JP2021157894A - Solvent-free electrode for all-solid-state secondary battery and all-solid-state secondary battery - Google Patents

Solvent-free electrode for all-solid-state secondary battery and all-solid-state secondary battery Download PDF

Info

Publication number
JP2021157894A
JP2021157894A JP2020054925A JP2020054925A JP2021157894A JP 2021157894 A JP2021157894 A JP 2021157894A JP 2020054925 A JP2020054925 A JP 2020054925A JP 2020054925 A JP2020054925 A JP 2020054925A JP 2021157894 A JP2021157894 A JP 2021157894A
Authority
JP
Japan
Prior art keywords
solid
secondary battery
group
solvent
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020054925A
Other languages
Japanese (ja)
Inventor
良太郎 辻
Ryotaro Tsuji
良太郎 辻
靖 森田
Yasushi Morita
靖 森田
剛志 村田
Tsuyoshi Murata
剛志 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Nagoya Denki Educational Foundation
Original Assignee
Kaneka Corp
Nagoya Denki Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp, Nagoya Denki Educational Foundation filed Critical Kaneka Corp
Priority to JP2020054925A priority Critical patent/JP2021157894A/en
Publication of JP2021157894A publication Critical patent/JP2021157894A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To manufacture an all-solid-state bipolar battery using the same materials for a positive electrode and a negative electrode.SOLUTION: A solvent-free electrode for an all-solid-state secondary battery includes a trioxotriangulene (TOT) derivative, a conductive auxiliary, and a solid electrolyte as an active material.SELECTED DRAWING: Figure 2

Description

本発明は二次電池、特にバイポーラ型全固体二次電池に関する。 The present invention relates to a secondary battery, particularly a bipolar all-solid-state secondary battery.

リチウムイオン二次電池(LIB)はモバイル機器電源や電気自動車用バッテリーなどに実用化されているが、電解液として可燃性の有機溶媒を用いており、さらに正極活物質として過充電すると結晶構造が壊れて発熱する金属酸化物が用いられているため、安全性に問題がある。またこのような金属酸化物の構成元素はレアメタルであり資源埋蔵量や入手性に問題がある。 Lithium-ion secondary batteries (LIBs) have been put to practical use as power supplies for mobile devices and batteries for electric vehicles, but they use flammable organic solvents as the electrolyte and have a crystalline structure when overcharged as the positive electrode active material. Since metal oxide that breaks and generates heat is used, there is a problem in safety. In addition, the constituent elements of such metal oxides are rare metals, and there are problems in resource reserves and availability.

電解液を用いない全固体電池では安全性の問題はクリアできる上、正極と負極を複数重ね合わせるバイポーラ型電池も可能となるため、電池単セルの電圧を大きくすることができ高出力化を達成できる。しかし現行の全固体電池は正極と負極に異なる材料を使用するためそれぞれを別個に製造する必要がありコストが高くなる。また正極と負極を複数重ね合わせる際には集電体の両面に正極と負極をそれぞれ形成する必要があるが、両者が異なる材料の場合、それぞれの最適プロセスが異なるため両方がベストとなる条件を設定することは不可能である。 With an all-solid-state battery that does not use an electrolyte, safety issues can be solved, and a bipolar battery in which multiple positive and negative electrodes are stacked is also possible, so the voltage of a single battery cell can be increased and high output is achieved. can. However, since the current all-solid-state battery uses different materials for the positive electrode and the negative electrode, it is necessary to manufacture each separately, which increases the cost. In addition, when stacking a plurality of positive electrodes and negative electrodes, it is necessary to form positive electrodes and negative electrodes on both sides of the current collector. It is impossible to set.

これに対し、一種類で正極と負極の両方に対応可能な活物質を使用すれば正極と負極を作り分ける必要がなくなり、コスト低減および製造プロセスの最適化を容易に達成できる。このような活物質候補として複数段階の酸化還元反応が可能なトリオキソトリアンギュレン(TOT)があげられるが、これまで全固体バイポーラ型電池については検討されていなかった(非特許文献1)。 On the other hand, if one type of active material that can handle both the positive electrode and the negative electrode is used, it is not necessary to separate the positive electrode and the negative electrode, and cost reduction and optimization of the manufacturing process can be easily achieved. As a candidate for such an active material, trioxotriangulene (TOT) capable of a multi-step redox reaction can be mentioned, but an all-solid-state bipolar battery has not been studied so far (Non-Patent Document 1).

Y.Morita,et al.,Nature Materials,2011,Vol.10,p.947,“Organic tailored batteries materials using stable open−shell molecules with degenerate frontier orbitals”Y. Morita, et al. , Nature Materials, 2011, Vol. 10, p. 947, "Organic tailored batteries materials using table open-shell molecules with degenerate frontier orbitals"

本発明が解決しようとする課題は、全固体二次電池用無溶媒電極、及び正極と負極に同じ材料を用いてバイポーラ型全固体二次電池を作製することである。 An object to be solved by the present invention is to manufacture a solvent-free electrode for an all-solid-state secondary battery and a bipolar all-solid-state secondary battery using the same material for the positive electrode and the negative electrode.

上記課題を解決した本発明の全固体二次電池用無溶媒電極は、活物質として式(1)および式(2)で示されるトリオキソトリアンギュレン(TOT)誘導体の少なくとも1種、導電助剤、および固体電解質を含有し、有機電解液を含有しないことに特徴を有する。なお、以下、式(1)の化合物をX3TOTと表し、式(2)の化合物をM+3TOT-又はMX3TOTと表す場合がある(X、Mは式(1)、式(2)と同じ意味である)。

Figure 2021157894

(式中、Xは水素原子、ハロゲン原子、アルキル基、(ヘテロ)アリール基、アラルキル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、シアノ基、ニトロ基、アミノ基、チオール基、またはシリル基を表し、互いに同一でも異なっていてもよい。実線と破線からなる二重結合は非局在化した二重結合を意味しており、式中、●で表される不対電子および(−)で表される負電荷は、この非局在化二重結合中に存在する。式中、M(+)はアルカリ金属イオンを示す。) The solvent-free electrode for an all-solid-state secondary battery of the present invention that has solved the above problems is conductively assisted by at least one of the trioxotriangulene (TOT) derivatives represented by the formulas (1) and (2) as an active material. It is characterized by containing an agent and a solid electrolyte and not containing an organic electrolyte. Hereinafter, the compound of the formula (1) may be represented as X 3 TOT, and the compound of the formula (2) may be represented as M + X 3 TOT - or MX 3 TOT (X and M are the formulas (1) and the formulas (1) and formulas). It has the same meaning as (2)).
Figure 2021157894

(In the formula, X is a hydrogen atom, a halogen atom, an alkyl group, a (hetero) aryl group, an aralkyl group, a hydroxy group, an alkoxy group, an aryloxy group, a cyano group, a nitro group, an amino group, a thiol group, or a silyl group. Represented and may be the same or different from each other. A double bond consisting of a solid line and a broken line means a delocalized double bond, and is represented by an unpaired electron represented by ● and (-) in the equation. The represented negative charge is present in this delocalized double bond. In the equation, M (+) represents an alkali metal ion.)

上記TOT誘導体におけるXは水素原子であることが好ましい。 It is preferable that X in the TOT derivative is a hydrogen atom.

