JP2021155467A - Resin, photosensitive resin composition, cured material, organic el display device, semiconductor device and manufacturing method of cured material - Google Patents
Resin, photosensitive resin composition, cured material, organic el display device, semiconductor device and manufacturing method of cured material Download PDFInfo
- Publication number
- JP2021155467A JP2021155467A JP2020053887A JP2020053887A JP2021155467A JP 2021155467 A JP2021155467 A JP 2021155467A JP 2020053887 A JP2020053887 A JP 2020053887A JP 2020053887 A JP2020053887 A JP 2020053887A JP 2021155467 A JP2021155467 A JP 2021155467A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- group
- mol
- resin composition
- photosensitive resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 C*c1cc(C=O)cc(*NC)c1 Chemical compound C*c1cc(C=O)cc(*NC)c1 0.000 description 25
- AJZYDSLOPBIFFY-UHFFFAOYSA-N CC(C)(c(cc1)cc(NC(c(cc2)ccc2N)=O)c1O)c(cc1)cc(NC(c(cc2)ccc2N)=O)c1O Chemical compound CC(C)(c(cc1)cc(NC(c(cc2)ccc2N)=O)c1O)c(cc1)cc(NC(c(cc2)ccc2N)=O)c1O AJZYDSLOPBIFFY-UHFFFAOYSA-N 0.000 description 1
- ZFHHJQYDRAPRIV-WWUDHOGVSA-N CC(C)(c(cc1NC(C(/C=C\C=C(/C)\N)=C)=O)ccc1O)c(cc1)cc(NC(c2cc(N)ccc2)=O)c1O Chemical compound CC(C)(c(cc1NC(C(/C=C\C=C(/C)\N)=C)=O)ccc1O)c(cc1)cc(NC(c2cc(N)ccc2)=O)c1O ZFHHJQYDRAPRIV-WWUDHOGVSA-N 0.000 description 1
- KSMVBYPXNKCPAJ-UHFFFAOYSA-N CC(CC1)CCC1N Chemical compound CC(CC1)CCC1N KSMVBYPXNKCPAJ-UHFFFAOYSA-N 0.000 description 1
- FUPLBNSDWPMYLH-UHFFFAOYSA-N CC(CC1C2)C2CC1N Chemical compound CC(CC1C2)C2CC1N FUPLBNSDWPMYLH-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Materials For Photolithography (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
本発明は、樹脂に関する。詳しくは半導体装置の表面保護膜や層間絶縁膜、有機エレクトロルミネッセンス(Electroluminescence:以下、ELと記す)表示装置の絶縁膜、駆動用薄膜トランジスタ(Thin Film Transistor:以下、TFTと記す)基板の平坦化膜、回路基板の配線保護絶縁膜、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化膜などの用途に適した樹脂に関する。 The present invention relates to resins. Specifically, a surface protective film or interlayer insulating film of a semiconductor device, an insulating film of an organic electroluminescence (hereinafter referred to as EL) display device, and a flattening film of a thin film transistor (hereinafter referred to as TFT) substrate for driving. The present invention relates to resins suitable for applications such as wiring protective insulating films for circuit boards, on-chip microlenses for solid-state imaging devices, and flattening films for various displays and solid-state imaging devices.
ポリイミドやポリベンゾオキサゾールなどの耐熱性樹脂は、優れた耐熱性、電気絶縁性を有することから、LSIなどの半導体装置の表面保護膜、層間絶縁膜、有機EL表示装置の絶縁層、表示装置用TFT基板の平坦化膜などに用いられている。
近年、有機EL表示装置や半導体装置において、画素や配線の高密度化が進み、パターンの微細加工や、凹凸面を持った物体表面の平坦化に適した材料が求められている。
高平坦化材の一例として、かご型シルセスキオキサン構造を主鎖中に導入したポリイミド樹脂が提案されている(例えば、特許文献1および2参照)。また、かご型シルセスキオキサン構造を有する樹脂を、半導体装置などの電気的固体装置の絶縁膜や保護膜として用いた例がある(例えば、特許文献3参照)。
Since heat-resistant resins such as polyimide and polybenzoxazole have excellent heat resistance and electrical insulation, they are used as surface protective films, interlayer insulating films, insulating layers for organic EL display devices, and display devices for semiconductor devices such as LSIs. It is used as a flattening film for TFT substrates.
In recent years, in organic EL display devices and semiconductor devices, the density of pixels and wiring has been increasing, and there is a demand for a material suitable for fine processing of patterns and flattening of an object surface having an uneven surface.
As an example of the high flattening material, a polyimide resin in which a cage-type silsesquioxane structure is introduced into the main chain has been proposed (see, for example,
しかし、特許文献1〜3の技術は、樹脂中の、反応性の低いシルセスキオキサン構造のため、感光性樹脂組成物として、感光性を付与することが難しく、また、平坦化性と、微細パターン加工性、パターン寸法安定性の両立が困難であった。さらに、感光剤や架橋剤、溶解促進剤などとの相溶性が不十分であり、塗布膜が白濁したり、現像ムラや現像残渣が出るなどの課題があった。
However, the techniques of
前記課題を解決するため、本発明の樹脂(A)は下記の構成を有する。
ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体、ポリベンゾオキサゾール前駆体およびそれら2種類以上の共重合体からなる群より選ばれる1種類以上の樹脂(A)であって、該樹脂(A)構造中にシルセスキオキサン構造を有し、該樹脂(A)の主鎖および/または末端に、ジメチルスルホキシド(以下、DMSOとも記載する)中での酸解離定数(以下、pKaとも記載する)が13.0以上23.0以下である弱酸性基を有する樹脂(A)。
In order to solve the above problems, the resin (A) of the present invention has the following constitution.
One or more kinds of resin (A) selected from the group consisting of polyimide, polybenzoxazole, polyimide precursor, polybenzoxazole precursor and two or more kinds of copolymers thereof, and in the structure of the resin (A). It has a silsesquioxane structure, and the acid dissociation constant (hereinafter, also referred to as pKa) in dimethylsulfoxide (hereinafter, also referred to as DMSO) is determined at the main chain and / or the terminal of the resin (A). Resin (A) having a weakly acidic group of 0 or more and 23.0 or less.
本発明は、感光剤や架橋剤、溶解促進剤などとの相溶性が良く、感光性樹脂組成物として、感光性を付与することができ、また、凹凸を埋め平坦にする平坦化性と、微細パターン加工性、およびパターン寸法安定性を高度に両立した樹脂を提供する。 INDUSTRIAL APPLICABILITY The present invention has good compatibility with a photosensitizer, a cross-linking agent, a dissolution accelerator, etc., can impart photosensitivity as a photosensitive resin composition, and has flattening property for filling irregularities and flattening. Provided is a resin having both fine pattern processability and pattern dimensional stability.
本発明の実施の形態について詳細に説明する。 Embodiments of the present invention will be described in detail.
本発明の樹脂(A)は、ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体、ポリベンゾオキサゾール前駆体およびそれら2種類以上の共重合体からなる群より選ばれる1種類以上の樹脂(A)であって、該樹脂(A)がシルセスキオキサン構造を有し、該樹脂(A)の主鎖および/または末端に、DMSO中でのpKaが13.0以上23.0以下である弱酸性基を有する樹脂(A)である。 The resin (A) of the present invention is one or more kinds of resins (A) selected from the group consisting of polyimide, polybenzoxazole, polyimide precursor, polybenzoxazole precursor and two or more kinds of copolymers thereof. , The resin (A) has a silsesquioxane structure, and a weakly acidic group having a pKa in DMSO of 13.0 or more and 23.0 or less is attached to the main chain and / or the terminal of the resin (A). It is a resin (A) having.
<樹脂(A)>
ポリイミドおよびポリイミド前駆体は、テトラカルボン酸や対応するテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリドなどと、ジアミンや対応するジイソシアネート化合物、トリメチルシリル化ジアミンなどを反応させることにより得ることができ、テトラカルボン酸残基とジアミン残基を有する。例えば、テトラカルボン酸二無水物とジアミンを反応させて得られるポリイミド前駆体の1つであるポリアミド酸を、加熱処理により脱水閉環することで、ポリイミドを得ることができる。この加熱処理時には、m−キシレンなどの水と共沸する溶媒を加えることもできる。あるいは、カルボン酸無水物やジシクロヘキシルカルボジイミドなどの脱水縮合剤やトリエチルアミンなどの塩基などの閉環触媒を加えて、化学熱処理により脱水閉環することもできる。または、弱酸性のカルボン酸化合物を加えて、100℃以下の低温での加熱処理により脱水閉環することもできる。
<Resin (A)>
The polyimide and the polyimide precursor can be obtained by reacting a tetracarboxylic acid, a corresponding tetracarboxylic acid dianhydride, a tetracarboxylic acid diester dichloride or the like with a diamine, a corresponding diisocyanate compound, a trimethylsilylated diamine or the like, and tetra. It has a carboxylic acid residue and a diamine residue. For example, a polyimide can be obtained by dehydrating and ring-closing polyamic acid, which is one of the polyimide precursors obtained by reacting tetracarboxylic acid dianhydride with diamine, by heat treatment. During this heat treatment, a solvent that azeotropes with water, such as m-xylene, can also be added. Alternatively, a dehydration condensing agent such as carboxylic acid anhydride or dicyclohexylcarbodiimide or a ring-closing catalyst such as a base such as triethylamine can be added to dehydrate and ring-close the ring by chemical heat treatment. Alternatively, a weakly acidic carboxylic acid compound can be added to dehydrate and ring closure by heat treatment at a low temperature of 100 ° C. or lower.
ポリベンゾオキサゾールおよびポリベンゾオキサゾール前駆体は、ビスアミノフェノール化合物とジカルボン酸や対応するジカルボン酸クロリド、ジカルボン酸活性エステルなどを反応させて得ることができ、ジカルボン酸残基とビスアミノフェノール残基を有する。例えば、ビスアミノフェノール化合物とジカルボン酸を反応させて得られるポリベンゾオキサゾール前駆体の1つであるポリヒドロキシアミドを、加熱処理により脱水閉環することで、ポリベンゾオキサゾールを得ることができる。あるいは、無水リン酸、塩基、カルボジイミド化合物などを加えて、化学処理により脱水閉環することもできる。
また、上記脱水閉環の過程で反応時間や反応温度を調整したり、たとえば、ポリイミドを重合した後に、ポリアミド酸やポリベンゾオキサゾール前駆体を引き続き重合させることで共重合体とすることもできる。共重合体は、ブロック共重合体であっても、ランダム共重合体であっても良い。
Polybenzoxazole and polybenzoxazole precursors can be obtained by reacting a bisaminophenol compound with a dicarboxylic acid, a corresponding dicarboxylic acid chloride, a dicarboxylic acid active ester, etc., and a dicarboxylic acid residue and a bisaminophenol residue can be obtained. Have. For example, polybenzoxazole can be obtained by dehydrating and closing the ring of polyhydroxyamide, which is one of the polybenzoxazole precursors obtained by reacting a bisaminophenol compound with a dicarboxylic acid, by heat treatment. Alternatively, anhydrous phosphoric acid, a base, a carbodiimide compound, or the like can be added to dehydrate and close the ring by chemical treatment.
Further, the reaction time and the reaction temperature can be adjusted in the process of dehydration ring closure, or for example, after the polyimide is polymerized, the polyamic acid or the polybenzoxazole precursor can be continuously polymerized to obtain a copolymer. The copolymer may be a block copolymer or a random copolymer.
<シルセスキオキサン構造>
樹脂(A)は、シルセスキオキサン構造を有する。シルセスキオキサン構造を有することで、樹脂に適度なリフロー性が発現し、凹凸の平坦化性に優れた樹脂を得ることができる。シルセスキオキサンは、各ケイ素原子が3個の酸素原子と結合し、各酸素原子が2個のケイ素原子と結合している化合物を示す類名であるが、本発明において、シルセスキオキサン構造とは、その一部が変形したシルセスキオキサン類似構造の化合物も含む。シルセスキオキサン構造の例としては、ラダー構造、完全縮合型構造、および不完全縮合型構造のほか、一定の構造を示さない不定形構造などが挙げられる。
シロキサンの構成単位を一般式(1−1)〜(1−4)に示す。
<Silsesquioxane structure>
The resin (A) has a silsesquioxane structure. By having the silsesquioxane structure, an appropriate reflow property is exhibited in the resin, and a resin having excellent flatness of unevenness can be obtained. Silsesquioxane is a synonym for a compound in which each silicon atom is bonded to three oxygen atoms and each oxygen atom is bonded to two silicon atoms. In the present invention, silsesquioxane is a synonym. The structure also includes a compound having a silsesquioxane-like structure in which a part thereof is modified. Examples of the silsesquioxane structure include a ladder structure, a completely condensed type structure, an incompletely condensed type structure, and an amorphous structure that does not show a constant structure.
The structural units of siloxane are shown in the general formulas (1-1) to (1-4).
一般式(1−1)〜(1−4)中、R1は、水素原子、ハロゲン原子、もしくは、ケイ素に炭素原子で結合する、炭素数1以上100以下の有機基を表す。 In the general formulas (1-1) to (1-4), R 1 represents an organic group having 1 or more carbon atoms and 100 or less carbon atoms, which is bonded to a hydrogen atom, a halogen atom, or silicon with a carbon atom.
樹脂(A)は、一般式(1−1)〜(1−4)で表される全シロキサン構成単位の合計100モル%に対して、一般式(1−3)で表されるシルセスキオキサン構成単位の含有量は、50モル%以上が好ましく、70モル%以上がより好ましい。一般式(1−3)で表される構成単位を、上記の割合で含有することで、シルセスキオキサン構造の適度なリフロー性が発現しやすくなり、平坦化性とパターン寸法安定性の両立がしやすくなる。
また、相溶性、平坦化性、パターン寸法安定性の観点で、樹脂(A)の主鎖中にシルセスキオキサン構造を有することが好ましい。
The resin (A) contains silsesquioki represented by the general formula (1-3) with respect to a total of 100 mol% of all siloxane constituent units represented by the general formulas (1-1) to (1-4). The content of the sun constituent unit is preferably 50 mol% or more, more preferably 70 mol% or more. By containing the structural unit represented by the general formula (1-3) in the above ratio, it becomes easy to develop an appropriate reflow property of the silsesquioxane structure, and both flatness and pattern dimensional stability are compatible. It will be easier to remove.
Further, from the viewpoint of compatibility, flattening property, and pattern dimensional stability, it is preferable to have a silsesquioxane structure in the main chain of the resin (A).
樹脂(A)中のシルセスキオキサン構造は、相溶性、平坦化性、パターン寸法安定性の観点から、かご型シルセスキオキサン構造を含むことが好ましい。かご型シルセスキオキサン構造とは、完全縮合型構造のほかに、不完全縮合型構造を含んでも良い。完全縮合型構造とは、複数の環状構造からなり、閉じた空間を形成する構造であり、その閉じた空間の形状は限定されない。不完全縮合型構造は、完全縮合型構造の少なくとも1箇所以上が塞がれておらず、空間が閉じていない構造である。 The silsesquioxane structure in the resin (A) preferably contains a cage-type silsesquioxane structure from the viewpoint of compatibility, flattening property, and pattern dimensional stability. The cage-type silsesquioxane structure may include an incompletely condensed type structure in addition to the completely condensed type structure. The completely condensed structure is a structure composed of a plurality of cyclic structures and forming a closed space, and the shape of the closed space is not limited. The incompletely condensed type structure is a structure in which at least one or more parts of the completely condensed type structure are not closed and the space is not closed.
樹脂(A)中のシルセスキオキサン構造は、以下の方法で容易に検出できる。樹脂(A)を、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび29Si−NMRスペクトル、13C‐NMRスペクトル、1H−NMRスペクトル測定で、直接、検出することが可能である。これとは別に、樹脂(A)を、酸性または塩基性溶液に溶解し、樹脂(A)の構成単位であるアミン成分と酸成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、シルセスキオキサン構造を容易に検出できる。 The silsesquioxane structure in the resin (A) can be easily detected by the following method. The resin (A) can be directly detected by a pyrolysis gas chromatograph (PGC), an infrared spectrum, a 29Si-NMR spectrum, a 13C-NMR spectrum, and a 1H-NMR spectrum measurement. Separately, the resin (A) is dissolved in an acidic or basic solution, decomposed into an amine component and an acid component, which are constituent units of the resin (A), and this is decomposed into gas chromatography (GC) or NMR measurement. By doing so, the silsesquioxane structure can be easily detected.
シルセスキオキサン構造を有する樹脂(A)を得るためには、例えば、シルセスキオキサン構造含有多価酸無水物、シルセスキオキサン構造含有多価カルボン酸クロリド、シルセスキオキサン構造含有多価カルボン酸活性エステル、およびシルセスキオキサン構造含有多価アミンからなる群より選ばれる1種類以上のモノマーが用いられる。シルセスキオキサン構造含有多価酸無水物、シルセスキオキサン構造含有多価カルボン酸クロリド、シルセスキオキサン構造含有多価カルボン酸活性エステル、およびシルセスキオキサン構造含有多価アミンは、特に制限はなく市販品や従来公知の製造方法により得られるものも使用できる。(例えば、特開2004−331647号公報、特開2006−265243号公報、特開2007−302635号公報、特開2005−232024号公報、特開2010−538114号公報参照。)
シルセスキオキサン含有酸無水物の例としては、一般式(3−1)〜(3−10)で表される構造の酸無水物が挙げられる。
In order to obtain the resin (A) having a silsesquioxane structure, for example, a silsesquioxane structure-containing polyvalent acid anhydride, a silsesquioxane structure-containing polyvalent carboxylic acid chloride, and a silsesquioxane structure-containing polyvalent acid are obtained. One or more monomers selected from the group consisting of valent carboxylic acid active esters and silsesquioxane structure-containing polyvalent amines are used. Silcesquioxane structure-containing polyvalent acid anhydrides, silsesquioxane structure-containing polyvalent carboxylic acid chlorides, silsesquioxane structure-containing polyvalent carboxylic acid active esters, and silsesquioxane structure-containing polyvalent amines are particularly important. There are no restrictions, and commercially available products and those obtained by conventionally known manufacturing methods can also be used. (See, for example, JP-A-2004-331647, JP-A-2006-265243, JP-A-2007-302635, JP-A-2005-232024, and JP-A-2010-538114.)
Examples of the silsesquioxane-containing acid anhydride include acid anhydrides having a structure represented by the general formulas (3-1) to (3-10).
一般式(3−1)〜(3−10)中、Rはそれぞれ独立に、水素原子、ハロゲン原子、またはケイ素原子に炭素原子で結合する炭素数1以上100以下の有機基である。Qは、それぞれ独立に、水素原子、ハロゲン原子、または、炭素数1以上100以下の有機基である。Yは、一般式(3−Y)で表される基である。R,Q、Yの構造は、それぞれ異なっていてもよい。 In the general formulas (3-1) to (3-10), R is an organic group having 1 or more carbon atoms and 100 or less carbon atoms bonded to a hydrogen atom, a halogen atom, or a silicon atom by a carbon atom, respectively. Q is independently a hydrogen atom, a halogen atom, or an organic group having 1 or more and 100 or less carbon atoms. Y is a group represented by the general formula (3-Y). The structures of R, Q, and Y may be different from each other.
