JP2021155480A - Latent heat storage material composition - Google Patents

Latent heat storage material composition Download PDF

Info

Publication number
JP2021155480A
JP2021155480A JP2020054150A JP2020054150A JP2021155480A JP 2021155480 A JP2021155480 A JP 2021155480A JP 2020054150 A JP2020054150 A JP 2020054150A JP 2020054150 A JP2020054150 A JP 2020054150A JP 2021155480 A JP2021155480 A JP 2021155480A
Authority
JP
Japan
Prior art keywords
latent heat
heat storage
storage material
material composition
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020054150A
Other languages
Japanese (ja)
Other versions
JP6936352B1 (en
Inventor
洸平 中村
Kohei Nakamura
洸平 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2020054150A priority Critical patent/JP6936352B1/en
Application granted granted Critical
Publication of JP6936352B1 publication Critical patent/JP6936352B1/en
Publication of JP2021155480A publication Critical patent/JP2021155480A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

To provide a latent heat storage material composition which causes no leakage of a latent heat storage material in use even in a heat storage state, making it possible to carry out storage of latent heat and heat release thereof.SOLUTION: A latent heat storage material composition 1 is formed by mixing a latent heat storage material 10 that uses latent heat input/output to carry out heat storage or heat release thereof, and a clay material 20 that is a clay-like silicone clay material composed mainly of silicone. The latent heat storage material 10 is an organic compound of an anhydride having physical properties causing a phase transition between solid phases.SELECTED DRAWING: Figure 1

Description

本発明は、固相相転移に伴う潜熱の出入りを利用して、蓄熱またはその放熱を行う潜熱蓄熱材と、高分子材料とを混合してなる潜熱蓄熱材組成物に関する。 The present invention relates to a latent heat storage material composition obtained by mixing a polymer material with a latent heat storage material that stores heat or dissipates heat by utilizing the inflow and outflow of latent heat accompanying a solid phase transition.

潜熱蓄熱物質は、相変化に伴う潜熱の出入りを利用して蓄熱することができる物性を有しており、熱供給源から提供された熱を一時的に蓄えた後、熱需要先で、蓄えた潜熱の熱エネルギを、その時間差をもって活用する目的で用いられる。このような物質の中でも、アンモニウムミョウバン十二水和物(AlNH(SO・12HO)等のように、液相と固相との間で相変化を行う潜熱蓄熱材(PCM:Phase Change Material)は、広く知られている。この潜熱蓄熱材は、その融点を境に、固相から液相へと融解する際に潜熱を蓄熱する一方、液相から固相へと凝固する際に潜熱を放熱する。潜熱蓄熱材は一般的に、専用の容器や袋等に充填して使用されるが、市場の中には、潜熱を必要とする対象物に対し、潜熱蓄熱材をマイクロカプセルに充填した態様で、潜熱蓄熱材を使用したいというニーズもある。 The latent heat storage material has the property of being able to store heat by utilizing the inflow and outflow of latent heat that accompanies the phase change. After temporarily storing the heat provided by the heat supply source, it is stored at the heat demand destination. It is used for the purpose of utilizing the thermal energy of the latent heat with the time difference. Among such substances, ammonium alum twelve dihydrate (AlNH 4 (SO 4) 2 · 12H 2 O) as such, latent heat storage material that performs a phase change between liquid and solid phases (PCM : Phase Change Material) is widely known. This latent heat storage material stores latent heat when it melts from the solid phase to the liquid phase at its melting point, and dissipates the latent heat when it solidifies from the liquid phase to the solid phase. The latent heat storage material is generally used by filling it in a dedicated container or bag, but in some markets, the latent heat storage material is filled in microcapsules for an object that requires latent heat. There is also a need to use latent heat storage materials.

ところが、従来のマイクロカプセルは、十分な耐強度を有しておらず、何らかの理由で、損傷し易い。そのため、潜熱蓄熱材を、マイクロカプセルに収容して使用する場合、使用中、潜熱蓄熱材の融液が、マイクロカプセルから漏洩してしまう虞がある。そこで、マイクロカプセルの強度を向上させる技術の一例として、特許文献1が開示されている。 However, conventional microcapsules do not have sufficient strength and are easily damaged for some reason. Therefore, when the latent heat storage material is housed in the microcapsules and used, the melt of the latent heat storage material may leak from the microcapsules during use. Therefore, Patent Document 1 is disclosed as an example of a technique for improving the strength of microcapsules.

特許文献1は、天然微小管に封入された相変化物質のマイクロカプセル及びその調製であり、相変化物質を、切断微小管の中に封入した後、この切断微小管をポリマーで被覆した技術である。切断微小管は、直径0.1μmから1000μmの範囲内にある中空天然繊維を、長さ0.1mmから5cmの範囲内に切断した繊維断片で形成されたものである。天然繊維は、カポック繊維、トウワタ繊維、ヘチマ繊維、竹繊維、テックス竹繊維、亜麻繊維、毛、及びダウンである。相変化物質は、固液相変化物質や固固相変化物質であり、固固相変化物質は、無機塩、ポリオール、または架橋ポリマー樹脂である。 Patent Document 1 is a microcapsule of a phase-changing substance enclosed in a natural microtubule and its preparation. It is a technique in which a phase-changing substance is encapsulated in a cut microtubule and then the cut microtubule is coated with a polymer. be. The cut microtubule is formed by cutting a hollow natural fiber having a diameter in the range of 0.1 μm to 1000 μm into a fiber fragment having a length in the range of 0.1 mm to 5 cm. Natural fibers are kapok fiber, towata fiber, loofah fiber, bamboo fiber, tex bamboo fiber, flax fiber, hair, and down. The phase-changing substance is a solid-liquid phase-changing substance or a solid-solid-phase changing substance, and the solid-solid-phase changing substance is an inorganic salt, a polyol, or a crosslinked polymer resin.

特許第5180171号公報Japanese Patent No. 5180171

しかしながら、特許文献1では、マイクロカプセル化した相変化物質を調製するのに、近年、調達が困難なカポック繊維等の天然繊維が必須になるほか、複雑な製造工程が必要となる。そのため、特許文献1の技術は、マイクロカプセル化した相変化物質を実際に使用する上で、コスト高であり、実用化も困難であることから、潜熱蓄熱材をマイクロカプセルに充填した態様で使用したいという市場のニーズに対し、抜本的な解決策にならない。 However, in Patent Document 1, in order to prepare a microencapsulated phase change substance, natural fibers such as kapok fiber, which are difficult to procure in recent years, are indispensable, and a complicated manufacturing process is required. Therefore, the technique of Patent Document 1 is used in a mode in which a latent heat storage material is filled in microcapsules because the cost is high and it is difficult to put it into practical use in actually using the microencapsulated phase change substance. It is not a drastic solution to the market needs of wanting to.

本発明は、上記問題点を解決するためになされたものであり、蓄熱状態にあるときでも、使用時に潜熱蓄熱材の漏洩がなく、潜熱を蓄えてその放熱を行うことができる潜熱蓄熱材組成物を提供することを目的とする。 The present invention has been made to solve the above problems, and a latent heat storage material composition capable of storing latent heat and dissipating heat without leakage of the latent heat storage material during use even when it is in a heat storage state. The purpose is to provide things.