上記固体電解質はポリマー電解質とアルカリ金属塩との混合物であることが好ましい。 The solid electrolyte is preferably a mixture of a polymer electrolyte and an alkali metal salt.

上記アルカリ金属塩はリチウム塩であり、かつ式(2)におけるM(+)はリチウムイオンであることが好ましい。 It is preferable that the alkali metal salt is a lithium salt and M (+) in the formula (2) is a lithium ion.

本発明はまた、上記無溶媒電極を正極および負極とし、固体電解質をセパレータとして両極を相対させた構造を有するバイポーラ型全固体二次電池を提供する。 The present invention also provides a bipolar all-solid-state secondary battery having a structure in which the solvent-free electrode is used as a positive electrode and a negative electrode and a solid electrolyte is used as a separator so that both electrodes are opposed to each other.

本発明のバイポーラ型全固体二次電池は両極に同じ活物質を用いることが特徴であり、正極と負極を作り分ける必要がないため、製造プロセス簡略化と低コスト化に大きなメリットが期待できる。これに対し、従来のバイポーラ型電池は、通常、正極と負極が別であるため、製造上の難しさがあった。TOT誘導体が正極と負極の両方の活物質として使用できる理由は、1つの化合物で酸化と還元の両方向への反応が可能であるという特性による。さらに充放電に必要なアルカリ金属イオンを初めから構造中に含ませることが可能であるため、別途アルカリ金属イオンを導入する必要がないことも大きなメリットである。 The bipolar type all-solid-state secondary battery of the present invention is characterized in that the same active material is used for both electrodes, and since it is not necessary to separate the positive electrode and the negative electrode, great merits can be expected for simplification of the manufacturing process and cost reduction. On the other hand, the conventional bipolar battery has a difficulty in manufacturing because the positive electrode and the negative electrode are usually separate. The reason why the TOT derivative can be used as an active material for both the positive electrode and the negative electrode is that one compound can react in both directions of oxidation and reduction. Furthermore, since the alkali metal ions required for charging and discharging can be included in the structure from the beginning, there is no need to separately introduce alkali metal ions, which is a great merit.

さらに本発明のバイポーラ型全固体二次電池は、TOT誘導体を活物質とする電極同士を組み合わせた上記構造を一つの電池内に2組以上重ね合わせた構造を有することが好ましい。上記構造を2組以上組み合わせることにより、一つの電池内に複数の正極−負極ペアを直列接続させることができる。このような積層バイポーラ型電池はその積層数に応じた高電圧化が可能であり、高容量かつ高出力の二次電池を製造することが可能となる。 Further, the bipolar all-solid-state secondary battery of the present invention preferably has a structure in which two or more sets of the above structures in which electrodes using a TOT derivative as an active material are combined are superposed in one battery. By combining two or more pairs of the above structures, a plurality of positive electrode-negative electrode pairs can be connected in series in one battery. Such a laminated bipolar battery can be increased in voltage according to the number of layers thereof, and can manufacture a secondary battery having a high capacity and a high output.

引火性のある有機溶媒を含まない電極を作製することができ、二次電池の安全性向上が期待できる。正極と負極の構造を同一とすることが可能であり、製造プロセス簡略化や低コスト化に寄与するのみならず、積層バイポーラ型電池を容易に製造することが可能となり、高容量かつ高出力の二次電池を得ることができる。 An electrode that does not contain a flammable organic solvent can be produced, and improvement in the safety of the secondary battery can be expected. The structure of the positive electrode and the negative electrode can be the same, which not only contributes to simplification of the manufacturing process and cost reduction, but also makes it possible to easily manufacture a laminated bipolar battery, resulting in high capacity and high output. A secondary battery can be obtained.

図1は、本発明の実施例1に係る電池のサイクリックボルタモグラムである。FIG. 1 is a cyclic voltammogram of the battery according to the first embodiment of the present invention. 図2は、本発明の実施例1に係る電池の充放電特性を示すグラフである。FIG. 2 is a graph showing the charge / discharge characteristics of the battery according to the first embodiment of the present invention. 図3は、本発明の実施例2に係る電池の充放電特性を示すグラフである。FIG. 3 is a graph showing the charge / discharge characteristics of the battery according to the second embodiment of the present invention. 図4は、本発明の実施例3に係る電池の充放電特性を示すグラフである。FIG. 4 is a graph showing the charge / discharge characteristics of the battery according to the third embodiment of the present invention. 図5は、本発明の実施例4に係る電池の充放電特性を示すグラフである。FIG. 5 is a graph showing the charge / discharge characteristics of the battery according to the fourth embodiment of the present invention. 図6は、本発明の実施例4に係る電池の充放電特性を示すグラフである。FIG. 6 is a graph showing the charge / discharge characteristics of the battery according to the fourth embodiment of the present invention. 図7は、本発明の実施例5に係る電池の充放電特性を示すグラフである。FIG. 7 is a graph showing the charge / discharge characteristics of the battery according to the fifth embodiment of the present invention.

本発明の全固体二次電池用無溶媒電極は、式(1)および式(2)で示されるトリオキソトリアンギュレン(TOT)誘導体の少なくとも1種、導電助剤、および固体電解質を含有し、有機電解液を含有しない。

Figure 2021157894

(式中、Xは水素原子、ハロゲン原子、アルキル基、(ヘテロ)アリール基、アラルキル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、シアノ基、ニトロ基、アミノ基、チオール基、またはシリル基を表し、互いに同一でも異なっていてもよい。実線と破線からなる二重結合は非局在化した二重結合を意味しており、式中、●で表される不対電子および(−)で表される負電荷は、この非局在化二重結合中に存在する。式中、M(+)はアルカリ金属イオンを示す。) The solvent-free electrode for an all-solid-state secondary battery of the present invention contains at least one of the trioxotriangulene (TOT) derivatives represented by the formulas (1) and (2), a conductive auxiliary agent, and a solid electrolyte. , Does not contain organic electrolyte.
Figure 2021157894

(In the formula, X is a hydrogen atom, a halogen atom, an alkyl group, a (hetero) aryl group, an aralkyl group, a hydroxy group, an alkoxy group, an aryloxy group, a cyano group, a nitro group, an amino group, a thiol group, or a silyl group. Represented and may be the same or different from each other. A double bond consisting of a solid line and a broken line means a delocalized double bond, and is represented by an unpaired electron represented by ● and (-) in the equation. The represented negative charge is present in this delocalized double bond. In the equation, M (+) represents an alkali metal ion.)

