JP2021156685A - Gas analyzer - Google Patents

Gas analyzer Download PDF

Info

Publication number
JP2021156685A
JP2021156685A JP2020055902A JP2020055902A JP2021156685A JP 2021156685 A JP2021156685 A JP 2021156685A JP 2020055902 A JP2020055902 A JP 2020055902A JP 2020055902 A JP2020055902 A JP 2020055902A JP 2021156685 A JP2021156685 A JP 2021156685A
Authority
JP
Japan
Prior art keywords
gas concentration
optical resonator
measurement
measurement cell
thermal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020055902A
Other languages
Japanese (ja)
Other versions
JP7406766B2 (en
Inventor
恒 阿部
Tsune Abe
恒 阿部
幸治 橋口
Koji Hashiguchi
幸治 橋口
裕行 清水
Hiroyuki Shimizu
裕行 清水
伴季 三宅
Tomonori Miyake
伴季 三宅
健一 板橋
Kenichi Itabashi
健一 板橋
真一 本田
Shinichi Honda
真一 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Shinyei Technology Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Shinyei Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Shinyei Technology Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2020055902A priority Critical patent/JP7406766B2/en
Publication of JP2021156685A publication Critical patent/JP2021156685A/en
Application granted granted Critical
Publication of JP7406766B2 publication Critical patent/JP7406766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a gas analyzer with which, without introducing additional components other than a mirror into an optical resonator, the length of the resonator is made variable.SOLUTION: In a gas concentration detector based on cavity ring-down spectroscopy that causes a laser beam to enter an optical resonator 10 composed of a high-reflection rate mirror arranged inside of a measurement cell 1 causing resonance to occur and detects its leakage light, thereby calculating a gas concentration, a thermal device is arranged to the outside of the measurement cell and temperature control means for controlling the quantity of heat fed and discharged to and from the thermal device is provided. The temperature control means controls the quantity of heat fed and discharged to and from the thermal device on a cycle corresponding to a gas concentration measurement time, so that the mirror interval of the optical resonator increases or decreases due to the thermal expansion and contraction of the optical resonator and the position of each resonance frequency on a frequency axis moves to the left or right so as to fill an FSR, thus covering the whole of an absorption line. Use of a Peltier element 20 arranged on the outer circumference of the measurement cell as the thermal device facilitates control.SELECTED DRAWING: Figure 1

Description

本発明はレーザガス分析装置に関し、特に、CRDS法によるガス分析装置に関するものである。 The present invention relates to a laser gas analyzer, and more particularly to a gas analyzer based on the CRDS method.

特定の物質は特定の波長(周波数)の光を吸収し、その吸収量は特定物質の濃度に依存することから、ガス分析装置として、測定セルに導いたサンプルガスにレーザ光を透過させることによって、前記サンプルガス中に含まれる特定物質濃度を測定する、レーザ分光法が広く用いられている。 Since a specific substance absorbs light of a specific wavelength (frequency) and the amount of absorption depends on the concentration of the specific substance, as a gas analyzer, by transmitting laser light through the sample gas guided to the measurement cell, , Laser spectroscopy, which measures the concentration of a specific substance contained in the sample gas, is widely used.

レーザ分光法にも種々の方式があるが、CRDS(Cavity Ring Down Spectroscopy )分光法もその一つである。当該CDRS分析法は、例えば引用文献1(特許第6252176号公報)の図1等に開示する構成となっている。
すなわち、測定セルの両端に高反射率のミラーを配置して光共振器を構成する。当該光共振器に対して波長可変レーザ素子から発射されるレーザ光を入射して、特定の周波数で共振させ、光パワーが光共振器内に十分蓄えられた後にレーザ光を遮断し、前記ミラーから僅かに漏れる光の強度の時間的な減衰量を測定し、当該減衰量から測定対象のガス濃度を演算するようになっている。
There are various methods for laser spectroscopy, and CRDS (Cavity Ring Down Spectroscopy) spectroscopy is one of them. The CDRS analysis method is configured to be disclosed in, for example, FIG. 1 of Cited Document 1 (Patent No. 6252176).
That is, mirrors having high reflectance are arranged at both ends of the measurement cell to form an optical resonator. A laser beam emitted from a wavelength-variable laser element is incident on the optical resonator to resonate at a specific frequency, and after sufficient optical power is stored in the optical resonator, the laser beam is cut off and the mirror is used. The amount of temporal attenuation of the intensity of light leaking slightly from the light is measured, and the gas concentration to be measured is calculated from the amount of attenuation.