上記目的を達成するために、本発明に係る潜熱蓄熱材組成物は、以下の構成を有する。
(1)潜熱の出入りを利用して、蓄熱またはその放熱を行う潜熱蓄熱材と、前記潜熱蓄熱材と混練可能であると共に、可塑性を有した粘土材と、を配合してなり、前記潜熱蓄熱材は、固相間で相転移を伴う物性を有した無水物の有機化合物であること、を特徴とする。
(2)(1)に記載する潜熱蓄熱材組成物において、前記潜熱蓄熱材は、複数のメチロール基を有する有機化合物であること、を特徴とする。
(3)(2)に記載する潜熱蓄熱材組成物において、前記潜熱蓄熱材は、化学式[(CH4−nC(CHOH))](nは2≦n≦4の自然数)の有機化合物であること、を特徴とする。
(4)(3)に記載する潜熱蓄熱材組成物において、前記潜熱蓄熱材は、トリメチロールエタン[CHC(CHOH)]であること、を特徴とする。
(5)(1)乃至(4)のいずれか1つに記載する潜熱蓄熱材組成物において、前記粘土材は、シリコーンを主成分とした粘土状のシリコーン粘土材であること、を特徴とする。
In order to achieve the above object, the latent heat storage material composition according to the present invention has the following constitution.
(1) A latent heat storage material that stores heat or dissipates heat by utilizing the inflow and outflow of latent heat and a clay material that can be kneaded with the latent heat storage material and has plasticity are blended to form the latent heat storage material. The material is characterized by being an anhydrous organic compound having physical properties with a phase transition between solid phases.
(2) In the latent heat storage material composition according to (1), the latent heat storage material is an organic compound having a plurality of methylol groups.
(3) In the latent heat storage material composition described in (2), the latent heat storage material is a natural number having a chemical formula [(CH 3 ) 4-n C (CH 2 OH) n )] (n is 2 ≦ n ≦ 4. ) Is an organic compound.
(4) In the latent heat storage material composition according to (3), the latent heat storage material is trimethylolethane [CH 3 C (CH 2 OH) 3 ].
(5) In the latent heat storage material composition according to any one of (1) to (4), the clay material is a clay-like silicone clay material containing silicone as a main component. ..

上記構成を有する本発明に係る潜熱蓄熱材組成物の作用・効果について説明する。
(1),(2)潜熱の出入りを利用して、蓄熱またはその放熱を行う潜熱蓄熱材と、潜熱蓄熱材と混練可能であると共に、可塑性を有した粘土材と、を配合してなり、潜熱蓄熱材は、例えば、複数のメチロール基を有する有機化合物等、固相間で相転移を伴う物性を有した無水物の有機化合物であること、を特徴とする。
The action and effect of the latent heat storage material composition according to the present invention having the above structure will be described.
(1), (2) A latent heat storage material that stores heat or dissipates heat by utilizing the inflow and outflow of latent heat, and a clay material that can be kneaded with the latent heat storage material and has plasticity are mixed. The latent heat storage material is characterized by being an anhydrous organic compound having physical properties with a phase transition between solid phases, such as an organic compound having a plurality of methylol groups.

この特徴により、本発明に係る潜熱蓄熱材組成物は、蓄熱・放熱性能を有した潜熱蓄熱材を、粘土材により漏洩することなく保持できており、マイクロカプセル、袋、容器等の収容具への収容処理を、一切必要とせず、潜熱を必要とした潜熱供給対象物に、そのまま配して使用することができる。しかも、本発明に係る潜熱蓄熱材組成物は、潜熱供給対象物の形状に合わせて、自在に成形できる物性を有することから、潜熱供給対象物と密接した状態で被覆することが可能になる。そのため、本発明に係る潜熱蓄熱材組成物と潜熱供給対象物との間で、出入りする潜熱のロスが抑制でき、潜熱供給対象物に対する保温性や保冷性を高めることができる。 Due to this feature, the latent heat storage material composition according to the present invention can hold the latent heat storage material having heat storage and heat dissipation performance without leaking due to the clay material, and can be used as an accommodating tool such as a microcapsule, a bag, or a container. Can be used as it is by arranging it as it is on a latent heat supply object that requires latent heat, without requiring any storage treatment. Moreover, since the latent heat storage material composition according to the present invention has physical properties that can be freely molded according to the shape of the latent heat supply object, it can be coated in close contact with the latent heat supply object. Therefore, the loss of latent heat entering and exiting between the latent heat storage material composition according to the present invention and the latent heat supply target can be suppressed, and the heat retention and cold retention of the latent heat supply target can be enhanced.

従って、本発明に係る潜熱蓄熱材組成物によれば、蓄熱状態にあるときでも、使用時に潜熱蓄熱材の漏洩がなく、潜熱を蓄えてその放熱を行うことができる、という優れた効果を奏する。 Therefore, according to the latent heat storage material composition according to the present invention, even when the heat storage material is in a heat storage state, the latent heat storage material does not leak during use, and the latent heat can be stored and dissipated. ..

(3),(4)に記載する潜熱蓄熱材組成物において、潜熱蓄熱材は、例えば、トリメチロールエタン[CHC(CHOH)]等に挙げられるように、化学式[(CH4−nC(CHOH))](nは2≦n≦4の自然数)の有機化合物であること、を特徴とする。 In the latent heat storage material composition described in (3) and (4), the latent heat storage material is, for example, a chemical formula [(CH 3 ), as listed in trimethylolethane [CH 3 C (CH 2 OH) 3] and the like. ) 4-n C (CH 2 OH) n )] (n is a natural number of 2 ≦ n ≦ 4).

この特徴により、本発明に係る潜熱蓄熱材組成物は、粘土材で混練された潜熱蓄熱材の固相相転移により、蓄熱・放熱性能を有した物性を有することから、熱供給源からの熱で潜熱を蓄熱すると共に、蓄えた潜熱を、熱需要先で放熱することができる。 Due to this feature, the latent heat storage material composition according to the present invention has physical properties having heat storage and heat dissipation performance due to the solid phase transition of the latent heat storage material kneaded with the clay material, and therefore heat from the heat supply source. In addition to storing the latent heat in, the stored latent heat can be dissipated at the heat demand destination.

(5)に記載する潜熱蓄熱材組成物において、粘土材は、シリコーンを主成分とした粘土状のシリコーン粘土材であること、を特徴とする。 In the latent heat storage material composition described in (5), the clay material is a clay-like silicone clay material containing silicone as a main component.

この特徴により、粘土材は、市場で幅広く流通して入手し易く、安価である。 Due to this feature, clay materials are widely distributed in the market, easily available, and inexpensive.

