JP2021157039A - Exposure device and exposure method - Google Patents

Exposure device and exposure method Download PDF

Info

Publication number
JP2021157039A
JP2021157039A JP2020056863A JP2020056863A JP2021157039A JP 2021157039 A JP2021157039 A JP 2021157039A JP 2020056863 A JP2020056863 A JP 2020056863A JP 2020056863 A JP2020056863 A JP 2020056863A JP 2021157039 A JP2021157039 A JP 2021157039A
Authority
JP
Japan
Prior art keywords
exposure
point
exposure point
scanning direction
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020056863A
Other languages
Japanese (ja)
Other versions
JP7437212B2 (en
Inventor
隆志 奥山
Takashi Okuyama
隆志 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2020056863A priority Critical patent/JP7437212B2/en
Priority to TW109126310A priority patent/TWI833033B/en
Priority to KR1020200103384A priority patent/KR20210120789A/en
Priority to CN202011336751.2A priority patent/CN113448175B/en
Publication of JP2021157039A publication Critical patent/JP2021157039A/en
Application granted granted Critical
Publication of JP7437212B2 publication Critical patent/JP7437212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

To provide new multiplex exposure capable of uniformly dispersing exposure points.SOLUTION: An exposure device is configured to perform multiplex exposure operation at a pitch interval P based on a following formula (1), and by setting a position of a reference exposure point in a unit exposure region, an exposure point is sequentially moved among a plurality of exposure point lines, and the exposure points are caused to be scattered in a main scanning direction X as well as in a sub scanning direction Y. In the formula (1): P=(n+u/m)C+a, the pitch interval is set to P, the unit exposure region of a light modulator is set to C, m is an integer of 2 or greater, n is any integer, u is an integer smaller than m, and a is a value smaller than C.SELECTED DRAWING: Figure 4

Description

本発明は、光変調素子アレイを用いてパターンを形成する露光装置に関し、特に、多重露光に関する。 The present invention relates to an exposure apparatus that forms a pattern using a light modulation element array, and more particularly to multiple exposure.

マスクレス露光装置では、基板が搭載されるステージを走査方向に沿って移動させながら、DMD(Digital Micro-mirror Device)などの光変調素子アレイによってパターン光を基板に投影する。そこでは、ステージに搭載され、フォトレジスト層を形成した基板上での投影エリア(露光エリア)の位置に応じてパターン光を投影するように、2次元状に配列された光変調素子(マイクロミラーなど)を制御する。 In a maskless exposure apparatus, pattern light is projected onto a substrate by an optical modulation element array such as a DMD (Digital Micro-mirror Device) while moving a stage on which the substrate is mounted along a scanning direction. There, light modulation elements (micromirrors) mounted in a two-dimensional manner so as to project pattern light according to the position of the projection area (exposure area) on the substrate on which the photoresist layer is formed. Etc.) to control.

マイクロオーダーのパターン解像度では、マイクロミラーなどの投影サイズ(セルサイズ)以下でパターンを形成する必要があるため、露光領域をオーバーラップさせながら繰り返し露光する多重露光が行われる(例えば、特許文献1、2参照)。そこでは、露光動作のピッチ間隔をセルサイズの整数倍にせず、露光エリアが主走査方向に対して微小傾斜するように、光変調素子アレイあるいは基板搭載ステージを配置する。 With a micro-order pattern resolution, it is necessary to form a pattern with a projection size (cell size) or less of a micromirror or the like, so multiple exposure is performed in which repeated exposures are performed while overlapping the exposure areas (for example, Patent Document 1, Patent Document 1, 2). There, the light modulation element array or the substrate mounting stage is arranged so that the pitch interval of the exposure operation is not an integral multiple of the cell size and the exposure area is slightly inclined with respect to the main scanning direction.

多重露光におけるピッチ間隔をP、マイクロミラーの単位露光領域(1つのミラー像のエリア)のサイズをCとすると、ピッチ間隔P=A+a(Aは任意の整数、C>a)に従って多重露光が行われる。これによって、単位露光領域(1つのミラー像のエリア)に、多数の露光点(ショット中心位置)が2次元的に分散する(特許文献3参照)。 Assuming that the pitch interval in multiple exposure is P and the size of the unit exposure area (one mirror image area) of the micromirror is C, multiple exposure is performed according to the pitch interval P = A + a (A is an arbitrary integer, C> a). Be struck. As a result, a large number of exposure points (shot center positions) are two-dimensionally dispersed in a unit exposure area (one mirror image area) (see Patent Document 3).

特許第4203649号公報Japanese Patent No. 4203649 特表2004−514280号公報Japanese Patent Publication No. 2004-514280 特許第4728536号公報Japanese Patent No. 4728536

近年、フォトレジストの高感度化が進み、また、光源出力の上昇、光学系の性能向上、スループット向上などに伴い、単位露光領域に対して行うショット数が減少傾向にある。そのため、単位露光領域内における露光点が分散せず不均一となり、パターン線幅や輪郭が所望する精度にならない恐れがある。 In recent years, the sensitivity of photoresists has been increased, and the number of shots to be performed in a unit exposure region has been decreasing due to an increase in light source output, an improvement in optical system performance, an improvement in throughput, and the like. Therefore, the exposure points in the unit exposure region are not dispersed and become non-uniform, and the pattern line width and contour may not have the desired accuracy.

したがって、露光点を均一に分散させることができる新たな多重露光が求められる。 Therefore, a new multiple exposure that can uniformly disperse the exposure points is required.

本発明の露光装置は、複数の光変調素子を2次元配列させた光変調素子アレイと、主走査方向に対して所定の傾斜角度で傾斜する、前記光変調素子アレイの露光エリアを、被描画体に対して主走査方向に相対移動させる走査部と、所定のピッチ間隔で前記複数の光変調素子を変調し、多重露光動作を行う露光制御部とを備える。 The exposure apparatus of the present invention draws an exposure area of a light modulation element array in which a plurality of light modulation elements are arranged in two dimensions and an exposure area of the light modulation element array that is inclined at a predetermined inclination angle with respect to the main scanning direction. It includes a scanning unit that moves relative to the main scanning direction with respect to the body, and an exposure control unit that modulates the plurality of light modulation elements at predetermined pitch intervals and performs a multiple exposure operation.

