 for 1 minute, and then blocked for 1 hour at room temperature using a MOM blocking reagent (manufactured by Vector Laboratories) containing 5% goat serum. .. The reaction was carried out overnight at 4 ° C. using the primary antibody diluted in MOM dilution.
For H & E staining, it was encapsulated with "Permount" Fisher Scientific as an embedding agent for preparing frozen sections, and for immunostaining, it was encapsulated with "TISSU MOUNT" manufactured by Shiraimatsu Kikai. The sections were observed with a fluorescence microscope (“Leica DMR” manufactured by Leica Microsystems). The results are shown in FIG.
As shown in the results shown in FIG. 4, in the tissue of cKO, the findings characteristic of muscular dystrophy such as the size difference of muscle fibers, the increase of the central core, and the increase of fibrosis were observed as compared with WT and HET. In addition, immunostaining with IIH6, which binds to the sugar chain of α-dystroglycan (DG), showed that the fluorescence signal was decreased, indicating that the sugar chain of DG was shed.

また、以下の抗体を用いて、免疫染色を行った。
ラット抗laminin(「4H8−2」Alexis Biochemicals社製)
ウサギ抗collagen I(Bio−Rad社製)
ラット抗F4/80(BioLegend社製)
ラミニン、F4/80およびcollagen Iによる免疫染色では、3%ウシ血清アルブミン(BSA)を含むPBSを用いて1時間室温で切片をブロッキングした後、1%BSAを含むPBSで希釈した1次抗体を用いて4℃で一晩反応させた。翌日、切片をPBSで洗浄し、色素(「Alexa Fluor 488」または「Alexa Fluor 555」Molecular Probes社製)を用いて2次抗体と室温で30分間反応させた後、PBSにて洗浄した。
ラミニン染色の結果、cKOの筋線維サイズは、WTとHETに比べて大きなものや小さなものが相対的に多く、筋線維サイズが均一でなくばらつきが大きいことが示された。また、cKOの筋組織では、WTに比べて中心核を持つ筋線維の割合が顕著に増加していた。更に、マクロファージマーカーとして汎用されている抗体F4/80による染色の結果、cKOの筋組織においてはWTに比べてマクロファージの浸潤が強く、コラーゲン染色の結果、筋組織の線維化が進行していることが示された。これらはいずれも筋ジストロフィーに典型的な所見であり、筋特異的ISPD欠損マウスであるcKOは、福山型筋ジストロフィー類縁疾患のモデルになるといえる。
In addition, immunostaining was performed using the following antibodies.
Rat anti-laminin ("4H8-2" manufactured by Alexis Biochemicals)
Rabbit anti-collagen I (manufactured by Bio-Rad)
Rat anti-F4 / 80 (manufactured by BioLegend)
For immunostaining with laminin, F4 / 80 and collagen I, sections were blocked with PBS containing 3% bovine serum albumin (BSA) for 1 hour at room temperature, followed by the primary antibody diluted with PBS containing 1% BSA. The reaction was carried out at 4 ° C. overnight. The next day, the sections were washed with PBS and reacted with a secondary antibody using a dye (“Alexa Fluor 488” or “Alexa Fluor 555” from Molecular Probes) for 30 minutes at room temperature and then washed with PBS.
As a result of laminin staining, it was shown that the muscle fiber size of cKO was relatively large and small as compared with WT and HET, and the muscle fiber size was not uniform and varied widely. Moreover, in the muscle tissue of cKO, the proportion of muscle fibers having a central core was remarkably increased as compared with WT. Furthermore, as a result of staining with antibody F4 / 80, which is widely used as a macrophage marker, macrophage infiltration is stronger in cKO muscle tissue than in WT, and as a result of collagen staining, fibrosis of muscle tissue is progressing. It has been shown. All of these are typical findings of muscular dystrophy, and it can be said that cKO, which is a muscle-specific ISPD-deficient mouse, serves as a model for Fukuyama-type muscular dystrophy-related diseases.