Xが水素原子、ハロゲン原子、又は前記例示の基であるTOT誘導体は、Xがカルボキシル基であるTOT誘導体のものに比べて合成が容易であるというメリットを有し、カルボキシル基にアルカリ金属が塩としてトラップされるという不具合がなく、イオン伝導度を高くできる。さらにXとしては、水素原子、ハロゲン原子、メチル基、エチル基、ヒドロキシ基、メトキシ基、シアノ基、ニトロ基、アミノ基、チオール基などが好ましく、水素原子が特に好ましい。Xがこれら好ましいものであると、充放電理論容量を大きくでき、例えば、Xが水素原子であるTOTの理論容量(4電子分)は334mAh/gであって、XがCOOLiであるTOTの理論容量(228mAh/g)よりも大きくできる。 A TOT derivative in which X is a hydrogen atom, a halogen atom, or the above-exemplified group has an advantage that it is easier to synthesize than a TOT derivative in which X is a carboxyl group, and an alkali metal is added to the carboxyl group. Ion conductivity can be increased without the problem of being trapped. Further, as X, a hydrogen atom, a halogen atom, a methyl group, an ethyl group, a hydroxy group, a methoxy group, a cyano group, a nitro group, an amino group, a thiol group and the like are preferable, and a hydrogen atom is particularly preferable. When X is preferable, the theoretical charge / discharge capacity can be increased. For example, the theoretical capacity (4 electrons) of TOT in which X is a hydrogen atom is 334 mAh / g, and the theory of TOT in which X is COOLi. It can be larger than the capacity (228 mAh / g).

上記式(1)で示されるTOT誘導体は中性ラジカルであり、不対電子が分子内のπ電子系に広く非局在化しているため室温で大気中でも安定である。また式(2)で示されるTOT誘導体はモノアニオンであり、式(1)のTOT中性ラジカルを1電子還元することにより得られる。逆に式(2)のTOTモノアニオンを1電子酸化すると可逆的に式(1)のTOT中性ラジカルを得ることができる。式中のMとしてはリチウム、ナトリウム、カリウムなどを使用できるが、電池特性に優れる点でリチウムが好ましい。 The TOT derivative represented by the above formula (1) is a neutral radical, and since unpaired electrons are widely delocalized in the π-electron system in the molecule, it is stable at room temperature in the atmosphere. The TOT derivative represented by the formula (2) is a monoanion, and can be obtained by reducing the TOT neutral radical of the formula (1) by one electron. Conversely, when the TOT monoanion of the formula (2) is oxidized by one electron, the TOT neutral radical of the formula (1) can be reversibly obtained. Lithium, sodium, potassium and the like can be used as M in the formula, but lithium is preferable in terms of excellent battery characteristics.

固体電解質としては例えばLi2S−P25、Li3.25Ge0.250.754、Li2S−SiS2−Li4SiO4、Li2S−LiI、Li10GeP212、Li7311などの硫化物型、La0.51Li0.34TiO2.94などのペロブスカイト型、Li1.3Al0.3Ti1.7(PO43などのNASICON型、Li7La3Zr212などのガーネット型、およびポリマー電解質を使用することができる。TOTとの親和性が高い点でポリマー電解質が好ましい。 Examples of the solid electrolyte for example Li 2 S-P 2 S 5 , Li 3.25 Ge 0.25 P 0.75 S 4, Li 2 S-SiS 2 -Li 4 SiO 4, Li 2 S-LiI, Li 10 GeP 2 S 12, Li 7 Sulfide type such as P 3 S 11 , perovskite type such as La 0.51 Li 0.34 TiO 2.94 , NASICON type such as Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , garnet type such as Li 7 La 3 Zr 2 O 12 And polymer electrolytes can be used. A polymer electrolyte is preferable because it has a high affinity with TOT.

固体電解質はポリマー電解質とアルカリ金属塩との混合物であることが好ましい。ポリマー電解質はポリマーとアルカリ金属塩との混合物として得られるが、ポリマーとしては例えばポリアクリル酸(PAA)、ポリメタクリル酸(PMAA)などのポリ(メタ)アクリル酸;ポリ2−ヒドロキシエチルアクリレート、ポリ2−ヒドロキシエチルメタクリレートなどのポリ(メタ)アクリレート;ポリアクリルアミド(PAAm)、ポリメタクリルアミド(PMAm)などのポリ(メタ)アクリルアミド;ポリエチレンオキシド(PEO)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、およびこれらの共重合体を使用することができる。これらのうち入手性とイオン伝導性の点でポリ(メタ)アクリル酸、ポリ(メタ)アクリレート、ポリ(メタ)アクリルアミド、PEOおよびこれらの共重合体が好ましく、PAA、PMAA、ポリ2−ヒドロキシエチルアクリレート、ポリ2−ヒドロキシエチルメタクリレート、PAAm、PMAm、PEOおよびこれらの共重合体がより好ましい。 The solid electrolyte is preferably a mixture of a polymer electrolyte and an alkali metal salt. The polymer electrolyte is obtained as a mixture of the polymer and an alkali metal salt, and the polymer includes poly (meth) acrylic acids such as polyacrylic acid (PAA) and polymethacrylic acid (PMAA); poly2-hydroxyethylacrylate, poly. Poly (meth) acrylates such as 2-hydroxyethyl methacrylate; poly (meth) acrylamides such as polyacrylamide (PAAm), polymethacrylicamide (PMAm); polyethylene oxide (PEO), polycarbonate (PC), polyethylene terephthalate (PET), And these copolymers can be used. Of these, poly (meth) acrylic acid, poly (meth) acrylate, poly (meth) acrylamide, PEO and copolymers thereof are preferable in terms of availability and ionic conductivity, and PAA, PMAA and poly2-hydroxyethyl are preferable. Acrylate, poly2-hydroxyethyl methacrylate, PAAm, PMAm, PEO and copolymers thereof are more preferable.

アルカリ金属塩としてはリチウム塩、ナトリウム塩、カリウム塩などを用いることができるが、電池の充放電特性が優れる点でリチウム塩が好ましい。リチウム塩としては特に限定されないが、入手性の点でLiPF6、LiClO4、LiBF4、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルフォニル)イミド(LiTFSI)が好ましく、電池の充放電特性が優れる点でLiFSIおよびLiTFSIがより好ましい。また使用するアルカリ金属塩の金属と、上記式(2)におけるM(+)の金属が同一であることが好ましい。 As the alkali metal salt, a lithium salt, a sodium salt, a potassium salt or the like can be used, but the lithium salt is preferable because it has excellent charge / discharge characteristics of the battery. The lithium salt is not particularly limited, but LiPF 6 , LiClO 4 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) are preferable in terms of availability, and the battery is preferably used. LiFSI and LiTFSI are more preferable because they have excellent charge / discharge characteristics. Further, it is preferable that the metal of the alkali metal salt used and the metal of M (+) in the above formula (2) are the same.

導電助剤としてはアセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、多孔質炭素材料、天然黒鉛、カーボンナノチューブ(CNT)、気相成長炭素繊維(VGCF(登録商標))、グラフェン、酸化グラフェン還元体などを使用することができるが、電池の充放電特性に優れる点でアセチレンブラック、ケッチェンブラック、多孔質炭素材料、CNT、VGCF(登録商標)、グラフェンが好ましく、アセチレンブラック、多孔質炭素材料、CNT、VGCF(登録商標)がより好ましい。導電助剤は単独で用いてもよく、複数を組み合わせて用いてもよい。アセチレンブラックや多孔質炭素材料などの粒子状導電助剤はTOTの吸着や保持に優れ、一方でCNTやVGCF(登録商標)などの繊維状導電助剤は電導性に優れる特徴を有するため、両者を組み合わせて用いるのが好ましい。 Conductive aids include carbon blacks such as acetylene black, ketjen black, furnace black, porous carbon materials, natural graphite, carbon nanotubes (CNT), vapor-grown carbon fibers (VGCF®), graphene, graphene oxide. A reduced product or the like can be used, but acetylene black, ketjen black, porous carbon material, CNT, VGCF (registered trademark), graphene are preferable, and acetylene black and porous carbon are preferable because they are excellent in charge / discharge characteristics of the battery. Materials, CNTs and VGCF® are more preferred. The conductive auxiliary agent may be used alone or in combination of two or more. Particle-like conductive auxiliaries such as acetylene black and porous carbon materials have excellent adsorption and retention of TOT, while fibrous conductive auxiliaries such as CNT and VGCF (registered trademark) have excellent conductivity. Is preferably used in combination.