本発明では、前記露光制御部が、所定の単位露光領域において、前記傾斜角度に沿った複数の露光点ラインの間で、露光動作毎に、露光点を定める露光点ラインを切り替える。「所定単位露光領域」は、基板上から見て1つの光変調素子の投影領域に相当するサイズをもつ領域を示す。また、「露光点ライン」は、多重露光動作を所定のピッチ間隔で行ったとき、基板上から見て傾斜角度方向に沿って露光点を結んだラインを表し、互いに平行な複数の露光点ラインが基板上において規定される。露光制御部が露光動作毎に露光点ラインを切り替えることで、露光点は、順次異なる露光点ライン上にある露光点に切り替わっていく。 In the present invention, the exposure control unit switches an exposure point line that determines an exposure point for each exposure operation between a plurality of exposure point lines along the inclination angle in a predetermined unit exposure region. The “predetermined unit exposure region” indicates a region having a size corresponding to a projection region of one light modulation element when viewed from the substrate. Further, the "exposure point line" represents a line connecting the exposure points along the inclination angle direction when the multiple exposure operation is performed at predetermined pitch intervals, and is a plurality of exposure point lines parallel to each other. Is specified on the substrate. When the exposure control unit switches the exposure point line for each exposure operation, the exposure point is sequentially switched to the exposure points on different exposure point lines.

露光制御部は、隣り合って並ぶ複数の露光点ラインの間で、露光点ラインを順に切り替えることが可能である。また、露光制御部がは、次の露光動作で露光点が前記所定の単位露光領域内に移る露光点ラインを、次の露光動作で露光点が前記所定の単位露光領域から外れる露光点ラインと切り替えることができる。 The exposure control unit can switch the exposure point lines in order among the plurality of exposure point lines arranged adjacent to each other. Further, the exposure control unit sets an exposure point line in which the exposure point moves within the predetermined unit exposure region in the next exposure operation, and an exposure point line in which the exposure point deviates from the predetermined unit exposure region in the next exposure operation. You can switch.

露光制御部は、各露光点ラインの露光点間隔が等しくなるピッチ間隔で、多重露光動作を行うことができる。あるいは、露光制御部は、隣り合う露光点ラインの主走査方向に沿った露光点位置がずれるピッチ間隔で、多重露光動作を行うことも可能である。例えば露光制御部は、前記所定の単位露光領域内において、2k−1(k=1、2、・・)番目の露光点ラインと2k番目の露光点ラインとの間で、露光点ラインを交互に切り替える。 The exposure control unit can perform the multiple exposure operation at pitch intervals at which the exposure point intervals of the exposure point lines are equal. Alternatively, the exposure control unit can perform the multiple exposure operation at pitch intervals in which the exposure point positions along the main scanning direction of the adjacent exposure point lines are deviated. For example, the exposure control unit alternately alternates exposure point lines between the 2k-1 (k = 1, 2, ...) Th exposure point line and the 2kth exposure point line within the predetermined unit exposure region. Switch to.

一方、露光制御部は、隣り合う露光点ラインの主走査方向に沿った露光点位置が同じピッチ間隔で、多重露光動作を行うことができる。例えば、露光制御部は、前記所定の単位露光領域内において、3k−2(k=1、2、・・)番目の露光点ラインと、3k−1番目の露光点ラインと3k番目の露光点ラインとの間で、露光点ラインを順に切り替える。 On the other hand, the exposure control unit can perform the multiple exposure operation with the exposure point positions along the main scanning direction of the adjacent exposure point lines at the same pitch interval. For example, the exposure control unit may use the 3k-2 (k = 1, 2, ...) Th-th exposure point line, the 3k-1st exposure point line, and the 3kth exposure point line in the predetermined unit exposure region. The exposure point line is switched in order between the line and the line.

上述した多重露光動作のピッチ間隔としては、例えば、ピッチ間隔をP、光変調素子の単位露光領域をC、mを2以上の整数、nを任意の整数、uをmより小さい整数、aをCより小さい値とすると、以下の式

P=(n+u/m)C+a

で表すことができる。
As the pitch interval of the multiple exposure operation described above, for example, the pitch interval is P, the unit exposure area of the light modulation element is C, m is an integer of 2 or more, n is an arbitrary integer, u is an integer smaller than m, and a. If the value is smaller than C, the following formula

P = (n + u / m) C + a

Can be represented by.

本発明の一態様である露光方法は、複数の光変調素子を2次元配列させた光変調素子アレイを配置し、前記光変調素子アレイの露光エリアを主走査方向に対して所定の傾斜角度で傾斜させて、前記露光エリアを被描画体に対し主走査方向に相対移動させる走査部と、所定のピッチ間隔で前記複数の光変調素子を変調し、多重露光動作を行う露光方法であって、所定の単位露光領域において、前記傾斜角度に沿った複数の露光点ラインの間で、露光動作毎に、露光点を定める露光点ラインを切り替える。 In the exposure method according to one aspect of the present invention, an optical modulation element array in which a plurality of optical modulation elements are arranged in two dimensions is arranged, and the exposure area of the optical modulation element array is set at a predetermined inclination angle with respect to the main scanning direction. An exposure method in which a scanning unit that is tilted to move the exposed area relative to the object to be drawn in the main scanning direction, and the plurality of optical modulation elements are modulated at predetermined pitch intervals to perform a multiple exposure operation. In a predetermined unit exposure region, the exposure point line that determines the exposure point is switched between the plurality of exposure point lines along the inclination angle for each exposure operation.

本発明によれば、露光装置において、高解像のパターンを形成することができる。 According to the present invention, a high-resolution pattern can be formed in an exposure apparatus.