試験例3: In vivo解析 − ウェスタンブロット解析
7週齢の前記cKOモデルマウス4匹を麻酔した後、CDP−リビトール(CDP−Rbo)またはCDP−リビトール テトラアセテート(TetA,実施例2)を生理食塩水に溶解した0.1M水溶液、または生理食塩水を、前脛骨筋に40μL、腓腹筋に60μL注射し、また、3日後、同様に麻酔してから各水溶液を注射した。2回目の注射から3日目に筋組織を摘出した。
プロテアーゼ阻害剤を添加したTBS中、ポリトロンホモジナイザーを使って筋組織を破砕した後、終濃度1%の界面活性剤(TritonX−100)を添加し、4℃で1時間転倒混和した。可溶画分に10〜30μLのWheat Germ Agglutinin(WGA)−agarose beads(Vector Laboratories社製)を加え、4℃で16時間撹拌した。0.1%界面活性剤(Triton X−100)を含むTBSにて洗浄後、SDS−PAGE loading bufferにて溶出した。得られた試料を試験例1と同様にウェスタンブロットに付した。結果を図5に示す。
図5に示された結果の通り、CDP−リビトールを投与した場合には、生理食塩水を投与した場合に比べて、α−ジストログリカン(DG)の糖鎖形成が僅かに認められた。
それに対して、CDP−リビトール テトラアセテート(TetA)を投与した場合にはDGの糖鎖形成が明確に認められ、高い糖鎖回復活性が示された。また、CDP−リビトール テトラアセテート(TetA)を投与されたモデルマウスは、8週齢の時点で同量の生理食塩水を投与されたモデルマウスと変わるところがなかったことから、CDP−リビトール テトラアセテート(TetA)の毒性は低いと考えられる。
Test Example 3: In vivo analysis-Western blot analysis After anesthetizing 4 of the 7-week-old cKO model mice, CDP-libitol (CDP-Rbo) or CDP-libitol tetraacetate (TetA, Example 2) was saline. 40 μL of a 0.1 M aqueous solution or physiological saline solution dissolved in water was injected into the tibialis anterior muscle and 60 μL into the gastrocnemius muscle, and 3 days later, each aqueous solution was injected after the same anesthesia. Muscle tissue was removed 3 days after the second injection.
After crushing the muscle tissue using a polytron homogenizer in TBS to which a protease inhibitor was added, a surfactant (Triton X-100) having a final concentration of 1% was added, and the mixture was inverted and mixed at 4 ° C. for 1 hour. To the soluble fraction, 10 to 30 μL of Wheat Germ Agglutinin (WGA) -agarose beads (manufactured by Vector Laboratories) was added, and the mixture was stirred at 4 ° C. for 16 hours. After washing with TBS containing 0.1% surfactant (Triton X-100), it was eluted with SDS-PAGE loading buffer. The obtained sample was subjected to Western blotting in the same manner as in Test Example 1. The results are shown in FIG.
As shown in the results shown in FIG. 5, when CDP-ribitol was administered, sugar chain formation of α-dystroglycan (DG) was slightly observed as compared with the case where physiological saline was administered.
On the other hand, when CDP-ribitol tetraacetate (TetA) was administered, DG sugar chain formation was clearly observed, and high sugar chain recovery activity was shown. In addition, the model mice to which CDP-ribitol tetraacetate (TetA) was administered were no different from the model mice to which the same amount of physiological saline was administered at the age of 8 weeks. The toxicity of TetA) is considered to be low.