本発明の実施形態に係る全固体二次電池用無溶媒電極を製造する方法としては特に限定されず、上記式(1)および式(2)で示されるトリオキソトリアンギュレン誘導体の少なくとも1種、導電助剤、および固体電解質を混合し、塗布あるいは成形することにより得られる。 The method for producing the solvent-free electrode for an all-solid-state secondary battery according to the embodiment of the present invention is not particularly limited, and at least one of the trioxotriangulene derivatives represented by the above formulas (1) and (2). , Conductive aid, and solid electrolyte are mixed and applied or molded.

混合する方法としては全ての成分を一度に混ぜてもよく、順次加えながら混ぜても良い。効率よく混合できる点で溶媒を添加することが好ましい。溶媒としては特に限定されず、例えば水、メタノール、エタノール、プロパノール、イソプロパノール、アセトン、アセトニトリル、N−メチルピロリドン(NMP)、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、ジメチルスルホキシド(DMSO)、テトラヒドロフラン(THF)、酢酸エチルなどを使用することができる。各成分を効率的に分散し混合できる点で水、メタノール、エタノール、アセトニトリル、NMPが好ましく、水、メタノール、エタノールがより好ましい。 As a method of mixing, all the components may be mixed at once, or may be mixed while being added sequentially. It is preferable to add a solvent because it can be mixed efficiently. The solvent is not particularly limited, and for example, water, methanol, ethanol, propanol, isopropanol, acetone, acetonitrile, N-methylpyrrolidone (NMP), toluene, xylene, chlorobenzene, dichlorobenzene, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF). , Ethyl acetate and the like can be used. Water, methanol, ethanol, acetonitrile and NMP are preferable, and water, methanol and ethanol are more preferable because each component can be efficiently dispersed and mixed.

溶媒を用いて混合する場合、各種攪拌装置、ボールミル、ミキサー、超音波分散機などを用いることにより効率よく分散体を得ることができる。ポリマー電解質としてポリマーとアルカリ金属塩との混合物を使用する場合、他の成分と混合する前にポリマーとアルカリ金属塩とを予め混合しておいてもよく、他の成分と同時に両者を混合してもよい。 When mixing with a solvent, a dispersion can be efficiently obtained by using various stirrers, ball mills, mixers, ultrasonic dispersers and the like. When a mixture of a polymer and an alkali metal salt is used as the polymer electrolyte, the polymer and the alkali metal salt may be mixed in advance before being mixed with other components, or both may be mixed at the same time as the other components. May be good.

電極として薄膜状に成形する方法としては特に限定されず、集電体となる金属箔や金属板に塗布し、乾燥させればよい。塗布法としては例えばバーコーティング、スピンコーティング、ディップコーティング、スプレーコーティング、スクリーン印刷、グラビア印刷、インクジェット印刷などがあげられる。塗布後、適宜加熱したり減圧したりして乾燥させる。乾燥中あるいは乾燥後にプレスして電極の密度を大きくすることも可能である。溶媒を使用せずに混合した場合には、得られた混合物を直接プレスしてシート状に成形して電極としてもよい。集電体となる金属箔や金属板の種類は特に限定されず、アルミニウム、銅、ステンレス、鉄などを使用でき、形状もホイル状、シート状、メッシュ状など任意のものを使用可能である。 The method of forming the electrode into a thin film is not particularly limited, and the electrode may be applied to a metal foil or a metal plate serving as a current collector and dried. Examples of the coating method include bar coating, spin coating, dip coating, spray coating, screen printing, gravure printing, and inkjet printing. After application, it is dried by heating or reducing the pressure as appropriate. It is also possible to increase the density of the electrodes by pressing during or after drying. When mixed without using a solvent, the obtained mixture may be directly pressed into a sheet to form an electrode. The type of metal foil or metal plate used as the current collector is not particularly limited, and aluminum, copper, stainless steel, iron, or the like can be used, and any shape such as foil, sheet, or mesh can be used.

本発明の実施形態に係る電極の膜厚は特に限定されないが、薄いと電池容量が小さくなり、厚いと乾燥工程に時間がかかる上、高速充放電特性が悪くなる。両者のバランスの点で5μm〜300μmの範囲が好ましく、20μm〜150μmの範囲がより好ましい。 The film thickness of the electrode according to the embodiment of the present invention is not particularly limited, but if it is thin, the battery capacity becomes small, and if it is thick, the drying process takes time and the high-speed charge / discharge characteristics deteriorate. In terms of the balance between the two, the range of 5 μm to 300 μm is preferable, and the range of 20 μm to 150 μm is more preferable.

本発明の実施形態に係る電極において各成分の含有量は特に限定されないが、電池の充放電特性に優れる点でTOT誘導体は、TOT誘導体と導電助剤と固体電解質との合計100質量%中、20〜95重量%含まれていることが好ましく、30〜90重量%含まれていることがより好ましく、30〜80重量%含まれていることがさらに好ましい。TOT誘導体が多く含まれるほど電池の充放電容量は大きくなるが、多すぎると電子やイオンの移動効率が下がるため高速充放電特性が悪化する。 The content of each component in the electrode according to the embodiment of the present invention is not particularly limited, but the TOT derivative is a TOT derivative, a conductive auxiliary agent, and a solid electrolyte in a total of 100% by mass in that the charge / discharge characteristics of the battery are excellent. It is preferably contained in an amount of 20 to 95% by weight, more preferably 30 to 90% by weight, and even more preferably 30 to 80% by weight. The more the TOT derivative is contained, the larger the charge / discharge capacity of the battery is, but if it is too large, the transfer efficiency of electrons and ions is lowered, and the high-speed charge / discharge characteristics are deteriorated.

導電助剤は電子伝導性の確保と電池容量の最大化のバランスをとるため、TOT誘導体と導電助剤と固体電解質との合計100質量%中、1〜20重量%含まれていることが好ましく、2〜15重量%含まれていることがより好ましい。粒子状導電助剤と繊維状導電助剤とを組み合わせる場合の粒子状導電助剤と繊維状導電助剤の割合(粒子状導電助剤:繊維状導電助剤)は特に限定されないが、重量比で95:5〜40:60の範囲が好ましく、90:10〜45:55の範囲がより好ましく、80:20〜50:50の範囲が更に好ましく、75:25〜55:45の範囲であってもよい。粒子状導電助剤と繊維状導電助剤を上記範囲で組み合わせれば、TOTの吸着や保持に優れ電導性に優れた導電助剤とすることができる。 The conductive auxiliary agent is preferably contained in an amount of 1 to 20% by weight based on 100% by mass of the total of the TOT derivative, the conductive auxiliary agent and the solid electrolyte in order to balance the securing of electronic conductivity and the maximization of the battery capacity. , 2 to 15% by weight, more preferably. The ratio of the particulate conductive auxiliary agent to the fibrous conductive auxiliary agent (particle conductive auxiliary agent: fibrous conductive auxiliary agent) when the particulate conductive auxiliary agent and the fibrous conductive auxiliary agent are combined is not particularly limited, but is a weight ratio. The range of 95: 5 to 40:60 is preferable, the range of 90: 10 to 45:55 is more preferable, the range of 80:20 to 50:50 is more preferable, and the range of 75:25 to 55:45 is preferable. You may. By combining the particulate conductive auxiliary agent and the fibrous conductive auxiliary agent in the above range, it is possible to obtain a conductive auxiliary agent having excellent adsorption and retention of TOT and excellent electrical conductivity.