一般式(3−Y)中、Y1は、炭素数2以上100以下の有機基であり、*はケイ素原子に結合する。 In the general formula (3-Y), Y 1 is an organic group having 2 or more carbon atoms and 100 or less carbon atoms, and * is bonded to a silicon atom.
一般式(3−1)〜(3−10)中、Rは、特に限定されないが、炭素数1〜40のアルキル、炭素数4〜10のシクロアルキル、任意の水素がハロゲンまたは炭素数1〜20のアルキルで置き換えられてもよいアリール、または、任意の水素がハロゲンまたは炭素数1〜20のアルキルで置き換えられてもよいアリールと炭素数1〜8のアルキレンとで構成されるアリールアルキルから独立して選択される基が挙げられる。任意の水素原子はフッ素原子に置き換えられてもよく、任意の−CH2−は−O−、−CH2=CH2−、または−CH3≡CH3−に置き換えられてもよい。より具体的には、フェニル基、メチル基、エチル基、n−プロピル基、イソプロピル基、トリフルオロメチル基、ヘキサフルオロイソプロピル基、2−フルオロエチル基、3−フルオロプロピル基、ビニル基、アリル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 In the general formulas (3-1) to (3-10), R is not particularly limited, but is alkyl having 1 to 40 carbon atoms, cycloalkyl having 4 to 10 carbon atoms, and any hydrogen is halogen or 1 to 1 carbon atoms. Aryl which may be replaced by an alkyl of 20 or an arylalkyl composed of an aryl in which any hydrogen may be replaced by a halogen or an alkyl having 1 to 20 carbon atoms and an alkylene having 1 to 8 carbon atoms. The group selected by Any hydrogen atom may be replaced by a fluorine atom, and any −CH 2 − may be replaced by −O −, −CH 2 = CH 2 −, or −CH 3 ≡ CH 3 −. More specifically, a phenyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a trifluoromethyl group, a hexafluoroisopropyl group, a 2-fluoroethyl group, a 3-fluoropropyl group, a vinyl group and an allyl group. , Cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
一般式(3−1)〜(3−10)中、Qは、特に限定されないが、炭素数1〜40のアルキル、炭素数4〜10のシクロアルキル、任意の水素がハロゲンまたは炭素数1〜20のアルキルで置き換えられてもよいアリール、および、任意の水素がハロゲンまたは炭素数1〜20のアルキルで置き換えられてもよいアリールと炭素数1〜8のアルキレンとで構成されるアリールアルキルから独立して選択される基である。任意の水素原子はフッ素原子に置き換えられてもよく、任意の−CH2−は−O−、−CH2=CH2−、または−CH3≡CH3−に置き換えられてもよい。より具体的には、フェニル基、メチル基、エチル基、n−プロピル基、イソプロピル基、トリフルオロメチル基、ヘキサフルオロイソプロピル基、2−フルオロエチル基、3−フルオロプロピル基、ビニル基、アリル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 In the general formulas (3-1) to (3-10), Q is not particularly limited, but is an alkyl having 1 to 40 carbon atoms, a cycloalkyl having 4 to 10 carbon atoms, and any hydrogen is halogen or 1 to 1 carbon atoms. Independent of aryls that may be replaced by an alkyl of 20 and arylalkyls composed of aryls in which any hydrogen may be replaced by halogens or alkyls having 1 to 20 carbons and alkylenes having 1 to 8 carbons. Is the group that is selected. Any hydrogen atom may be replaced by a fluorine atom, and any −CH 2 − may be replaced by −O −, −CH 2 = CH 2 −, or −CH 3 ≡ CH 3 −. More specifically, a phenyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a trifluoromethyl group, a hexafluoroisopropyl group, a 2-fluoroethyl group, a 3-fluoropropyl group, a vinyl group and an allyl group. , Cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
一般式(3−1)〜(3−10)中、Yは、具体的には、下記構造式で表される構造が挙げられるが、これに限定されない。 In the general formulas (3-1) to (3-10), Y specifically includes, but is not limited to, a structure represented by the following structural formula.
シルセスキオキサン構造含有多価酸無水物は、重合のしやすさの観点で、一般式(3−1)〜一般式(3−5)で表される構造の多価酸無水物が好ましい。
樹脂(A)は、相溶性、平坦化性、パターン寸法安定性の観点で、かご型シルセスキオキサン構造を含むことが好ましい。すなわち、一般式(3−1)および一般式(3−2)で表される構造の多価酸無水物を原料として用いることがより好ましい。また、かご型シルセスキオキサン構造を樹脂(A)の主鎖中に有することが好ましい。すなわち、一般式(3−1)で表される構造の多価酸無水物を原料として用いることがさらに好ましい。
The silsesquioxane structure-containing polyvalent acid anhydride is preferably a polyvalent acid anhydride having a structure represented by the general formulas (3-1) to (3-5) from the viewpoint of easiness of polymerization. ..
The resin (A) preferably contains a cage-type silsesquioxane structure from the viewpoint of compatibility, flattening property, and pattern dimensional stability. That is, it is more preferable to use a polyvalent acid anhydride having a structure represented by the general formula (3-1) and the general formula (3-2) as a raw material. Further, it is preferable to have a cage-type silsesquioxane structure in the main chain of the resin (A). That is, it is more preferable to use a polyhydric acid anhydride having a structure represented by the general formula (3-1) as a raw material.
シルセスキオキサン含有多価アミンの例としては、一般式(4−1)〜(4−10)で表される構造の多価アミンが挙げられる。 Examples of the silsesquioxane-containing multivalent amine include polyvalent amines having structures represented by the general formulas (4-1) to (4-10).
一般式(4−1)〜(4−10)中、Rはそれぞれ独立に、水素原子、ハロゲン原子、またはケイ素原子に炭素原子で結合する炭素数1以上100以下の有機基である。Qは、それぞれ独立に、水素原子、ハロゲン原子、または、炭素数1以上100以下の有機基である。Zは、アミノ基を有する、炭素数1以上100以下の有機基である。R、QおよびZの構造は、それぞれ異なっていてもよい。 In the general formulas (4-1) to (4-10), R is an organic group having 1 or more carbon atoms and 100 or less carbon atoms bonded to a hydrogen atom, a halogen atom, or a silicon atom by a carbon atom, respectively. Q is independently a hydrogen atom, a halogen atom, or an organic group having 1 or more and 100 or less carbon atoms. Z is an organic group having an amino group and having 1 or more carbon atoms and 100 or less carbon atoms. The structures of R, Q and Z may be different from each other.
一般式(4−1)〜(4−10)中、Rは、特に限定されないが、炭素数1〜40のアルキル、炭素数4〜10のシクロアルキル、任意の水素がハロゲンまたは炭素数1〜20のアルキルで置き換えられてもよいアリール、または、任意の水素がハロゲンまたは炭素数1〜20のアルキルで置き換えられてもよいアリールと炭素数1〜8のアルキレンとで構成されるアリールアルキルから独立して選択される基が挙げられる。任意の水素原子はフッ素原子に置き換えられてもよく、任意の−CH2−は−O−、−CH2=CH2−または−CH3≡CH3−に置き換えられてもよい。より具体的には、フェニル基、メチル基、エチル基、n−プロピル基、イソプロピル基、トリフルオロメチル基、ヘキサフルオロイソプロピル基、2−フルオロエチル基、3−フルオロプロピル基、ビニル基、アリル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 In the general formulas (4-1) to (4-10), R is not particularly limited, but is alkyl having 1 to 40 carbon atoms, cycloalkyl having 4 to 10 carbon atoms, and any hydrogen is halogen or 1 to 1 carbon atoms. Aryl which may be replaced by an alkyl of 20 or an arylalkyl composed of an aryl in which any hydrogen may be replaced by a halogen or an alkyl having 1 to 20 carbon atoms and an alkylene having 1 to 8 carbon atoms. The group selected by Any hydrogen atom may be replaced by a fluorine atom, and any −CH 2 − may be replaced by −O −, −CH 2 = CH 2 − or −CH 3 ≡ CH 3 −. More specifically, a phenyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a trifluoromethyl group, a hexafluoroisopropyl group, a 2-fluoroethyl group, a 3-fluoropropyl group, a vinyl group and an allyl group. , Cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
一般式(4−1)〜(4−10)中、Qは、特に限定されないが、炭素数1〜40のアルキル、炭素数4〜10のシクロアルキル、任意の水素がハロゲンまたは炭素数1〜20のアルキルで置き換えられてもよいアリール、および、任意の水素がハロゲンまたは炭素数1〜20のアルキルで置き換えられてもよいアリールと炭素数1〜8のアルキレンとで構成されるアリールアルキルから独立して選択される基である。任意の水素原子はフッ素原子に置き換えられてもよく、任意の−CH2−は−O−、−CH2=CH2−または−CH3≡CH3−に置き換えられてもよい。より具体的には、フェニル基、メチル基、エチル基、n−プロピル基、イソプロピル基、トリフルオロメチル基、ヘキサフルオロイソプロピル基、2−フルオロエチル基、3−フルオロプロピル基、ビニル基、アリル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 In the general formulas (4-1) to (4-10), Q is not particularly limited, but is an alkyl having 1 to 40 carbon atoms, a cycloalkyl having 4 to 10 carbon atoms, and any hydrogen is halogen or 1 to 1 carbon atoms. Independent of aryls that may be replaced by an alkyl of 20 and arylalkyls composed of aryls in which any hydrogen may be replaced by halogens or alkyls having 1 to 20 carbons and alkylenes having 1 to 8 carbons. Is the group that is selected. Any hydrogen atom may be replaced by a fluorine atom, and any −CH 2 − may be replaced by −O −, −CH 2 = CH 2 − or −CH 3 ≡ CH 3 −. More specifically, a phenyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a trifluoromethyl group, a hexafluoroisopropyl group, a 2-fluoroethyl group, a 3-fluoropropyl group, a vinyl group and an allyl group. , Cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
一般式(4−1)〜(4−10)中、Zは、具体的には、下記構造式で表される構造が挙げられるが、これに限定されない。 In the general formulas (4-1) to (4-10), Z specifically includes, but is not limited to, a structure represented by the following structural formula.
シルセスキオキサン構造含有多価アミンは、重合のしやすさの観点で、一般式(4−1)〜一般式(4−5)で表される構造のアミンが好ましい。樹脂(A)は、相溶性、平坦化性、パターン寸法安定性の観点で、かご型シルセスキオキサン構造を含むことが好ましい。すなわち、一般式(4−1)および(4−2)で表される構造のアミンを原料として用いることがより好ましい。また、かご型シルセスキオキサン構造を樹脂(A)の主鎖中に有することが好ましい。すなわち、一般式(4−1)で表される構造のアミンを原料として用いることがさらに好ましい。 The silsesquioxane structure-containing multivalent amine is preferably an amine having a structure represented by the general formulas (4-1) to (4-5) from the viewpoint of easiness of polymerization. The resin (A) preferably contains a cage-type silsesquioxane structure from the viewpoint of compatibility, flattening property, and pattern dimensional stability. That is, it is more preferable to use amines having structures represented by the general formulas (4-1) and (4-2) as raw materials. Further, it is preferable to have a cage-type silsesquioxane structure in the main chain of the resin (A). That is, it is more preferable to use an amine having a structure represented by the general formula (4-1) as a raw material.
<ジメチルスルホキシド中での酸解離定数が13.0以上23.0以下である弱酸性基>
樹脂(A)は、樹脂(A)の主鎖および/または末端に、DMSO中でのpKaが13.0以上23.0以下である弱酸性基(以下、弱酸性基とも記載する)を有する。弱酸性基を有することで、感光性樹脂組成物として、平坦化性とパターンの寸法安定性を高度に両立することができる。これは、樹脂(A)が弱酸性基を有することで、キュアによる硬化速度が適度に調節され、樹脂(A)のリフローを制御できるためであると考えられる。
<Weakly acidic group having an acid dissociation constant of 13.0 or more and 23.0 or less in dimethyl sulfoxide>
The resin (A) has a weakly acidic group (hereinafter, also referred to as a weakly acidic group) having a pKa in DMSO of 13.0 or more and 23.0 or less at the main chain and / or the terminal of the resin (A). .. By having a weakly acidic group, the photosensitive resin composition can have both flatness and dimensional stability of the pattern at a high level. It is considered that this is because the resin (A) has a weakly acidic group, so that the curing rate by curing can be appropriately adjusted and the reflow of the resin (A) can be controlled.
弱酸性基としては、例えば、ブレンステッド酸としての酸性度が、カルボキシ基よりも低い酸性基が挙げられる。ブレンステッド酸としての酸性度が、カルボキシ基に相当する酸性度の指標として、カルボキシ基を有する化合物、及び、その化合物のDMSO中でのpKaとしては、例えば、酢酸(pKa=12.3)又は安息香酸(pKa=11.1)が挙げられる。 Examples of the weakly acidic group include an acidic group having a lower acidity as a Bronsted acid than a carboxy group. The acidity of the Bronsted acid corresponds to the carboxy group, and the compound having a carboxy group and the pKa of the compound in DMSO include, for example, acetic acid (pKa = 12.3) or Benzoic acid (pKa = 11.1) can be mentioned.
弱酸性基としては、フェノール性水酸基、ヘキサフルオロイソプロピルアルコール基、ヒドロキシイミド基、ヒドロキシアミド基、チオール基、又は、カルボニル基もしくはエステル基が二つ以上結合したメチレン基が挙げられる。パターンの寸法安定性の観点から、弱酸性基はフェノール性水酸基、ヒドロキシイミド基、ヒドロキシアミド基およびヘキサフルオロイソプロピルアルコール基からなる群より選ばれる少なくとも1種類であることが好ましく、フェノール性水酸基がより好ましい。 Examples of the weakly acidic group include a phenolic hydroxyl group, a hexafluoroisopropyl alcohol group, a hydroxyimide group, a hydroxyamide group, a thiol group, and a methylene group in which two or more carbonyl groups or ester groups are bonded. From the viewpoint of dimensional stability of the pattern, the weakly acidic group is preferably at least one selected from the group consisting of a phenolic hydroxyl group, a hydroxyimide group, a hydroxyamide group and a hexafluoroisopropyl alcohol group, and the phenolic hydroxyl group is more preferable. preferable.
弱酸性の指標として、弱酸性を示す酸性基を有する化合物、及び、その化合物のDMSO中でのpKaとしては、例えば、フェノール(pKa=18.0)、ヘキサフルオロイソプロピルアルコール(pKa=17.9)ベンゾヒドロキサム酸(pKa=13.7)、n−ブタンチオール(pKa=17.0)、アセチルアセトン(pKa=13.3)、アセト酢酸エチル(pKa=14.2)又はマロン酸ジエチル(pKa=15.7)が挙げられる。 As an index of weak acidity, a compound having an acidic group showing weak acidity, and pKa of the compound in DMSO include, for example, phenol (pKa = 18.0) and hexafluoroisopropyl alcohol (pKa = 17.9). ) Benzohydroxamic acid (pKa = 13.7), n-butanthiol (pKa = 17.0), acetylacetone (pKa = 13.3), ethyl acetoacetate (pKa = 14.2) or diethyl malonate (pKa =) 15.7) can be mentioned.
樹脂(A)中の弱酸性基の含有量は、平坦化性およびパターンの寸法安定性の観点で、樹脂(A)中の前記一般式(1−3)で表される構造単位100モル%に対して、10モル%以上500モル%以下が好ましい。
樹脂(A)中の一般式(1−3)で表される構造単位100モル%に対して、弱酸性基の含有量は、平坦化性の観点で、500モル%以下が好ましく、300モル%以下がより好ましく、100モル%以下がさらに好ましい。パターン寸法安定性の観点で、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。
The content of the weakly acidic group in the resin (A) is 100 mol% of the structural unit represented by the general formula (1-3) in the resin (A) from the viewpoint of flattening property and dimensional stability of the pattern. On the other hand, it is preferably 10 mol% or more and 500 mol% or less.
The content of the weakly acidic group is preferably 500 mol% or less, preferably 300 mol%, based on 100 mol% of the structural unit represented by the general formula (1-3) in the resin (A) from the viewpoint of flattening property. % Or less is more preferable, and 100 mol% or less is further preferable. From the viewpoint of pattern dimensional stability, 10 mol% or more is preferable, 20 mol% or more is more preferable, and 50 mol% or more is further preferable.
主鎖または末端に弱酸性基を有する樹脂(A)を得るためには、例えば、弱酸性基含有ジアミン、弱酸性基含有酸二無水物、ジカルボン酸クロリド、ジカルボン酸活性エステル、弱酸性基含有モノアミン、および弱酸性基含有酸無水物からなる群より選ばれる少なくとも1つのジアミン、酸二無水物、モノアミン、または酸無水物の残基を導入すればよい。中でも、モノマーの入手のしやすさの観点で、弱酸性基含有ジアミンおよび/または弱酸性基含有モノアミンの残基を含むことが好ましい。とくにパターン寸法安定性の観点で、少なくとも弱酸性基含有ジアミン残基を含むことが好ましい。 In order to obtain the resin (A) having a weakly acidic group at the main chain or the terminal, for example, a weakly acidic group-containing diamine, a weakly acidic group-containing acid dianhydride, a dicarboxylic acid chloride, a dicarboxylic acid active ester, and a weakly acidic group are contained. A residue of at least one diamine, acid dianhydride, monoamine, or acid anhydride selected from the group consisting of monoamine and weakly acidic group-containing acid anhydride may be introduced. Above all, from the viewpoint of easy availability of the monomer, it is preferable to contain a residue of a weakly acidic group-containing diamine and / or a weakly acidic group-containing monoamine. In particular, from the viewpoint of pattern dimensional stability, it is preferable to contain at least a weakly acidic group-containing diamine residue.
樹脂(A)は、一般式(2)で表されるジアミンに由来する残基を有することが好ましい。 The resin (A) preferably has a residue derived from the diamine represented by the general formula (2).