試験例4: In vivo解析 − 免疫染色解析
1週あたり2回の投与を3週連続して続けた以外は試験例3と同様にし、最終投与の3日後に組織を摘出し、試験例2と同様の条件でラミニン、F4/80およびcollagen Iによる免疫染色による病理解析を行った。ラミニンによる免疫染色結果を図6に、F4/80による免疫染色結果を図7(1)に、collagen Iによる免疫染色結果を図7(2)に示す。なお、図6において「*」は、平均値をTurkeyの多重比較検定して一元配置分散分析した結果、p<0.05で有意差がある場合を示し、「***」はp<0.001で有意差がある場合を示す。図7において、「*」は、Kruskal−Wallis検定の後のDunn’s多重比較でp<0.05で有意差がある場合を示す。
図6に示される結果の通り、対照例(生理食塩水)に比べて、CDP−リビトール(CDP−Rbo)を投与した場合でも筋線維径が僅かに増加する傾向があったが、CDP−リビトール テトラアセテート(TetA)を投与した場合、対照例に比べてもCDP−リビトールを投与した場合に比べても、有意に筋線維径が増加した。筋線維径分布(図6(2))を見ると、CDP−リビトール テトラアセテート(TetA)を投与した場合には、小径の筋線維が減少し、大径の筋線維が増加したことが分かる。
図7(1)に示される結果の通り、CDP−リビトール テトラアセテート(TetA)を投与した場合には、対照例に比べて、筋組織へのマクロファージの浸潤が有意に減少していた。
また、図7(2)に示される結果の通り、CDP−リビトール テトラアセテート(TetA)を投与した場合には、対照例に比べてもCDP−リビトールを投与した場合に比べても、筋線維化が有意に減少したことが分かる。
以上の結果は、TetAが福山型筋ジストロフィーおよびその類縁疾患の治療に有効であることを示している。
Test Example 4: In vivo analysis-Immunostaining analysis The same procedure as in Test Example 3 except that the administration was continued twice a week for 3 consecutive weeks, and the tissue was removed 3 days after the final administration, and the tissue was removed with Test Example 2. Pathological analysis by immunostaining with laminin, F4 / 80 and collagen I was performed under similar conditions. The results of immunostaining with laminin are shown in FIG. 6, the results of immunostaining with F4 / 80 are shown in FIG. 7 (1), and the results of immunostaining with collagen I are shown in FIG. 7 (2). In FIG. 6, “*” indicates a case where there is a significant difference at p <0.05 as a result of one-way ANOVA of the mean value by Turkey's multiple comparison test, and “***” indicates p <0. The case where there is a significant difference at .001 is shown. In FIG. 7, “*” indicates a case where there is a significant difference at p <0.05 in Dunn's multiple comparison after the Kruskal-Wallis test.
As shown in the results shown in FIG. 6, the muscle fiber diameter tended to increase slightly even when CDP-ribitol (CDP-Rbo) was administered as compared with the control example (physiological saline), but CDP-ribitol tended to increase. When tetraacetate (TetA) was administered, the muscle fiber diameter was significantly increased as compared with the control example and the case where CDP-ribitol was administered. Looking at the muscle fiber diameter distribution (FIG. 6 (2)), it can be seen that when CDP-ribitol tetraacetate (TetA) was administered, the small diameter muscle fibers decreased and the large diameter muscle fibers increased.
As shown in the result shown in FIG. 7 (1), when CDP-ribitol tetraacetate (TetA) was administered, the infiltration of macrophages into muscle tissue was significantly reduced as compared with the control example.
In addition, as shown in the result shown in FIG. 7 (2), when CDP-ribitol tetraacetate (TetA) was administered, muscle fibrosis was observed as compared with the control example and the case where CDP-ribitol was administered. Can be seen to have decreased significantly.
The above results indicate that TetA is effective in treating Fukuyama muscular dystrophy and related diseases.