本実施形態である露光装置のブロック図である。It is a block diagram of the exposure apparatus which is this embodiment. ステージに対する露光ヘッドの配置を示した図である。It is a figure which showed the arrangement of the exposure head with respect to a stage. 基板W上に描かれたパターンを部分的に示した図である。It is a figure which partially showed the pattern drawn on the substrate W. 複数の露光点ラインを用いた多重露光動作の一例を示した図である。It is a figure which showed an example of the multiple-exposure operation using a plurality of exposure point lines. 複数の露光点ラインを用いた多重露光動作の他の例を示した図である。It is a figure which showed other example of the multiple-exposure operation using a plurality of exposure point lines. 図5に示した多重露光動作の変形例を示した図である。It is a figure which showed the modification of the multiple-exposure operation shown in FIG.

以下では、図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、第1の実施形態である露光装置のブロック図である。図2は、ステージに対する露光ヘッドの配置を示した図である。 FIG. 1 is a block diagram of the exposure apparatus according to the first embodiment. FIG. 2 is a diagram showing the arrangement of the exposure head with respect to the stage.

露光装置10は、フォトレジストなどの感光材料を塗布、あるいは貼り付けた基板(露光対象)Wへ光を照射することによってパターンを形成するマスクレス露光装置であり、基板Wを搭載するステージ12が主走査方向に沿って移動可能に設置されている。ステージ駆動機構15は、ステージ12を主走査方向X、副走査方向Yに沿って移動させる。 The exposure apparatus 10 is a maskless exposure apparatus that forms a pattern by irradiating a substrate (exposure target) W to which a photosensitive material such as a photoresist is applied or attached with light, and a stage 12 on which the substrate W is mounted is provided. It is installed so that it can be moved along the main scanning direction. The stage drive mechanism 15 moves the stage 12 along the main scanning direction X and the sub-scanning direction Y.

露光装置10には、DMD22、照明光学系23、投影光学系25とを備え、パターン光を投影する複数の露光ヘッド18が設けられている(図1では1つの露光ヘッドのみ図示)。複数の露光ヘッド18は、図2に示すように、副走査方向Yに沿って千鳥配列されている。光源20は、例えば放電ランプ(図示せず)によって構成され、光源駆動部21によって駆動される。 The exposure apparatus 10 includes a DMD 22, an illumination optical system 23, and a projection optical system 25, and is provided with a plurality of exposure heads 18 for projecting pattern light (only one exposure head is shown in FIG. 1). As shown in FIG. 2, the plurality of exposure heads 18 are staggered along the sub-scanning direction Y. The light source 20 is composed of, for example, a discharge lamp (not shown) and is driven by the light source driving unit 21.

ベクタデータなどで構成されるCAD/CAMデータが露光装置10へ入力されると、ベクタデータがラスタ変換回路26に送られ、ベクタデータがラスタデータに変換される。生成されたラスタデータは、バッファメモリ(図示せず)に一時的に格納された後、DMD駆動回路24へ送られる。 When CAD / CAM data composed of vector data or the like is input to the exposure apparatus 10, the vector data is sent to the raster conversion circuit 26, and the vector data is converted into raster data. The generated raster data is temporarily stored in a buffer memory (not shown) and then sent to the DMD drive circuit 24.

DMD22は、微小マイクロミラーを2次元配列させた光変調素子アレイであり、各マイクロミラーは、姿勢を変化させることによって光の反射方向を選択的に切り替える。DMD駆動回路24によって各ミラーが姿勢制御されることにより、パターンに応じた光が、投影光学系25を介して基板Wの表面に投影(結像)される。これによって、パターン像が基板Wに形成される。 The DMD 22 is a light modulation element array in which micromicromirrors are arranged two-dimensionally, and each micromirror selectively switches the light reflection direction by changing its posture. By controlling the attitude of each mirror by the DMD drive circuit 24, light corresponding to the pattern is projected (imaged) on the surface of the substrate W via the projection optical system 25. As a result, a pattern image is formed on the substrate W.

ステージ駆動機構15は、コントローラ30からの制御信号に従い、ステージ12を移動させる。コントローラ(露光制御部)30は、露光装置10の動作を制御し、位置検出部27から送られてくるステージ位置情報に基づいて、ステージ駆動機構15、DMD駆動回路24へ制御信号を出力する。 The stage drive mechanism 15 moves the stage 12 according to a control signal from the controller 30. The controller (exposure control unit) 30 controls the operation of the exposure device 10 and outputs a control signal to the stage drive mechanism 15 and the DMD drive circuit 24 based on the stage position information sent from the position detection unit 27.

露光動作中、ステージ12は一定速度で移動し、DMD22全体の投影エリア(以下、露光エリアという)EAは、基板Wの移動に伴って基板Wの上を主走査方向Xに沿って相対移動する。 図2に示すように、複数の露光ヘッド18は、その副走査方向Yに沿った配列方向が副走査方向Yと一致せず、所定角度αだけ傾斜している。そのため、ステージ12が矢印Aで示す方向に移動すると、露光エリアEAは、主走査方向Xに対して所定角度α傾斜した領域となり、傾斜した状態で主走査方向Xに相対移動していく。なお、図2では、傾斜角度αを誇張して描いている。 During the exposure operation, the stage 12 moves at a constant speed, and the projection area (hereinafter referred to as the exposure area) EA of the entire DMD 22 moves relative to the substrate W along the main scanning direction X as the substrate W moves. .. As shown in FIG. 2, the plurality of exposure heads 18 are tilted by a predetermined angle α because the arrangement direction along the sub-scanning direction Y does not coincide with the sub-scanning direction Y. Therefore, when the stage 12 moves in the direction indicated by the arrow A, the exposure area EA becomes a region inclined by a predetermined angle α with respect to the main scanning direction X, and moves relative to the main scanning direction X in the inclined state. In FIG. 2, the inclination angle α is exaggerated.