一般式(2)中、X1は、単結合、エーテル結合、スルフィド結合、ジスルフィド結合、スルホニル基、または炭素数1以上200以下の2価の有機基を示す。X2およびX3は、それぞれ独立に単結合または炭素数1以上200以下の2価の有機基を示す。R2およびR3は、それぞれ独立に炭素数1以上200以下の1価の有機基を示す。A1およびA2は、それぞれ独立にジメチルスルホキシド中での酸解離定数が13.0以上23.0以下である弱酸性基を示す。aおよびbはそれぞれ独立に0以上4以下の整数であり、cおよびdはそれぞれ独立に0以上4以下の整数であり、a+b≧1であり、1≦a+b+c+d≦8である。X1、X2、X3、R2、R3、A1、およびA2は、樹脂(A)中に含まれる複数の繰り返し単位においてそれぞれ異なっていてもよい。 In the general formula (2), X 1 represents a single bond, an ether bond, a sulfide bond, a disulfide bond, a sulfonyl group, or a divalent organic group having 1 to 200 carbon atoms. X 2 and X 3 each independently represent a single bond or a divalent organic group having 1 to 200 carbon atoms. R 2 and R 3 each independently represent a monovalent organic group having 1 or more carbon atoms and 200 or less carbon atoms. A 1 and A 2 each independently represent a weakly acidic group having an acid dissociation constant of 13.0 or more and 23.0 or less in dimethyl sulfoxide. a and b are independently integers of 0 or more and 4 or less, and c and d are independently integers of 0 or more and 4 or less, a + b ≧ 1, and 1 ≦ a + b + c + d ≦ 8. X 1 , X 2 , X 3 , R 2 , R 3 , A 1 , and A 2 may be different in each of the plurality of repeating units contained in the resin (A).
前記樹脂(A)は、平坦化性とパターン寸法安定性の観点で、構造式(2A)〜(2J)で表されるジアミンからなる群より選択される少なくとも1種類以上に由来する残基を有することが好ましい。中でも、構造式(2B)、(2C)、(2G)および(2H)で表されるジアミンからなる群より選択される1種類以上がより好ましい。 The resin (A) contains residues derived from at least one type selected from the group consisting of diamines represented by the structural formulas (2A) to (2J) from the viewpoint of flattening property and pattern dimensional stability. It is preferable to have. Among them, one or more selected from the group consisting of diamines represented by the structural formulas (2B), (2C), (2G) and (2H) is more preferable.
弱酸性基含有モノアミンの例としては、一般式(5)で表される構造のモノアミンが挙げられるが、これに限定されない。 Examples of the weakly acidic group-containing monoamine include, but are not limited to, monoamines having a structure represented by the general formula (5).
一般式(5)中、A3は、弱酸性基を示す。eは1以上5以下の整数である。R4は、スルホン酸基または炭素数1〜6の飽和炭化水素基を示し、fは0または1を示す。1≦e+f≦5である。 In the general formula (5), A 3 represents a weakly acidic group. e is an integer of 1 or more and 5 or less. R 4 represents a sulfonic acid group or a saturated hydrocarbon group having 1 to 6 carbon atoms, f is 0 or 1. 1 ≦ e + f ≦ 5.
一般式(5)で表されるモノアミンの例として具体的には、2−アミノフェノール、3−アミノフェノール、2−アミノ−m−クレゾール、2−アミノ−p−クレゾール、3−アミノ−o−クレゾール、4−アミノ−o−クレゾール、4−アミノ−m−クレゾール、5−アミノ−o−クレゾール、6−アミノ−m−クレゾール、4−アミノ−2,3−キシレノール、4−アミノ−3,5−キシレノール、6−アミノ−2,4−キシレノール、2−アミノ−4−エチルフェノール、3−アミノ−4−エチルフェノール、2−アミノ−4−tert−ブチルフェノール、2−アミノ−4−フェニルフェノール、4−アミノ−2,6−ジフェニルフェノール、および下記構造式で表される構造の化合物が挙げられるが、これに限定されない。中でも、パターン寸法安定性の観点で2−アミノフェノール、3−アミノフェノール、4−アミノフェノールが好ましい。 Specifically, as an example of the monoamine represented by the general formula (5), 2-aminophenol, 3-aminophenol, 2-amino-m-cresol, 2-amino-p-cresol, 3-amino-o- Cresol, 4-amino-o-cresol, 4-amino-m-cresol, 5-amino-o-cresol, 6-amino-m-cresol, 4-amino-2,3-xylenol, 4-amino-3, 5-Xylenol, 6-amino-2,4-xylenol, 2-amino-4-ethylphenol, 3-amino-4-ethylphenol, 2-amino-4-tert-butylphenol, 2-amino-4-phenylphenol , 4-Amino-2,6-diphenylphenol, and compounds having a structure represented by the following structural formula, but are not limited thereto. Of these, 2-aminophenol, 3-aminophenol, and 4-aminophenol are preferable from the viewpoint of pattern dimensional stability.
弱酸性基含有酸二無水物の例としては、下記構造式で表される構造の酸二無水物が挙げられるが、これに限定されない。 Examples of the weakly acidic group-containing acid dianhydride include, but are not limited to, acid dianhydride having a structure represented by the following structural formula.
弱酸性基含有酸無水物の例としては、5−ヒドロキシイソベンゾフラン−1,3−ジオン、4−ヒドロキシイソベンゾフラン−1,3−ジオンが挙げられるが、これに限定されない。 Examples of weakly acidic group-containing acid anhydrides include, but are not limited to, 5-hydroxyisobenzofuran-1,3-dione and 4-hydroxyisobenzofuran-1,3-dione.
また、樹脂(A)は、前述の特性を低下させない範囲で、他の酸二無水物に由来する構造を含有してもよい。他の酸二無水物としては、具体的には、ピロメリット酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物、9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、1,2−エチレンビス(アンヒドロトリメリテート)、1,10−デカメチレンビス(アンヒドロトリメリテート)等公知のものが挙げられるが、これに限定されない。これら2種以上の酸二無水物成分を組み合わせて用いてもよい。 Further, the resin (A) may contain a structure derived from another acid dianhydride as long as the above-mentioned properties are not deteriorated. Specific examples of other acid dianhydrides include pyromellitic acid dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, and 9,9-bis (3,4-dicarboxyphenyl). Fluoleic dianhydride, 9,9-bis {4- (3,4-dicarboxyphenoxy) phenyl} Fluoleic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride , Butanetetracarboxylic acid dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride, 1,2-ethylenebis (anhydrotrimeritate), 1,10-decamethylenebis (anhydride) Known examples such as (hydrotrimeritate) are included, but the present invention is not limited to this. These two or more kinds of acid dianhydride components may be used in combination.
また、本発明の樹脂(A)は、前述の特性を低下させない範囲で、他のジアミンに由来する構造を含有してもよい。 Further, the resin (A) of the present invention may contain a structure derived from another diamine as long as the above-mentioned characteristics are not deteriorated.
さらに他のジアミンとして、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルフィド、1,4−ビス(4−アミノフェノキシ)ベンゼン、ベンジジン、p−フェニレンジアミン、ビス{4−(4−アミノフェノキシ)フェニル}エーテル、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルなどの芳香族ジアミンや、これらの芳香族環の水素原子の一部を、炭素数1〜10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの脂環式ジアミン、“ジェファーミン”(登録商標)ED−600、“ジェファーミン”ED−900、“ジェファーミン”ED−2003、ポリオキシプロピレンジアミンのD−200、D−400、D−2000、D−4000(以上商品名、HUNTSMAN(株)製)などのポリエチレンオキサイド基を含有する脂肪族ジアミンなど公知のものを挙げることができるが、これに限定されない。 Still other diamines include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy). ) Benzene, benzidine, p-phenylenediamine, bis {4- (4-aminophenoxy) phenyl} ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) Aromatic diamines such as -4,4'-diaminobiphenyl, and cyclohexyl, a compound in which some of the hydrogen atoms of these aromatic rings are replaced with alkyl groups, fluoroalkyl groups, halogen atoms, etc. having 1 to 10 carbon atoms. Diamines, alicyclic diamines such as methylenebiscyclohexylamine, "Jeffamine" (registered trademark) ED-600, "Jeffamine" ED-900, "Jeffamine" ED-2003, Polyoxypropylene diamine D-200, Known examples such as aliphatic diamines containing a polyethylene oxide group such as D-400, D-2000, and D-4000 (trade name, manufactured by HUNTSMAN Co., Ltd.) can be mentioned, but the present invention is not limited thereto.
これらのジアミンは、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして使用できる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。 These diamines can be used as is or as the corresponding diisocyanate compound, trimethylsilylated diamine. Further, these two or more kinds of diamine components may be used in combination.
樹脂(A)におけるポリマー分子鎖の末端に、末端封止剤として、モノアミンまたは酸無水物に由来する有機基を有してもよい。末端封止剤としては、公知のモノアミン、酸無水物を使用できる。 An organic group derived from a monoamine or an acid anhydride may be provided at the end of the polymer molecular chain in the resin (A) as an end-capping agent. As the terminal encapsulant, known monoamines and acid anhydrides can be used.
樹脂(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算で3,000〜80,000が好ましく、より好ましくは、8,000〜50,000である。 The weight average molecular weight of the resin (A) is preferably 3,000 to 80,000, more preferably 8,000 to 50,000 in terms of polystyrene by gel permeation chromatography.
樹脂(A)は、公知のポリイミド前駆体、またはポリベンゾオキサゾール前駆体の製造方法に従って製造することができる。 The resin (A) can be produced according to a known method for producing a polyimide precursor or a polybenzoxazole precursor.
<感光性樹脂組成物>
本発明の感光性樹脂組成物は、上述した樹脂(A)、感光性化合物(B)および溶剤(C)を含有する。
<Photosensitive resin composition>
The photosensitive resin composition of the present invention contains the above-mentioned resin (A), photosensitive compound (B) and solvent (C).
<感光性化合物(B)>
感光性化合物(B)としては、光酸発生剤(b1)や、光重合開始剤(b2)が挙げられる。光酸発生剤(b1)は、光照射されることにより酸が発生し、光照射部のアルカリ水溶液に対する溶解性が増大する特性を与える化合物であり、光重合開始剤(b2)とは、露光によって結合開裂および/または反応してラジカルを発生する化合物をいう。
<Photosensitive compound (B)>
Examples of the photosensitive compound (B) include a photoacid generator (b1) and a photopolymerization initiator (b2). The photoacid generator (b1) is a compound that generates acid when irradiated with light and has the property of increasing the solubility of the light-irradiated portion in an alkaline aqueous solution. The photopolymerization initiator (b2) is an exposure. A compound that undergoes bond cleavage and / or reaction to generate radicals.
感光性化合物(B)が光酸発生剤(b1)を含有することで、光照射部に酸が発生して光照射部のアルカリ水溶液に対する溶解性が増大し、光照射部が溶解するポジ型のレリーフパターンを得ることができる。また、光酸発生剤(b1)とエポキシ化合物または後述する熱架橋剤を含有することで、光照射部に発生した酸がエポキシ化合物や熱架橋剤の架橋反応を促進し、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。また、感光性化合物(B)が光重合開始剤(b2)を含有し、さらに感光性樹脂組成物が後述するラジカル重合性化合物(D)を含有することで、ラジカル重合が進行し、感光性樹脂組成物の膜の露光部がアルカリ現像液に対して不溶化することで、ネガ型のパターンを形成することができる。 When the photosensitive compound (B) contains the photoacid generator (b1), acid is generated in the light-irradiated part, the solubility of the light-irradiated part in the alkaline aqueous solution is increased, and the light-irradiated part is dissolved. Relief pattern can be obtained. Further, by containing the photoacid generator (b1) and the epoxy compound or the heat-crosslinking agent described later, the acid generated in the light-irradiated part promotes the cross-linking reaction of the epoxy compound and the heat-crosslinking agent, and the light-irradiated part is insolubilized. It is possible to obtain a negative type relief pattern. Further, when the photosensitive compound (B) contains a photopolymerization initiator (b2) and the photosensitive resin composition further contains a radical polymerizable compound (D) described later, radical polymerization proceeds and the photosensitive resin composition is photosensitive. A negative pattern can be formed by insolubilizing the exposed portion of the film of the resin composition with the alkaline developer.
光酸発生剤(b1)としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。 Examples of the photoacid generator (b1) include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, iodonium salts and the like.
キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。また、光酸発生剤(b1)を2種以上含有することが好ましく、高感度な感光性樹脂組成物を得ることができる。 The quinonediazide compound includes a polyhydroxy compound in which quinonediazide sulfonic acid is ester-bonded, a polyamino compound in which quinonediazide sulfonic acid is conjugated with a sulfonamide, and a polyhydroxypolyamino compound in which quinonediazide sulfonic acid is ester-bonded and / or sulfone. Examples thereof include amide-bonded compounds. It is preferable that 50 mol% or more of all the functional groups of these polyhydroxy compounds and polyamino compounds are substituted with quinonediazide. Further, it is preferable to contain two or more kinds of photoacid generators (b1), and a highly sensitive photosensitive resin composition can be obtained.
光酸発生剤としては、キノンジアジドは5−ナフトキノンジアジドスルホニル基、4−ナフトキノンジアジドスルホニル基のいずれも好ましく用いることができる。4−ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5−ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光する波長によって4−ナフトキノンジアジドスルホニルエステル化合物、5−ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4−ナフトキノンジアジドスルホニル基、5−ナフトキノンジアジドスルホニル基を有するナフトキノンジアジドスルホニルエステル化合物を含有してもよいし、4−ナフトキノンジアジドスルホニルエステル化合物と5−ナフトキノンジアジドスルホニルエステル化合物を含有してもよい。 As the photoacid generator, as the quinone diazide, any of a 5-naphthoquinone diazidosulfonyl group and a 4-naphthoquinone diazidosulfonyl group can be preferably used. The 4-naphthoquinone diazidosulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure. The 5-naphthoquinone diazidosulfonyl ester compound has absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure. In the present invention, it is preferable to select a 4-naphthoquinone diazidosulfonyl ester compound or a 5-naphthoquinone diazidosulfonyl ester compound depending on the wavelength to be exposed. Further, a naphthoquinone diazidosulfonyl ester compound having a 4-naphthoquinone diazidosulfonyl group and a 5-naphthoquinone diazidosulfonyl group may be contained in the same molecule, or a 4-naphthoquinone diazidosulfonyl ester compound and a 5-naphthoquinone diazidosulfonyl ester compound may be contained. It may be contained.
上記ナフトキノンジアジド化合物は、フェノール性水酸基を有する化合物と、キノンジアジドスルホン酸化合物とのエステル化反応によって、合成することが可能であって、公知の方法により合成することができる。これらのナフトキノンジアジド化合物を使用することで解像度、感度がより向上する。 The naphthoquinone diazide compound can be synthesized by an esterification reaction of a compound having a phenolic hydroxyl group and a quinone diazido sulfonic acid compound, and can be synthesized by a known method. By using these naphthoquinone diazide compounds, the resolution and sensitivity are further improved.
光酸発生剤(b1)のうち、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩は、露光によって発生した酸成分を適度に安定化させるため好ましい。中でもスルホニウム塩が好ましい。さらに増感剤などを必要に応じて含有することもできる。 Of the photoacid generators (b1), sulfonium salts, phosphonium salts, and diazonium salts are preferable because they appropriately stabilize the acid component generated by exposure. Of these, the sulfonium salt is preferable. Further, a sensitizer or the like can be contained as needed.
感光性樹脂組成物において、光酸発生剤(b1)の含有量は、高感度化の観点から、樹脂100質量部に対して0.01〜50質量部が好ましい。このうち、キノンジアジド化合物は3〜40質量部が好ましい。また、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩の総量は0.5〜20質量部が好ましい。 In the photosensitive resin composition, the content of the photoacid generator (b1) is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the resin from the viewpoint of increasing sensitivity. Of these, the quinone diazide compound is preferably 3 to 40 parts by mass. The total amount of the sulfonium salt, the phosphonium salt and the diazonium salt is preferably 0.5 to 20 parts by mass.
光重合開始剤(b2)としては、例えば、ベンジルケタール系光重合開始剤、α−ヒドロキシケトン系光重合開始剤、α−アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤、チタノセン系光重合開始剤、ベンゾフェノン系光重合開始剤、アセトフェノン系光重合開始剤、芳香族ケトエステル系光重合開始剤又は安息香酸エステル系光重合開始剤が好ましく、露光時の感度向上の観点から、α−ヒドロキシケトン系光重合開始剤、α−アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤又はベンゾフェノン系光重合開始剤がより好ましく、α−アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤がさらに好ましい。 Examples of the photopolymerization initiator (b2) include a benzyl ketal-based photopolymerization initiator, an α-hydroxyketone-based photopolymerization initiator, an α-aminoketone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and an oxime ester. Initiators of photopolymerization, aclysin-based photopolymerization, titanosen-based photopolymerization initiators, benzophenone-based photopolymerization initiators, acetophenone-based photopolymerization initiators, aromatic ketoester-based photopolymerization initiators, or benzoic acid ester-based photopolymerization initiators. Agents are preferred, and from the viewpoint of improving sensitivity during exposure, α-hydroxyketone-based photopolymerization initiators, α-aminoketone-based photopolymerization initiators, acylphosphine oxide-based photopolymerization initiators, oxime ester-based photopolymerization initiators, and acrydin A photopolymerization initiator or a benzophenone-based photopolymerization initiator is more preferable, and an α-aminoketone-based photopolymerization initiator, an acylphosphine oxide-based photopolymerization initiator, and an oxime ester-based photopolymerization initiator are further preferable.
α−アミノケトン系光重合開始剤としては、例えば、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタン−1−オン、2−ジメチルアミノ−2−(4−メチルベンジル)−1−(4−モルホリノフェニル)−ブタン−1−オン又は3,6−ビス(2−メチル−2−モルホリノプロピオニル)−9−オクチル−9H−カルバゾールなど公知のものが挙げられる。 Examples of the α-aminoketone-based photopolymerization initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1- (4). -Morpholinenophenyl) -butane-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholinophenyl) -butane-1-one or 3,6-bis (2-methyl-) Known examples include 2-morpholinopropionyl) -9-octyl-9H-carbazole.
アシルホスフィンオキシド系光重合開始剤としては、例えば、2,4,6−トリメチルベンゾイル−ジフェニルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド又はビス(2,6−ジメトキシベンゾイル)−(2,4,4−トリメチルペンチル)ホスフィンオキシドなど公知のものが挙げられる。 Examples of the acylphosphine oxide-based photopolymerization initiator include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide or bis (2,6-dimethoxybenzoyl). )-(2,4,4-trimethylpentyl) Phosphine oxide and the like are known.