共振器(測定セル)内でレーザ光が共振して閉じ込められることになるこの方法は、共振器内でレーザ光が数千回以上往復することで測定距離を長く採れ、高感度である利点があるので、広く用いられようとしている。一方で、レーザ光の周波数と光共振器の共振周波数とが一致したときのみ、測定が可能となる制限がある。前記共振周波数は、飛び飛びの値を採るとともに、その絶対値は光共振器を構成する高反射率ミラーの間隔Lに反比例し、隣り合う2つの共振周波数の間隔である自由スペクトル範囲(Free Spectral Range, FSR)もLに反比例する。このFSR狭い程、分解能の高い測定が可能なことを意味する。 This method, in which the laser beam resonates and is confined in the resonator (measurement cell), has the advantage of being highly sensitive because the measurement distance can be taken longer by reciprocating the laser beam thousands of times or more in the resonator. Because it is, it is about to be widely used. On the other hand, there is a limitation that measurement is possible only when the frequency of the laser beam and the resonance frequency of the optical resonator match. The resonance frequency takes discrete values, and its absolute value is inversely proportional to the distance L of the high-reflectivity mirrors constituting the optical cavity, and is the free spectrum range (Free Spectral Range) which is the distance between two adjacent resonance frequencies. , FSR) is also inversely proportional to L. The narrower the FSR, the higher the resolution of the measurement.

特定のガスの光吸収強度は、特定の周波数でピークとなり、その周辺の周波数では、前記特定の周波数から遠ざかる程小さくなる。従って、当然のことながら、特定のガスの光吸収線をカバーする領域に存在する共振周波数の個数が多い程(FSRが狭く、分解能が高い程)、精度の高い測定が可能となる。 The light absorption intensity of a specific gas peaks at a specific frequency, and at frequencies around it, it becomes smaller as the distance from the specific frequency increases. Therefore, as a matter of course, the larger the number of resonance frequencies existing in the region covering the light absorption line of the specific gas (the narrower the FSR and the higher the resolution), the more accurate the measurement becomes possible.

ところで、前記共振器のミラー間の距離が固定されると共振周波数も固定されることになり、この状態で光吸収線がカバーする領域に十分な数の共振周波数を含むことが出来るガスしか測定対象とはならない。すなわち、FSRに対して光吸収線がカバーする領域が十分に広くないガスは測定対象とはならない。複数種のガスを測定対象とするには、光共振器自体の共振周波数が可変でなければならない。 By the way, when the distance between the mirrors of the resonator is fixed, the resonance frequency is also fixed, and in this state, only a gas capable of containing a sufficient number of resonance frequencies in the region covered by the optical absorption line is measured. Not a target. That is, a gas whose area covered by the light absorption line is not sufficiently wide with respect to the FSR is not a measurement target. In order to measure multiple types of gas, the resonance frequency of the optical resonator itself must be variable.

そこで、前記特許6252176号公報では上記共振周波数を可変にするために、圧電素子で、前記ミラーの位置を変更する構成としている。 Therefore, in Japanese Patent No. 6252176, in order to make the resonance frequency variable, the position of the mirror is changed by a piezoelectric element.

特許6252176号公報Patent No. 6252176

上記したようにCRDSでは、分解能はミラー間隔Lに反比例するのであるから、十分な分解能を確保する必要上、ミラー間隔(セル長)は、通常40〜50cmで設計される。ミラー間隔を50cmとすると、前記FSRは0.01cm−1となる。 As described above, in CRDS, the resolution is inversely proportional to the mirror spacing L. Therefore, in order to secure sufficient resolution, the mirror spacing (cell length) is usually designed to be 40 to 50 cm. Assuming that the mirror spacing is 50 cm, the FSR is 0.01 cm -1 .