コントローラ30は、多重露光、すなわち、前の露光エリアの一部領域と重なる位置で次の露光を行うオーバーラップ露光を実行する。露光動作は所定のピッチ間隔に従って行なわれ、DMD22の各マイクロミラーを露光エリアの相対位置(ステージ位置)に応じて変調することにより、露光エリアの位置に描くべきパターンの光が順次投影される。複数の露光ヘッド18によって基板W全体を描画することによって、基板W全体にパターンが形成される。なお、ステージ12は、連続的移動の代わりに間欠移動してもよい。 The controller 30 executes multiple exposure, that is, overlap exposure in which the next exposure is performed at a position overlapping a part of the previous exposure area. The exposure operation is performed according to a predetermined pitch interval, and by modulating each micromirror of the DMD 22 according to the relative position (stage position) of the exposure area, the light of the pattern to be drawn at the position of the exposure area is sequentially projected. By drawing the entire substrate W with the plurality of exposure heads 18, a pattern is formed on the entire substrate W. The stage 12 may move intermittently instead of continuously moving.

上述したように、露光エリアEAは主走査方向Xに対して傾斜しているため、各マイクロミラーを所定のピッチ間隔で変調したときの露光中心点(ショット中心位置、以下では露光点という)は、基板を基準に見ると、その傾斜角度に沿ったライン上に位置する。本実施形態では、そのようなライン(以下、露光点ラインという)を選択的に切り替えながら多重露光動作を行う。以下、これについて詳述する。 As described above, since the exposure area EA is inclined with respect to the main scanning direction X, the exposure center point (shot center position, hereinafter referred to as the exposure point) when each micromirror is modulated at a predetermined pitch interval is , When viewed from the substrate, it is located on the line along the inclination angle. In the present embodiment, the multiple exposure operation is performed while selectively switching such lines (hereinafter referred to as exposure point lines). This will be described in detail below.

図3は、基板W上に投影されたパターンを部分的に示した図である。主走査方向X、福走査方向Yは、基板W上における描画座標系を規定する。 FIG. 3 is a diagram partially showing the pattern projected on the substrate W. The main scanning direction X and the fortune scanning direction Y define a drawing coordinate system on the substrate W.

DMD22の1つのマイクロミラーによるパターンは、正方形状のマイクロミラーに従って幅Cの方形パターンとなる。例えば、Cは10μm以下となる。オーバーラップ露光を必要とする多重露光動作では、Cの整数倍ではないピッチ間隔で露光動作が繰り返される。 The pattern by one micromirror of DMD22 becomes a square pattern of width C according to the square micromirror. For example, C is 10 μm or less. In the multiple exposure operation that requires overlap exposure, the exposure operation is repeated at pitch intervals that are not integral multiples of C.

パターンS1を形成した露光点N1を露光開始点とすると、次の露光点N2は、露光エリアEAの主走査方向Xに対する傾斜角度αの分だけ副走査方向Yへ上にシフトする。図3では、続けて露光されたパターンS1とパターンS2とを示している。DMD22は、副走査方向Yに応じた縦方向、主走査方向Xに応じた横方向に沿ってマイクロミラーが所定数並ぶ(例えば、3840×2160)構造であり、パターンS1、S2は、主走査方向Xに沿った横方向に並ぶマイクロミラーによって露光される。ピッチ間隔一定で露光動作が繰り返し行われると、以降の露光点は、露光点N1から傾斜角度αに沿って延びる露光点ラインL1上の位置に定められる。 Assuming that the exposure point N1 forming the pattern S1 is set as the exposure start point, the next exposure point N2 is shifted upward in the sub-scanning direction Y by the inclination angle α with respect to the main scanning direction X of the exposure area EA. FIG. 3 shows a pattern S1 and a pattern S2 that are continuously exposed. The DMD 22 has a structure in which a predetermined number of micromirrors are arranged (for example, 3840 × 2160) along the vertical direction corresponding to the sub-scanning direction Y and the horizontal direction corresponding to the main scanning direction X, and the patterns S1 and S2 are the main scanning. It is exposed by micromirrors arranged laterally along the direction X. When the exposure operation is repeated at a constant pitch interval, the subsequent exposure points are determined at positions on the exposure point line L1 extending from the exposure point N1 along the inclination angle α.

一方で、DMD22の横方向に多数のマイクロミラーが並んでいることから、露光開始点よりも主走査方向Xと反対側(−X方向)に次のパターンを形成することも可能である。図3では、露光開始点となる露光点N3のパターンS3と、次の露光点N4のパターンS4を示している。パターンS4の露光点N4は、露光点N3から傾斜角度αに沿って延びる露光点ラインL2とは異なる露光点ラインL3上に位置する。 On the other hand, since a large number of micromirrors are arranged in the lateral direction of the DMD 22, the following pattern can be formed on the side opposite to the main scanning direction X (−X direction) from the exposure start point. FIG. 3 shows a pattern S3 of an exposure point N3 which is an exposure start point and a pattern S4 of the next exposure point N4. The exposure point N4 of the pattern S4 is located on the exposure point line L3 different from the exposure point line L2 extending from the exposure point N3 along the inclination angle α.

ところで、1つのマイクロミラーの投影領域に相当する大さの基板上の領域を単位露光領域としたとき、露光するパターン解像度を単位露光領域のサイズ以下にするためには、単位露光領域以下のピッチで多重露光して露光点を分散させる必要があるが、ある単位露光領域内における最初の露光点(以下、基準露光点)は、必ず単位露光領域の端部に位置するとは限らず、その位置を任意に設定することができる。 By the way, when a region on a substrate having a size corresponding to a projection region of one micromirror is set as a unit exposure region, in order to make the pattern resolution to be exposed equal to or less than the size of the unit exposure region, the pitch is equal to or less than the unit exposure region. It is necessary to perform multiple exposures with the above to disperse the exposure points, but the first exposure point (hereinafter referred to as the reference exposure point) in a certain unit exposure area is not always located at the end of the unit exposure area, and the position is not always located. Can be set arbitrarily.