オキシムエステル系光重合開始剤としては、例えば、1−フェニルプロパン−1,2−ジオン−2−(O−エトキシカルボニル)オキシム、1−フェニルブタン−1,2−ジオン−2−(O−メトキシカルボニル)オキシム、1,3−ジフェニルプロパン−1,2,3−トリオン−2−(O−エトキシカルボニル)オキシム、1−[4−(フェニルチオ)フェニル]オクタン−1,2−ジオン−2−(O−ベンゾイル)オキシム、1−[4−[4−(カルボキシフェニル)チオ]フェニル]プロパン−1,2−ジオン−2−(O−アセチル)オキシム、1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]エタノン−1−(O−アセチル)オキシム、1−[9−エチル−6−[2−メチル−4−[1−(2,2−ジメチル−1,3−ジオキソラン−4−イル)メチルオキシ]ベンゾイル]−9H−カルバゾール−3−イル]エタノン−1−(O−アセチル)オキシム又は1−(9−エチル−6−ニトロ−9H−カルバゾール−3−イル)−1−[2−メチル−4−(1−メトキシプロパン−2−イルオキシ)フェニル]メタノン−1−(O−アセチル)オキシムなど公知のものが挙げられる。 Examples of the oxime ester-based photopolymerization initiator include 1-phenylpropane-1,2-dione-2- (O-ethoxycarbonyl) oxime and 1-phenylbutane-1,2-dione-2- (O-methoxy). Oxime of carbonyl, 1,3-diphenylpropane-1,2,3-trione-2- (O-ethoxycarbonyl) oxime, 1- [4- (phenylthio) phenyl] octane-1,2-dione-2-( O-benzoyl) oxime, 1- [4- [4- (carboxyphenyl) thio] phenyl] propane-1,2-dione-2- (O-acetyl) oxime, 1- [9-ethyl-6- (2) −Methylbenzoyl) -9H-carbazole-3-yl] etanone-1- (O-acetyl) oxime, 1- [9-ethyl-6- [2-methyl-4- [1- (2,2-dimethyl-) 1,3-Dioxolan-4-yl) methyloxy] benzoyl] -9H-carbazole-3-yl] etanone-1- (O-acetyl) oxime or 1- (9-ethyl-6-nitro-9H-carbazole- Known examples include 3-yl) -1- [2-methyl-4- (1-methoxypropan-2-yloxy) phenyl] methanone-1- (O-acetyl) oxime.
ベンジルケタール系光重合開始剤、α−ヒドロキシケトン系光重合開始剤、アクリジン系光重合開始剤、チタノセン系光重合開始剤、アセトフェノン系光重合開始剤、および安息香酸エステル系光重合開始剤についても公知の開始剤が使用できる。 Also for benzyl ketal photopolymerization initiators, α-hydroxyketone photopolymerization initiators, aclysin photopolymerization initiators, titanosen photopolymerization initiators, acetophenone photopolymerization initiators, and benzoic acid ester photopolymerization initiators. Known initiators can be used.
感光性樹脂組成物において、光重合開始剤(b2)の含有量は、樹脂(A)および後述のラジカル重合性化合物(D)の合計を100質量部とした場合において、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、0.7質量部以上がさらに好ましく、1質量部以上が特に好ましい。含有量が上記範囲内であると、露光時の感度を向上させることができる。一方、含有量は、25質量部以下が好ましく、20質量部以下がより好ましく、17質量部以下がさらに好ましく、15質量部以下が特に好ましい。含有量が上記範囲内であると、現像後の解像度を向上させることができるとともに、低テーパーのパターン形状を得ることができる。 In the photosensitive resin composition, the content of the photopolymerization initiator (b2) is 0.1 part by mass or more when the total of the resin (A) and the radically polymerizable compound (D) described later is 100 parts by mass. Is preferable, 0.5 parts by mass or more is more preferable, 0.7 parts by mass or more is further preferable, and 1 part by mass or more is particularly preferable. When the content is within the above range, the sensitivity at the time of exposure can be improved. On the other hand, the content is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, further preferably 17 parts by mass or less, and particularly preferably 15 parts by mass or less. When the content is within the above range, the resolution after development can be improved and a pattern shape having a low taper can be obtained.
<溶剤(C)>
感光性樹脂組成物は、溶剤(C)を含有する。
溶剤(C)としては、エチレングリコールモノメチルエーテルプロピレングリコールモノメチルエーテルなどのエーテル類、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチルなどのエステル類、エタノール、イソプロパノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、ジアセトンアルコールなどのケトン類、γ−ブチロラクトン、N−メチル−2−ピロリドン、N,N−ジメチルイソブチルアミド、3−メトキシ−N,N−ジメチルプロピオンアミド、などの極性の非プロトン性溶媒、トルエン、キシレンなどの芳香族炭化水素類など公知のものが挙げられる。これらを2種以上含有してもよい。溶剤(C)の含有量は、樹脂(A)100質量部に対して、好ましくは50質量部以上、より好ましくは100質量部以上であり、また、好ましくは2000質量部以下、より好ましくは1500質量部以下である。
<Solvent (C)>
The photosensitive resin composition contains the solvent (C).
Examples of the solvent (C) include ethers such as ethylene glycol monomethyl ether propylene glycol monomethyl ether, esters such as ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, ethyl acetate, butyl acetate, ethyl lactate, and butyl lactate, ethanol, and the like. Alcohols such as isopropanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, diacetone alcohol, γ-butyrolactone, N-methyl-2-pyrrolidone, N, N-dimethylisobutylamide, 3-methoxy Known examples include polar aproton solvents such as −N, N-dimethylpropionamide, and aromatic hydrocarbons such as toluene and xylene. Two or more of these may be contained. The content of the solvent (C) is preferably 50 parts by mass or more, more preferably 100 parts by mass or more, and preferably 2000 parts by mass or less, more preferably 1500 parts by mass with respect to 100 parts by mass of the resin (A). It is less than a part by mass.
<ラジカル重合性化合物(D)>
感光性樹脂組成物は、感光性化合物(B)が光重合開始剤(b2)を含む場合は、さらに、ラジカル重合性化合物(D)を含有することが好ましい。
<Radical polymerizable compound (D)>
When the photosensitive compound (B) contains a photopolymerization initiator (b2), the photosensitive resin composition preferably further contains a radically polymerizable compound (D).
ラジカル重合性化合物(D)とは、分子中に複数のエチレン性不飽和二重結合基を有する化合物をいう。露光時、前述の光重合開始剤(b2)から発生するラジカルによって、ラジカル重合性化合物(D)のラジカル重合が進行し、感光性樹脂組成物の膜の露光部がアルカリ現像液に対して不溶化することで、ネガ型のパターンを形成することができる。 The radically polymerizable compound (D) refers to a compound having a plurality of ethylenically unsaturated double bond groups in the molecule. At the time of exposure, radical polymerization of the radically polymerizable compound (D) proceeds by the radicals generated from the above-mentioned photopolymerization initiator (b2), and the exposed portion of the film of the photosensitive resin composition becomes insoluble in the alkaline developing solution. By doing so, a negative pattern can be formed.
ラジカル重合性化合物(D)を含有させることで、露光時のUV硬化が促進されて、露光時の感度を向上させることができる。加えて、熱硬化後の架橋密度が向上し、硬化物の硬度を向上させることができる。 By containing the radically polymerizable compound (D), UV curing at the time of exposure is promoted, and the sensitivity at the time of exposure can be improved. In addition, the crosslink density after thermosetting is improved, and the hardness of the cured product can be improved.
ラジカル重合性化合物(D)としては、ラジカル重合の進行しやすい、(メタ)アクリル基を有する化合物が好ましい。露光時の感度向上及び硬化物の硬度向上の観点から、(メタ)アクリル基を分子内に二つ以上有する化合物がより好ましい。ラジカル重合性化合物(D)の二重結合当量としては、露光時の感度向上及び硬化物の硬度向上の観点から、80〜400g/molが好ましい。 As the radically polymerizable compound (D), a compound having a (meth) acrylic group in which radical polymerization easily proceeds is preferable. From the viewpoint of improving the sensitivity at the time of exposure and improving the hardness of the cured product, a compound having two or more (meth) acrylic groups in the molecule is more preferable. The double bond equivalent of the radically polymerizable compound (D) is preferably 80 to 400 g / mol from the viewpoint of improving the sensitivity at the time of exposure and improving the hardness of the cured product.
ラジカル重合性化合物(D)としては、例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、2,2−ビス[4−(3−(メタ)アクリロキシ−2−ヒドロキシプロポキシ)フェニル]プロパン、1,3,5−トリス((メタ)アクリロキシエチル)イソシアヌル酸、1,3−ビス((メタ)アクリロキシエチル)イソシアヌル酸、9,9−ビス[4−(2−(メタ)アクリロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(3−(メタ)アクリロキシプロポキシ)フェニル]フルオレン若しくは9,9−ビス(4−(メタ)アクリロキシフェニル)フルオレン又はそれらの酸変性体、エチレンオキシド変性体若しくはプロピレンオキシド変性体など公知のものが挙げられる。 Examples of the radically polymerizable compound (D) include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and trimethyl propantri (d). Meta) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol hepta (meth) acrylate, tripentaerythritol Octa (meth) acrylate, 2,2-bis [4- (3- (meth) acryloxy-2-hydroxypropoxy) phenyl] propane, 1,3,5-tris ((meth) acryloxyethyl) isocyanuric acid, 1 , 3-Bis ((meth) acryloxyethyl) isocyanuric acid, 9,9-bis [4- (2- (meth) acryloxyethoxy) phenyl] fluorene, 9,9-bis [4- (3- (meth) acryloxyethoxy) phenyl] ) Acryloxypropoxy) phenyl] fluorene or 9,9-bis (4- (meth) acryloxiphenyl) fluorene or an acid-modified product thereof, an ethylene oxide-modified product, a propylene oxide-modified product, or the like.
現像後の解像度向上の観点から、それらの酸変性体又はエチレンオキシド変性体が好ましい。また、現像後の解像度向上の観点から、分子内に二つ以上のグリシドキシ基を有する化合物とエチレン性不飽和二重結合基を有する不飽和カルボン酸と、を開環付加反応させて得られる化合物に、多塩基酸カルボン酸又は多塩基カルボン酸無水物を反応させて得られる化合物も好ましい。 From the viewpoint of improving the resolution after development, those acid-modified products or ethylene oxide-modified products are preferable. Further, from the viewpoint of improving the resolution after development, a compound obtained by ring-opening addition reaction of a compound having two or more glycidoxy groups in the molecule and an unsaturated carboxylic acid having an ethylenically unsaturated double bond group. A compound obtained by reacting a polybasic carboxylic acid or a polybasic carboxylic acid anhydride is also preferable.
感光性樹脂組成物において、ラジカル重合性化合物(D)の含有量は、樹脂(A)およびラジカル重合性化合物(D)の合計を100質量部とした場合において、15質量部以上が好ましく、20質量部以上がより好ましく、25質量部以上がさらに好ましく、30質量部以上が特に好ましい。含有量が上記範囲内であると、露光時の感度を向上させることができるとともに、低テーパーのパターン形状を得ることができる。一方、含有量は、65質量部以下が好ましく、60質量部以下がより好ましく、55質量部以下がさらに好ましく、50質量部以下が特に好ましい。含有量が上記範囲内であると、硬化物の耐熱性を向上させることができるとともに、低テーパーのパターン形状を得ることができる。パターン形状を低テーパーとすることで、出来上がった有機ELパネルの駆動安定性を高めることができる。 In the photosensitive resin composition, the content of the radically polymerizable compound (D) is preferably 15 parts by mass or more, preferably 20 parts by mass or more, when the total of the resin (A) and the radically polymerizable compound (D) is 100 parts by mass. It is more preferably parts by mass or more, more preferably 25 parts by mass or more, and particularly preferably 30 parts by mass or more. When the content is within the above range, the sensitivity at the time of exposure can be improved and a pattern shape having a low taper can be obtained. On the other hand, the content is preferably 65 parts by mass or less, more preferably 60 parts by mass or less, further preferably 55 parts by mass or less, and particularly preferably 50 parts by mass or less. When the content is within the above range, the heat resistance of the cured product can be improved and a pattern shape having a low taper can be obtained. By making the pattern shape low taper, it is possible to improve the drive stability of the completed organic EL panel.
<熱架橋剤(E)>
感光性樹脂組成物は、さらに熱架橋剤(E)を含有することができる。
熱架橋剤とは、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基をはじめとする熱反応性の官能基を分子内に少なくとも2つ有する化合物を指す。熱架橋剤は、樹脂(A)またはその他添加成分を架橋し、熱硬化後の膜の耐熱性、耐薬品性および硬度を高めることができる。
<Thermal cross-linking agent (E)>
The photosensitive resin composition can further contain the thermal cross-linking agent (E).
The thermal cross-linking agent refers to a compound having at least two thermally reactive functional groups in the molecule, such as an alkoxymethyl group, a methylol group, an epoxy group, and an oxetanyl group. The thermosetting agent can crosslink the resin (A) or other additive components to increase the heat resistance, chemical resistance and hardness of the film after thermosetting.
アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物の好ましい例としては、例えば、DMOM−PC、TriML−P、TMOM−BP、HML−TPPHBA、HMOM−TPPHBA、(以上、商品名、本州化学工業(株)製)、NIKALAC MX−270、(以上、商品名、(株)三和ケミカル製)など公知のものが挙げられる。 Preferred examples of the compound having at least two alkoxymethyl groups or trimethylol groups include, for example, DMOM-PC, TriML-P, TMOM-BP, HML-TPPHBA, HMOM-TPPHBA, (hereinafter, trade name, Honshu Chemical Industry Co., Ltd.). (Manufactured by Sanwa Chemical Co., Ltd.), NIKARAC MX-270, (above, trade name, manufactured by Sanwa Chemical Co., Ltd.) and the like.
エポキシ基またはオキセタニル基を有する化合物としては、“エポライト”(登録商標)40E、“エポライト”100E、“エポライト”200E、(以上商品名、共栄社化学(株)製)、VG3101L(商品名、(株)プリンテック製)、“テピック”(登録商標)S、“テピック”G、“テピック”P(以上商品名、日産化学工業(株)製)、OXT−121、OXT−221、OX−SQ−H、OXT−191、PNOX−1009、RSOX(以上商品名、東亜合成(株)製)、など公知のものが挙げられる。 Examples of the compound having an epoxy group or an oxetanyl group include "Epolite" (registered trademark) 40E, "Epolite" 100E, "Epolite" 200E, (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), VG3101L (trade name, Co., Ltd.). ) Printec), "Tepic" (registered trademark) S, "Tepic" G, "Tepic" P (trade name, manufactured by Nissan Chemical Industry Co., Ltd.), OXT-121, OXT-221, OX-SQ- Known examples include H, OXT-191, PNOX-1009, RSOX (trade name, manufactured by Toagosei Co., Ltd.) and the like.
熱架橋剤(E)の含有量は、樹脂(A)100質量部に対して、5質量部以上であると、架橋密度が高くなり、耐薬品性が向上するため好ましい。さらに10質量部以上であるとより高い機械特性が得られる。一方、組成物の保存安定性、機械強度の観点から、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましい。 When the content of the thermal cross-linking agent (E) is 5 parts by mass or more with respect to 100 parts by mass of the resin (A), the cross-linking density becomes high and the chemical resistance is improved, which is preferable. Further, when it is 10 parts by mass or more, higher mechanical properties can be obtained. On the other hand, from the viewpoint of storage stability and mechanical strength of the composition, 50 parts by mass or less is preferable, 40 parts by mass or less is more preferable, and 30 parts by mass or less is further preferable.
<着色剤>
感光性樹脂組成物は、さらに、着色剤を含有してもよい。
<Colorant>
The photosensitive resin composition may further contain a colorant.
着色剤とは、特定波長の光を吸収する化合物であり、特に、可視光線の波長(380〜780nm)の光を吸収することで、着色する化合物をいう。 The colorant is a compound that absorbs light having a specific wavelength, and particularly refers to a compound that colors by absorbing light having a wavelength of visible light (380 to 780 nm).
着色剤を含有させることで、感光性樹脂組成物から得られる膜を着色させることができ、感光性樹脂組成物の膜を透過する光、又は、感光性樹脂組成物の膜から反射する光を、所望の色に着色させる、着色性を付与することができる。また、感光性樹脂組成物の膜を透過する光、又は、感光性樹脂組成物の膜から反射する光から、着色剤が吸収する波長の光を遮光する、遮光性を付与することができる。 By containing a colorant, the film obtained from the photosensitive resin composition can be colored, and the light transmitted through the film of the photosensitive resin composition or the light reflected from the film of the photosensitive resin composition can be emitted. , It is possible to impart colorability to color a desired color. Further, it is possible to impart a light-shielding property that blocks light having a wavelength absorbed by the colorant from the light transmitted through the film of the photosensitive resin composition or the light reflected from the film of the photosensitive resin composition.
着色剤としては、可視光線の波長の光を吸収し、白、赤、橙、黄、緑、青、紫、黒色に着色する化合物が挙げられる。二色以上を組み合わせることで、感光性樹脂組成物の所望の感光性樹脂組成物の膜を透過する光、又は、感光性樹脂組成物の膜から反射する光を、所望の色座標に調色する、調色性を向上させることができる。 Examples of the colorant include compounds that absorb light having a wavelength of visible light and color white, red, orange, yellow, green, blue, purple, and black. By combining two or more colors, the light transmitted through the film of the desired photosensitive resin composition of the photosensitive resin composition or the light reflected from the film of the photosensitive resin composition is toned to the desired color coordinates. It is possible to improve the toning property.
前記着色剤は、後述する顔料および/または染料であることが好ましい。
また、前記着色剤は、黒色の着色剤であることが好ましい。
着色剤を含有する場合は、合わせて公知の分散剤を含有してもよい。
The colorant is preferably a pigment and / or dye described below.
Further, the colorant is preferably a black colorant.
When a colorant is contained, a known dispersant may also be contained.
<フェノール性水酸基を有する化合物>
感光性樹脂組成物は、必要に応じて感光性樹脂組成物のアルカリ現像性を補う目的で、フェノール性水酸基を有する化合物を含有してもよい。フェノール性水酸基を有する化合物としては、例えば、Bis−Z、BisOC−Z、TekP−4HBPA(テトラキスP−DO−BPA)、TrisPHAP、TrisP−PA、TrisP−PHBA、(以上、商品名、本州化学工業(株)から入手できる)、BIR−OC、BIP−PCBIR−PC、(以上、商品名、旭有機材工業(株)から入手できる)など公知のものが挙げられる。
<Compound with phenolic hydroxyl group>
The photosensitive resin composition may contain a compound having a phenolic hydroxyl group for the purpose of supplementing the alkali developability of the photosensitive resin composition, if necessary. Examples of the compound having a phenolic hydroxyl group include Bis-Z, BisOC-Z, TekP-4HBPA (Tetrakiss P-DO-BPA), TrisPHAP, TrisP-PA, TrisP-PHBA, (hereinafter, trade name, Honshu Chemical Industry Co., Ltd.). (Available from Asahi Organic Materials Co., Ltd.), BIR-OC, BIP-PCBIR-PC, (above, trade name, available from Asahi Organic Material Industry Co., Ltd.) and the like.
<樹脂(A)以外の樹脂>
感光性樹脂組成物は樹脂(A)以外の、他の樹脂を含有してもよい。具体的には、ポリアミド、アクリル酸を共重合したアクリルポリマー、ノボラック樹脂、レゾール樹脂、シロキサン樹脂、ポリヒドロキシスチレン樹脂、またそれらにメチロール基、アルコキシメチル基やエポキシ基などの架橋基を導入した樹脂、それらの共重合ポリマーなどが挙げられる。樹脂(A)と他の樹脂を併用する場合、感光性樹脂組成物に含まれる全樹脂100質量%に対して、樹脂(A)が30質量%以上であることが好ましい。
<Resin other than resin (A)>
The photosensitive resin composition may contain a resin other than the resin (A). Specifically, polyamide, an acrylic polymer copolymerized with acrylic acid, a novolak resin, a resole resin, a siloxane resin, a polyhydroxystyrene resin, and a resin in which a cross-linking group such as a methylol group, an alkoxymethyl group or an epoxy group is introduced. , Their copolymerized polymers and the like. When the resin (A) is used in combination with another resin, the amount of the resin (A) is preferably 30% by mass or more with respect to 100% by mass of the total resin contained in the photosensitive resin composition.