固体電解質はイオン伝導性の確保と電池容量の最大化のバランスをとるため、TOT誘導体と導電助剤と固体電解質との合計100質量%中、3〜70重量%含まれていることが好ましく、10〜60重量%含まれていることが好ましく、15〜55重量%含まれていることがより好ましい。固体電解質としてポリマーとアルカリ金属塩との混合物を用いる場合、両者の含有比(ポリマー:アルカリ金属塩)は特に限定されないが、イオン伝導性に優れる点で重量比50:50〜95:5の範囲が好ましく、60:40〜90:10の範囲がより好ましく、65:35〜80:20の範囲がさらに好ましい。 In order to balance the securing of ionic conductivity and the maximization of battery capacity, the solid electrolyte is preferably contained in an amount of 3 to 70% by weight based on 100% by mass of the total of the TOT derivative, the conductive auxiliary agent and the solid electrolyte. It is preferably contained in an amount of 10 to 60% by weight, more preferably 15 to 55% by weight. When a mixture of a polymer and an alkali metal salt is used as the solid electrolyte, the content ratio (polymer: alkali metal salt) of the two is not particularly limited, but the weight ratio is in the range of 50:50 to 95: 5 in terms of excellent ionic conductivity. Is preferable, the range of 60:40 to 90:10 is more preferable, and the range of 65:35 to 80:20 is even more preferable.

本発明の実施形態に係る電極を作製する際、集電体および各成分同士の接着性を高める目的でバインダーを併用してもよい。バインダーとしては例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド、スチレンブタジエンゴム、ポリアクリロニトリル、PAAなどを使用することができる。 When producing the electrode according to the embodiment of the present invention, a binder may be used in combination for the purpose of enhancing the adhesiveness between the current collector and each component. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, polyimide, styrene-butadiene rubber, polyacrylonitrile, PAA and the like can be used.

本発明の実施形態に係る電極においては、バインダーを含まないことも好ましい態様である。上記の導電助剤を用いているため、バインダーを含まなくても電極の作製が可能である。バインダーは充放電に関与しないため、電池の充放電容量を大きくする観点からはなるべく少量が好ましく、含まないことがより好ましい。 It is also a preferable aspect that the electrode according to the embodiment of the present invention does not contain a binder. Since the above conductive auxiliary agent is used, the electrode can be manufactured without containing a binder. Since the binder does not participate in charging / discharging, it is preferably as small as possible, and more preferably not contained, from the viewpoint of increasing the charging / discharging capacity of the battery.

本発明の実施形態に係る電極を正極および負極とし、固体電解質をセパレータとして両極を相対させた構造を有するバイポーラ型固体二次電池とすることができる。本発明によれば、同じ電極同士を固体電解質セパレータを介して相対させることで、バイポーラ型電池とすることが可能である。この場合充放電の電位の与え方によって一方が正極となり、他方が負極となる。 A bipolar solid secondary battery having a structure in which the electrodes according to the embodiment of the present invention are the positive electrode and the negative electrode and the solid electrolyte is used as the separator and the two electrodes are opposed to each other can be obtained. According to the present invention, a bipolar battery can be obtained by making the same electrodes face each other via a solid electrolyte separator. In this case, one becomes a positive electrode and the other becomes a negative electrode depending on how the charging / discharging potential is applied.

上記に記載の構造を一つの電池内に2組以上重ね合わせた構造を有するバイポーラ型固体二次電池とし、バイポーラ型構造を一つの電池の中に複数層重ね合わせることも可能である。これは電池を直列接続することに相当するため、重ねる層数が大きいほど電圧を高くすることができる。 It is also possible to form a bipolar solid secondary battery having a structure in which two or more sets of the above structures are superposed in one battery, and to superimpose a plurality of layers of the bipolar structure in one battery. Since this corresponds to connecting batteries in series, the voltage can be increased as the number of layers to be stacked increases.

以下、実施例に従って本発明を説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described with reference to Examples. The present invention is not limited by the following examples, and it is of course possible to carry out the present invention with appropriate modifications within a range that can be adapted to the above-mentioned purpose, and all of them are technical of the present invention. Included in the range.

含有量ないし使用量を表す%および部は、特に記載ない限り重量基準である。TOT中性ラジカル誘導体(H3TOT)およびTOTモノアニオン誘導体(LiH3TOT)は、2−ヨードトルエンを出発原料として非特許文献1に記載の方法で合成した。アセチレンブラック(AB)はデンカ製デンカブラック、気相成長炭素繊維(VGCF(登録商標))は昭和電工製、ポリフッ化ビニリデン(PVDF)はクレハ製KFポリマー、ポリ(エチレンオキシド)(PEO)は大阪ソーダ製を用いた。電極膜厚はハイデンハイン株式会社製ゲージMT1281を用いて測定した。充放電試験はCR2032コインセルを用いてバイオロジック社製充放電試験機BCS−810で実施した。
(実施例1)
<電極の作製>
活物質としてLi+3TOT-(100mg)、導電助剤としてAB(16mg)およびVGCF(登録商標)(4mg)、ポリマー電解質としてリチウムビス(トリフルオロメタンスルフォニル)イミド(LiTFSI)(24mg)およびPEO(56mg)、分散溶媒としてアセトニトリル(1.7g)を遊星式撹拌脱泡装置で混合し、Li+3TOT-/AB/VGCF(登録商標)/LiTFSI/PEO(50:8:2:12:28)(重量比)のスラリーを得た。このスラリー適量をφ15mmのステンレス円盤上にスピンコートして乾燥させて全固体二次電池用無溶媒電極を作製した。
Percentages and parts representing the content or amount used are based on weight unless otherwise specified. The TOT neutral radical derivative (H 3 TOT) and the TOT mono anion derivative (LiH 3 TOT) were synthesized by the method described in Non-Patent Document 1 using 2-iodotoluene as a starting material. Acetylene black (AB) is Denka black made by Denka, gas phase growth carbon fiber (VGCF (registered trademark)) is made by Showa Denko, polyvinylidene fluoride (PVDF) is KF polymer made by Kureha, and poly (ethylene oxide) (PEO) is Osaka soda. Was used. The electrode film thickness was measured using a gauge MT1281 manufactured by Heidenhain Co., Ltd. The charge / discharge test was carried out using a CR2032 coin cell with a charge / discharge tester BCS-810 manufactured by Biologic.
(Example 1)
<Preparation of electrodes>
Li + H 3 TOT as an active material - (100 mg), a conductive auxiliary agent as AB (16 mg) and VGCF (registered trademark) (4 mg), lithium bis as a polymer electrolyte (trifluoromethanesulfonyl) imide (LiTFSI) (24 mg) and PEO (56 mg), acetonitrile (1.7 g) were mixed with a planetary stirrer deaerator as a dispersion solvent, Li + H 3 TOT - / AB / VGCF ( TM) / LiTFSI / PEO (50: 8: 2: 12 : 28) (weight ratio) slurry was obtained. An appropriate amount of this slurry was spin-coated on a stainless steel disk having a diameter of 15 mm and dried to prepare a solvent-free electrode for an all-solid-state secondary battery.