ところが、ミラー間隔を50cmで設計すると、装置全体の容積が大きくなり、手軽に持ち運びのできる装置ではなくなり、より小型化が望まれる。一方、ミラー間隔を5cmで設計すると、前記FSRは0.1cm−1となり、分解能はミラー間隔50cmに比べて1/10となる。 However, if the mirror spacing is designed to be 50 cm, the volume of the entire device becomes large, and the device is no longer easily portable, and further miniaturization is desired. On the other hand, if the mirror spacing is designed to be 5 cm, the FSR is 0.1 cm -1 , and the resolution is 1/10 of that of the mirror spacing of 50 cm.

図3は、光共振器の長さが50cm(L50)の場合と5cm(L)の場合の共振周波数を周波数軸上に示し、加えて、仮の吸収線Sを重ねたものである。50cm場合は、吸収周波数(中心周波数S)と近接して共振周波数が多数存在するが、5cmの場合は吸収周波数付近に位置する共振周波数の個数が少なく、さらに吸収周波数と共振周波数が一致する確率は極めて低くなることが理解できる。 FIG. 3 shows the resonance frequencies when the length of the optical resonator is 50 cm (L 50 ) and 5 cm (L 5 ) on the frequency axis, and in addition, a temporary absorption line S is superimposed. .. In the case of 50 cm, there are many resonance frequencies close to the absorption frequency (center frequency S 0 ), but in the case of 5 cm, the number of resonance frequencies located near the absorption frequency is small, and the absorption frequency and the resonance frequency match. It can be seen that the probability is extremely low.

測定精度を上げる上では、測定対象物質の吸収線上に共振周波数が多数存在すること、特に、吸収周波数が共振周波数と一致することが重要であるが、ミラー間隔を狭くすると、上記のように分解能が低下し、測定精度は落ちることになる。この問題は、減圧下(0.5気圧以下)や分子間相互作用の小さいガス種(ヘリウム、ネオン等)に測定対象物質を入れた場合のように、吸収線幅が相対的に狭くなった場合には、更に深刻な問題となる。 In order to improve the measurement accuracy, it is important that there are many resonance frequencies on the absorption line of the substance to be measured, and in particular, it is important that the absorption frequency matches the resonance frequency. Will decrease, and the measurement accuracy will decrease. This problem has a relatively narrow absorption line width, such as when the substance to be measured is placed under reduced pressure (0.5 atm or less) or under a gas species (helium, neon, etc.) with small intermolecular interaction. In some cases, it becomes a more serious problem.

この問題に対応するために、前記特許6252176号公報に開示のように、圧電素子でミラー間隔を可変にして、共振周波数と、吸収周波数を合わせることが考えられる。しかしながら、この構成では、圧電素子とその配線、それらをミラーに取り付ける治具等を光共振器内にスペースを設けて設置しなければならず、共振器の長さが20cm以下の小型化は困難でとなる。 In order to deal with this problem, as disclosed in Japanese Patent No. 6252176, it is conceivable to make the mirror spacing variable by the piezoelectric element to match the resonance frequency and the absorption frequency. However, in this configuration, the piezoelectric element, its wiring, the jig for attaching them to the mirror, etc. must be installed with a space inside the optical resonator, and it is difficult to reduce the length of the resonator to 20 cm or less. It becomes.

更に、光共振器内に配置された、前記圧電素子、配線、取り付け治具等の表面にキャリアガスや測定対象ガスが触れると、キャリアガスや測定対象ガスの吸着や離脱が生じるが、ここで生じるガスの吸着や脱離はガス分析を行う上での妨害成分となり、高純度ガスの微量成分の分析では無視できない問題となる。特に、水分等の吸着性の高い物質を分析対象にした場合、1ppm以下の微量レベルでの測定が困難になる。 Further, when the carrier gas or the measurement target gas comes into contact with the surface of the piezoelectric element, the wiring, the mounting jig, etc. arranged in the optical resonator, the carrier gas or the measurement target gas is adsorbed or separated. The adsorption and desorption of the generated gas becomes an interfering component in the gas analysis, and becomes a problem that cannot be ignored in the analysis of the trace component of the high-purity gas. In particular, when a substance having high adsorptivity such as water is used as an analysis target, it becomes difficult to measure at a trace level of 1 ppm or less.