例えば、従来のように基準露光点N5が正方領域端点となる単位露光領域E1の代わりに、正方領域の中間点を基準露光点N6とする単位露光領域E2を定めることもできる。そうすると、露光ピッチを調整することによって、基準露光点N6の次の露光点を、基準露光点N6から傾斜角度αの方向に延びる露光点ラインL4ではなく、それと平行であって単位露光領域E2内に露光点が収まる露光点ラインL5に定めることができる。 For example, instead of the unit exposure region E1 in which the reference exposure point N5 is the end point of the square region as in the conventional case, the unit exposure region E2 in which the intermediate point of the square region is the reference exposure point N6 can be defined. Then, by adjusting the exposure pitch, the next exposure point after the reference exposure point N6 is not the exposure point line L4 extending from the reference exposure point N6 in the direction of the inclination angle α, but is parallel to the exposure point line L4 and is within the unit exposure area E2. It can be defined as the exposure point line L5 in which the exposure point fits in.

露光エリアEAが相対移動する間、単位露光領域内に位置する露光点(ショット中心位置)が露光タイミングごとにいずれかの露光点ラインにあれば、露光点ラインを順に変えながら露光動作を繰り返すことができる。これは、ピッチ間隔が一定である主走査方向Xとは違って、副走査方向Yの隣り合う露光点間隔を狭めることを可能にする。 While the exposure area EA moves relative to each other, if an exposure point (shot center position) located in the unit exposure area is on one of the exposure point lines for each exposure timing, the exposure operation is repeated while changing the exposure point lines in order. Can be done. This makes it possible to narrow the spacing between adjacent exposure points in the sub-scanning direction Y, unlike the main scanning direction X where the pitch spacing is constant.

本実施形態では、露光動作のピッチ間隔は以下の式によって定められる。ただし、ピッチ間隔をP、光変調素子の単位露光領域のサイズ(幅)をC、mを2以上の整数、nを任意の整数、uをmより小さい整数とする。また、aはCよりも小さい値を表す。

P=(n+u/m)C+a ・・・・・・・・・・・(1)
In the present embodiment, the pitch interval of the exposure operation is determined by the following equation. However, the pitch interval is P, the size (width) of the unit exposure area of the light modulation element is C, m is an integer of 2 or more, n is an arbitrary integer, and u is an integer smaller than m. Further, a represents a value smaller than C.

P = (n + u / m) C + a ... (1)

図4は、複数の露光点ラインを用いた多重露光動作の一例を示した図である。 FIG. 4 is a diagram showing an example of a multiple exposure operation using a plurality of exposure point lines.

ここでは、単位露光領域Eの端辺を主走査方向Xに2等分した中間点を基準露光点N1とする。そして、隣り合う2つの露光点ラインの間で交互に露光点が移り変わるように、ピッチ間隔Pで露光動作が行われる。具体的には、(1)式において、m=2、u=1と定められる。 Here, the intermediate point obtained by dividing the end edge of the unit exposure region E into two equal parts in the main scanning direction X is set as the reference exposure point N1. Then, the exposure operation is performed at the pitch interval P so that the exposure points alternate between the two adjacent exposure point lines. Specifically, in equation (1), m = 2 and u = 1 are defined.

基準露光点N1で露光動作が行われて(図4(A)参照)ピッチ間隔Pだけ進むと、基準露光点N1から主走査方向Xとは逆側で単位露光領域Eの端辺から距離aだけ離れた位置に、新たな露光点N2が設定される。露光点N1の露光点ラインL1上に位置しない露光点N2で次の露光動作が行われる。露光点ラインL1上では、マイクロミラーを変調せずに露光しない(図4(B)参照)。 When the exposure operation is performed at the reference exposure point N1 (see FIG. 4 (A)) and the pitch interval P advances, the distance a from the end edge of the unit exposure region E on the opposite side of the reference exposure point N1 to the main scanning direction X. A new exposure point N2 is set at a position only separated by. The next exposure operation is performed at the exposure point N2 which is not located on the exposure point line L1 of the exposure point N1. On the exposure point line L1, the micromirror is not exposed without being modulated (see FIG. 4B).

さらにピッチ距離間隔Pだけ進むと、露光点ラインLl1上にある露光点N3において露光動作が行われる(図4(C)参照)。これをピッチ間隔P進むごとに繰り返すことによって、露光点ラインL1とL2との間で交互に露光点が移り変わる。図4(D)では、時系列的に順に定められる露光点N1〜N9を示している。 Further advancing by the pitch distance interval P, the exposure operation is performed at the exposure point N3 on the exposure point line Ll1 (see FIG. 4C). By repeating this every time the pitch interval P advances, the exposure points are alternately changed between the exposure point lines L1 and L2. FIG. 4D shows exposure points N1 to N9 that are sequentially determined in chronological order.

露光点ラインL1における露光点N5は、単位露光領域Eの端に位置し、露光点ラインL1上における次の露光点は単位露光領域Eから外れる。それとともに、露光点N7が単位露光領域Eの他方端に分布する。そして、その後の露光動作では、露光点N7から延びる露光点ラインL3が露光点ラインL1と入れ替わり、露光点ラインL2と露光点ラインL3との間で交互に露光点が移動する露光動作が行われる。各露光点ライン上の露光点は、距離間隔2aで露光動作が行われるため、主走査方向Xに距離間隔2aだけ互いに離れている。 The exposure point N5 on the exposure point line L1 is located at the end of the unit exposure area E, and the next exposure point on the exposure point line L1 deviates from the unit exposure area E. At the same time, the exposure points N7 are distributed at the other end of the unit exposure region E. Then, in the subsequent exposure operation, the exposure point line L3 extending from the exposure point N7 is replaced with the exposure point line L1, and the exposure point is moved alternately between the exposure point line L2 and the exposure point line L3. .. Since the exposure points on each exposure point line are exposed at a distance interval of 2a, they are separated from each other by a distance interval of 2a in the main scanning direction X.