実施形態に係る潜熱蓄熱材組成物の構成成分を模式的に示す図である。It is a figure which shows typically the constituent components of the latent heat storage material composition which concerns on embodiment. 実施形態に係る潜熱蓄熱材組成物に生じる固相相転移で、蓄熱可能な固体状態である第1の固相状態の様子と、放熱可能な固体状態である第2の固相状態の様子とを、それぞれ模式的に示す図である。In the solid phase transition occurring in the latent heat storage material composition according to the embodiment, the state of the first solid phase state which is a solid state capable of storing heat and the state of the second solid phase state which is a solid state capable of radiating heat. Is a diagram schematically showing each. 実施例に係る潜熱蓄熱材組成物に対し、その第1の固相状態から第2の固相状態への相転移点及び蓄熱量、並びに第2の固相状態から第1の固相状態への相転移点及び放熱量を示すグラフであり、潜熱蓄熱材を、トリメチロールエタンとした場合の実験結果を示すグラフである。For the latent heat storage material composition according to the embodiment, the phase transition point and the amount of heat stored from the first solid phase state to the second solid phase state, and the second solid phase state to the first solid phase state. It is a graph which shows the phase transition point and the amount of heat dissipation of, and is the graph which shows the experimental result when the latent heat storage material is trimethylol ethane. マイクロカプセル内に充填された潜熱蓄熱材の相変化により、液相の状態にある様子と、固体の状態にある様子とを、それぞれ模式的に示す図であり、液相時に、潜熱蓄熱材の融液がマイクロカプセルから外部に漏洩している状態を示す図である。It is a figure which shows typically the state which is in a liquid phase state and the state which is in a solid state by the phase change of the latent heat storage material filled in a microcapsule, and is the figure which shows the state of a latent heat storage material in a liquid phase, respectively. It is a figure which shows the state which the melt is leaking to the outside from a microcapsule.

以下、本発明に係る潜熱蓄熱材組成物について、実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the latent heat storage material composition according to the present invention will be described in detail with reference to the drawings.

本発明に係る潜熱蓄熱材組成物は、潜熱の出入りを利用して、蓄熱またはその放熱を行う潜熱蓄熱材と、シリコーンを主成分とした粘土状のシリコーン粘土材等の粘土材とを混練した複合材料である。潜熱蓄熱材は、固相間で相転移を伴う物性を有した無水物の有機化合物である。 In the latent heat storage material composition according to the present invention, a latent heat storage material that stores heat or dissipates heat by utilizing the inflow and outflow of latent heat and a clay material such as a clay-like silicone clay material containing silicone as a main component are kneaded. It is a composite material. The latent heat storage material is an anhydrous organic compound having physical properties with a phase transition between solid phases.

本発明に係る潜熱蓄熱材組成物は、熱供給源から供給される熱により、潜熱蓄熱材に潜熱を一時的に蓄えた後、熱需要先で、潜熱蓄熱材から放たれる潜熱の熱エネルギを、その時間差をもって活用する目的で用いられる。この潜熱蓄熱材組成物は、固相相転移を伴った潜熱の出入りを利用して、蓄えた熱を必要に応じて取り出すことができ、蓄熱とその放熱のサイクルを複数回繰り返す。 The latent heat storage material composition according to the present invention temporarily stores latent heat in the latent heat storage material by the heat supplied from the heat supply source, and then releases the latent heat energy from the latent heat storage material at the heat demand destination. Is used for the purpose of utilizing with the time difference. In this latent heat storage material composition, the stored heat can be taken out as needed by utilizing the inflow and outflow of latent heat accompanied by the solid phase transition, and the cycle of heat storage and its heat dissipation is repeated a plurality of times.

はじめに、潜熱蓄熱材組成物1について、説明する。図1は、実施形態に係る潜熱蓄熱材組成物の構成成分を模式的に示す図である。図1に示すように、本実施形態に係る潜熱蓄熱材組成物1は、潜熱蓄熱材10と粘土材20とを配合してなる。粘土材20は、土粘土等のように、可塑性を有し、練り込んだ固体状の潜熱蓄熱材10と混練可能で、立体的な形状に容易に成形することができる物質である。粘土材20は、本実施形態では、前述したように、シリコーンを主成分とした粘土状のシリコーン粘土材である。粘土材20自体は、蓄えた熱を放熱する蓄熱・放熱性能を有していない。 First, the latent heat storage material composition 1 will be described. FIG. 1 is a diagram schematically showing constituent components of the latent heat storage material composition according to the embodiment. As shown in FIG. 1, the latent heat storage material composition 1 according to the present embodiment is formed by blending the latent heat storage material 10 and the clay material 20. The clay material 20 is a substance that has plasticity, can be kneaded with the kneaded solid latent heat storage material 10, and can be easily formed into a three-dimensional shape, such as clay. In the present embodiment, the clay material 20 is a clay-like silicone clay material containing silicone as a main component, as described above. The clay material 20 itself does not have the heat storage / heat dissipation performance of radiating the stored heat.

具体的には、粘土材20は、例えば、特開平5−39420号公報に開示されているシリコーンゴム粘土組成物等のように、子供等向けの玩具や、学童等向けの教材として、一般的に広く使用されている周知の材料である。粘土材20は、ゴム粘土と同様、自由に所望の形状に成形し、その形状を保持することができると共に、成形した後も繰り返し使用することができる。また、粘土材20は、安全衛生上、人体にとって無害な物質で、異臭もなく、日光や風等に晒されても脆化しない。 Specifically, the clay material 20 is generally used as a toy for children and teaching materials for school children, such as the silicone rubber clay composition disclosed in Japanese Patent Application Laid-Open No. 5-39420. It is a well-known material widely used in clay. Like rubber clay, the clay material 20 can be freely molded into a desired shape and can retain the shape, and can be used repeatedly even after the molding. Further, the clay material 20 is a substance that is harmless to the human body in terms of safety and hygiene, has no offensive odor, and does not become brittle even when exposed to sunlight, wind, or the like.

潜熱蓄熱材10は、固相間で相転移を伴う物性を有した無水物であり、本実施形態では、複数のメチロール基を有する有機化合物である。具体的には、潜熱蓄熱材10は、化学式[(CH4−nC(CHOH))](nは2≦n≦4の自然数)の有機化合物のうち、メチロール基を3つ(n=3)有するトリメチロールエタン[CHC(CHOH)]である。 The latent heat storage material 10 is an anhydride having physical properties accompanied by a phase transition between solid phases, and in the present embodiment, it is an organic compound having a plurality of methylol groups. Specifically, the latent heat storage material 10 contains 3 methylol groups among the organic compounds having the chemical formula [(CH 3 ) 4-n C (CH 2 OH) n )] (n is a natural number of 2 ≦ n ≦ 4). Trimethylolethane [CH 3 C (CH 2 OH) 3 ] having one (n = 3).

トリメチロールエタンは、多価アルコールの一種で、食品添加物等としても使用されている程、人体にとっても安全な物質である。トリメチロールエタン単体は、分子量[g/mol]120.15、凝固点199〜201℃、凝固点より低い温度では、白色の結晶をなす固体で、固相相転移を行うものの、安定した組成を呈し、水に可溶な物性を有する。 Trimethylolethane is a kind of polyhydric alcohol and is a substance that is safe for the human body as it is also used as a food additive. Trimethylolethane alone is a solid that forms white crystals at a molecular weight [g / mol] of 120.15, a freezing point of 199 to 201 ° C., and a temperature lower than the freezing point, and exhibits a stable composition although undergoing a solid phase transition. Has physical properties that are soluble in water.