本発明は上記従来の事情に鑑みて提案されたものであって、光共振器内にミラー以外の追加部品を導入しないで、共振器の長さを可変にしたガス分析装置を提供することを目的とする。 The present invention has been proposed in view of the above-mentioned conventional circumstances, and provides a gas analyzer in which the length of the resonator is variable without introducing additional parts other than a mirror into the optical resonator. The purpose.

本願発明は、測定セル内に配置した高反射率ミラーで構成される光共振器に、レーザ光を入射して共振させ、その漏れ光を検出することによって、ガス濃度を算出するキャビティリングダウン分光法によるガス濃度検出装置を前提とする。 The present invention is a cavity ring-down spectroscopy in which a gas concentration is calculated by incident laser light into an optical resonator composed of a high-reflection mirror arranged in a measurement cell to resonate the light and detect the leaked light. It is premised on a gas concentration detector by the method.

上記装置において、熱デバイスが前記測定セルの外側に配置され、当該熱デバイスへの給排熱量を制御する温度制御手段が設けられる。前記温度制御手段が、ガス濃度測定時間に対応する周期で前記熱デバイスへの給排熱量を制御することにより前記光共振器のミラー間隔が光共振器の熱膨張・収縮によって増減するとともに、周波数軸上の各共振周波数の位置がFSRを埋めるように左右に移動し、吸収線の全域をカバーすることになる。 In the above device, the thermal device is arranged outside the measurement cell, and a temperature control means for controlling the amount of heat supplied to and discharged from the thermal device is provided. The temperature control means controls the amount of heat supplied to and discharged from the thermal device at a cycle corresponding to the gas concentration measurement time, so that the mirror interval of the optical resonator increases or decreases due to thermal expansion and contraction of the optical resonator, and the frequency is increased. The position of each resonance frequency on the axis moves to the left and right so as to fill the FSR, and covers the entire area of the absorption line.

前記熱デバイスとして測定セルの外周に配置されたペルチェ素子を用いると制御は容易となる。 Control is facilitated by using a Perche element arranged on the outer periphery of the measurement cell as the thermal device.

上記構成によって、光共振器のミラーの位置を直接移動させることなく、共振周波数を可変できるので、測定対象物質の吸収線の全域を共振周波数でカバーすること、特に吸収周波数と、光共振器の共振周波数を合わせることができ、測定セルの長さを短くしても精度の高い測定ができる。 With the above configuration, the resonance frequency can be changed without directly moving the position of the mirror of the optical resonator. Therefore, the entire area of the absorption line of the material to be measured is covered with the resonance frequency, especially the absorption frequency and the optical resonator. The resonance frequency can be adjusted, and highly accurate measurement can be performed even if the length of the measurement cell is shortened.

図1は本発明の模式図である。FIG. 1 is a schematic view of the present invention. 図2は本発明の測定例である。FIG. 2 is a measurement example of the present invention. 図3は光共振器の長さと共振周波数の関係を示す図である。FIG. 3 is a diagram showing the relationship between the length of the optical resonator and the resonance frequency.

図1は本願発明の概要を示す図である。 FIG. 1 is a diagram showing an outline of the present invention.

所定長さの測定セル1の両端には、高反射率(99.9%以上)のミラー21、22が対向して配置され、後に説明する光共振器10を構成するとともに、測定セル1の端部を封止する。前記測定セル1の両端近くには、測定対象物質を含むサンプルガスの導入口11と、当該サンプルガスの排出口12が設けられ、サンプルガスが導入、排出されるようになっている。 Mirrors 21 and 22 having high reflectance (99.9% or more) are arranged to face each other at both ends of a measurement cell 1 having a predetermined length to form an optical resonator 10 to be described later, and an end portion of the measurement cell 1. To seal. Near both ends of the measurement cell 1, a sample gas introduction port 11 containing a substance to be measured and a sample gas discharge port 12 are provided so that the sample gas can be introduced and discharged.