感光性樹脂組成物は、さらに公知の増感剤、連鎖移動剤、重合禁止剤、密着改良剤、界面活性剤、熱酸発生剤、熱塩基発生剤、無機粒子等を適宜含有してもよい。 The photosensitive resin composition may further appropriately contain known sensitizers, chain transfer agents, polymerization inhibitors, adhesion improvers, surfactants, thermoacid generators, thermobase generators, inorganic particles and the like. ..
<感光性樹脂組成物の製造方法>
次に、感光性樹脂組成物の製造方法について説明する。例えば、前記本発明の樹脂(A)、感光性化合物(B)、および溶剤(C)成分と、必要により、熱架橋剤、密着改良剤、界面活性剤、フェノール性水酸基を有する化合物、無機粒子、熱酸発生剤などを溶解させることにより、感光性樹脂組成物を得ることができる。溶解方法としては、撹拌や加熱が挙げられる。加熱する場合、加熱温度は感光性樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、室温〜80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法がある。また、界面活性剤や一部の密着改良剤など、撹拌溶解時に気泡を発生しやすい成分については、他の成分を溶解してから最後に添加することで、気泡の発生による他成分の溶解不良を防ぐことができる。
<Manufacturing method of photosensitive resin composition>
Next, a method for producing the photosensitive resin composition will be described. For example, the resin (A), the photosensitive compound (B), and the solvent (C) component of the present invention, and if necessary, a thermal cross-linking agent, an adhesion improver, a surfactant, a compound having a phenolic hydroxyl group, and inorganic particles. , A photosensitive resin composition can be obtained by dissolving a thermal acid generator or the like. Examples of the melting method include stirring and heating. When heating, the heating temperature is preferably set within a range that does not impair the performance of the photosensitive resin composition, and is usually room temperature to 80 ° C. Further, the dissolution order of each component is not particularly limited, and for example, there is a method of sequentially dissolving compounds having low solubility. In addition, for components that tend to generate bubbles during stirring and dissolution, such as surfactants and some adhesion improvers, by dissolving other components and then adding them last, the other components are poorly dissolved due to the generation of bubbles. Can be prevented.
得られた感光性樹脂組成物は、濾過フィルターを用いて濾過し、ゴミや粒子を除去することが好ましい。フィルター孔径は、例えば0.5μm、0.2μm、0.1μm、0.07μm、0.05μm、0.02μmなどがあるが、これらに限定されない。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTEE)などがあるが、ポリエチレンやナイロンが好ましい。 The obtained photosensitive resin composition is preferably filtered using a filtration filter to remove dust and particles. The filter pore diameter is, for example, 0.5 μm, 0.2 μm, 0.1 μm, 0.07 μm, 0.05 μm, 0.02 μm, and the like, but is not limited thereto. The material of the filtration filter includes polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTEE) and the like, but polyethylene and nylon are preferable.
<硬化物>
本発明の硬化物は、前記感光性樹脂組成物を硬化したものである。
感光性樹脂組成物を硬化するには、感光性樹脂組成物を加熱硬化すればよい。加熱硬化により耐熱性の低い成分を除去できるため、硬化物の耐熱性および耐薬品性を向上させることができる。特に、感光性樹脂組成物が含有する樹脂(A)が、ポリイミド前駆体、ポリベンゾオキサゾール前駆体の構造単位を含む場合は、加熱硬化によりイミド環、オキサゾール環を形成できるため、耐熱性および耐薬品性を向上させることができ、また、アルコキシメチル基、メチロール基、エポキシ基、またはオキタニル基を少なくとも2つ以上有する化合物を含む場合は、加熱硬化により熱架橋反応を進行させることができ、耐熱性および耐薬品性を向上させることができる。
<Cured product>
The cured product of the present invention is a cured product of the photosensitive resin composition.
In order to cure the photosensitive resin composition, the photosensitive resin composition may be heat-cured. Since components having low heat resistance can be removed by heat curing, the heat resistance and chemical resistance of the cured product can be improved. In particular, when the resin (A) contained in the photosensitive resin composition contains a structural unit of a polyimide precursor or a polybenzoxazole precursor, an imide ring and an oxazole ring can be formed by heat curing, so that heat resistance and resistance are obtained. The chemical properties can be improved, and when a compound having at least two or more alkoxymethyl groups, polyimide groups, epoxy groups, or octanyl groups is contained, the thermal cross-linking reaction can be promoted by heat curing, and heat resistance can be improved. The property and chemical resistance can be improved.
この加熱硬化はある温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間〜5時間実施する。一例としては、150℃、250℃で各30分ずつ熱処理する。あるいは室温より300℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。加熱硬化条件としては、硬化物から発生するアウトガス量を低減させる点で300℃以上が好ましく、350℃以上がより好ましい。また硬化物に十分な膜靭性を与える点で500℃以下が好ましく、450℃以下がより好ましい。 This heat curing is carried out for 5 minutes to 5 hours while selecting a certain temperature and gradually raising the temperature, or selecting a certain temperature range and continuously raising the temperature. As an example, heat treatment is performed at 150 ° C. and 250 ° C. for 30 minutes each. Alternatively, a method such as linearly raising the temperature from room temperature to 300 ° C. over 2 hours can be mentioned. As the heat curing conditions, 300 ° C. or higher is preferable, and 350 ° C. or higher is more preferable, in terms of reducing the amount of outgas generated from the cured product. Further, 500 ° C. or lower is preferable, and 450 ° C. or lower is more preferable, from the viewpoint of giving sufficient film toughness to the cured product.
<硬化物の製造方法>
本発明の感光性樹脂組成物を用いた硬化物の製造方法について詳しく説明する。
得られた硬化物は薄膜トランジスタのゲート絶縁層または層間絶縁層として好適に用いることができる。
<Manufacturing method of cured product>
A method for producing a cured product using the photosensitive resin composition of the present invention will be described in detail.
The obtained cured product can be suitably used as a gate insulating layer or an interlayer insulating layer of a thin film transistor.
感光性樹脂組成物を用いた硬化物の製造方法は、基板上に感光性樹脂組成物を塗布して感光性樹脂膜を形成する工程、該感光性樹脂膜を乾燥する工程、乾燥した感光性樹脂膜を露光する工程、露光した感光性樹脂膜を現像する工程および現像した感光性樹脂膜を加熱処理して硬化物を得る工程を含む。 The method for producing a cured product using the photosensitive resin composition includes a step of applying the photosensitive resin composition on a substrate to form a photosensitive resin film, a step of drying the photosensitive resin film, and a dried photosensitive resin film. It includes a step of exposing the resin film, a step of developing the exposed photosensitive resin film, and a step of heat-treating the developed photosensitive resin film to obtain a cured product.
以下に各工程の詳細について述べる。
基板上に感光性樹脂組成物を塗布して感光性樹脂膜を形成する工程について説明する。感光性樹脂組成物を基板上にスピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などで塗布し、感光性樹脂組成物の塗布膜を得る。これらの中でスリットコート法が好ましく用いられる。塗布膜の膜厚は、感光性樹脂組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が0.1〜10μm、好ましくは0.3〜5μmになるように塗布される。
Details of each process will be described below.
The process of applying the photosensitive resin composition on the substrate to form the photosensitive resin film will be described. The photosensitive resin composition is applied onto a substrate by a spin coating method, a slit coating method, a dip coating method, a spray coating method, a printing method, or the like to obtain a coating film of the photosensitive resin composition. Of these, the slit coat method is preferably used. The film thickness of the coating film varies depending on the solid content concentration, viscosity, etc. of the photosensitive resin composition, but is usually applied so that the film thickness after drying is 0.1 to 10 μm, preferably 0.3 to 5 μm. NS.
塗布に先立ち、感光性樹脂組成物を塗布する基板を予め前述した密着改良剤で前処理してもよい。例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5〜20質量%溶解させた溶液を用いて、基材表面を処理する方法が挙げられる。基材表面の処理方法としては、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法が挙げられる。 Prior to coating, the substrate to which the photosensitive resin composition is applied may be pretreated with the above-mentioned adhesion improving agent in advance. For example, a solution in which the adhesion improver is dissolved in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, and diethyl adipate in an amount of 0.5 to 20% by mass is used. Then, a method of treating the surface of the base material can be mentioned. Examples of the method for treating the surface of the base material include methods such as spin coating, slit die coating, bar coating, dip coating, spray coating, and steam treatment.
次に、感光性樹脂膜を乾燥する工程について説明する。
塗布後、必要に応じて減圧乾燥処理を施す。例えば、真空チャンバー内に配置されたプロキシピン上に塗布膜を形成した基板を置き、真空チャンバー内を減圧することで減圧乾燥する。減圧乾燥速度は、真空チャンバー容積、真空ポンプ能力やチャンバーとポンプ間の配管径等にもよるが、例えば塗布基板のない状態で、真空チャンバー内が60秒経過後40Paまで減圧される条件等に設定して使用される。一般的な減圧乾燥時間は、30秒から100秒程度であることが多く、減圧乾燥終了時の真空チャンバー内到達圧力は塗布基板のある状態で通常100Pa以下である。 塗布後または減圧乾燥後、塗布膜を加熱乾燥するのが一般的である。この工程をプリベークとも言う。乾燥はホットプレート、オーブン、赤外線などを使用する。ホットプレートを用いる場合、プレート上に直接、もしくは、プレート上に設置したプロキシピン等の治具上に塗布膜を保持して加熱する。加熱温度は塗布膜の種類や目的により様々であり、50℃から180℃の範囲で1分間〜数時間行うことが好ましい。
Next, the step of drying the photosensitive resin film will be described.
After coating, if necessary, perform vacuum drying treatment. For example, a substrate on which a coating film is formed is placed on a proxy pin arranged in a vacuum chamber, and the inside of the vacuum chamber is depressurized to dry under reduced pressure. The vacuum drying rate depends on the volume of the vacuum chamber, the capacity of the vacuum pump, the diameter of the pipe between the chamber and the pump, etc. Set and used. The general vacuum drying time is often about 30 seconds to 100 seconds, and the pressure reached in the vacuum chamber at the end of vacuum drying is usually 100 Pa or less with the coated substrate. After coating or drying under reduced pressure, the coating film is generally heat-dried. This process is also called prebaking. Use a hot plate, oven, infrared rays, etc. for drying. When a hot plate is used, the coating film is held and heated directly on the plate or on a jig such as a proxy pin installed on the plate. The heating temperature varies depending on the type and purpose of the coating film, and is preferably carried out in the range of 50 ° C. to 180 ° C. for 1 minute to several hours.
次に、乾燥した感光性樹脂膜を露光する工程について説明する。
感光性樹脂膜上に所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。ポジ型の感光性を有する場合、露光部が現像液に溶解する。ネガ型の感光性を有する場合、露光部が硬化し、現像液に不溶化する。
Next, a step of exposing the dried photosensitive resin film will be described.
The photosensitive resin film is exposed to chemical rays by irradiating it with a chemical line through a mask having a desired pattern. Chemical rays used for exposure include ultraviolet rays, visible rays, electron beams, X-rays, etc., but in the present invention, it is preferable to use i-rays (365 nm), h-rays (405 nm), and g-rays (436 nm) of mercury lamps. .. When it has positive photosensitivity, the exposed part dissolves in the developer. When it has a negative photosensitive property, the exposed portion is cured and insolubilized in a developing solution.
次に、露光した感光性樹脂膜を現像する工程について説明する。
露光後、現像液を用いてポジ型の場合は露光部を、またはネガ型の場合は非露光部を除去することによって所望のパターンを形成する。現像液としては、ポジ型とネガ型のいずれの場合もテトラメチルアンモニウムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウムなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN−メチル−2−ピロリドン、γ−ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像方式としては、スプレー、パドル、浸漬、超音波等の方式が可能である。
Next, a step of developing the exposed photosensitive resin film will be described.
After the exposure, a desired pattern is formed by removing the exposed portion in the case of the positive type and the non-exposed portion in the case of the negative type using a developing solution. As the developer, an aqueous solution of an alkaline compound such as tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, or potassium hydroxide is preferable in both positive and negative types. In some cases, these alkaline aqueous solutions are mixed with polar solvents such as N-methyl-2-pyrrolidone, γ-butyrolactone and dimethylacrylamide, alcohols such as methanol, ethanol and isopropanol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate. , Cyclopentanone, Cyclohexanone, Isobutyl Ketone, Methyl Isobutyl Ketone and other ketones may be added alone or in combination of several types. As the developing method, a spray, paddle, immersion, ultrasonic wave or the like can be used.
次に、現像によって形成したパターンを蒸留水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを蒸留水に加えてリンス処理をしてもよい。 Next, it is preferable to rinse the pattern formed by development with distilled water. Here, too, alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to distilled water for rinsing.
次に、現像した感光性樹脂膜を加熱処理して硬化物を得る工程について説明する。
加熱硬化により耐熱性の低い成分を除去できるため、硬化物の耐熱性および耐薬品性を向上させることができる。特に、感光性樹脂組成物が含有する樹脂(A)が、ポリイミド前駆体、ポリベンゾオキサゾール前駆体の構造単位を含む場合は、加熱硬化によりイミド環、オキサゾール環を形成できるため、耐熱性および耐薬品性を向上させることができ、また、アルコキシメチル基、メチロール基、エポキシ基、またはオキタニル基を少なくとも2つ以上有する化合物を含む場合は、加熱硬化により熱架橋反応を進行させることができ、耐熱性および耐薬品性を向上させることができる。この加熱硬化はある温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間〜5時間実施する。一例としては、150℃、250℃で各30分ずつ熱処理する。あるいは室温より300℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。加熱硬化条件としては、硬化物から発生するアウトガス量を低減させる点で300℃以上が好ましく、350℃以上がより好ましい。また硬化物に十分な膜靭性を与える点で500℃以下が好ましく、450℃以下がより好ましい。
Next, a step of heat-treating the developed photosensitive resin film to obtain a cured product will be described.
Since components having low heat resistance can be removed by heat curing, the heat resistance and chemical resistance of the cured product can be improved. In particular, when the resin (A) contained in the photosensitive resin composition contains a structural unit of a polyimide precursor or a polybenzoxazole precursor, an imide ring and an oxazole ring can be formed by heat curing, so that heat resistance and resistance are obtained. The chemical properties can be improved, and when a compound having at least two or more alkoxymethyl groups, polyimide groups, epoxy groups, or octanyl groups is contained, the thermal cross-linking reaction can be promoted by heat curing, and heat resistance can be improved. The property and chemical resistance can be improved. This heat curing is carried out for 5 minutes to 5 hours while selecting a certain temperature and gradually raising the temperature, or selecting a certain temperature range and continuously raising the temperature. As an example, heat treatment is performed at 150 ° C. and 250 ° C. for 30 minutes each. Alternatively, a method such as linearly raising the temperature from room temperature to 300 ° C. over 2 hours can be mentioned. As the heat curing conditions, 300 ° C. or higher is preferable, and 350 ° C. or higher is more preferable, in terms of reducing the amount of outgas generated from the cured product. Further, 500 ° C. or lower is preferable, and 450 ° C. or lower is more preferable, from the viewpoint of giving sufficient film toughness to the cured product.
本発明の樹脂(A)を用いた感光性樹脂組成物を硬化した硬化物は、有機EL表示装置や半導体装置、多層配線板等に使用することができる。具体的には、有機EL表示装置の絶縁層、有機EL表示装置の駆動回路付き基板の平坦化層、半導体装置の再配線間の層間絶縁膜、半導体のパッシベーション膜、半導体装置の保護膜、高密度実装用多層配線の層間絶縁膜、回路基板の配線保護絶縁層、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化層などの用途に好適に用いられる。以下、有機EL表示装置を例に説明する。 A cured product obtained by curing a photosensitive resin composition using the resin (A) of the present invention can be used for an organic EL display device, a semiconductor device, a multilayer wiring board, or the like. Specifically, the insulating layer of the organic EL display device, the flattening layer of the substrate with the drive circuit of the organic EL display device, the interlayer insulating film between the rewiring of the semiconductor device, the passive film of the semiconductor, the protective film of the semiconductor device, and the height. It is suitably used for applications such as an interlayer insulating film for multi-layer wiring for density mounting, a wiring protective insulating layer for a circuit board, an on-chip microlens for a solid-state imaging device, and a flattening layer for various displays and solid-state imaging devices. Hereinafter, an organic EL display device will be described as an example.
<有機EL表示装置>
本発明の有機EL表示装置は、前記硬化物を具備する。
具体的には、基板上に、平坦化層、第1電極、画素分割層、有機EL層、および第2電極を有し、平坦化層および/または画素分割層が本発明の硬化物を含む有機EL表示装置である。アクティブマトリックス型の表示装置を例に挙げると、ガラスや樹脂フィルムなどの基板上に、TFT(薄膜トランジスタ)と、TFTの側方部に位置しTFTと接続された配線とを有し、その上に凹凸を覆うようにして平坦化層を有し、さらに平坦化層上に表示素子が設けられている。表示素子と配線とは、平坦化層に形成されたコンタクトホールを介して接続される。本発明の感光性樹脂組成物を硬化した硬化物は平坦化性とパターン寸法安定性に優れるため、平坦化層に好ましく用いられる。特に、近年、有機EL表示装置のフレキシブル化が主流になっており、前述の駆動回路を有する基板が樹脂フィルムからなる有機EL表示装置であってもよい。
<Organic EL display device>
The organic EL display device of the present invention comprises the cured product.
Specifically, the substrate has a flattening layer, a first electrode, a pixel dividing layer, an organic EL layer, and a second electrode, and the flattening layer and / or the pixel dividing layer contains the cured product of the present invention. It is an organic EL display device. Taking an active matrix type display device as an example, a TFT (thin film transistor) is provided on a substrate such as glass or a resin film, and wiring located on the side of the TFT and connected to the TFT is provided on the TFT (thin film transistor). A flattening layer is provided so as to cover the unevenness, and a display element is further provided on the flattening layer. The display element and the wiring are connected via a contact hole formed in the flattening layer. A cured product obtained by curing the photosensitive resin composition of the present invention is preferably used as a flattening layer because it has excellent flatness and pattern dimensional stability. In particular, in recent years, flexible organic EL display devices have become mainstream, and the substrate having the above-mentioned drive circuit may be an organic EL display device made of a resin film.
<半導体装置>
本発明の半導体装置は、上記硬化物を具備する。
<Semiconductor device>
The semiconductor device of the present invention comprises the above-mentioned cured product.