なお、本実施形態では、潜熱蓄熱材10を、トリメチロールエタンとした。しかしながら、潜熱蓄熱材は、トリメチロールエタン以外にも、例えば、前述した化学式[(CH4−nC(CHOH))]において、n=2の場合であるネオペンチルグリコール[(CHC(CHOH)]、n=4の場合であるペンタエリスリトール[C(CHOH)]等である。また、潜熱蓄熱材は、複数のメチロール基を有した有機化合物に対し、メチロール基[CHOH]内にあるメチル基[CH]の水素原子を、例えば、F等に置換した誘導体で構成され、固相間で相転移を伴う物性を有した無水物の材料であっても良い。 In this embodiment, the latent heat storage material 10 is trimethylolethane. However, in addition to trimethylolethane, the latent heat storage material can be, for example, neopentyl glycol [(CH 3 ) 4-n C (CH 2 OH) n )] in the case of n = 2 in the above-mentioned chemical formula [(CH 3) 4-n C (CH 2 OH) n)]. CH 3 ) 2 C (CH 2 OH) 2 ], pentaerythritol [C (CH 2 OH) 4 ] in the case of n = 4, and the like. Further, the latent heat storage material is composed of an organic compound having a plurality of methylol groups and a derivative in which the hydrogen atom of the methyl group [CH 3 ] in the methylol group [CH 2 OH] is replaced with, for example, F or the like. It may be an anhydride material having physical properties accompanied by a phase transition between solid phases.

潜熱蓄熱材組成物1全体の重量に占める潜熱蓄熱材10(トリメチロールエタン)の含有割合は、特に限定されるものではなく、潜熱蓄熱材10の含有割合が大きくなればなる程、潜熱蓄熱材組成物1全体の蓄熱・放熱性能は向上する。但し、潜熱蓄熱材10の含有割合が、一例として80wt%を大きく上回る程、潜熱蓄熱材10が、粘土材20と相対的に多過ぎる含有割合になっていると、潜熱蓄熱材組成物1内では、粘土材20の含有量は、相対的に少ない。そのため、潜熱蓄熱材10が、粘土材20と十分に混練した状態にならない。 The content ratio of the latent heat storage material 10 (trimethylolethane) in the total weight of the latent heat storage material composition 1 is not particularly limited, and the larger the content ratio of the latent heat storage material 10 is, the more the latent heat storage material 10 is contained. The heat storage / heat dissipation performance of the entire composition 1 is improved. However, if the content ratio of the latent heat storage material 10 is much higher than 80 wt% as an example, and the content ratio of the latent heat storage material 10 is too large with that of the clay material 20, the latent heat storage material composition 1 contains. Then, the content of the clay material 20 is relatively small. Therefore, the latent heat storage material 10 is not sufficiently kneaded with the clay material 20.

その結果、潜熱蓄熱材組成物1を、所望の形状に成形することができない虞がある。あるいは、たとえ潜熱蓄熱材組成物1を、所望の形状に成形できたとしても、成形された形状を保持することができない虞もある。従って、潜熱蓄熱材組成物1全体の重量に占める潜熱蓄熱材10の含有割合の上限は、一例として80wt%程度に抑えることが好ましい。 As a result, the latent heat storage material composition 1 may not be formed into a desired shape. Alternatively, even if the latent heat storage material composition 1 can be molded into a desired shape, there is a possibility that the molded shape cannot be maintained. Therefore, the upper limit of the content ratio of the latent heat storage material 10 in the total weight of the latent heat storage material composition 1 is preferably suppressed to about 80 wt% as an example.

次に、潜熱蓄熱材組成物1の有意性を検証する目的で、潜熱蓄熱材組成物1において、蓄熱の挙動とその放熱の挙動を確認するための検証実験を行った。実験は、実施例に係る潜熱蓄熱材組成物1を用いた試料で行った実験である。 Next, for the purpose of verifying the significance of the latent heat storage material composition 1, a verification experiment was conducted to confirm the behavior of heat storage and the behavior of heat dissipation in the latent heat storage material composition 1. The experiment is an experiment performed on a sample using the latent heat storage material composition 1 according to the example.

(実施例)
実施例に係る潜熱蓄熱材組成物1は、主成分であるトリメチロールエタン無水物(潜熱蓄熱材10)を1.6gと、シリコーン粘土材である粘土材20を0.8gとを混練してなる。潜熱蓄熱材組成物1全体の重量に占める潜熱蓄熱材10の含有割合は、33wt%である。
(Example)
In the latent heat storage material composition 1 according to the embodiment, 1.6 g of trimethylolethane anhydride (latent heat storage material 10) as a main component and 0.8 g of clay material 20 as a silicone clay material are kneaded. Become. The content ratio of the latent heat storage material 10 in the total weight of the latent heat storage material composition 1 is 33 wt%.

<実験方法>
検証実験では、潜熱蓄熱材組成物から試料約10mgを採取し、アルミ容器に充填して蓋を密閉した上で、周知の示差走査熱量測定装置(DSC:Differential scanning calorimetry)の測定室にこのアルミ容器を静置し、50ml/min.の窒素フローを行った条件下で、試料の蓄熱量と試料からの放熱量を測定した。具体的には、試料を、30℃から95℃になるまで、2℃/min.の昇温速度で加熱した。次いで、試料が95℃に到達した時点から20分間、試料を95℃に保温し続けた。この間に、試料に蓄熱された潜熱の熱量を測定して、試料の蓄熱量を求めた。
<Experimental method>
In the verification experiment, about 10 mg of a sample was taken from the latent heat storage material composition, filled in an aluminum container, the lid was sealed, and this aluminum was placed in the measurement room of a well-known differential scanning calorimetry (DSC). The container was allowed to stand, and 50 ml / min. The amount of heat stored in the sample and the amount of heat dissipated from the sample were measured under the condition of nitrogen flow. Specifically, the sample was prepared at 2 ° C./min from 30 ° C. to 95 ° C. It was heated at the heating rate of. Then, the sample was kept warm at 95 ° C. for 20 minutes from the time when the sample reached 95 ° C. During this period, the amount of latent heat stored in the sample was measured to determine the amount of heat stored in the sample.

そして、試料の保温開始から20分後、95℃に保温されていた試料を、30℃になるまで、2℃/min.の降温速度で冷却した。次いで、試料が30℃に到達した時点から40分間、試料を30℃に保温し続けた。30℃になるまで試料を冷却している間に、試料から放熱された潜熱の熱量を測定して、試料の放熱量を求めた。 Then, 20 minutes after the start of heat retention of the sample, the sample kept warm at 95 ° C. was cooled to 2 ° C./min. It was cooled at the rate of temperature decrease. Then, the sample was kept warm at 30 ° C. for 40 minutes from the time when the sample reached 30 ° C. While the sample was cooled to 30 ° C., the amount of latent heat radiated from the sample was measured to determine the amount of heat radiated from the sample.

<実験結果>
図2は、実施形態に係る潜熱蓄熱材組成物に生じる固相相転移で、蓄熱可能な固体状態である第1の固相状態の様子と、放熱可能な固体状態である第2の固相状態の様子とを、それぞれ模式的に示す図である。図3は、実施例に係る潜熱蓄熱材組成物に対し、その第1の固相状態から第2の固相状態への相転移点及び蓄熱量、並びに第2の固相状態から第1の固相状態への相転移点及び放熱量を示すグラフであり、潜熱蓄熱材を、トリメチロールエタンとした場合の実験結果を示すグラフである。
<Experimental results>
FIG. 2 shows a solid phase transition occurring in the latent heat storage material composition according to the embodiment, in which a first solid phase state is a solid state capable of storing heat and a second solid phase state is a solid state capable of radiating heat. It is a figure which shows the state of each state typically. FIG. 3 shows the phase transition point and the amount of heat stored in the latent heat storage material composition according to the example from the first solid phase state to the second solid phase state, and the first from the second solid phase state. It is a graph which shows the phase transition point to a solid phase state and the amount of heat dissipation, and is the graph which shows the experimental result when the latent heat storage material is trimethylol ethane.