このように、単位露光領域E内において、下から2k−1番目(kは1以上の整数)の露光点ラインと2k番目の露光点ラインとの間で、露光点ラインを交互に切り替えながら露光動作が行われる結果、隣り合う露光点ラインでは主走査方向Xに沿った露光点位置が互いにずれ、また、副走査方向Yに沿ってより多くの位置で露光点が分布する多重露光動作を行うことができる。そのため、単位露光領域E内の露光回数(露光点分布数)を抑えながら均一に露光量を分散させたパターン形成が可能となる。 In this way, within the unit exposure area E, exposure is performed while alternately switching the exposure point lines between the 2k-1st exposure point line (k is an integer of 1 or more) and the 2kth exposure point line from the bottom. As a result of the operation, the exposure point positions along the main scanning direction X are shifted from each other in the adjacent exposure point lines, and the multiple exposure operation is performed in which the exposure points are distributed at more positions along the sub-scanning direction Y. be able to. Therefore, it is possible to form a pattern in which the exposure amount is uniformly dispersed while suppressing the number of exposures (the number of exposure point distributions) in the unit exposure region E.

図5は、複数の露光点ラインを用いた多重露光動作の他の例を示した図である。 FIG. 5 is a diagram showing another example of the multiple exposure operation using a plurality of exposure point lines.

ここでは、単位露光領域Eの端辺を主走査方向Xに三等分したときの1つの分割点を基準露光点N1とする。そして、隣り合って並ぶ3つの露光点ラインの間で交互に露光点が移り変わるピッチ間隔Pで露光動作が行われる。具体的には(1)式に対し、m=3、u=1と定められる。 Here, one dividing point when the end edge of the unit exposure region E is divided into three equal parts in the main scanning direction X is set as a reference exposure point N1. Then, the exposure operation is performed at a pitch interval P in which the exposure points are alternately changed between the three exposure point lines arranged adjacent to each other. Specifically, m = 3 and u = 1 are defined for Eq. (1).

基準露光点N1において露光動作が行われ(図5(A)参照)、ピッチ間隔Pだけ進むと、もう1つの単位露光領域Eの端辺を3等分した分割位置から主走査方向Xに距離aだけ離れた位置に、露光点N2が単位露光領域E内に設定される。この露光点N2で次の露光動作が行われる(図5(B)参照)。露光点N2は、露光点N1の露光点ラインL1上に位置せず、露光点ラインL1上において露光動作は行われない。 When the exposure operation is performed at the reference exposure point N1 (see FIG. 5A) and the pitch interval P advances, the distance from the divided position obtained by dividing the end edge of the other unit exposure area E into three equal parts in the main scanning direction X. The exposure point N2 is set in the unit exposure region E at a position separated by a. The next exposure operation is performed at this exposure point N2 (see FIG. 5B). The exposure point N2 is not located on the exposure point line L1 of the exposure point N1, and the exposure operation is not performed on the exposure point line L1.

さらにピッチ間隔Pだけ進むと、単位露光領域Eの端から主走査方向Xに距離aだけ離れた位置に露光点N3が設定される。この露光点N3において露光動作が行われる(図5(C)参照)。露光点ラインL1、露光点ラインL2では露光動作は行われない。露光点ラインL1〜L3との間では、このような順次異なる露光点ラインへ露光点を移す露光動作が繰り返される。図5(D)では、時系列的に順に定められる露光点N1〜N9を示している。 Further advancing by the pitch interval P, the exposure point N3 is set at a position separated by a distance a in the main scanning direction X from the end of the unit exposure region E. The exposure operation is performed at the exposure point N3 (see FIG. 5C). No exposure operation is performed on the exposure point line L1 and the exposure point line L2. Between the exposure point lines L1 to L3, such an exposure operation of sequentially shifting the exposure points to different exposure point lines is repeated. FIG. 5D shows exposure points N1 to N9 that are sequentially determined in chronological order.

露光点ラインL1における露光点N5は、単位露光領域Eの端に位置し、露光点ラインL1上における次の露光点は単位露光領域Eから外れる。一方で、2ピッチ間隔Pだけ進んだとき、露光点N8が単位露光領域Eの他方の端に分布する。その後の露光動作では、露光点N8から延びる露光点ラインL4が露光点ラインL1と入れ替わり、露光点ラインL2〜露光点ラインL3との間で順に露光点が移り変わる露光動作が行われる。各露光点ライン上に沿って位置する露光点は、いずれも距離間隔3aだけ離れていて同じである。 The exposure point N5 on the exposure point line L1 is located at the end of the unit exposure area E, and the next exposure point on the exposure point line L1 deviates from the unit exposure area E. On the other hand, when the two pitch intervals P are advanced, the exposure points N8 are distributed at the other end of the unit exposure region E. In the subsequent exposure operation, the exposure point line L4 extending from the exposure point N8 is replaced with the exposure point line L1, and the exposure point is sequentially changed between the exposure point line L2 and the exposure point line L3. The exposure points located along each exposure point line are the same with a distance interval of 3a.

このように、単位露光領域E内において、3k−2番目の露光点ラインと、3k−1番目の露光点ラインと3k番目の露光点ラインとの間で、露光点ラインを順に切り替える露光動作が行われる結果、副走査方向Yに沿ってより多くの位置に露光点が分布することになり、露光量に偏りのない多重露光動作を行うことができる。 In this way, in the unit exposure area E, the exposure operation of sequentially switching the exposure point lines between the 3k-2nd exposure point line, the 3k-1st exposure point line, and the 3kth exposure point line is performed. As a result, the exposure points are distributed at more positions along the sub-scanning direction Y, and the multiple exposure operation with no bias in the exposure amount can be performed.

図6は、図5に示した多重露光動作の変形例を示した図である。 FIG. 6 is a diagram showing a modified example of the multiple exposure operation shown in FIG.