具体的には、公知の半導体装置の構造中の、絶縁膜および/または保護膜に本発明の硬化物を含む半導体装置である。本発明の感光性樹脂組成物を硬化した硬化物は平坦化性とパターン寸法安定性に優れるため、上記の絶縁膜および/または保護膜に好ましく用いられる。 Specifically, it is a semiconductor device in which the cured product of the present invention is contained in an insulating film and / or a protective film in the structure of a known semiconductor device. The cured product obtained by curing the photosensitive resin composition of the present invention is excellent in flattening property and pattern dimensional stability, and is therefore preferably used for the above-mentioned insulating film and / or protective film.
以下、実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の感光性樹脂組成物の評価は以下の方法により行った。 Hereinafter, the present invention will be described with reference to examples and the like, but the present invention is not limited to these examples. The photosensitive resin composition in the examples was evaluated by the following method.
<膜厚の測定方法>
大日本スクリーン製造(株)製ラムダエースSTM−602を使用し、プリベーク後、現像後、キュア後の膜厚を、ポリイミドを対象に屈折率1.629として測定した。
<Measurement method of film thickness>
Using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd., the film thickness after prebaking, developing, and curing was measured with a refractive index of 1.629 for polyimide.
(1−1)ポジ型感光性樹脂組成物の平坦性評価
図1に平坦性評価サンプルの断面図を示す。厚さ1μm、幅5μmラインパターンが、5μm間隔で平行に5本パターニングされている段差基板1に、実施例1〜27および比較例1〜4で作製した感光性樹脂組成物(ワニス)をスピンコーター(Opticoat MS−B150;ミカサ(株)製)で回転塗布し、次いで、120℃のホットプレート(DIGITAL HOT PLATE HP−18A;アズワン(株)製)で2分間ベークし、厚さ2.5μmのプリベーク膜を作製した。このプリベーク膜を高温イナートガスオーブン(INH−9CD−S;光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で5℃/分で250℃まで昇温し、250℃で1時間加熱処理する加熱硬化工程を行い、ワニスの硬化物2を作製した。得られた硬化物2の表面段差h1〜h3を表面プロファイラー(P・15;ケーエルエー・テンコール株式会社)で測定し、h1〜h3の平均値を表面段差hとした。加熱硬化工程後の表面段差hが、0.03μm未満のものをA+、0.03μm以上0.10μm未満のものをA、0.10μm以上0.15μm未満のものをB+、0.15μm以上0.20μm未満のものをB、0.20μm以上0.25μm未満のものをC+、0.25μm以上0.30μm未満のものをC、0.3μm以上のものをDと判定した。
(1-1) Flatness Evaluation of Positive Photosensitive Resin Composition FIG. 1 shows a cross-sectional view of a flatness evaluation sample. The photosensitive resin compositions (varnishes) prepared in Examples 1 to 27 and Comparative Examples 1 to 4 are spun on a stepped
(1−2)ネガ型感光性樹脂組成物の平坦性評価
実施例28〜29および比較例5〜6で作製した感光性樹脂組成物(ワニス)を用い、ホットプレートの温度を100℃に変更した以外は、前記(1−1)と同様に評価した。
(1-2) Evaluation of Flatness of Negative Photosensitive Resin Composition Using the photosensitive resin compositions (varnish) prepared in Examples 28 to 29 and Comparative Examples 5 to 6, the temperature of the hot plate was changed to 100 ° C. The evaluation was carried out in the same manner as in (1-1) above, except that
(2−1)ポジ型感光性樹脂組成物の寸法安定性評価
実施例1〜27および比較例1〜4で作製した感光性樹脂組成物(ワニス)を8インチシリコンウエハ上に回転塗布し、次いで、120℃のホットプレート(東京エレクトロン(株)製の塗布現像装置Act−8使用)で2分間ベークし、厚さ約2.5μmのプリベーク膜を作製した。この膜を、i線ステッパー(NIKON NSR i9)を用いて0〜1000mJ/cm2の露光量の範囲にて10mJ/cm2ステップで露光した。露光後、2.38質量%のテトラメチルアンモニウム(TMAH)水溶液(三菱ガス化学(株)製、ELM−D)で10〜300秒間現像し、ついで純水でリンスして、直径約5μmのホールパターンを有する、膜厚約2μmの現像膜を得た。続いて、現像膜を、高温イナートガスオーブン(INH−9CD−S;光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で5℃/分で250℃まで昇温し、250℃で1時間加熱処理するキュア工程を行い、ワニスの硬化物を作製した。
(2-1) Evaluation of Dimensional Stability of Positive Photosensitive Resin Composition The photosensitive resin composition (varnish) prepared in Examples 1 to 27 and Comparative Examples 1 to 4 was rotationally coated on an 8-inch silicon wafer. Next, it was baked on a hot plate at 120 ° C. (using a coating developer Act-8 manufactured by Tokyo Electron Limited) for 2 minutes to prepare a prebaked film having a thickness of about 2.5 μm. The membrane was exposed at 10 mJ / cm 2 steps at an exposure amount ranging 0~1000mJ / cm 2 using an i-line stepper (NIKON NSR i9). After exposure, develop with 2.38 mass% tetramethylammonium (TMAH) aqueous solution (ELM-D manufactured by Mitsubishi Gas Chemical Company, Inc.) for 10 to 300 seconds, then rinse with pure water to form a hole with a diameter of about 5 μm. A developing film having a pattern and having a film thickness of about 2 μm was obtained. Subsequently, the developing film is heated to 250 ° C. at 5 ° C./min at an oxygen concentration of 20 ppm or less using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo System Co., Ltd.), and 1 at 250 ° C. A cured product of varnish was prepared by performing a curing step of heat treatment for a time.
デジタルマイクロスコープ(VHX−6000;(株)キーエンス製)を用いて、キュア工程前後の直径5μmホールパターンの開口寸法を測定し、ΔCD(キュア前の開口寸法−キュア後の開口寸法)を求めた。ΔCDが、0.10μm未満のものをA、0.10μm以上0.15μm未満のものをB+、0.15μm以上0.20μm未満のものをB、0.20μm以上0.25μm未満のものをC+、0.25μm以上0.30μm未満のものをC、0.3μm以上のものをDと判定した。 Using a digital microscope (VHX-6000; manufactured by KEYENCE CORPORATION), the opening size of a hole pattern having a diameter of 5 μm before and after the curing process was measured, and ΔCD (opening size before curing-opening size after curing) was determined. .. ΔCD of less than 0.10 μm is A, those of 0.10 μm or more and less than 0.15 μm are B +, those of 0.15 μm or more and less than 0.20 μm are B, and those of 0.20 μm or more and less than 0.25 μm are C +. , 0.25 μm or more and less than 0.30 μm was judged as C, and 0.3 μm or more was judged as D.
(2−2)ネガ型感光性樹脂組成物の寸法安定性評価
実施例28〜29および比較例5〜6で作製した感光性樹脂組成物(ワニス)を8インチシリコンウエハ上に回転塗布し、次いで、100℃のホットプレート(東京エレクトロン(株)製の塗布現像装置Act−8使用)で2分間ベークし、厚さ約2.0μmのプリベーク膜を作製した。この膜を、i線ステッパー(NIKON NSR i9)を用いて0〜1000mJ/cm2の露光量にて10mJ/cm2ステップで露光した。露光後、2.38質量%のテトラメチルアンモニウム(TMAH)水溶液(三菱ガス化学(株)製、ELM−D)で10〜300秒間現像し、ついで純水でリンスして、直径約5μmのホールパターンを有する、膜厚約2μmの現像膜を得た。続いて、現像膜を、高温イナートガスオーブン(INH−9CD−S;光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で5℃/分で250℃まで昇温し、250℃で1時間加熱処理するキュア工程を行い、ワニスの硬化物を作製した。
(2-2) Evaluation of Dimensional Stability of Negative Photosensitive Resin Composition The photosensitive resin composition (varnish) prepared in Examples 28 to 29 and Comparative Examples 5 to 6 was rotationally coated on an 8-inch silicon wafer. Next, it was baked on a hot plate at 100 ° C. (using a coating developer Act-8 manufactured by Tokyo Electron Limited) for 2 minutes to prepare a prebaked film having a thickness of about 2.0 μm. The membrane was exposed at 10 mJ / cm 2 steps by the exposure amount of 0~1000mJ / cm 2 using an i-line stepper (NIKON NSR i9). After exposure, develop with 2.38 mass% tetramethylammonium (TMAH) aqueous solution (ELM-D manufactured by Mitsubishi Gas Chemical Company, Inc.) for 10 to 300 seconds, then rinse with pure water to form a hole with a diameter of about 5 μm. A developing film having a pattern and having a film thickness of about 2 μm was obtained. Subsequently, the developing film is heated to 250 ° C. at 5 ° C./min at an oxygen concentration of 20 ppm or less using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo System Co., Ltd.), and 1 at 250 ° C. A cured product of varnish was prepared by performing a curing step of heat treatment for a time.
デジタルマイクロスコープ(VHX−6000;(株)キーエンス製)を用いて、キュア工程前後の直径5μmホールパターンの開口寸法を測定し、ΔCD(キュア前の開口寸法−キュア後の開口寸法)を求めた。ΔCDが、0.10μm未満のものをA、0.10μm以上0.15μm未満のものをB+、0.15μm以上0.20μm未満のものをB、0.20μm以上0.25μm未満のものをC+、0.25μm以上0.30μm未満のものをC、0.3μm以上のものをDと判定した。 Using a digital microscope (VHX-6000; manufactured by KEYENCE CORPORATION), the opening size of a hole pattern having a diameter of 5 μm before and after the curing process was measured, and ΔCD (opening size before curing-opening size after curing) was determined. .. ΔCD of less than 0.10 μm is A, those of 0.10 μm or more and less than 0.15 μm are B +, those of 0.15 μm or more and less than 0.20 μm are B, and those of 0.20 μm or more and less than 0.25 μm are C +. , 0.25 μm or more and less than 0.30 μm was judged as C, and 0.3 μm or more was judged as D.
平坦性評価結果が、A+〜Cであり、かつ、寸法安定性評価結果が、A〜Cであるものを合格とし、平坦性評価結果または寸法安定性評価結果の少なくとも一方がDであるものを不合格と判定した。 Those whose flatness evaluation results are A + to C and whose dimensional stability evaluation results are A to C are accepted, and those whose flatness evaluation result or at least one of the dimensional stability evaluation results is D are accepted. It was judged as a failure.
以下の実施例、比較例に示す酸二無水物、ジアミン、その他試薬の略記号の名称は下記の通りである。
APDMMS:3−アミノプロピルジメチルメトキシシラン
BAHF:2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン
Bis−AT−AF:2,2−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン
BPDC:4,4’−ビフェニルジカルボニルクロリド
DFA:N、N−ジメチルホルムアミドジメチルアセタール
DPHA:“KAYARAD”(登録商標) DPHA(日本化薬(株)製;ジペンタエリスリトールヘキサアクリレート)
HFA−MDA:3,3’−ビス(1−ヒドロキシ−1−トリフルオロメチル−2,2,2−トリフルオロエチル)−メチレンジアニリン
MAP:3−アミノフェノール;メタアミノフェノール
MBA:3−メトキシ−n−ブチルアセテート
NCI−831:“アデカアークルズ”(登録商標)NCI−831((株)ADEKA製;1−(9−エチル−6−ニトロ−9H−カルバゾール−3−イル)−1−[2−メチル−4−(1−メトキシプロパン−2−イルオキシ)フェニル]メタノン−1−(O−アセチル)オキシム)
NMP:N−メチル−2−ピロリドン
ODPA:4,4’−オキシジフタル酸二無水物
PTMS:フェニルトリメトキシシラン
TAC:無水トリメリット酸クロリド
各実施例、比較例に使用したニカラックMX−270(E−1)を下記に示した。
The names of abbreviations for acid dianhydrides, diamines, and other reagents shown in the following examples and comparative examples are as follows.
APDMMS: 3-aminopropyldimethylmethoxysilane BAHF: 2,2-bis (3-amino-4-hydroxyphenyl) Hexafluoropropane Bis-AT-AF: 2,2-bis (3-amino-4-methylphenyl) Hexafluoropropane BPDC: 4,4'-biphenyldicarbonyl chloride DFA: N, N-dimethylformamide dimethylacetal DPHA: "KAYARAD" (registered trademark) DPHA (manufactured by Nippon Kayaku Co., Ltd .; dipentaerythritol hexaacrylate)
HFA-MDA: 3,3'-bis (1-hydroxy-1-trifluoromethyl-2,2,2-trifluoroethyl) -methylenedianiline MAP: 3-aminophenol; metaaminophenol MBA: 3-methoxy -N-Butylacetate NCI-831: "Adecaarclus" (registered trademark) NCI-831 (manufactured by ADEKA Co., Ltd .; 1- (9-ethyl-6-nitro-9H-carbazole-3-yl) -1- (9-ethyl-6-nitro-9H-carbazole-3-yl) -1- [2-Methyl-4- (1-methoxypropan-2-yloxy) phenyl] Metanon-1- (O-acetyl) oxime)
NMP: N-methyl-2-pyrrolidone ODPA: 4,4'-oxydiphthalic acid dianhydride PTMS: Phenyltrimethoxysilane TAC: Trimellitic anhydride chloride Chloride MX-270 (E-) used in each Example and Comparative Example 1) is shown below.
<合成例1 ヒドロキシル基含有ジアミン化合物(HA)の合成>
BAHF18.3g(0.05モル)をアセトン100mL、プロピレンオキシド17.4g(0.3モル)に溶解させ、−15℃に冷却した。ここに3−ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、−15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
<Synthesis Example 1 Synthesis of Hydroxy Group-Containing Diamine Compound (HA)>
18.3 g (0.05 mol) of BAHF was dissolved in 100 mL of acetone and 17.4 g (0.3 mol) of propylene oxide and cooled to −15 ° C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride in 100 mL of acetone was added dropwise thereto. After completion of the dropping, the reaction was carried out at −15 ° C. for 4 hours, and then the temperature was returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50 ° C.
得られた白色固体30gを300mLのステンレスオートクレーブに入れ、メチルセロソルブ250mLに分散させ、5%パラジウム−炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物(HA)を得た。得られた固体をそのまま反応に使用した。 30 g of the obtained white solid was placed in a 300 mL stainless autoclave, dispersed in 250 mL of methyl cellosolve, and 2 g of 5% palladium-carbon was added. Hydrogen was introduced into this with a balloon, and the reduction reaction was carried out at room temperature. After about 2 hours, the reaction was terminated after confirming that the balloon did not deflate any more. After completion of the reaction, the palladium compound as a catalyst was removed by filtration and concentrated with a rotary evaporator to obtain a hydroxyl group-containing diamine compound (HA) represented by the following formula. The obtained solid was used as it was in the reaction.
<合成例2 キノンジアジド化合物(QD−1)の合成>
乾燥窒素気流下、三口フラスコに、TrisP−PAを21.23g(0.05mol
)、5−ナフトキノンジアジドスルホン酸クロリドを37.62g(0.14mol)秤
量し、1,4−ジオキサン450gに溶解させて室温にした。ここに、1,4−ジオキサ
ン50gとトリエチルアミン15.58g(0.154mol)の混合溶液を、系内が3
5℃以上にならないように攪拌しながら滴下した。滴下終了後、混合溶液を30℃で2時
間攪拌した。攪拌後、析出したトリエチルアミン塩をろ過によって除去した後、ろ液を水
に投入して攪拌し、析出した固体沈殿をろ過して得た。得られた固体を減圧乾燥によって
乾燥させ、下記構造のナフトキノンジアジド構造を有する化合物(QD−1)を得た。
<Synthesis Example 2 Synthesis of quinonediazide compound (QD-1)>
21.23 g (0.05 mol) of TrisP-PA in a three-necked flask under a dry nitrogen stream.
), 5-Naftquinonediazide sulfonic acid chloride was weighed in 37.62 g (0.14 mol) and dissolved in 450 g of 1,4-dioxane to bring it to room temperature. Here, a mixed solution of 50 g of 1,4-dioxane and 15.58 g (0.154 mol) of triethylamine was added to 3 in the system.
The mixture was added dropwise with stirring so as not to exceed 5 ° C. After completion of the dropping, the mixed solution was stirred at 30 ° C. for 2 hours. After stirring, the precipitated triethylamine salt was removed by filtration, and then the filtrate was added to water for stirring, and the precipitated solid precipitate was obtained by filtration. The obtained solid was dried under reduced pressure to obtain a compound (QD-1) having a naphthoquinone diazide structure having the following structure.
<合成例3> シルセスキオキサン含有モノマー(S−1)の合成>
シルセスキオキサン含有モノマー(S−1)は、特開2007−302635号公報に記載の方法で合成した。
<Synthesis Example 3> Synthesis of Silsesquioxane-Containing Monomer (S-1)>
The silsesquioxane-containing monomer (S-1) was synthesized by the method described in JP-A-2007-302635.
<合成例4> シルセスキオキサン含有モノマー(S−2)の合成>
シルセスキオキサン含有モノマー(S−2)は、特開2004−331647号公報に記載の方法で合成した。
<Synthesis Example 4> Synthesis of Silsesquioxane-Containing Monomer (S-2)>
The silsesquioxane-containing monomer (S-2) was synthesized by the method described in JP-A-2004-331647.
<合成例5> シルセスキオキサン含有モノマー(S−3)の合成>
シルセスキオキサン含有モノマー(S−3)は、原料にSO1450−TriSilanolisobutylPOSS(ハイブリッドプラスチック社製)を用いて、特開2005−232024号公報に記載の方法を参考に合成した。
<Synthesis Example 5> Synthesis of Silsesquioxane-Containing Monomer (S-3)>
The silsesquioxane-containing monomer (S-3) was synthesized by using SO1450-TriSilanolisobutylPOSS (manufactured by Hybrid Plastic Co., Ltd.) as a raw material and referring to the method described in JP-A-2005-232024.
<合成例6> シルセスキオキサン含有モノマー(S−4)の合成>
乾燥窒素気流下、特開2017−078103号公報に記載の方法で合成した化合物(S−4−1)52.1g(0.040モル)にトルエン500gを加え、Karstedt’s触媒(2wt%トルエン溶液)25μLを加えた後、反応液を80℃に昇温した。これに、特開2004−331647号公報に記載の方法で合成した、アリル−p−ニトロフェニルエーテル30.1g(0.17モル)を滴下し、80℃で24時間撹拌した。放冷後、トルエン100gおよび水300gを加えて抽出した。有機層を水洗した後、無水硫酸マグネシウムで乾燥した。減圧下でトルエンを溜去して、得られた残査をシリカゲルカラムクロマトグラフィー(溶出溶媒:トルエン)で精製した。減圧下でトルエンを溜去した後、エタノール/酢酸エチルから再結晶して化合物(S−4−2)を得た。
<Synthesis Example 6> Synthesis of Silsesquioxane-Containing Monomer (S-4)>
Under a dry nitrogen stream, 500 g of toluene was added to 52.1 g (0.040 mol) of the compound (S-4-1) synthesized by the method described in JP-A-2017-078103, and a Karstedt's catalyst (2 wt% toluene) was added. After adding 25 μL of the solution), the temperature of the reaction solution was raised to 80 ° C. To this, 30.1 g (0.17 mol) of allyl-p-nitrophenyl ether synthesized by the method described in JP-A-2004-331647 was added dropwise, and the mixture was stirred at 80 ° C. for 24 hours. After allowing to cool, 100 g of toluene and 300 g of water were added for extraction. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Toluene was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (eluting solvent: toluene). Toluene was distilled off under reduced pressure and then recrystallized from ethanol / ethyl acetate to obtain compound (S-4-2).