図3に示すグラフでは、縦軸左側の目盛りが、試料の温度を示す。縦軸右側の目盛りが、単位時間に試料で蓄熱または放熱した熱量を示しており、この目盛りの「負」の領域は、試料に吸熱される熱量を示し、「正」の領域は、試料から放熱される熱量を示す。また、時間経過と共に推移する熱量の線図の中で、「負」の領域において、熱量の絶対値が一時的に大きくなり、最大値(ピークトップ)に達した時刻tに対応する試料の温度T(第1の固相状態から第2の固相状態への相転移点と定義)となったとき、単位時間あたりの吸熱量が最大になる。図2に示すように、潜熱蓄熱材10において、第1の固相状態10Aから第2の固相状態10Bへの相変化で、相転移による試料の潜熱は、熱量の線図の中で、吸熱量のピークの開始時間と終了時間との間で、熱量を積算して得られるピーク面積S(図3の図中、斜線の部分)の大きさで示されている。 In the graph shown in FIG. 3, the scale on the left side of the vertical axis indicates the temperature of the sample. The scale on the right side of the vertical axis shows the amount of heat stored or dissipated in the sample in a unit time, the "negative" region of this scale indicates the amount of heat absorbed by the sample, and the "positive" region is from the sample. Indicates the amount of heat dissipated. Further, in the diagram of the amount of heat that changes with the passage of time, in the "negative" region, the absolute value of the amount of heat temporarily increases, and the temperature of the sample corresponding to the time t when the maximum value (peak top) is reached. When T (defined as the phase transition point from the first solid phase state to the second solid phase state), the amount of heat absorbed per unit time becomes maximum. As shown in FIG. 2, in the latent heat storage material 10, the latent heat of the sample due to the phase transition due to the phase change from the first solid phase state 10A to the second solid phase state 10B is shown in the heat quantity diagram. It is indicated by the size of the peak area S (hatched portion in the figure of FIG. 3) obtained by integrating the heat amount between the start time and the end time of the peak of the heat absorption amount.

その反対に、時間経過と共に推移する熱量の線図の中で、「正」の領域において、熱量の絶対値が一時的に大きくなり、最大値(ピークトップ)に達した時刻tに対応する試料の温度T(第2の固相状態から第1の固相状態への相転移点と定義)となったとき、単位時間あたりの放熱量が最大になる。図2に示すように、潜熱蓄熱材10において、第2の固相状態10Bから第1の固相状態10Aの相変化で、相転移による試料の潜熱は、熱量の線図の中で、放熱量のピークの開始時間と終了時間との間で、熱量を積算して得られるピーク面積S(図3の図中、斜線の部分)の大きさで示されている。なお、試料の熱量の単位は〔mW〕で、試料の質量の単位は〔mg〕であるが、図3に示すグラフでは、予め単位換算を行った上で、蓄熱量の単位は、〔kJ/kg〕としている。 On the contrary, in the diagram of the amount of heat that changes with the passage of time, in the "positive" region, the absolute value of the amount of heat temporarily increases, and the sample corresponding to the time t when the maximum value (peak top) is reached. When the temperature T (defined as the phase transition point from the second solid phase state to the first solid phase state) is reached, the amount of heat released per unit time becomes maximum. As shown in FIG. 2, in the latent heat storage material 10, the latent heat of the sample due to the phase transition is released in the diagram of the amount of heat due to the phase change from the second solid phase state 10B to the first solid phase state 10A. It is indicated by the size of the peak area S (hatched portion in the figure of FIG. 3) obtained by integrating the calorific value between the start time and the end time of the calorific value peak. The unit of the calorific value of the sample is [mW], and the unit of the mass of the sample is [mg]. However, in the graph shown in FIG. 3, the unit of the heat storage amount is [kJ] after the unit conversion is performed in advance. / Kg].

次に、検証実験の結果について、説明する。実施例に係る潜熱蓄熱材組成物1では、図3に示すように、吸熱量ピークの時刻t1に対応する温度Taは85℃で、蓄熱量Saは41kJ/kgであった。また、放熱量ピークの時刻t2に対応する温度Tbは66℃で、放熱量Sbは38kJ/kgであった。放熱の挙動は確認できた。潜熱蓄熱材組成物1では、温度Taの状態と温度Tbの状態は、いずれも固相である。 Next, the results of the verification experiment will be described. In the latent heat storage material composition 1 according to the example, as shown in FIG. 3, the temperature Ta corresponding to the time t1 of the heat absorption peak was 85 ° C., and the heat storage Sa was 41 kJ / kg. Further, the temperature Tb corresponding to the time t2 of the heat radiation amount peak was 66 ° C., and the heat radiation amount Sb was 38 kJ / kg. The behavior of heat dissipation was confirmed. In the latent heat storage material composition 1, the state of the temperature Ta and the state of the temperature Tb are both solid phases.

<考察>
潜熱蓄熱材組成物1は、昇温過程において、温度Ta85℃で吸熱量ピークを示し、熱量41kJ/kgの潜熱を蓄える一方で、降温過程において、温度Tb66℃で放熱量ピークを示し、熱量38kJ/kgの潜熱を放った。その理由として、粘土材20自体は、そもそも熱を蓄え、蓄熱した熱を放熱するという蓄熱・放熱性能を有していないものの、潜熱蓄熱材10は、固相間で相転移を伴う物性を有する。そのため、潜熱蓄熱材組成物1が、昇温過程において、温度Ta85℃にある状態では、潜熱蓄熱材10は、図2に示すように、蓄熱可能な第1の固相状態10Aから、放熱可能な第2の固相状態10Bに相転移を行っているためと推察される。
<Discussion>
The latent heat storage material composition 1 shows a heat absorption peak at a temperature of Ta85 ° C. and stores latent heat of 41 kJ / kg in the temperature raising process, while it shows a heat dissipation peak at a temperature of Tb66 ° C. in the temperature lowering process and has a heat quantity of 38 kJ. It gave off latent heat of / kg. The reason is that the clay material 20 itself does not have the heat storage / heat dissipation performance of storing heat and radiating the stored heat, but the latent heat storage material 10 has physical properties accompanied by a phase transition between solid phases. .. Therefore, when the latent heat storage material composition 1 is at a temperature Ta85 ° C. in the temperature raising process, the latent heat storage material 10 can dissipate heat from the first solid phase state 10A capable of storing heat, as shown in FIG. It is presumed that the phase transition is performed in the second solid phase state 10B.

その反対に、潜熱蓄熱材組成物1が、降温過程において、温度Tb66℃にある状態では、潜熱蓄熱材10は、図2に示すように、放熱可能な第2の固相状態10Bから、蓄熱可能な第1の固相状態10Aに相転移を行っているためと推察される。従って、潜熱蓄熱材組成物1は、潜熱蓄熱材10を粘土材20で混練されていても、潜熱蓄熱材組成物1が、潜熱蓄熱材10による蓄熱・放熱性能を保持した物性に構成できているためと考えられる。 On the contrary, when the latent heat storage material composition 1 is at a temperature Tb66 ° C. in the temperature lowering process, the latent heat storage material 10 stores heat from the second solid phase state 10B capable of radiating heat as shown in FIG. It is presumed that this is because the phase transition is performed in the first possible solid phase state 10A. Therefore, the latent heat storage material composition 1 can be configured to have physical properties that maintain the heat storage and heat dissipation performance of the latent heat storage material 10 even if the latent heat storage material 10 is kneaded with the clay material 20. It is thought that it is because of it.