前記高反射ミラー21に対してはレーザ発振器31よりレーザ光が入射され、当該入射光は所定範囲の周波数が所定周期で変化するようになっており、前記ミラー21、22間の長さに対応する特定の周波数に共振して、測定セル内に当該レーザ光を閉じ込める光共振器10を構成することになる。前記共振周波数は、図3で説明したように、前記所定範囲の周波数の内の飛び飛びに櫛の刃状に存在することになる。光パワーが光共振器内10に十分蓄えられた後にレーザ光を遮断し、対極のミラー22からわずかに漏れ出る光の強度を光検出器32で検出すると、その値は時間的に減衰する。 Laser light is incident on the high-reflection mirror 21 from the laser oscillator 31, and the incident light has a frequency in a predetermined range that changes in a predetermined cycle, and corresponds to the length between the mirrors 21 and 22. The optical resonator 10 resonates with a specific frequency to confine the laser beam in the measurement cell. As described with reference to FIG. 3, the resonance frequency is present in the shape of a comb blade at intervals within the frequency within the predetermined range. When the laser beam is blocked after the optical power is sufficiently stored in the optical resonator 10 and the intensity of the light slightly leaking from the counter electrode mirror 22 is detected by the photodetector 32, the value is attenuated in time.

測定セル1内に導入されたサンプルガスが、入射レーザ光を吸収するときは、出射側のミラー22から漏れ出る光の強度の減衰の時定数を測定することによって、当該ガスの濃度が計算されることになる。 When the sample gas introduced into the measurement cell 1 absorbs the incident laser light, the concentration of the gas is calculated by measuring the time constant of the attenuation of the intensity of the light leaking from the mirror 22 on the emitting side. Will be.

前記したように共振周波数はミラー21、22間の長さに依存し、また、長さが短い程前記櫛の刃の間隔が広く(FSRが広く)なる。この広くなったFSRを埋めるためには、ミラー21、22間の距離を変更し、共振周波数を周波数軸上で移動できればよいことになる。 As described above, the resonance frequency depends on the length between the mirrors 21 and 22, and the shorter the length, the wider the distance between the comb blades (the wider the FSR). In order to fill this widened FSR, it is sufficient to change the distance between the mirrors 21 and 22 and move the resonance frequency on the frequency axis.

そこで、前記測定セル1の周囲にペルチェ素子20を周方向に所定間隔で複数(図面上4本)配置し、制御手段30より電力を供給する。これによって前記ペルチェ素子20に与えられる電力に応じて、測定セル1の外周温度が変化し、ミラー21、22間の間隔(共振長)は温度に応じて変化することになる。 Therefore, a plurality of Pelche elements 20 (four in the drawing) are arranged around the measurement cell 1 at predetermined intervals in the circumferential direction, and electric power is supplied from the control means 30. As a result, the outer peripheral temperature of the measurement cell 1 changes according to the electric power applied to the Pelche element 20, and the interval (resonance length) between the mirrors 21 and 22 changes according to the temperature.

図2(a)、(b)は上記装置を実際の測定に供した時の結果を示すグラフであり、横軸に波数ν’縦軸に吸収係数αを採ったものである。尚、ν’= ν/c(νは周波数、cは光速)、α=(1/τ−1/τ0)/c(τとτ0はそれぞれ、サンプルンプルガスがある時とない時の減衰の時定数)で与えられる。 FIGS. 2 (a) and 2 (b) are graphs showing the results when the above device is subjected to actual measurement, and the horizontal axis is the wave number ν'and the vertical axis is the absorption coefficient α. In addition, ν'= ν / c (ν is frequency, c is speed of light), α = (1 / τ-1 / τ 0 ) / c (τ and τ 0 are with and without sample sample gas, respectively). It is given by the time constant of decay).

長さL=5 cmの共振器を使い、窒素中にモル分率510 ppbの水分を含む1気圧の標準ガスを導入して測定を行った。図2(a)はペルチェ素子20に電圧を印加せず(本発明を使用せず)に測定した例である。測定時間(積算時間)は10秒で行った。レーザ周波数と光共振器の共振周波数が等しい場合のみでの測定が可能なため、測定点が少なくなっている。 Using a resonator with a length of L = 5 cm, a standard gas at 1 atm containing water with a mole fraction of 510 ppb was introduced into nitrogen for measurement. FIG. 2A is an example of measurement without applying a voltage to the Pelche element 20 (without using the present invention). The measurement time (integrated time) was 10 seconds. Since the measurement can be performed only when the laser frequency and the resonance frequency of the optical resonator are equal, the number of measurement points is reduced.