<電池の作製と評価>
上記電極2枚を、セパレータとして大阪ソーダ製LiTFSI含有PEOフィルム(φ16mm)を介して相対させ、バネと共にCR2032コインセルの中に入れてかしめることにより電池を作製した。初期状態では両極間に電気化学ポテンシャルの差がないため電圧は0Vである。この電池を0V→2.6V→0Vでサイクリックボルタンメトリーを行った結果を図1に示す。可逆的酸化還元波が観測された。次にこの電池を電圧範囲2.1−0V、レート0.1Cで10サイクル、80℃で充放電させた。充放電曲線を図2に示す。初回充電に対する不可逆容量が大きいものの二次電池として安定に動作しており、10mAh/g以上の放電容量を保っていた。
<Battery production and evaluation>
The two electrodes were opposed to each other via a LiTFSI-containing PEO film (φ16 mm) manufactured by Osaka Soda Co., Ltd. as a separator, and were placed in a CR2032 coin cell together with a spring and crimped to prepare a battery. In the initial state, the voltage is 0 V because there is no difference in electrochemical potential between the two poles. The result of cyclic voltammetry of this battery from 0V → 2.6V → 0V is shown in FIG. A reversible redox wave was observed. Next, this battery was charged and discharged at 80 ° C. for 10 cycles at a voltage range of 2.1-0 V and a rate of 0.1 C. The charge / discharge curve is shown in FIG. Although it has a large irreversible capacity with respect to the initial charge, it operates stably as a secondary battery and maintains a discharge capacity of 10 mAh / g or more.

(実施例2)
<電極の作製>
活物質としてLi+3TOT-(100mg)、導電助剤としてAB(16mg)およびVGCF(登録商標)(4mg)、ポリマー電解質としてLiTFSI(22mg)およびPEO(57mg)、分散溶媒としてアセトニトリル(1.5g)を遊星式撹拌脱泡装置で混合し、LiTOT/AB/VGCF(登録商標)/LiTFSI/PEO(50:8:2:11:29)(重量比)のスラリーを得た。このスラリー適量をφ15mmのステンレス円盤上にスピンコートして乾燥させて全固体二次電池用無溶媒電極を作製した。
(Example 2)
<Preparation of electrodes>
Li + H 3 TOT as an active material - (100 mg), a conductive auxiliary agent as AB (16 mg) and VGCF (registered trademark) (4 mg), LiTFSI as a polymer electrolyte (22 mg) and PEO (57 mg), acetonitrile (1 a dispersion solvent .5 g) was mixed with a planetary stirring and defoaming device to prepare a slurry of Li + H 3 TOT / AB / VGCF® / LiTFSI / PEO (50: 8: 2: 11: 29) (weight ratio). Obtained. An appropriate amount of this slurry was spin-coated on a stainless steel disk having a diameter of 15 mm and dried to prepare a solvent-free electrode for an all-solid-state secondary battery.

<電池の作製と評価>
上記電極2枚を、セパレータとして大阪ソーダ製LiTFSI含有PEOフィルム(φ16mm)を介して相対させ、バネと共にCR2032コインセルの中に入れてかしめることにより電池を作製した。この電池を電圧範囲1.8−0.2V、レート0.01Cで8サイクル、60℃で充放電させた。充放電曲線を図3に示す。サイクルごとに容量低下が認められるものの二次電池として安定に動作した。
<Battery production and evaluation>
The two electrodes were opposed to each other via a LiTFSI-containing PEO film (φ16 mm) manufactured by Osaka Soda Co., Ltd. as a separator, and were placed in a CR2032 coin cell together with a spring and crimped to prepare a battery. The battery was charged and discharged at 60 ° C. for 8 cycles at a voltage range of 1.8-0.2 V and a rate of 0.01 C. The charge / discharge curve is shown in FIG. Although the capacity decreased with each cycle, it operated stably as a secondary battery.

(実施例3)
<電極の作製>
実施例2で調製したLi+3TOT-/AB/VGCF(登録商標)/LiTFSI/PEO(50:8:2:11:29)(重量比)のスラリー適量をφ15mmのステンレス円盤上にスピンコートして乾燥させて全固体二次電池用無溶媒電極を作製した。
(Example 3)
<Preparation of electrodes>
Example 2 prepared Li + H 3 TOT - / AB / VGCF ( TM) / LiTFSI / PEO (50: 8: 2: 11: 29) spins the slurry appropriate amount (by weight) on a stainless steel disk having a φ15mm It was coated and dried to prepare a solvent-free electrode for an all-solid-state secondary battery.

<電池の作製と評価>
上記電極2枚を、セパレータとして大阪ソーダ製LiTFSI含有PEOフィルム(φ16mm)を介して相対させ、バネと共にCR2032コインセルの中に入れてかしめることにより電池を作製した。この電池を電圧範囲1.8−0.2V、レート0.01Cで9サイクル、60℃で充放電させた。充放電曲線を図4に示す。サイクルごとに容量低下が認められるものの二次電池として安定に動作した。
<Battery production and evaluation>
The two electrodes were opposed to each other via a LiTFSI-containing PEO film (φ16 mm) manufactured by Osaka Soda Co., Ltd. as a separator, and were placed in a CR2032 coin cell together with a spring and crimped to prepare a battery. This battery was charged and discharged at 60 ° C. for 9 cycles at a voltage range of 1.8-0.2 V and a rate of 0.01 C. The charge / discharge curve is shown in FIG. Although the capacity decreased with each cycle, it operated stably as a secondary battery.

(実施例4)
<電極の作製>
活物質としてLi+3TOT-(40mg)、導電助剤としてAB(8mg)およびVGCF(登録商標)(2mg)、ポリマー電解質としてLiTFSI(14mg)およびPEO(36mg)、分散溶媒としてエタノール(1.8g)を遊星式撹拌脱泡装置で混合し、Li+3TOT-/AB/VGCF(登録商標)/LiTFSI/PEO(40:8:2:14:36)(重量比)のスラリーを得た。このスラリーからエタノールを若干蒸発させて濃縮した後、適量をφ15mmのステンレス円盤上にスピンコートして乾燥させて全固体二次電池用無溶媒電極を作製した。
(Example 4)
<Preparation of electrodes>
Li + H 3 TOT as an active material - (40 mg), a conductive auxiliary agent as AB (8 mg) and VGCF (registered trademark) (2 mg), LiTFSI as a polymer electrolyte (14 mg) and PEO (36 mg), ethanol (1 a dispersion solvent were mixed .8G) with a planetary stirrer deaerator, Li + H 3 TOT - / AB / VGCF ( TM) / LiTFSI / PEO (40: 8: 2: 14: 36) a slurry of (by weight) Obtained. Ethanol was slightly evaporated from this slurry and concentrated, and then an appropriate amount was spin-coated on a stainless steel disk having a diameter of 15 mm and dried to prepare a solvent-free electrode for an all-solid-state secondary battery.