次に、本実施形態の潜熱蓄熱材組成物1の作用・効果について説明する。本実施形態の潜熱蓄熱材組成物1は、潜熱の出入りを利用して、蓄熱またはその放熱を行う潜熱蓄熱材10と、潜熱蓄熱材10と混練可能であると共に、可塑性を有した粘土材20と、を配合してなり、潜熱蓄熱材10は、固相間で相転移を伴う物性を有した無水物の有機化合物であること、を特徴とする。 Next, the action / effect of the latent heat storage material composition 1 of the present embodiment will be described. The latent heat storage material composition 1 of the present embodiment is a clay material 20 that can be kneaded with the latent heat storage material 10 that stores heat or dissipates heat by utilizing the inflow and outflow of latent heat, and the latent heat storage material 10. The latent heat storage material 10 is an anhydrous organic compound having physical properties accompanied by a phase transition between solid phases.

また、本実施形態の潜熱蓄熱材組成物1では、潜熱蓄熱材10は、化学式[(CH4−nC(CHOH))](nは2≦n≦4の自然数)の有機化合物のうち、3つのメチロール基を有した無水物のトリメチロールエタン[CHC(CHOH)]であること、を特徴とする。 Further, in the latent heat storage material composition 1 of the present embodiment, the latent heat storage material 10 has a chemical formula [(CH 3 ) 4-n C (CH 2 OH) n )] (n is a natural number of 2 ≦ n ≦ 4). Among the organic compounds, it is an anhydride trimethylolethane [CH 3 C (CH 2 OH) 3 ] having three methylol groups.

この特徴により、潜熱蓄熱材組成物1は、蓄熱・放熱性能を有した潜熱蓄熱材10を、粘土材20により漏洩することなく保持できており、マイクロカプセル、袋、容器等の収容具への収容処理を、一切必要とせず、潜熱を必要とした潜熱供給対象物に、そのまま配して使用することができる。しかも、潜熱蓄熱材組成物1は、潜熱供給対象物の形状に合わせて、自在に成形できる物性を有することから、潜熱供給対象物と密接した状態で被覆することが可能になる。そのため、潜熱蓄熱材組成物1と潜熱供給対象物との間で、出入りする潜熱のロスが抑制でき、潜熱供給対象物に対する保温性や保冷性を高めることができる。 Due to this feature, the latent heat storage material composition 1 can hold the latent heat storage material 10 having heat storage and heat dissipation performance without leaking due to the clay material 20, and can be used for accommodating tools such as microcapsules, bags, and containers. It does not require any containment treatment and can be used as it is by arranging it on a latent heat supply object that requires latent heat. Moreover, since the latent heat storage material composition 1 has physical properties that can be freely molded according to the shape of the latent heat supply object, it is possible to cover the latent heat storage material composition 1 in close contact with the latent heat supply object. Therefore, the loss of latent heat entering and exiting between the latent heat storage material composition 1 and the latent heat supply target can be suppressed, and the heat retention and cold retention of the latent heat supply target can be enhanced.

従って、本実施形態に係る潜熱蓄熱材組成物1によれば、蓄熱状態にあるときでも、使用時に潜熱蓄熱材10の漏洩がなく、潜熱を蓄えてその放熱を行うことができる、という優れた効果を奏する。 Therefore, according to the latent heat storage material composition 1 according to the present embodiment, the latent heat storage material 10 does not leak during use even when it is in the heat storage state, and the latent heat can be stored and dissipated. It works.

ところで、市場には、潜熱供給対象物に、潜熱蓄熱材をマイクロカプセルに充填した態様で、潜熱蓄熱材を使用したいというニーズがある。その一例として、建物における壁や床、天井等を覆う建材や、屋外の壁と室内の壁との間等に設置される断熱材等のように、建築用資材と共に、室内の温度調節を行う目的で、潜熱蓄熱材の使用が期待されている。このようなニーズでは、潜熱蓄熱材は、マイクロカプセル内に充填される。 By the way, there is a need in the market to use a latent heat storage material in a form in which a latent heat storage material is filled in microcapsules as a latent heat supply target. As an example, indoor temperature control is performed together with building materials such as building materials that cover walls, floors, ceilings, etc. in buildings, and heat insulating materials that are installed between outdoor walls and indoor walls. The use of latent heat storage material is expected for the purpose. For such needs, the latent heat storage material is filled in microcapsules.

しかしながら、背景技術で前述したように、マイクロカプセルは、十分な耐強度を有しておらず、建築用資材と共に使用するような場合等でも、マイクロカプセルに作用する荷重、応力、衝撃、熱等に起因した何らかの理由で、損傷し易い欠点を持つ。加えて、マイクロカプセルに充填する潜熱蓄熱材は、液相と固相との間で相変化に伴う蓄熱材であり、図4に示すような潜熱蓄熱材110が使用される。 However, as described above in the background technology, the microcapsules do not have sufficient strength, and even when used together with building materials, the load, stress, impact, heat, etc. acting on the microcapsules, etc. It has the drawback of being easily damaged for some reason. In addition, the latent heat storage material to be filled in the microcapsules is a heat storage material that accompanies a phase change between the liquid phase and the solid phase, and the latent heat storage material 110 as shown in FIG. 4 is used.

図4は、マイクロカプセル内に充填された潜熱蓄熱材の相変化により、液相の状態にある様子と、固体の状態にある様子とを、それぞれ模式的に示す図であり、液相時に、潜熱蓄熱材の融液がマイクロカプセルから外部に漏洩している状態を示す図である。すなわち、図4に示すように、潜熱蓄熱材110や、潜熱蓄熱材110に添加剤を加えた潜熱蓄熱材組成物101が、マイクロカプセル内に充填される。潜熱蓄熱材110は、液相と固相との間で相変化に伴う蓄熱材である。潜熱蓄熱材110は、凝固点では、液相状態110Aから固相状態110Bへと相変化して潜熱を放熱する。 FIG. 4 is a diagram schematically showing a state of being in a liquid phase and a state of being in a solid state due to a phase change of the latent heat storage material filled in the microcapsules. It is a figure which shows the state which the melt of the latent heat storage material leaks to the outside from a microcapsule. That is, as shown in FIG. 4, the latent heat storage material 110 and the latent heat storage material composition 101 in which an additive is added to the latent heat storage material 110 are filled in the microcapsules. The latent heat storage material 110 is a heat storage material that accompanies a phase change between the liquid phase and the solid phase. At the freezing point, the latent heat storage material 110 undergoes a phase change from the liquid phase state 110A to the solid phase state 110B to dissipate the latent heat.