この場合の吸収スペクトルの範囲は0.136 cm-1であり、共振器の長さL=5 cmであることからFSRが0.1 cm-1であるので、周波数軸上の13箇所でしかデータ取得ができないことになる。従って、測定分解能はFSRと同じ0.1 cm-1となっている。 In this case, the range of the absorption spectrum is 0.136 cm -1 , and since the resonator length L = 5 cm, the FSR is 0.1 cm -1 , so data can be acquired only at 13 points on the frequency axis. It will be. Therefore, the measurement resolution is 0.1 cm -1 , which is the same as FSR.

また吸収線の中心付近では、前記中心を挟んだ2箇所の共振周波数でしか測定が行えておらず、しかもその2箇所の測定点も中心波数N(吸収周波数に対応する波数)からずれている。この測定点の周波数軸上での位置は、共振器の長さに依存し、当該共振器の長さは測定セル1に与えられる温度によって変化するので、中心Nからどの程度ずれた位置で測定できるかは、その時の測定セル1の周囲温度よって異なることになる。 Further, in the vicinity of the center of the absorption line, measurement can be performed only at the resonance frequencies of two points sandwiching the center, and the measurement points at those two points also deviate from the center wave number N 0 (wave number corresponding to the absorption frequency). There is. The position of this measurement point on the frequency axis depends on the length of the resonator, and the length of the resonator changes depending on the temperature given to the measurement cell 1, so that the position deviates from the center N 0. Whether it can be measured depends on the ambient temperature of the measurement cell 1 at that time.

一方、図2(b)はペルチェ素子20に電圧を印加し、測定セル1に給熱(又は吸熱)して、光共振器10の長さを調整して測定した例である。上記と同じく積算時間は10秒としている。また、10秒でFSRと等しい0.1cm-1の範囲を共振周波数が移動するように前記ペルチェ素子20への印加電圧の振幅と周期を設定した。これによって、測定時間10秒で、周波数軸上のFSRの隙間を埋めた測定が可能となる。 On the other hand, FIG. 2B shows an example in which a voltage is applied to the Pelche element 20 to supply (or absorb) heat to the measurement cell 1 to adjust the length of the optical resonator 10 for measurement. As above, the integration time is 10 seconds. Further, the amplitude and period of the voltage applied to the Pelche element 20 were set so that the resonance frequency moves within a range of 0.1 cm -1 , which is equal to the FSR in 10 seconds. As a result, the measurement time is 10 seconds, and the measurement that fills the gap of the FSR on the frequency axis becomes possible.

図2(b)によると、図2(a)とは異なり、L=5 cmでも周波数軸上で連続的に測定が行えており、また吸収線の中心付近では、中心波数Nを含む多くの測定点があることが理解できる。 According to FIG. 2 (b), the contrast to FIG. 2 (a), L = 5 cm even have performed continuously measured on the frequency axis and in the vicinity of the center of the absorption line, many including the center wavenumber N 0 It can be understood that there is a measurement point of.

測定対象ガスのモル分率は、CRDSの場合、吸収線のピーク値(吸収係数が最大となる値)を用いて計算することができる。図2(b)のピーク付近のデータ(図中の矢印)を使ってランベルト・ベール式で計算した水のモル分率は516 ppbとなり、標準の値(510 ppb)とよく一致した。 In the case of CRDS, the mole fraction of the gas to be measured can be calculated using the peak value of the absorption line (the value at which the absorption coefficient is maximized). The mole fraction of water calculated by the Lambert-Beer equation using the data near the peak in FIG. 2 (b) (arrow in the figure) was 516 ppb, which was in good agreement with the standard value (510 ppb).

一方、図2(a)で最もピークに近いデータ(図中の矢印)を使って計算しても441 ppbとなり、標準の値より15 %程度低い値となった。これはL=5 cmの小型化によって分解能が低下し、ピークの値を正確に測定できていないことが理由となる。 On the other hand, even when calculated using the data closest to the peak in Fig. 2 (a) (arrow in the figure), it was 441 ppb, which was about 15% lower than the standard value. This is because the resolution is reduced due to the miniaturization of L = 5 cm, and the peak value cannot be measured accurately.