水素雰囲気下、前記の通り合成した、化合物(S−4−2)14.1g(0.007モル)、Pd/C(2g)、およびTHF100gの混合物を、30℃で200時間攪拌した。Pd/Cをろ別後、減圧下でTHFを溜去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル)で精製した。減圧下で酢酸エチルを溜去してシルセスキオキサン含有モノマー(S−4)を得た。 Under a hydrogen atmosphere, a mixture of 14.1 g (0.007 mol) of compound (S-4-2), Pd / C (2 g) and 100 g of THF synthesized as described above was stirred at 30 ° C. for 200 hours. After filtering Pd / C, THF was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (eluting solvent: ethyl acetate). Ethyl acetate was distilled off under reduced pressure to obtain a silsesquioxane-containing monomer (S-4).
[実施例1]
乾燥窒素気流下、BAHF5.49g(0.015モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)8.89g(0.006モル)をNMP10gとともに加えた後、ODPA2.79g(0.009モル)をNMP15gとともに加え、40℃で8時間撹拌した。その後、DFA3.6g(0.03モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−1)を得た。
[Example 1]
Under a dry nitrogen stream, 5.49 g (0.015 mol) of BAHF was dissolved in 20 g of NMP. To this, 8.89 g (0.006 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 10 g of NMP, then 2.79 g (0.009 mol) of ODPA was added together with 15 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. bottom. Then, 3.6 g (0.03 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-1).
得られた樹脂(A−1)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA1を得た。得られたワニスA1を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-1), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) are added to 50 g of GBL for positive photosensitive. A varnish A1 of a resin composition was obtained. Using the obtained varnish A1, the flatness evaluation and the pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例2]
乾燥窒素気流下、BAHF7.70g(0.021モル)とBis−AT−AF3.26g(0.009モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)13.34g(0.009モル)をNMP15gとともに加えた後、ODPA6.52g(0.021モル)をNMP15gとともに加え、40℃で8時間撹拌した。その後、DFA7.2g(0.06モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−2)を得た。
[Example 2]
Under a dry nitrogen stream, 7.70 g (0.021 mol) of BAHF and 3.26 g (0.009 mol) of Bis-AT-AF were dissolved in 20 g of NMP. To this, 13.34 g (0.009 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 15 g of NMP, then 6.52 g (0.021 mol) of ODPA was added together with 15 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. bottom. Then, 7.2 g (0.06 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-2).
得られた樹脂(A−2)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA2を得た。得られたワニスA2を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-2), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A2 of a resin composition was obtained. Using the obtained varnish A2, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例3]
乾燥窒素気流下、BAHF7.69g(0.021モル)とBis−AT−AF3.26g(0.009モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)8.89g(0.006モル)をNMP9gとともに加えた後、ODPA7.45g(0.024モル)をNMP10gとともに加え、40℃で8時間撹拌した。その後、DFA7.2g(0.06モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−3)を得た。
[Example 3]
Under a dry nitrogen stream, 7.69 g (0.021 mol) of BAHF and 3.26 g (0.009 mol) of Bis-AT-AF were dissolved in 20 g of NMP. To this, 8.89 g (0.006 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 9 g of NMP, then 7.45 g (0.024 mol) of ODPA was added together with 10 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. bottom. Then, 7.2 g (0.06 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-3).
得られた樹脂(A−3)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA3を得た。得られたワニスA3を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-3), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A3 of a resin composition was obtained. Using the obtained varnish A3, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例4]
乾燥窒素気流下、BAHF7.33g(0.020モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)2.96g(0.002モル)をNMP10gとともに加えた後、ODPA5.58g(0.018モル)をNMP12gとともに加え、40℃で8時間撹拌した。その後、DFA4.8g(0.04モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−4)を得た。
[Example 4]
Under a dry nitrogen stream, 7.33 g (0.020 mol) of BAHF was dissolved in 20 g of NMP. To this, 2.96 g (0.002 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 10 g of NMP, then 5.58 g (0.018 mol) of ODPA was added together with 12 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. bottom. Then, 4.8 g (0.04 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-4).
得られた樹脂(A−4)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA4を得た。得られたワニスA4を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-4), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A4 of a resin composition was obtained. Using the obtained varnish A4, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例5]
乾燥窒素気流下、BAHF7.33g(0.020モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)1.19g(0.0008モル)をNMP9gとともに加えた後、ODPA5.96g(0.0192モル)をNMP10gとともに加え、40℃で8時間撹拌した。その後、DFA4.8g(0.04モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−5)を得た。
[Example 5]
Under a dry nitrogen stream, 7.33 g (0.020 mol) of BAHF was dissolved in 20 g of NMP. To this, 1.19 g (0.0008 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 9 g of NMP, then 5.96 g (0.0192 mol) of ODPA was added together with 10 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. bottom. Then, 4.8 g (0.04 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-5).
得られた樹脂(A−5)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA5を得た。得られたワニスA5を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-5), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A5 of a resin composition was obtained. Using the obtained varnish A5, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例6]
乾燥窒素気流下、BAHF5.12g(0.014モル)とBis−AT−AF2.18g(0.006モル)をNMP30gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)23.92g(0.016モル)をNMP15gとともに加えた後、ODPA1.24g(0.004モル)40℃で8時間撹拌した。その後、DFA4.8g(0.04モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−6)を得た。
[Example 6]
Under a dry nitrogen stream, 5.12 g (0.014 mol) of BAHF and 2.18 g (0.006 mol) of Bis-AT-AF were dissolved in 30 g of NMP. To this, 23.92 g (0.016 mol) of the silsesquioxane structure-containing monomer (S-1) was added together with 15 g of NMP, and then 1.24 g (0.004 mol) of ODPA was stirred at 40 ° C. for 8 hours. Then, 4.8 g (0.04 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-6).
得られた樹脂(A−6)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA6を得た。得られたワニスA6を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-6), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A6 of a resin composition was obtained. Using the obtained varnish A6, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例7]
乾燥窒素気流下、BAHF2.56g(0.007モル)とBis−AT−AF2.54g(0.007モル)をNMP30gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)20.8g(0.014モル)をNMP20gとともに加えた後、40℃で8時間撹拌した。その後、DFA3.3g(0.028モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−7)を得た。
[Example 7]
Under a dry nitrogen stream, 2.56 g (0.007 mol) of BAHF and 2.54 g (0.007 mol) of Bis-AT-AF were dissolved in 30 g of NMP. To this, 20.8 g (0.014 mol) of the silsesquioxane structure-containing monomer (S-1) was added together with 20 g of NMP, and then the mixture was stirred at 40 ° C. for 8 hours. Then, 3.3 g (0.028 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-7).
得られた樹脂(A−7)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA7を得た。得られたワニスA7を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-7), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A7 of a resin composition was obtained. Using the obtained varnish A7, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例8]
乾燥窒素気流下、BAHF1.83g(0.003モル)とBis−AT−AF1.81g(0.007モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)14.9g(0.010モル)をNMP10gとともに加えた後、40℃で8時間撹拌した。その後、DFA2.4g(0.02モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−8)を得た。
[Example 8]
Under a dry nitrogen stream, 1.83 g (0.003 mol) of BAHF and 1.81 g (0.007 mol) of Bis-AT-AF were dissolved in 20 g of NMP. After adding 14.9 g (0.010 mol) of the silsesquioxane structure-containing monomer (S-1) together with 10 g of NMP, the mixture was stirred at 40 ° C. for 8 hours. Then, 2.4 g (0.02 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-8).
得られた樹脂(A−8)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA8を得た。得られたワニスA8を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-8), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A8 of a resin composition was obtained. Using the obtained varnish A8, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例9]
乾燥窒素気流下、シルセスキオキサン構造含有モノマー(S−2)5.81g(0.004モル)とBAHF4.40g(0.012モル)をNMP20gに溶解させた。ここにODPA4.96g(0.016モル)をNMP17gとともに加え、40℃で8時間撹拌した。その後、DFA3.8g(0.032モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−9)を得た。
[Example 9]
Under a dry nitrogen stream, 5.81 g (0.004 mol) of silsesquioxane structure-containing monomer (S-2) and 4.40 g (0.012 mol) of BAHF were dissolved in 20 g of NMP. To this, 4.96 g (0.016 mol) of ODPA was added together with 17 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. Then, 3.8 g (0.032 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-9).
得られた樹脂(A−9)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA9を得た。得られたワニスA9を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-9), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A9 was obtained. Using the obtained varnish A9, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例10]
乾燥窒素気流下、シルセスキオキサン構造含有モノマー(S−3)7.96g(0.008モル)とBAHF8.80g(0.024モル)をNMP30gに溶解させた。ここにODPA9.92g(0.032モル)をNMP30gとともに加え、40℃で8時間撹拌した。その後、DFA7.6g(0.064モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−10)を得た。
[Example 10]
7.96 g (0.008 mol) of silsesquioxane structure-containing monomer (S-3) and 8.80 g (0.024 mol) of BAHF were dissolved in 30 g of NMP under a dry nitrogen stream. To this, 9.92 g (0.032 mol) of ODPA was added together with 30 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. Then, 7.6 g (0.064 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-10).
得られた樹脂(A−10)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA10を得た。得られたワニスA10を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-10), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A10 of a resin composition was obtained. Using the obtained varnish A10, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例11]
乾燥窒素気流下、シルセスキオキサン構造含有モノマー(S−4)9.17g(0.005モル)とBAHF5.49g(0.015モル)をNMP30gに溶解させた。ここにODPA6.20g(0.020モル)をNMP12gとともに加え、40℃で8時間撹拌した。その後、DFA4.3g(0.036モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−11)を得た。
[Example 11]
Under a dry nitrogen stream, 9.17 g (0.005 mol) of silsesquioxane structure-containing monomer (S-4) and 5.49 g (0.015 mol) of BAHF were dissolved in 30 g of NMP. To this, 6.20 g (0.020 mol) of ODPA was added together with 12 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. Then, 4.3 g (0.036 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-11).
得られた樹脂(A−11)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA9を得た。得られたワニスA9を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-11), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A9 was obtained. Using the obtained varnish A9, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例12]
乾燥窒素気流下、HFA−MDA5.50g(0.010モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)5.93g(0.004モル)をNMP10gとともに加えた後、ODPA1.86g(0.006モル)をNMP5gとともに加え、40℃で8時間撹拌した。その後、DEA2.4g(0.02モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−12)を得た。
[Example 12]
Under a dry nitrogen stream, 5.50 g (0.010 mol) of HFA-MDA was dissolved in 20 g of NMP. To this, 5.93 g (0.004 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 10 g of NMP, then 1.86 g (0.006 mol) of ODPA was added together with 5 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. bottom. Then, 2.4 g (0.02 mol) of DEA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-12).
得られた樹脂(A−12)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(d−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA12を得た。得られたワニスA12を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-12), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (d-1) were added to 50 g of GBL for positive photosensitive. A varnish A12 of a resin composition was obtained. Using the obtained varnish A12, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例13]
乾燥窒素気流下、Bis−AT−AF4.57g(0.0126モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)4.00g(0.0027モル)をNMP10gとともに加えた後、ODPA4.75g(0.0153モル)をNMP7gとともに加え、40℃で2時間撹拌した。その後、MAP1.18g(0.108モル)をNMP3gとともに加え、40℃で6時間撹拌した。DFA4.3g(0.04モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−13)を得た。
[Example 13]
Under a dry nitrogen stream, 4.57 g (0.0126 mol) of Bis-AT-AF was dissolved in 20 g of NMP. To this, 4.00 g (0.0027 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 10 g of NMP, then 4.75 g (0.0153 mol) of ODPA was added together with 7 g of NMP, and the mixture was stirred at 40 ° C. for 2 hours. bottom. Then, 1.18 g (0.108 mol) of MAP was added together with 3 g of NMP, and the mixture was stirred at 40 ° C. for 6 hours. 4.3 g (0.04 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-13).
得られた樹脂(A−13)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA13を得た。得られたワニスA13を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-13), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A13 of a resin composition was obtained. Using the obtained varnish A13, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例14]
乾燥窒素気流下、フェニルトリメトキシシラン29.74g(0.15モル)とジメトキシ3−アミノプロピルジメチルメトキシシラン2.95g(0.02モル)をNMP50gに溶解させた。ここに蒸留水8.46g(0.47モル)を加え、60℃で2時間撹拌した。続いて、シルセスキオキサン構造含有モノマー(S−2)14.52g(0.01モル)とBis−AT−AF10.87g(0.03モル)をNMP10gとともに加えた後、ODPA15.51g(0.05モル)をNMP15gとともに加え、40℃で2時間撹拌した。DFA11.9g(0.10モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−14)を得た。
[Example 14]
29.74 g (0.15 mol) of phenyltrimethoxysilane and 2.95 g (0.02 mol) of dimethoxy3-aminopropyldimethylmethoxysilane were dissolved in 50 g of NMP under a dry nitrogen stream. 8.46 g (0.47 mol) of distilled water was added thereto, and the mixture was stirred at 60 ° C. for 2 hours. Subsequently, 14.52 g (0.01 mol) of the silsesquioxane structure-containing monomer (S-2) and 10.87 g (0.03 mol) of Bis-AT-AF were added together with 10 g of NMP, and then 15.51 g (0) of ODPA. 0.05 mol) was added with 15 g of NMP and stirred at 40 ° C. for 2 hours. 11.9 g (0.10 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-14).
得られた樹脂(A−14)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA14を得た。得られたワニスA14を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表4に示す。 10 g of the obtained resin (A-14), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A14 was obtained. Using the obtained varnish A14, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 4.
[実施例15]
乾燥窒素気流下、フェニルトリメトキシシラン10.71g(0.0540モル)と3−アミノプロピルジメチルメトキシシラン3.18g(0.0216モル)をNMP50gに溶解させた。ここに蒸留水3.3g(0.183モル)を加え、60℃で2時間撹拌した。続いて、BAHF7.92g(0.0216モル)とBis−AT−AF7.83g(0.0216モル)をNMP10gとともに加えた後、ODPA16.75g(0.0540モル)をNMP20gとともに加え、40℃で2時間撹拌した。DFA12.9g(0.11モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−15)を得た。
[Example 15]
Under a dry nitrogen stream, 10.71 g (0.0540 mol) of phenyltrimethoxysilane and 3.18 g (0.0216 mol) of 3-aminopropyldimethylmethoxysilane were dissolved in 50 g of NMP. 3.3 g (0.183 mol) of distilled water was added thereto, and the mixture was stirred at 60 ° C. for 2 hours. Subsequently, 7.92 g (0.0216 mol) of BAHF and 7.83 g (0.0216 mol) of Bis-AT-AF were added together with 10 g of NMP, and 16.75 g (0.0540 mol) of ODPA was added together with 20 g of NMP at 40 ° C. The mixture was stirred for 2 hours. 12.9 g (0.11 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-15).
得られた樹脂(A−15)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA15を得た。得られたワニスA15を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-15), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A15 of the resin composition was obtained. Using the obtained varnish A15, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例16]
BAHF7.92g(0.0216モル)を15.84g(0.432モル)に変更し、Bis−AT−AF7.83g(0.0216モル)を加えなかった以外は、実施例15と同様に合成し、樹脂(A−16)を得た。
[Example 16]
Synthesized in the same manner as in Example 15 except that 7.92 g (0.0216 mol) of BAHF was changed to 15.84 g (0.432 mol) and 7.83 g (0.0216 mol) of Bis-AT-AF was not added. Then, a resin (A-16) was obtained.
得られた樹脂(A−16)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA16を得た。得られたワニスA16を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-16), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A16 of a resin composition was obtained. Using the obtained varnish A16, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例17]
BAHF7.92g(0.0216モル)を1.98g(0.0056モル)に変更し、Bis−AT−AF7.83g(0.0216モル)を13.70g(0.0378モル)に変更した以外は、実施例15と同様に合成し、樹脂(A−17)を得た。
[Example 17]
Except for changing BAHF 7.92 g (0.0216 mol) to 1.98 g (0.0056 mol) and Bis-AT-AF 7.83 g (0.0216 mol) to 13.70 g (0.0378 mol). Was synthesized in the same manner as in Example 15 to obtain a resin (A-17).
得られた樹脂(A−17)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA17を得た。得られたワニスA17を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-17), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A17 of a resin composition was obtained. Using the obtained varnish A17, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例18]
BAHF7.92g(0.0216モル)をHFA−MDA11.89g(0.0216モル)に変更した以外は、実施例12と同様に合成し、樹脂(A−18)を得た。
[Example 18]
Resin (A-18) was obtained by synthesizing in the same manner as in Example 12 except that 7.92 g (0.0216 mol) of BAHF was changed to 11.89 g (0.0216 mol) of HFA-MDA.
得られた樹脂(A−18)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA18を得た。得られたワニスA18を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-18), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A18 of the resin composition was obtained. Using the obtained varnish A18, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例19]
乾燥窒素気流下、フェニルトリメトキシシラン10.71g(0.0540モル)と3−アミノプロピルジメチルメトキシシラン3.18g(0.0216モル)をNMP50gに溶解させた。ここに蒸留水3.3g(0.183モル)を加え、60℃で2時間撹拌した。続いて、Bis−AT−AF9.78g(0.0270モル)をNMP10gとともに加えた後、ODPA16.75g(0.0540モル)をNMP20gとともに加え、40℃で2時間撹拌した。その後、MAP3.54g(0.0324モル)をNMP3gとともに加え、40℃で6時間撹拌した。DFA12.9g(0.11モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−19)を得た。
[Example 19]
Under a dry nitrogen stream, 10.71 g (0.0540 mol) of phenyltrimethoxysilane and 3.18 g (0.0216 mol) of 3-aminopropyldimethylmethoxysilane were dissolved in 50 g of NMP. 3.3 g (0.183 mol) of distilled water was added thereto, and the mixture was stirred at 60 ° C. for 2 hours. Subsequently, 9.78 g (0.0270 mol) of Bis-AT-AF was added together with 10 g of NMP, 16.75 g (0.0540 mol) of ODPA was added together with 20 g of NMP, and the mixture was stirred at 40 ° C. for 2 hours. Then, 3.54 g (0.0324 mol) of MAP was added together with 3 g of NMP, and the mixture was stirred at 40 ° C. for 6 hours. 12.9 g (0.11 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-19).