一方、潜熱蓄熱材110は、融点になると、固相状態110Bから液相状態110Aへと相変化して潜熱を蓄熱する。このとき、潜熱蓄熱材110は、融液となっているため、充填されていた潜熱蓄熱材110が、マイクロカプセル130の破損に起因して、マイクロカプセル130から漏洩してしまう虞がある。漏洩した潜熱蓄熱材110Xは、蓄熱・放熱性能を失うばかりか、潜熱蓄熱材110を充填したマイクロカプセル130の設置箇所に、多大な悪影響を及ぼしてしまい、問題となる。 On the other hand, when the latent heat storage material 110 reaches the melting point, the latent heat is stored by changing the phase from the solid phase state 110B to the liquid phase state 110A. At this time, since the latent heat storage material 110 is a melt, the filled latent heat storage material 110 may leak from the microcapsules 130 due to damage to the microcapsules 130. The leaked latent heat storage material 110X not only loses the heat storage / heat dissipation performance, but also has a great adverse effect on the installation location of the microcapsules 130 filled with the latent heat storage material 110, which causes a problem.

これに対し、潜熱蓄熱材組成物1は、マイクロカプセル、袋、容器等の収容具を必要とせず、粘土材20により、潜熱蓄熱材10を漏洩することなく保持できている。そのため、潜熱蓄熱材組成物1は、このような収容具に収容しない分、それに掛かるコストを削減でき、低コストである。また、潜熱蓄熱材組成物1は、潜熱蓄熱材10をカプセル化して保持していないため、潜熱蓄熱材をマイクロカプセルに充填した態様で、潜熱蓄熱材による潜熱を潜熱供給対象物に使用したいというニーズに対し、広く汎用性を持って対応することができるようになる。 On the other hand, the latent heat storage material composition 1 does not require an accommodating tool such as a microcapsule, a bag, or a container, and the clay material 20 can hold the latent heat storage material 10 without leaking. Therefore, the latent heat storage material composition 1 is not housed in such an accommodating tool, so that the cost required for the latent heat storage material composition 1 can be reduced and the cost is low. Further, since the latent heat storage material composition 1 does not encapsulate and hold the latent heat storage material 10, it is desired to use the latent heat of the latent heat storage material for the latent heat supply target in the form of filling the latent heat storage material in microcapsules. It will be possible to respond to needs with a wide range of versatility.

特に、その一例として、潜熱蓄熱材組成物1は、前述した建築用資材と共に、室内の温度調節を行う用途で使用することができるほか、熱交換器で、熱の授受を行う管・管部材等を被覆することや、熱膨張を抑える目的で二次電池を被覆することができる。また、潜熱蓄熱材組成物1は、自在に成形できる物性を有することで、飲食物の入った容器等の形状に合わせて、フレキシブルに潜熱蓄熱材組成物1を成形して装着することができるため、容器等内の飲食物を、より長い時間、人にとって飲み頃の温度や食べ頃の温度となる適温で、保持し続けることができる。 In particular, as an example thereof, the latent heat storage material composition 1 can be used together with the above-mentioned building materials for the purpose of controlling the temperature in a room, and is a pipe / tube member that transfers heat with a heat exchanger. Etc., and the secondary battery can be coated for the purpose of suppressing thermal expansion. Further, since the latent heat storage material composition 1 has physical properties that can be freely molded, the latent heat storage material composition 1 can be flexibly molded and mounted according to the shape of a container or the like containing food or drink. Therefore, the food and drink in the container or the like can be kept for a longer period of time at an appropriate temperature that is the temperature at which a person can drink or eat.

また、本実施形態に係る潜熱蓄熱材組成物1では、粘土材20は、シリコーンを主成分とした粘土状のシリコーン粘土材であること、を特徴とする。 Further, in the latent heat storage material composition 1 according to the present embodiment, the clay material 20 is a clay-like silicone clay material containing silicone as a main component.

この特徴により、粘土材20は、安全衛生上、人体にとって無害な物質で、異臭もなく、日光や風等に晒されても脆化しない。また、粘土材20は、市場で幅広く流通して入手し易く、安価である。 Due to this feature, the clay material 20 is a substance that is harmless to the human body in terms of safety and hygiene, has no offensive odor, and does not become brittle even when exposed to sunlight, wind, or the like. Further, the clay material 20 is widely distributed in the market, easily available, and inexpensive.

以上において、本発明を実施形態の実施例に即して説明したが、本発明は上記実施形態の実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できる。 In the above, the present invention has been described in accordance with the embodiments of the embodiments, but the present invention is not limited to the embodiments of the above embodiments, and can be appropriately modified and applied without departing from the gist thereof. ..

(1)例えば、実施形態では、潜熱蓄熱材10単体を粘土材20で混練した潜熱蓄熱材組成物1を挙げたが、潜熱蓄熱材組成物は、潜熱蓄熱材以外に、必要に応じて、例えば、結着剤、増粘剤、着色剤等の添加剤を加えた構成であっても良い。 (1) For example, in the embodiment, the latent heat storage material composition 1 in which the latent heat storage material 10 alone is kneaded with the clay material 20 is mentioned, but the latent heat storage material composition may be used in addition to the latent heat storage material, if necessary. For example, it may be configured by adding additives such as a binder, a thickener, and a colorant.

(2)また、実施形態では、トリメチロールエタンとした潜熱蓄熱材10と、シリコーン粘土材とした粘土材20とを混練した潜熱蓄熱材組成物1を挙げた。しかしながら、潜熱蓄熱材は、トリメチロールエタンに限定することなく、固相間で相転移を伴う物性を有した無水物の有機化合物であれば、種々変更可能である。また、粘土材は、シリコーン粘土材に限定することなく、潜熱蓄熱材と混練可能であると共に、可塑性を有した粘土であれば、例えば、土粘土、砂粘土、油粘土、紙粘土等のように、種々変更可能である。 (2) Further, in the embodiment, the latent heat storage material composition 1 in which the latent heat storage material 10 made of trimethylolethane and the clay material 20 made of a silicone clay material are kneaded is mentioned. However, the latent heat storage material is not limited to trimethylolethane, and can be variously changed as long as it is an anhydrous organic compound having physical properties accompanied by a phase transition between solid phases. Further, the clay material is not limited to the silicone clay material, and can be kneaded with the latent heat storage material, and if it is a clay having plasticity, for example, earth clay, sand clay, oil clay, paper clay and the like. In addition, various changes can be made.

(3)また、実施形態の実施例では、主成分であるトリメチロールエタン無水物(潜熱蓄熱材10)を1.6gと、シリコーン粘土材である粘土材20を0.8gとを混練し、潜熱蓄熱材組成物1全体の重量に占める潜熱蓄熱材10の含有割合を、33wt%とした。しかしながら、潜熱蓄熱材と粘土材を含む潜熱蓄熱材組成物全体の重量に占める潜熱蓄熱材の含有割合は、一例とした33wt%に限定されるものではなく、適宜変更可能である。 (3) Further, in the embodiment of the embodiment, 1.6 g of trimethylolethane anhydride (latent heat storage material 10) as the main component and 0.8 g of clay material 20 as a silicone clay material are kneaded. The content ratio of the latent heat storage material 10 in the total weight of the latent heat storage material composition 1 was set to 33 wt%. However, the content ratio of the latent heat storage material to the total weight of the latent heat storage material composition including the latent heat storage material and the clay material is not limited to 33 wt% as an example, and can be changed as appropriate.