<電池の作製と評価>
上記電極2枚を、セパレータとして大阪ソーダ製LiTFSI含有PEOフィルム(φ16mm)を介して相対させ、バネと共にCR2032コインセルの中に入れてかしめることにより電池を作製した。この電池を電圧範囲1.8−0.1V、レート0.1Cで5サイクル、80℃で充放電させた。充放電曲線を図5に示す。二次電池として安定に動作しており、サイクルごとの容量減少はほとんど認められなかった。さらにこの電池を電圧範囲を1.5−0.1Vに変えた以外は同じ条件で充放電させた結果を図6に示す。充電電圧を小さくしても問題なく充放電した。
<Battery production and evaluation>
The two electrodes were opposed to each other via a LiTFSI-containing PEO film (φ16 mm) manufactured by Osaka Soda Co., Ltd. as a separator, and were placed in a CR2032 coin cell together with a spring and crimped to prepare a battery. The battery was charged and discharged at 80 ° C. for 5 cycles at a voltage range of 1.8-0.1 V and a rate of 0.1 C. The charge / discharge curve is shown in FIG. It operated stably as a secondary battery, and there was almost no decrease in capacity with each cycle. Further, FIG. 6 shows the results of charging and discharging this battery under the same conditions except that the voltage range was changed to 1.5-0.1 V. Even if the charging voltage was reduced, the battery was charged and discharged without any problem.

(実施例5)
<電極の作製>
活物質としてH3TOT(40mg)、導電助剤としてAB(8mg)およびVGCF(登録商標)(2mg)、ポリマー電解質としてLiTFSI(14mg)およびPEO(36mg)、分散溶媒としてメタノール(3.0g)を混合して超音波照射し、H3TOT/AB/VGCF(登録商標)/LiTFSI/PEO(40:8:2:14:36)(重量比)の分散液を得た。この分散液をホットプレートで200℃に加熱したアルミシートにスプレーで塗布した後乾燥させて全固体二次電池用無溶媒電極を作製した。この電極をφ15mmの円形に打ち抜いて正極とした。同様にH3TOTの代わりにLi+3TOT-を用い、負極を作製した。
(Example 5)
<Preparation of electrodes>
H 3 TOT (40 mg) as active material, AB (8 mg) and VGCF® (2 mg) as conductive aid, LiTFSI (14 mg) and PEO (36 mg) as polymer electrolyte, methanol (3.0 g) as dispersion solvent Was mixed and irradiated with ultrasonic waves to obtain a dispersion of H 3 TOT / AB / VGCF (registered trademark) / LiTFSI / PEO (40: 8: 2: 14: 36) (weight ratio). This dispersion was spray-coated on an aluminum sheet heated to 200 ° C. on a hot plate and then dried to prepare a solvent-free electrode for an all-solid-state secondary battery. This electrode was punched into a circle having a diameter of 15 mm to obtain a positive electrode. Similarly Li + H 3 TOT instead of H 3 TOT - was used to produce a negative electrode.

<電池の作製と評価>
上記正極と負極を、セパレータとして大阪ソーダ製LiTFSI含有PEOフィルム(φ16mm)を介して相対させ、バネと共にCR2032コインセルの中に入れてかしめることにより電池を作製した。この電池を電圧範囲1.0−0V、レート0.1C、60℃で充放電させた。充放電曲線を図7に示す。充電容量100mAh/gに対して放電容量は20mAh/gと小さいものの、両極に同じTOTを用いるバイポーラ型電池としての動作を確認できた。
<Battery production and evaluation>
The positive electrode and the negative electrode were made to face each other as a separator via a LiTFSI-containing PEO film (φ16 mm) manufactured by Osaka Soda Co., Ltd., and were placed in a CR2032 coin cell together with a spring and crimped to prepare a battery. This battery was charged and discharged at a voltage range of 1.0-0 V, a rate of 0.1 C, and 60 ° C. The charge / discharge curve is shown in FIG. Although the discharge capacity is as small as 20 mAh / g with respect to the charge capacity of 100 mAh / g, it was confirmed that the battery operates as a bipolar battery using the same TOT for both poles.

(比較例1)
<電極の作製>
活物質としてLiCoO2(85.5mg)、導電助剤としてAB(9.5mg)、バインダーとしてPVDF(5mg)、分散媒としてNMP(1.6g)を混合し、遊星式撹拌脱泡装置で混練することにより、LiCoO2/AB/PVDF(85.5:9.5:5)(重量比)のスラリーを調製した。このスラリーをギャップ300μmのバーコーターを用いてアルミ箔(膜厚20μm)に塗布し、120℃で1時間乾燥後、ロールプレス機で800kg/cmの圧力でプレスして、厚み56.6μm(アルミ箔を含む)の電極シートを得た。このシートをφ15mmの円形に打ち抜いて電極とした。この電極にLiTFSI(2mg/mL)とPEO(5mg/mL)とを含むアセトニトリル溶液56.1μLを含浸し乾燥させた。
(Comparative Example 1)
<Preparation of electrodes>
LiCoO 2 (85.5 mg) as an active material, AB (9.5 mg) as a conductive auxiliary agent, PVDF (5 mg) as a binder, and NMP (1.6 g) as a dispersion medium are mixed and kneaded with a planetary stirring defoaming device. By doing so, a slurry of LiCoO 2 / AB / PVDF (85.5: 9.5: 5) (weight ratio) was prepared. This slurry is applied to an aluminum foil (thickness 20 μm) using a bar coater with a gap of 300 μm, dried at 120 ° C. for 1 hour, and then pressed with a roll press machine at a pressure of 800 kg / cm 2 to a thickness of 56.6 μm (thickness 56.6 μm). An electrode sheet (including aluminum foil) was obtained. This sheet was punched into a circle having a diameter of 15 mm to form an electrode. The electrodes were impregnated with 56.1 μL of an acetonitrile solution containing LiTFSI (2 mg / mL) and PEO (5 mg / mL) and dried.

<電池の作製と評価>
上記電極2枚を、セパレータとして大阪ソーダ製LiTFSI含有PEOフィルム(φ16mm)を介して相対させ、バネと共にCR2032コインセルの中に入れてかしめることにより電池を作製した。この電池を充放電するため0.1C、80℃で、まず1.5Vまで充電しようとしたが電流が流れず、電圧も0Vのままで充放電不可であった。これは負極側のLiCoO2がこれ以上リチウムイオンを挿入できない状態にあるためであり、一般的に同じ金属酸化物系活物質を正極と負極に同時に用いることはできない。
<Battery production and evaluation>
The two electrodes were opposed to each other via a LiTFSI-containing PEO film (φ16 mm) manufactured by Osaka Soda Co., Ltd. as a separator, and were placed in a CR2032 coin cell together with a spring and crimped to prepare a battery. In order to charge and discharge this battery, I tried to charge it to 1.5V at 0.1C and 80 ° C., but no current flowed and the voltage remained 0V, so charging and discharging was not possible. This is because LiCoO 2 on the negative electrode side cannot insert lithium ions any more, and generally, the same metal oxide-based active material cannot be used for the positive electrode and the negative electrode at the same time.