ここでは、(1)式においてm=3、u=2に定められるピッチ間隔Pで露光動作が行われる。図5(A)に示すように、基準露光点N1は、単位露光領域Eの端辺を三等分したときの主走査方向X側に位置する。そして、ピッチ間隔Pだけ進むたびに、露光点N2、露光点N3が単位露光領域E内に設定される。ここでも、図5と同じような露光点分布を得ることができる。uは、3つ以上の露光点ラインが存在する場合、基準露光点の位置を表す。 Here, the exposure operation is performed at the pitch interval P defined by m = 3 and u = 2 in the equation (1). As shown in FIG. 5A, the reference exposure point N1 is located on the main scanning direction X side when the end edge of the unit exposure region E is divided into three equal parts. Then, each time the pitch interval P advances, the exposure points N2 and the exposure points N3 are set in the unit exposure region E. Here, too, the same exposure point distribution as in FIG. 5 can be obtained. u represents the position of the reference exposure point when there are three or more exposure point lines.

このように本実施形態によれば、露光装置10において、上記(1)式に基づく上記ピッチ間隔Pによる多重露光動作が行われる。単位露光領域内における基準露光点の位置を設定することで、複数の露光点ラインの間で露光点を順に移動させることで、主走査方向Xとともに副走査方向Yに関して露光点を散在させることが可能となる。 As described above, according to the present embodiment, the exposure apparatus 10 performs the multiple exposure operation with the pitch interval P based on the above equation (1). By setting the position of the reference exposure point in the unit exposure area, the exposure points can be moved in order between the plurality of exposure point lines, so that the exposure points are scattered in the sub-scanning direction Y together with the main scanning direction X. It will be possible.

上述した基準露光点とは異なる基準露光点を設定してもよく、4つ以上の隣り合って並ぶ露光点ラインの間で露光点が移り変わるようにしてもよい。さらには、隣り合わない露光点ライン間で露光点を移り変えるようにしてもよい。 A reference exposure point different from the reference exposure point described above may be set, or the exposure point may be changed between four or more adjacent exposure point lines. Further, the exposure points may be changed between the exposure point lines that are not adjacent to each other.

露光装置10は、単一露光ヘッドによる構成も可能であり、また、コントローラ30以外の制御構成によって多重露光動作を行ってもよい。マイクロミラー以外の光変調素子でパターンを形成することも可能である。 The exposure apparatus 10 can be configured with a single exposure head, and the multiple exposure operation may be performed by a control configuration other than the controller 30. It is also possible to form a pattern with a light modulation element other than a micromirror.

10 露光装置
22 DMD(光変調素子アレイ)
30 コントローラ(露光制御部)



10 Exposure device 22 DMD (light modulation element array)
30 controller (exposure control unit)



Claims (10)

複数の光変調素子を2次元配列させた光変調素子アレイと、
主走査方向に対して所定の傾斜角度で傾斜する、前記光変調素子アレイの露光エリアを、被描画体に対して主走査方向に相対移動させる走査部と、
所定のピッチ間隔で前記複数の光変調素子を変調し、多重露光動作を行う露光制御部とを備え、
前記露光制御部が、所定の単位露光領域において、前記傾斜角度に沿った複数の露光点ラインの間で、露光動作毎に、露光点を定める露光点ラインを切り替えることを特徴とする露光装置。
An optical modulation element array in which a plurality of light modulation elements are arranged two-dimensionally,
A scanning unit that moves the exposure area of the light modulation element array, which is inclined at a predetermined tilt angle with respect to the main scanning direction, relative to the object to be drawn in the main scanning direction.
It is provided with an exposure control unit that modulates the plurality of light modulation elements at predetermined pitch intervals and performs a multiple exposure operation.
An exposure apparatus characterized in that the exposure control unit switches an exposure point line that determines an exposure point for each exposure operation between a plurality of exposure point lines along the inclination angle in a predetermined unit exposure region.
前記露光制御部が、隣り合って並ぶ複数の露光点ラインの間で、露光点ラインを順に切り替えることを特徴とする請求項1に記載の露光装置。 The exposure apparatus according to claim 1, wherein the exposure control unit sequentially switches the exposure point lines among a plurality of exposure point lines arranged adjacent to each other. 前記露光制御部が、次の露光動作で露光点が前記所定の単位露光領域内に移る露光点ラインを、次の露光動作で露光点が前記所定の単位露光領域から外れる露光点ラインと切り替えることを特徴とする請求項1または2に記載の露光装置。 The exposure control unit switches the exposure point line whose exposure point moves within the predetermined unit exposure region in the next exposure operation to the exposure point line whose exposure point deviates from the predetermined unit exposure region in the next exposure operation. The exposure apparatus according to claim 1 or 2. 前記露光制御部が、各露光点ラインの露光点間隔が等しくなるピッチ間隔で、多重露光動作を行うことを特徴とする請求項1乃至3のいずれかに記載の露光装置。 The exposure apparatus according to any one of claims 1 to 3, wherein the exposure control unit performs a multiple exposure operation at pitch intervals at which the exposure point intervals of the exposure point lines are equal. 前記露光制御部が、隣り合う露光点ラインの主走査方向に沿った露光点位置がずれるピッチ間隔で、多重露光動作を行うことを特徴とする請求項4に記載の露光装置。 The exposure apparatus according to claim 4, wherein the exposure control unit performs a multiple exposure operation at pitch intervals in which the exposure point positions along the main scanning direction of adjacent exposure point lines are deviated. 前記露光制御部が、前記所定の単位露光領域内において、2k−1(k=1、2、・・)番目の露光点ラインと2k番目の露光点ラインとの間で、露光点ラインを交互に切り替えることを特徴とする請求項5に記載の露光装置。 The exposure control unit alternately alternates exposure point lines between the 2k-1 (k = 1, 2, ...) Th exposure point line and the 2kth exposure point line within the predetermined unit exposure region. The exposure apparatus according to claim 5, wherein the exposure apparatus is switched to. 前記露光制御部が、隣り合う露光点ラインの主走査方向に沿った露光点位置が同じピッチ間隔で、多重露光動作を行うことを特徴とする請求項4に記載の露光装置。 The exposure apparatus according to claim 4, wherein the exposure control unit performs a multiple exposure operation at exposure point positions along a main scanning direction of adjacent exposure point lines at the same pitch interval. 前記露光制御部が、前記所定の単位露光領域内において、3k−2(k=1、2、・・)番目の露光点ラインと、3k−1番目の露光点ラインと3k番目の露光点ラインとの間で、露光点ラインを順に切り替えることを特徴とする請求項7に記載の露光装置。 The exposure control unit performs the 3k-2 (k = 1, 2, ...) Th-th exposure point line, the 3k-1st exposure point line, and the 3kth exposure point line in the predetermined unit exposure region. The exposure apparatus according to claim 7, wherein the exposure point lines are sequentially switched between the two. 前記所定のピッチ間隔をP、光変調素子の単位露光領域をC、mを2以上の整数、nを任意の整数、uをmより小さい整数、aをCより小さい値とすると、Pが以下の式