得られた樹脂(A−19)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA19を得た。得られたワニスA19を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-19), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A19 was obtained. Using the obtained varnish A19, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例20]
乾燥窒素気流下、フェニルトリメトキシシラン29.74g(0.15モル)とジメトキシ3−アミノプロピルジメチルメトキシシラン2.95g(0.02モル)をNMP50gに溶解させた。ここに蒸留水8.46g(0.47モル)を加え、60℃で2時間撹拌した。続いて、Bis−AT−AF14.49g(0.04モル)をNMP10gとともに加えた後、ODPA15.51g(0.05モル)をNMP15gとともに加え、40℃で2時間撹拌した。DFA11.9g(0.10モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−20)を得た。
[Example 20]
29.74 g (0.15 mol) of phenyltrimethoxysilane and 2.95 g (0.02 mol) of dimethoxy3-aminopropyldimethylmethoxysilane were dissolved in 50 g of NMP under a dry nitrogen stream. 8.46 g (0.47 mol) of distilled water was added thereto, and the mixture was stirred at 60 ° C. for 2 hours. Subsequently, 14.49 g (0.04 mol) of Bis-AT-AF was added together with 10 g of NMP, then 15.51 g (0.05 mol) of ODPA was added together with 15 g of NMP, and the mixture was stirred at 40 ° C. for 2 hours. 11.9 g (0.10 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-20).
得られた樹脂(A−20)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA20を得た。得られたワニスA20を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-20), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A20 of a resin composition was obtained. Using the obtained varnish A20, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例21]
乾燥窒素気流下、BAHF5.86g(0.016モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)5.92g(0.004モル)をNMP10gとともに加えた後、ODPA4.96g(0.016モル)をNMP7gとともに加え、40℃で2時間撹拌した。その後、MAP0.87g(0.008モル)をNMP3gとともに加え、40℃で6時間撹拌した。DFA4.8g(0.04モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−21)を得た。
[Example 21]
Under a dry nitrogen stream, 5.86 g (0.016 mol) of BAHF was dissolved in 20 g of NMP. To this, 5.92 g (0.004 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 10 g of NMP, then 4.96 g (0.016 mol) of ODPA was added together with 7 g of NMP, and the mixture was stirred at 40 ° C. for 2 hours. bottom. Then, 0.87 g (0.008 mol) of MAP was added together with 3 g of NMP, and the mixture was stirred at 40 ° C. for 6 hours. 4.8 g (0.04 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-21).
得られた樹脂(A−21)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA21を得た。得られたワニスA21を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-21), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A21 was obtained. Using the obtained varnish A21, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例22]
乾燥窒素気流下、BAHF5.12g(0.014モル)と“ジェファーミン”ED−900(HUNTSMAN(株)製)5.40g(0.006モル)をNMP30gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)8.90g(0.006モル)をNMP15gとともに加えた後、ODPA4.34g(0.014モル)をNMP4gとともに加え、40℃で8時間撹拌した。その後、DFA4.8g(0.04モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−22)を得た。
[Example 22]
Under a dry nitrogen stream, 5.12 g (0.014 mol) of BAHF and 5.40 g (0.006 mol) of "Jeffamine" ED-900 (manufactured by HUNTSMAN Corporation) were dissolved in 30 g of NMP. To this, 8.90 g (0.006 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 15 g of NMP, then 4.34 g (0.014 mol) of ODPA was added together with 4 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. bottom. Then, 4.8 g (0.04 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-22).
得られた樹脂(A−22)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA22を得た。得られたワニスA22を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-22), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A22 was obtained. Using the obtained varnish A22, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例23]
乾燥窒素気流下、BAHF3.66g(0.010モル)と合成例1で得られたヒドロキシル基含有ジアミン化合物(HA)6.04g(0.010モル)をNMP30gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)11.86g(0.008モル)をNMP15gとともに加えた後、ODPA3.72g(0.012モル)をNMP10gとともに加え、40℃で8時間撹拌した。その後、DFA4.8g(0.04モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−23)を得た。
[Example 23]
Under a dry nitrogen stream, 3.66 g (0.010 mol) of BAHF and 6.04 g (0.010 mol) of the hydroxyl group-containing diamine compound (HA) obtained in Synthesis Example 1 were dissolved in 30 g of NMP. To this, 11.86 g (0.008 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 15 g of NMP, then 3.72 g (0.012 mol) of ODPA was added together with 10 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. bottom. Then, 4.8 g (0.04 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-23).
得られた樹脂(A−23)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA23を得た。得られたワニスA23を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-23), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A23 was obtained. Using the obtained varnish A23, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例24]
乾燥窒素気流下、BAHF7.34g(0.020モル)をNMP30gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)11.86g(0.008モル)をNMP15gとともに加えた後、ODPA3.72g(0.012モル)をNMP5gとともに加え、60℃で4時間撹拌した。次いで180℃で4時間撹拌し、撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−24)を得た。
[Example 24]
Under a dry nitrogen stream, 7.34 g (0.020 mol) of BAHF was dissolved in 30 g of NMP. To this, 11.86 g (0.008 mol) of silsesquioxane structure-containing monomer (S-1) was added together with 15 g of NMP, then 3.72 g (0.012 mol) of ODPA was added together with 5 g of NMP, and the mixture was stirred at 60 ° C. for 4 hours. bottom. Then, the mixture was stirred at 180 ° C. for 4 hours, and after the stirring was completed, the solution was poured into 300 mL of water, and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-24).
得られた樹脂(A−24)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA24を得た。得られたワニスA24を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-24), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A24 of the resin composition was obtained. Using the obtained varnish A24, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例25]
乾燥窒素気流下、シルセスキオキサン構造含有モノマー(S−2)5.81g(0.004モル)とBAHF4.12g(0.011モル)をNMP20gに溶解させた。ここにTAC3.16g(0.015モル)をNMP13gとともに加え、40℃で4時間撹拌した。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−25)を得た。
[Example 25]
Under a dry nitrogen stream, 5.81 g (0.004 mol) of silsesquioxane structure-containing monomer (S-2) and 4.12 g (0.011 mol) of BAHF were dissolved in 20 g of NMP. To this, 3.16 g (0.015 mol) of TAC was added together with 13 g of NMP, and the mixture was stirred at 40 ° C. for 4 hours. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-25).
得られた樹脂(A−25)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA25を得た。得られたワニスA25を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-25), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A25 of a resin composition was obtained. Using the obtained varnish A25, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例26]
乾燥窒素気流下、シルセスキオキサン構造含有モノマー(S−2)5.81g(0.004モル)とBAHF4.12g(0.011モル)をNMP20gに溶解させた。ここにBPDC4.19g(0.015モル)をNMP16gとともに加え、40℃で4時間撹拌した。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−26)を得た。
[Example 26]
Under a dry nitrogen stream, 5.81 g (0.004 mol) of silsesquioxane structure-containing monomer (S-2) and 4.12 g (0.011 mol) of BAHF were dissolved in 20 g of NMP. To this, 4.19 g (0.015 mol) of BPDC was added together with 16 g of NMP, and the mixture was stirred at 40 ° C. for 4 hours. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-26).
得られた樹脂(A−26)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA26を得た。得られたワニスA26を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。 10 g of the obtained resin (A-26), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A26 was obtained. Using the obtained varnish A26, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例27]
DFAを加えなかった以外は、実施例1と同様に合成し、樹脂(A−27)を得た。
得られた樹脂(A−27)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA27を得た。得られたワニスA27を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。
[Example 27]
A resin (A-27) was obtained by synthesizing in the same manner as in Example 1 except that DFA was not added.
10 g of the obtained resin (A-27), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A27 was obtained. Using the obtained varnish A27, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例28]
黄色灯下、NCI−831を0.6g秤量し、MBAを35g添加し、攪拌して溶解させた。次に、実施例1と同様に合成した樹脂(A−1)の30質量%のMBA溶液を20g、DPHAの80質量%のMBA溶液を5g添加して攪拌し、均一溶液として調合液を得た。ネガ型感光性樹脂組成物のワニスN1を得た。得られたワニスN1を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。
[Example 28]
Under a yellow light, 0.6 g of NCI-831 was weighed, 35 g of MBA was added, and the mixture was stirred and dissolved. Next, 20 g of an MBA solution of 30% by mass of the resin (A-1) synthesized in the same manner as in Example 1 and 5 g of an MBA solution of 80% by mass of DPHA were added and stirred to obtain a mixed solution as a uniform solution. rice field. A varnish N1 of a negative photosensitive resin composition was obtained. Using the obtained varnish N1, the flatness evaluation and the pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[実施例29]
黄色灯下、NCI−831を0.6g秤量し、MBAを35g添加し、攪拌して溶解させた。次に、実施例17と同様に合成した樹脂(A−24)の30質量%のMBA溶液を20g、DPHAの80質量%のMBA溶液を5g添加して攪拌し、均一溶液として調合液を得た。ネガ型感光性樹脂組成物のワニスN2を得た。得られたワニスN2を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表5に示す。
[Example 29]
Under a yellow light, 0.6 g of NCI-831 was weighed, 35 g of MBA was added, and the mixture was stirred and dissolved. Next, 20 g of an MBA solution of 30% by mass of the resin (A-24) synthesized in the same manner as in Example 17 and 5 g of an MBA solution of 80% by mass of DPHA were added and stirred to obtain a mixed solution as a uniform solution. rice field. A varnish N2 of a negative photosensitive resin composition was obtained. Using the obtained varnish N2, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 5.
[比較例1]
乾燥窒素気流下、BAHF5.49g(0.015モル)とKF−8010(信越シリコーン(株)製)13.35g(0.015モル)をNMP20gに溶解させた。ここにODPA9.31g(0.03モル)をNMP25gとともに加え、40℃で8時間撹拌した。その後、DFA7.2g(0.06モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−28)を得た。
[Comparative Example 1]
Under a dry nitrogen stream, 5.49 g (0.015 mol) of BAHF and 13.35 g (0.015 mol) of KF-8010 (manufactured by Shinetsu Silicone Co., Ltd.) were dissolved in 20 g of NMP. To this, 9.31 g (0.03 mol) of ODPA was added together with 25 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. Then, 7.2 g (0.06 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-28).
得られた樹脂(A−28)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA28を得た。得られたワニスA28を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表6に示す。 10 g of the obtained resin (A-28), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A28 was obtained. Using the obtained varnish A28, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 6.
[比較例2]
乾燥窒素気流下、Bis−AT−AF2.90g(0.008モル)をNMP20gに溶解させた。ここにシルセスキオキサン構造含有モノマー(S−1)11.86g(0.008モル)をNMP20gとともに加え、40℃で8時間撹拌した。その後、DFA1.9g(0.016モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−29)を得た。
[Comparative Example 2]
2.90 g (0.008 mol) of Bis-AT-AF was dissolved in 20 g of NMP under a dry nitrogen stream. To this, 11.86 g (0.008 mol) of the silsesquioxane structure-containing monomer (S-1) was added together with 20 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. Then, 1.9 g (0.016 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-29).
得られた樹脂(A−29)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA29を得た。得られたワニスA29を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表6に示す。 10 g of the obtained resin (A-29), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A29 of a resin composition was obtained. Using the obtained varnish A29, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 6.
[比較例3]
DFAを加えなかった以外は、比較例2と同様に合成し、樹脂(A−30)を得た。
得られた樹脂(A−30)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA30を得た。得られたワニスA30を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表6に示す。
[Comparative Example 3]
A resin (A-30) was obtained by synthesizing in the same manner as in Comparative Example 2 except that DFA was not added.
10 g of the obtained resin (A-30), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A varnish A30 of the resin composition was obtained. Using the obtained varnish A30, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 6.
[比較例4]
乾燥窒素気流下、BAHF10.99g(0.03モル)をNMP50gに溶解させた。ここにODPA9.31g(0.03モル)をNMP20gとともに加え、40℃で8時間撹拌した。その後、DFA7.2g(0.06モル)を加え、40℃で1時間撹拌を続けた。撹拌終了後、溶液を水300mLに投入して、固体の沈殿をろ過で集めた。さらに水100mLで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、樹脂(A−31)を得た。
[Comparative Example 4]
Under a dry nitrogen stream, 10.99 g (0.03 mol) of BAHF was dissolved in 50 g of NMP. To this, 9.31 g (0.03 mol) of ODPA was added together with 20 g of NMP, and the mixture was stirred at 40 ° C. for 8 hours. Then, 7.2 g (0.06 mol) of DFA was added, and stirring was continued at 40 ° C. for 1 hour. After completion of stirring, the solution was poured into 300 mL of water and the solid precipitate was collected by filtration. Further, the mixture was washed 3 times with 100 mL of water, and the collected polymer solid was dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a resin (A-31).
得られた樹脂(A−31)10g、合成例2で得られたキノンジアジド化合物(DQ−1)3.0g、ニカラックMX−270(E−1)1.0gをGBL50gに加えてポジ型感光性樹脂組成物のワニスA31を得た。得られたワニスA31を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表6に示す。 10 g of the obtained resin (A-31), 3.0 g of the quinone diazide compound (DQ-1) obtained in Synthesis Example 2, and 1.0 g of Nicarac MX-270 (E-1) were added to 50 g of GBL for positive photosensitive. A resin composition varnish A31 was obtained. Using the obtained varnish A31, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 6.
[比較例5]
黄色灯下、NCI−831を0.6g秤量し、MBAを35g添加し、攪拌して溶解させた。次に、比較例1と同様に合成した樹脂(A−28)の30質量%のMBA溶液を20g、DPHAの80質量%のMBA溶液を5g添加して攪拌し、均一溶液として調合液を得た。ネガ型感光性樹脂組成物のワニスN3を得た。得られたワニスN3を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表6に示す。
[Comparative Example 5]
Under a yellow light, 0.6 g of NCI-831 was weighed, 35 g of MBA was added, and the mixture was stirred and dissolved. Next, 20 g of an MBA solution of 30% by mass of the resin (A-28) synthesized in the same manner as in Comparative Example 1 and 5 g of an MBA solution of 80% by mass of DPHA were added and stirred to obtain a mixed solution as a uniform solution. rice field. A varnish N3 of a negative photosensitive resin composition was obtained. Using the obtained varnish N3, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 6.
[比較例6]
黄色灯下、NCI−831を0.6g秤量し、MBAを35g添加し、攪拌して溶解させた。次に、比較例3と同様に合成した樹脂(A−29)の30質量%のMBA溶液を20g、DPHAの80質量%のMBA溶液を5g添加して攪拌し、均一溶液として調合液を得た。ネガ型感光性樹脂組成物のワニスN4を得た。得られたワニスN4を用いて前記のように、平坦化性評価とパターン寸法安定性評価を行った。評価結果を表6に示す。
[Comparative Example 6]
Under a yellow light, 0.6 g of NCI-831 was weighed, 35 g of MBA was added, and the mixture was stirred and dissolved. Next, 20 g of an MBA solution of 30% by mass of the resin (A-29) synthesized in the same manner as in Comparative Example 3 and 5 g of an MBA solution of 80% by mass of DPHA were added and stirred to obtain a mixed solution as a uniform solution. rice field. A varnish N4 of a negative photosensitive resin composition was obtained. Using the obtained varnish N4, flattening property evaluation and pattern dimensional stability evaluation were performed as described above. The evaluation results are shown in Table 6.
1:段差基板
2:硬化物
1: Step substrate 2: Hardened product
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020053887A JP2021155467A (en) | 2020-03-25 | 2020-03-25 | Resin, photosensitive resin composition, cured material, organic el display device, semiconductor device and manufacturing method of cured material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020053887A JP2021155467A (en) | 2020-03-25 | 2020-03-25 | Resin, photosensitive resin composition, cured material, organic el display device, semiconductor device and manufacturing method of cured material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021155467A true JP2021155467A (en) | 2021-10-07 |
Family
ID=77916828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020053887A Pending JP2021155467A (en) | 2020-03-25 | 2020-03-25 | Resin, photosensitive resin composition, cured material, organic el display device, semiconductor device and manufacturing method of cured material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021155467A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114621437A (en) * | 2022-04-01 | 2022-06-14 | 吉林奥来德光电材料股份有限公司 | Compound for preparing photosensitive resin film, preparation method and application thereof |
-
2020
- 2020-03-25 JP JP2020053887A patent/JP2021155467A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114621437A (en) * | 2022-04-01 | 2022-06-14 | 吉林奥来德光电材料股份有限公司 | Compound for preparing photosensitive resin film, preparation method and application thereof |
CN114621437B (en) * | 2022-04-01 | 2023-08-18 | 吉林奥来德光电材料股份有限公司 | Compound for preparing photosensitive resin film, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6939564B2 (en) | Resin composition | |
JP5417623B2 (en) | Polyimide-based photocurable resin composition, pattern forming method, and film for protecting substrate | |
KR101274327B1 (en) | Alkali-soluble polymer, photosensitive resin composition comprising the same, and uses of the same | |
JP6724363B2 (en) | Resin and photosensitive resin composition | |
JP7059927B2 (en) | Resin compositions, resin sheets, curing patterns and semiconductor electronic components or semiconductor devices | |
JP6048257B2 (en) | Heat resistant resin and precursor composition thereof | |
JP5312071B2 (en) | Polyimide polyamide copolymer and photosensitive resin composition | |
KR102542822B1 (en) | Resin composition, curing relief pattern thereof, and method for manufacturing a semiconductor electronic component or semiconductor device using the same | |
JP2006133757A (en) | Polyimide-based photo-curable resin composition, pattern forming method and substrate protecting film | |
JP5941559B2 (en) | Low dielectric photoimageable composition and electronic device made therefrom | |
JP2011202059A (en) | Resin and positive photosensitive resin composition | |
JP6711273B2 (en) | Resin and photosensitive resin composition | |
JP6102736B2 (en) | Positive photosensitive resin composition | |
TWI835932B (en) | Composition containing acrylic polymerized polysiloxane, cured film using the same, and method of manufacturing the same | |
JP2021155467A (en) | Resin, photosensitive resin composition, cured material, organic el display device, semiconductor device and manufacturing method of cured material | |
JP2016161894A (en) | Photosensitive resin composition | |
JP2010210851A (en) | Photosensitive resin composition | |
KR20140086733A (en) | Positive photosensitive resin composition, insulating film using the same, and display device including the insulating film | |
JP2014178400A (en) | Positive photosensitive resin composition | |
JP2007298833A (en) | Method for preparing photosensitive resin composition and relief pattern using the same | |
JP2010197748A (en) | Photosensitive resin composition | |
TW202244611A (en) | Photosensitive resin composition, cured product, display device, organic EL display device, and semiconductor device | |
JP7180459B2 (en) | Method for producing alkali-soluble resin solution | |
KR20140086724A (en) | Photosensitive resin composition for insulating film of display device, insulating film using the same, and display device using the same | |
JP2021155466A (en) | Resin composition, cured film, production method of cured film, organic el display device |