1 潜熱蓄熱材組成物
10 潜熱蓄熱材
20 粘土材
1 Latent heat storage material composition 10 Latent heat storage material 20 Clay material

Claims (5)

潜熱の出入りを利用して、蓄熱またはその放熱を行う潜熱蓄熱材と、前記潜熱蓄熱材と混練可能であると共に、可塑性を有した粘土材と、を配合してなり、
前記潜熱蓄熱材は、固相間で相転移を伴う物性を有した無水物の有機化合物であること、
を特徴とする潜熱蓄熱材組成物。
A latent heat storage material that stores heat or dissipates heat by utilizing the inflow and outflow of latent heat and a clay material that can be kneaded with the latent heat storage material and has plasticity are blended.
The latent heat storage material is an anhydrous organic compound having physical properties with a phase transition between solid phases.
A latent heat storage material composition characterized by.
請求項1に記載する潜熱蓄熱材組成物において、
前記潜熱蓄熱材は、複数のメチロール基を有する有機化合物であること、
を特徴とする潜熱蓄熱材組成物。
In the latent heat storage material composition according to claim 1,
The latent heat storage material is an organic compound having a plurality of methylol groups.
A latent heat storage material composition characterized by.
請求項2に記載する潜熱蓄熱材組成物において、
前記潜熱蓄熱材は、化学式[(CH4−nC(CHOH))](nは2≦n≦4の自然数)の有機化合物であること、
を特徴とする潜熱蓄熱材組成物。
In the latent heat storage material composition according to claim 2.
The latent heat storage material is an organic compound having a chemical formula [(CH 3 ) 4-n C (CH 2 OH) n )] (n is a natural number of 2 ≦ n ≦ 4).
A latent heat storage material composition characterized by.
請求項3に記載する潜熱蓄熱材組成物において、
前記潜熱蓄熱材は、トリメチロールエタン[CHC(CHOH)]であること、
を特徴とする潜熱蓄熱材組成物。
In the latent heat storage material composition according to claim 3,
The latent heat storage material is trimethylolethane [CH 3 C (CH 2 OH) 3 ].
A latent heat storage material composition characterized by.
請求項1乃至請求項4のいずれか1つに記載する潜熱蓄熱材組成物において、
前記粘土材は、シリコーンを主成分とした粘土状のシリコーン粘土材であること、
を特徴とする潜熱蓄熱材組成物。

In the latent heat storage material composition according to any one of claims 1 to 4.
The clay material is a clay-like silicone clay material containing silicone as a main component.
A latent heat storage material composition characterized by.

JP2020054150A 2020-03-25 2020-03-25 Latent heat storage material composition Active JP6936352B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020054150A JP6936352B1 (en) 2020-03-25 2020-03-25 Latent heat storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020054150A JP6936352B1 (en) 2020-03-25 2020-03-25 Latent heat storage material composition

Publications (2)

Publication Number Publication Date
JP6936352B1 JP6936352B1 (en) 2021-09-15
JP2021155480A true JP2021155480A (en) 2021-10-07

Family

ID=77657931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020054150A Active JP6936352B1 (en) 2020-03-25 2020-03-25 Latent heat storage material composition

Country Status (1)

Country Link
JP (1) JP6936352B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986894A (en) * 1982-11-10 1984-05-19 Agency Of Ind Science & Technol Regenerating method and regenerator
JPS61163984A (en) * 1985-01-04 1986-07-24 アメリカ合衆国 Composite material for storing energy and its production
JPS6245680A (en) * 1985-08-23 1987-02-27 Matsushita Electric Works Ltd Heat storing capsule, process for preparing the same and heat storing building material
JPH0539420A (en) * 1991-08-07 1993-02-19 Shin Etsu Chem Co Ltd Silicone rubber clay composition
JP2011208121A (en) * 2009-12-02 2011-10-20 Bekku Kk Heat storage body and method for producing the same
JP2014208728A (en) * 2013-04-16 2014-11-06 富士高分子工業株式会社 Heat storable silicone material and method for producing the same
WO2017073010A1 (en) * 2015-10-27 2017-05-04 ソニー株式会社 Electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986894A (en) * 1982-11-10 1984-05-19 Agency Of Ind Science & Technol Regenerating method and regenerator
JPS61163984A (en) * 1985-01-04 1986-07-24 アメリカ合衆国 Composite material for storing energy and its production
JPS6245680A (en) * 1985-08-23 1987-02-27 Matsushita Electric Works Ltd Heat storing capsule, process for preparing the same and heat storing building material
JPH0539420A (en) * 1991-08-07 1993-02-19 Shin Etsu Chem Co Ltd Silicone rubber clay composition
JP2011208121A (en) * 2009-12-02 2011-10-20 Bekku Kk Heat storage body and method for producing the same
JP2014208728A (en) * 2013-04-16 2014-11-06 富士高分子工業株式会社 Heat storable silicone material and method for producing the same
WO2017073010A1 (en) * 2015-10-27 2017-05-04 ソニー株式会社 Electronic apparatus

Also Published As

Publication number Publication date
JP6936352B1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
US5755216A (en) Building products incorporating phase change materials and method of making same
US4237023A (en) Aqueous heat-storage compositions containing fumed silicon dioxide and having prolonged heat-storage efficiencies
Socaciu Thermal energy storage with phase change material
RU2415899C2 (en) Polymer composition containing heat-accumulating phase change material, process for preparing said composition and product containing said composition
US3720198A (en) Heat storage elements, a method for producing them and devices comprising heat storage elements
JP2581708B2 (en) Thermal energy storage composition
Lingayat et al. Review on phase change material as thermal energy storage medium: materials, application
RU2007142278A (en) METHOD FOR INCREASING HEAT AND ACCUMULATING ABILITY OF BUILDING ELEMENTS FROM CALCIUM SILICATE, AND ALSO BUILDING ELEMENT FROM CALCIUM SILICATE
Pongsopha et al. Use of burnt clay aggregate as phase change material carrier to improve thermal properties of concrete panel
Salyer et al. A review of phase change materials research for thermal energy storage in heating and cooling applications at the University of Dayton from 1982 to 1996
WO2013123428A9 (en) Compositions comprising phase change material and concrete and uses thereof
Moulahi et al. Thermal performance of latent heat storage: Phase change material melting in horizontal tube applied to lightweight building envelopes
JP6936352B1 (en) Latent heat storage material composition
JPS5947287A (en) Magnesium nitrate-magnesium chloride hydration reversible phase changing composition
CN108822804A (en) A kind of phase-changing energy storage material and preparation method thereof encapsulated with porous material
Bebin et al. Octadecane filled bubble wrap as phase change material layers to smooth temperature variations of buildings during summer time. An experimental study
Chen et al. A novel energy saving wood product with phase change materials
Li et al. Potential Applications of Phase-change Materials (PCM) in Building Energy Efficiency.
ES2343300B1 (en) COMPOSITION AND PROCEDURE OF APPLICATION OF PHASE CHANGE MATERIALS (PCM) TO THE NATURAL STONE.
CA1127383A (en) Aqueous heat-storage compositions having prolonged heat-storage efficiencies and method of preparing same
ES2377006T3 (en) Phase change temperature control material and process for manufacturing a phase change temperature control material
Eid et al. Phase Change Materials Technologies Review and Future Application in Lebanon: Part 1
JP6909172B2 (en) Heating equipment and manufacturing method of heating equipment
Lee Latent and sensible heat storage in concrete blocks
Topličić-Ćurčić et al. Phase change materials (PCMs)–innovative materials for improvement of energy efficiency of buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R150 Certificate of patent or registration of utility model

Ref document number: 6936352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250