P=(n+u/m)C+a

で表されることを特徴とする請求項1乃至8のいずれかに記載の露光装置。
When the predetermined pitch interval is P, the unit exposure area of the light modulation element is C, m is an integer of 2 or more, n is an arbitrary integer, u is an integer smaller than m, and a is a value smaller than C, P is as follows. Expression

P = (n + u / m) C + a

The exposure apparatus according to any one of claims 1 to 8, wherein the exposure apparatus is represented by.
複数の光変調素子を2次元配列させた光変調素子アレイを配置し、
前記光変調素子アレイの露光エリアを主走査方向に対して所定の傾斜角度で傾斜させて、前記露光エリアを被描画体に対し主走査方向に相対移動させる走査部と、
所定のピッチ間隔で前記複数の光変調素子を変調し、多重露光動作を行う露光方法であって、
所定の単位露光領域において、前記傾斜角度に沿った複数の露光点ラインの間で、露光動作毎に、露光点を定める露光点ラインを切り替えることを特徴とする露光方法。
A light modulation element array in which a plurality of light modulation elements are two-dimensionally arranged is arranged.
A scanning unit that tilts the exposure area of the light modulation element array at a predetermined tilt angle with respect to the main scanning direction and moves the exposure area relative to the object to be drawn in the main scanning direction.
An exposure method in which the plurality of light modulation elements are modulated at predetermined pitch intervals to perform a multiple exposure operation.
An exposure method characterized in that, in a predetermined unit exposure region, an exposure point line that determines an exposure point is switched between a plurality of exposure point lines along the inclination angle for each exposure operation.
JP2020056863A 2020-03-26 2020-03-26 Exposure equipment and exposure method Active JP7437212B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020056863A JP7437212B2 (en) 2020-03-26 2020-03-26 Exposure equipment and exposure method
TW109126310A TWI833033B (en) 2020-03-26 2020-08-04 Exposure device and exposure method
KR1020200103384A KR20210120789A (en) 2020-03-26 2020-08-18 Exposure device and exposure method
CN202011336751.2A CN113448175B (en) 2020-03-26 2020-11-25 Exposure apparatus and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020056863A JP7437212B2 (en) 2020-03-26 2020-03-26 Exposure equipment and exposure method

Publications (2)

Publication Number Publication Date
JP2021157039A true JP2021157039A (en) 2021-10-07
JP7437212B2 JP7437212B2 (en) 2024-02-22

Family

ID=77808490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056863A Active JP7437212B2 (en) 2020-03-26 2020-03-26 Exposure equipment and exposure method

Country Status (3)

Country Link
JP (1) JP7437212B2 (en)
KR (1) KR20210120789A (en)
TW (1) TWI833033B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493867B1 (en) 2000-08-08 2002-12-10 Ball Semiconductor, Inc. Digital photolithography system for making smooth diagonal components
US6606739B2 (en) 2000-11-14 2003-08-12 Ball Semiconductor, Inc. Scaling method for a digital photolithography system
JP4728536B2 (en) 2001-07-05 2011-07-20 株式会社オーク製作所 Multiple exposure drawing method and multiple exposure drawing apparatus
JP4203649B2 (en) 2003-09-05 2009-01-07 株式会社オーク製作所 Multiple exposure drawing method and multiple exposure drawing apparatus
JP4500657B2 (en) * 2004-11-30 2010-07-14 旭化成イーマテリアルズ株式会社 Pattern forming material, pattern forming apparatus and pattern forming method
KR20100030999A (en) 2008-09-11 2010-03-19 삼성전자주식회사 Maskless lithographic apparatus and method of compensating rotational alignment error of exposure head of the same

Also Published As

Publication number Publication date
CN113448175A (en) 2021-09-28
KR20210120789A (en) 2021-10-07
TWI833033B (en) 2024-02-21
JP7437212B2 (en) 2024-02-22
TW202136922A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
JP3938714B2 (en) Exposure equipment
JP4456328B2 (en) Digital photolithography system for creating smooth digital components
KR101087862B1 (en) Continuous direct-write optical lithography
JP5258226B2 (en) Drawing apparatus and drawing method
US8109605B2 (en) Image recording apparatus and image recording method
CN103329041B (en) The system and method that optics is pruned
US20120050705A1 (en) Photolithography system
JP2005022250A (en) Image recording method and image recording apparatus
JP6537309B2 (en) Exposure apparatus and exposure method
JP7437212B2 (en) Exposure equipment and exposure method
CN113448175B (en) Exposure apparatus and exposure method
JP7471175B2 (en) Exposure apparatus and exposure method
JP5357617B2 (en) Exposure equipment
JP2004128272A (en) Pattern plotting device and its method
JP7432418B2 (en) Exposure equipment and exposure method
JP2005010468A (en) Pattern drawing system and pattern drawing method
JP7455265B1 (en) Exposure equipment and exposure method
JP6109565B2 (en) Exposure equipment
JP2021124523A (en) Pattern exposure apparatus, and pattern exposure method
JP2006319088A (en) Drawing equipment
JP2005178253A (en) Image recorder
JP2014235342A (en) Exposure drawing apparatus, exposure drawing method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240209

R150 Certificate of patent or registration of utility model

Ref document number: 7437212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150