以上から、CRDSガス分析装置の測定セル1の小型化(L<20 cm)を行っても、測定セル1(光共振器)の外周温度を制御することによって、分解能を損なうこと無く、モル分率1 ppm以下の領域でも、吸着性の高い水分子を、精度よく測定できることが示された。 From the above, even if the measurement cell 1 of the CRDS gas analyzer is miniaturized (L <20 cm), the mole fraction is not impaired by controlling the outer peripheral temperature of the measurement cell 1 (optical resonator). It was shown that highly adsorptive water molecules can be measured accurately even in the region with a rate of 1 ppm or less.

尚、上記において、温度調整用のデバイスとしてペルチェ素子を使った例を示したが、抵抗ヒーター、マイクロ波、電球、サーモサイフォン、冷媒等を使用しても同様の効果が得られることは勿論である。また、ファン等を用いて共振器に送風し、共振器付近の熱の移動を速めることで、共振周波数の変化のスピードを速めることができる。 In the above, an example of using a Perche element as a device for temperature adjustment has been shown, but it goes without saying that the same effect can be obtained by using a resistance heater, a microwave, a light bulb, a thermosiphon, a refrigerant, or the like. be. Further, by blowing air to the resonator using a fan or the like to accelerate the transfer of heat in the vicinity of the resonator, the speed of change in the resonance frequency can be accelerated.

また、熱デバイスの配置位置は、必ずしも測定セルに接触した「外周」である必要はなく、測定デバイスから離れた位置に配置することでも可能である。 Further, the arrangement position of the thermal device does not necessarily have to be the "outer circumference" in contact with the measurement cell, and it is also possible to arrange the thermal device at a position away from the measurement device.

以上説明したように、本願発明は、CRDSを用いたガス分析装置において、セル長を短くすることができ、装置全体の小型化が可能となる。 As described above, according to the present invention, in the gas analyzer using CRDS, the cell length can be shortened, and the entire device can be miniaturized.

1・・測定セル
10・・光共振器
11・・ガス導入口
12・・ガス導出口
20・・ペルチェ素子
21、22・・ミラー
30・・制御手段
31・・レーザ発振素子
32・・受光素子
・・吸収周波数
・・中心波数
1 ・ ・ Measurement cell 10 ・ ・ Optical resonator 11 ・ ・ Gas inlet 12 ・ ・ Gas outlet 20 ・ ・ Perche element 21, 22 ・ ・ Mirror 30 ・ ・ Control means 31 ・ ・ Laser oscillator 32 ・ ・ Light receiving element S 0 ... Absorption frequency N 0 ... Center wave number

Claims (3)

測定セル内に配置した高反射率ミラーで構成される光共振器に、レーザ光を入射して共振させ、その漏れ光を検出することによって、ガス濃度を算出するキャビティリングダウン分光法によるガス濃度検出装置において、
前記測定セルの外側に配置した熱デバイスと、
前記測定セルへの給排熱量を制御することによって前記光共振器のミラー間の長さを調整する温度制御手段と
を備えたことを特徴とするガス濃度検出装置。
Gas concentration by cavity ring-down spectroscopy that calculates gas concentration by injecting laser light into an optical resonator composed of high-reflectivity mirrors placed in the measurement cell and resonating it, and detecting the leaked light. In the detector
A thermal device placed outside the measurement cell and
A gas concentration detecting device including a temperature control means for adjusting the length between mirrors of the optical resonator by controlling the amount of heat supplied to and discharged from the measuring cell.
前記給排熱量の制御によって、ガス濃度測定時間に対応する周期で、かつ自由スペクトル範囲を埋めるように共振周波数を変更する請求項1に記載のガス濃度検出装置。 The gas concentration detection device according to claim 1, wherein the resonance frequency is changed so as to fill the free spectrum range at a cycle corresponding to the gas concentration measurement time by controlling the amount of heat supply and exhaust. 前記熱デバイスが測定セルの外周に配置したペルチェ素子である請求項1または2に記載のガス濃度検出装置。
The gas concentration detecting device according to claim 1 or 2, wherein the thermal device is a Perche element arranged on the outer periphery of a measurement cell.
JP2020055902A 2020-03-26 2020-03-26 gas analyzer Active JP7406766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020055902A JP7406766B2 (en) 2020-03-26 2020-03-26 gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020055902A JP7406766B2 (en) 2020-03-26 2020-03-26 gas analyzer