Claims (9)

下記式(I1)で表されることを特徴とするCDP−リビトール誘導体またはその薬学的に許容される塩。
Figure 2021161092
[式中、
1〜R4は、独立して、H、C1-6アルキル−カルボニル基、またはC1-6アルコキシ−カルボニル基を示し、
5とR6は、独立して、H、C1-6アルキル基、置換基を有していてもよいC6-12アリール基、C6-12アリール基上に置換基を有していてもよいC6-12アリール−アミノ基、またはC6-12アリール基上に置換基を有していてもよいC6-12アリール−メチル基を示し、
6-12アリール基上の置換基は、C1-6アルコキシ基、またはC1-6アルキル−カルボニルオキシ基を示し、
7とR8は、独立して、OH、C1-6アルキル−カルボニルオキシ基、C1-6アルコキシ−カルボニルオキシ基、C1-6アルコキシ基、またはハロゲノ基を示し、
但し、R1〜R6がHである場合、R7とR8は、独立して、C1-6アルキル−カルボニルオキシ基、C1-6アルコキシ−カルボニルオキシ基、C1-6アルコキシ基、またはハロゲノ基を示す。]
A CDP-ribitol derivative or a pharmaceutically acceptable salt thereof, which is represented by the following formula (I 1).
Figure 2021161092
[During the ceremony,
R 1 to R 4 independently represent H, C 1-6 alkyl-carbonyl groups, or C 1-6 alkoxy-carbonyl groups.
R 5 and R 6 are independently, H, C 1-6 alkyl group which may have a substituent C 6-12 aryl group, optionally having a substituent on the C 6-12 aryl group which may be C 6-12 aryl - amino group or C 6-12 aryl group optionally C 6-12 aryl optionally having substituent on, - a methyl group,
Substituents on the C 6-12 aryl group represent a C 1-6 alkoxy group or a C 1-6 alkyl-carbonyloxy group.
R 7 and R 8 independently represent OH, C 1-6 alkyl-carbonyloxy group, C 1-6 alkoxy-carbonyloxy group, C 1-6 alkoxy group, or halogeno group.
However, when R 1 to R 6 are H, R 7 and R 8 independently have a C 1-6 alkyl-carbonyloxy group, a C 1-6 alkoxy-carbonyloxy group, and a C 1-6 alkoxy group. , Or a halogeno group. ]
CDP−リビトール誘導体が下記式(I2)で表されるCDP−リビトール誘導体である請求項1に記載のCDP−リビトール誘導体またはその薬学的に許容される塩。
Figure 2021161092
[式中、R1〜R8は上記と同義を示す。]
The CDP-ribitol derivative according to claim 1, wherein the CDP-ribitol derivative is a CDP-ribitol derivative represented by the following formula (I 2), or a pharmaceutically acceptable salt thereof.
Figure 2021161092
[In the formula, R 1 to R 8 have the same meaning as above. ]
1〜R4が、独立して、C1-4アルキル−カルボニル基である請求項1または2に記載のCDP−リビトール誘導体またはその薬学的に許容される塩。 The CDP-ribitol derivative according to claim 1 or 2, wherein R 1 to R 4 are independently C 1-4 alkyl-carbonyl groups, or a pharmaceutically acceptable salt thereof. 5とR6がHである請求項1〜3のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩。 The CDP-ribitol derivative according to any one of claims 1 to 3, wherein R 5 and R 6 are H, or a pharmaceutically acceptable salt thereof. 5とR6が、独立して、C6-12アリール基上に置換基を有していてもよいC6-12アリール−メチル基である請求項1〜3のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩。 The CDP according to any one of claims 1 to 3, wherein R 5 and R 6 are C 6-12 aryl-methyl groups which may independently have a substituent on the C 6-12 aryl group. -Libitol derivative or pharmaceutically acceptable salt thereof. 5とR6が、独立して、フェニル基上に置換基としてC1-6アルキル−カルボニルオキシ基を有するベンジル基である請求項1〜3のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩。 The CDP-libitol derivative according to any one of claims 1 to 3, wherein R 5 and R 6 are independently benzyl groups having a C 1-6 alkyl-carbonyloxy group as a substituent on the phenyl group, or a CDP-libitol derivative thereof. A pharmaceutically acceptable salt. 7とR8がOHである請求項1〜6のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩。 The CDP-ribitol derivative according to any one of claims 1 to 6, wherein R 7 and R 8 are OH, or a pharmaceutically acceptable salt thereof. 請求項1〜7のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩を含有することを特徴とする医薬。 A medicament containing the CDP-ribitol derivative according to any one of claims 1 to 7 or a pharmaceutically acceptable salt thereof. 請求項1〜7のいずれかに記載のCDP−リビトール誘導体またはその薬学的に許容される塩を有効成分として含有することを特徴とするジストログリカン異常症治療剤。 A therapeutic agent for dystroglycan dysfunction, which comprises the CDP-ribitol derivative according to any one of claims 1 to 7 or a pharmaceutically acceptable salt thereof as an active ingredient.
JP2020067017A 2020-04-02 2020-04-02 Novel CDP-ribitol derivatives Active JP7510663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020067017A JP7510663B2 (en) 2020-04-02 2020-04-02 Novel CDP-ribitol derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020067017A JP7510663B2 (en) 2020-04-02 2020-04-02 Novel CDP-ribitol derivatives