Claims (6)

活物質として式(1)および式(2)で示されるトリオキソトリアンギュレン(TOT)誘導体の少なくとも1種、導電助剤、および固体電解質を含有し、有機電解液を含有しない全固体二次電池用無溶媒電極。
Figure 2021157894

(式中、Xは水素原子、ハロゲン原子、アルキル基、(ヘテロ)アリール基、アラルキル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、シアノ基、ニトロ基、アミノ基、チオール基、またはシリル基を表し、互いに同一でも異なっていてもよい。実線と破線からなる二重結合は非局在化した二重結合を意味しており、式中、●で表される不対電子および(−)で表される負電荷は、この非局在化二重結合中に存在する。式中、M(+)はアルカリ金属イオンを示す。)
An all-solid secondary battery containing at least one of the trioxotriangulene (TOT) derivatives represented by the formulas (1) and (2) as an active material, a conductive auxiliary agent, and a solid electrolyte, and not containing an organic electrolyte. Solvent-free electrode for batteries.
Figure 2021157894

(In the formula, X is a hydrogen atom, a halogen atom, an alkyl group, a (hetero) aryl group, an aralkyl group, a hydroxy group, an alkoxy group, an aryloxy group, a cyano group, a nitro group, an amino group, a thiol group, or a silyl group. Represented and may be the same or different from each other. A double bond consisting of a solid line and a broken line means a delocalized double bond, and is represented by an unpaired electron represented by ● and (-) in the equation. The represented negative charge is present in this delocalized double bond. In the equation, M (+) represents an alkali metal ion.)
前記TOT誘導体のXが水素原子である、請求項1に記載の全固体二次電池用無溶媒電極。 The solvent-free electrode for an all-solid-state secondary battery according to claim 1, wherein X of the TOT derivative is a hydrogen atom. 前記固体電解質がポリマー電解質とアルカリ金属塩との混合物である、請求項1又は2に記載の全固体二次電池用無溶媒電極。 The solvent-free electrode for an all-solid-state secondary battery according to claim 1 or 2, wherein the solid electrolyte is a mixture of a polymer electrolyte and an alkali metal salt. 前記アルカリ金属塩がリチウム塩であり、かつ式(2)におけるM(+)がリチウムイオンである、請求項3に記載の全固体二次電池用無溶媒電極。 The solvent-free electrode for an all-solid secondary battery according to claim 3, wherein the alkali metal salt is a lithium salt and M (+) in the formula (2) is a lithium ion. 請求項1〜4のいずれかに記載の電極を正極および負極とし、固体電解質をセパレータとして両極を相対させた構造を有するバイポーラ型全固体二次電池。 A bipolar all-solid-state secondary battery having a structure in which the electrodes according to any one of claims 1 to 4 are a positive electrode and a negative electrode, and a solid electrolyte is used as a separator and the two electrodes are opposed to each other. 請求項5に記載の構造を一つの電池内に2組以上重ね合わせた構造を有するバイポーラ型全固体二次電池。 A bipolar all-solid-state secondary battery having a structure in which two or more sets of the structures according to claim 5 are superposed in one battery.
JP2020054925A 2020-03-25 2020-03-25 Solvent-free electrode for all-solid-state secondary battery and all-solid-state secondary battery Pending JP2021157894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020054925A JP2021157894A (en) 2020-03-25 2020-03-25 Solvent-free electrode for all-solid-state secondary battery and all-solid-state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020054925A JP2021157894A (en) 2020-03-25 2020-03-25 Solvent-free electrode for all-solid-state secondary battery and all-solid-state secondary battery

Publications (1)

Publication Number Publication Date
JP2021157894A true JP2021157894A (en) 2021-10-07

Family

ID=77918193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020054925A Pending JP2021157894A (en) 2020-03-25 2020-03-25 Solvent-free electrode for all-solid-state secondary battery and all-solid-state secondary battery

Country Status (1)

Country Link
JP (1) JP2021157894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388886A (en) * 2021-12-28 2022-04-22 广东马车动力科技有限公司 Polymer electrolyte, preparation method thereof and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388886A (en) * 2021-12-28 2022-04-22 广东马车动力科技有限公司 Polymer electrolyte, preparation method thereof and secondary battery
CN114388886B (en) * 2021-12-28 2022-09-27 广东马车动力科技有限公司 Polymer electrolyte, preparation method thereof and secondary battery

Similar Documents

Publication Publication Date Title
He et al. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery
CN111029569B (en) Lithium ion battery lithium supplementing additive, battery electrode, preparation method and application thereof
Ming et al. Redox species-based electrolytes for advanced rechargeable lithium ion batteries
Kitaura et al. Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li 1+ x Al y Ge 2− y (PO 4) 3 solid electrolyte and carbon nanotube air electrode
JP6198380B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery including the same
Zhao et al. Characteristics and electrochemical performance of LiFe0. 5Mn0. 5PO4/C used as cathode for aqueous rechargeable lithium battery
JPWO2017141735A1 (en) Solid electrolyte composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
WO2018047946A1 (en) Electrode layer material, sheet for all-solid-state secondary battery electrode, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
Seita et al. Graphite–lithium sulfide battery with a single-phase sparingly solvating electrolyte
CN110707287B (en) Metal lithium negative electrode, preparation method thereof and lithium battery
US11961971B2 (en) Production method for all-solid-state battery
CN105470576A (en) High voltage lithium battery cell and preparation method therefor, and lithium ion battery
Wang et al. How to promote the industrial application of SiOx anode prelithiation: capability, accuracy, stability, uniformity, cost, and safety
WO2019088139A1 (en) Secondary battery negative electrode, secondary battery, and methods for manufacturing these
Di Lecce et al. A gel–polymer Sn–C/LiMn0. 5Fe0. 5PO4 battery using a fluorine-free salt
Xu et al. Molten salt of lithium bis (fluorosulfonyl) imide (LiFSI)-potassium bis (fluorosulfonyl) imide (KFSI) as electrolyte for the natural graphite/LiFePO4 lithium-ion cell
CN113087856A (en) Gelling agents for forming gel electrolytes and methods relating thereto
JP3085943B2 (en) Lithium polymer secondary battery with anode containing metal composite anode
JP2024026613A (en) Cathode active material for lithium secondary batteries
Li et al. Study on sodium storage properties of manganese‐doped sodium vanadium phosphate cathode materials
CN114512708A (en) Preparation method and application of lithium ion composite solid electrolyte
Zhang et al. Synthesis and characterization of macroporous Li 3 V 2 (PO 4) 3/C composites as cathode materials for Li-ion batteries
EP4059078A1 (en) Sacrificial salts in li-rich, defect anti-fluorite compounds in cathodes for prelithiation in lithium ion batteries
JP2021157894A (en) Solvent-free electrode for all-solid-state secondary battery and all-solid-state secondary battery
WO2017073058A1 (en) High Energy Density Metal Ion Cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240417