Publications (2)

Publication Number Publication Date
JP2021156685A true JP2021156685A (en) 2021-10-07
JP7406766B2 JP7406766B2 (en) 2023-12-28

Family

ID=77918047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020055902A Active JP7406766B2 (en) 2020-03-26 2020-03-26 gas analyzer

Country Status (1)

Country Link
JP (1) JP7406766B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2671122C (en) 2006-12-18 2013-05-07 John Cormier Apparatus and method for rapid and accurate quantification of an unknown, complex mixture
JP5927244B2 (en) 2014-07-24 2016-06-01 大陽日酸株式会社 Oxygen isotope concentration analyzer and oxygen isotope concentration analysis method
JP2016156706A (en) 2015-02-25 2016-09-01 国立大学法人名古屋大学 Carbon isotope analysis device and carbon isotope analysis method
JP6802963B2 (en) 2015-02-25 2020-12-23 国立大学法人東海国立大学機構 Carbon isotope analyzer and carbon isotope analysis method
KR20170122812A (en) 2015-03-04 2017-11-06 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 Carbon Isotope Analysis Apparatus and Carbon Isotope Analysis Method
JP6792778B2 (en) 2016-03-02 2020-12-02 国立大学法人東海国立大学機構 Carbon isotope analyzer and carbon isotope analysis method
WO2018135619A1 (en) 2017-01-20 2018-07-26 積水メディカル株式会社 Carbon isotope analysis device and carbon isotope analysis method
CN111201433A (en) 2017-08-24 2020-05-26 国立大学法人名古屋大学 Light generating apparatus, carbon isotope analyzing apparatus and carbon isotope analyzing method using the same
WO2019142944A1 (en) 2018-01-22 2019-07-25 積水メディカル株式会社 Carbon isotope analysis device and carbon isotope analysis method

Also Published As

Publication number Publication date
JP7406766B2 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
CA3025935C (en) Photothermal interferometry apparatus and method
KR100401035B1 (en) Contaminant identification and concentration determination by monitoring the temporal characteristics of an intracavity laser
Krzempek et al. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell
US9234905B2 (en) Method of calibrating and calibration apparatus for a moisture concentration measurement apparatus
US20050206903A1 (en) Wavelength control for cavity ringdown spectrometer
Nadezhdinskii et al. High sensitivity methane analyzer based on tuned near infrared diode laser
US5917193A (en) Method and apparatus for detecting leaks in a container
CN110672554B (en) Random vibration drive ring-down cavity calibration-free gas concentration measurement system
US9851248B2 (en) Spectroscopy system using waveguide and employing a laser medium as its own emissions detector
EP3767278A1 (en) Spectrometer with wide-scan tunable diode laser
Leis et al. Detection of potentially explosive methane levels using a solid-state infrared source
Welzel et al. Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature
Henningsen et al. Quantitative wavelength-modulation spectroscopy without certified gas mixtures
AU2844599A (en) Device and method for directly measuring calorific energy contained in a fuel gas
JP2021156685A (en) Gas analyzer
JP7006800B2 (en) Gas measuring device and gas measuring method
CN108426850B (en) Absolute measurement of atmospheric CO2Content frequency stabilized cavity ring-down spectrometer
EP1129335A1 (en) Contaminant identification and concentration determination by monitoring the intensity of the output of an intracavity laser
JP2006052955A (en) Concentration measuring method of trace amount of material in gas
Lagunov et al. Effect of the Frequency Tuning Rate of a Diode Laser on the Shape of an Absorption Line Profile During Measurement of Low Concentrations in an External Cavity With Off-Axis Radiation Input
Zhang et al. Measurement of Ethylene Concentrations at High Pressure Based on Tunable Diode Laser Absorption Spectroscopy near 1620 nm
Lagunov et al. Measurement of the concentration of water vapor in a glow discharge plasma
Kosterev et al. Chemical sensors using quantum cascade lasers
Kosterev et al. Spectroscopic trace gas detection with pulsed quantum cascade lasers
CN117030638A (en) Gas temperature and concentration measuring method based on open optical path adjustable ring-down cavity

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231208

R150 Certificate of patent or registration of utility model

Ref document number: 7406766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150