Publications (2)

Publication Number Publication Date
JP2021161092A true JP2021161092A (en) 2021-10-11
JP7510663B2 JP7510663B2 (en) 2024-07-05

Family

ID=78004326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020067017A Active JP7510663B2 (en) 2020-04-02 2020-04-02 Novel CDP-ribitol derivatives

Country Status (1)

Country Link
JP (1) JP7510663B2 (en)

Also Published As

Publication number Publication date
JP7510663B2 (en) 2024-07-05

Similar Documents

Publication Publication Date Title
EP3260463B1 (en) Deuterated chenodeoxycholic acid derivative and pharmaceutical composition comprising compound thereof
JP2023134433A (en) Novel carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids
BR112021013654A2 (en) LIPIDS FOR RELEASE OF LIPID NANOPARTICLES FROM ACTIVE AGENTS
EP3684755A1 (en) Technologies for oligonucleotide preparation
BR112019021359A2 (en) molecules, compositions, compounds, methods to administer a siren, to prepare a compound and to treat an infection, compound or salt, galnac conjugate and use of a compound
TW201408625A (en) Cationic lipid
RU2211219C2 (en) Derivatives of benzazepinon-n-acetic acid substituted with phosphonic acid, method for their preparing and medicinal agents containing these compounds
JP7190794B2 (en) Complex of nucleic acid medicine and hyperbranched lipid
CZ419797A3 (en) Diglycosylated 1,2-diols, process of their preparation and pharmaceutical composition containing thereof
JP7019585B2 (en) Nucleic acid prodrug
CA3203294A1 (en) Nanomaterials comprising carbonates
UA128250C2 (en) Integrin ligands and uses thereof
JP3771445B2 (en) Anticancer agent containing sulfopyranosyl acylglycerol derivative
CN113004356B (en) Novel genipin derivative, and preparation method and application thereof
CN103974965A (en) sialic acid analogues
TW201734028A (en) Compounds for inhibiting cancer and virus
US9670238B1 (en) 5′-dibenzyl phosphates of 5-azacytidine or 2′-deoxy-5-azacytidine
JP2021161092A (en) Novel cdp-ribitol derivative
US6518410B2 (en) Sulfoquinovosylacylglycerol derivative, and use thereof as medicaments
TW202337498A (en) Ionizable cationic lipids for rna delivery
US6759522B2 (en) Sulforhamnosylacyglycerol derivatives and use thereof as medicaments
US6740640B2 (en) Sulfofucosylacylglycerol derivatives and administration thereof as medicaments
TW201444788A (en) Sulfamoylbenzene derivative and drug application
WO2021033766A1 (en) Lithocholic acid derivative having vitamin d activity
JP2011520803A (en) D-Mannopyranose derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240617