JP2021154358A - Design method of mash seam welding machine, mash seam welding machine, mash seam welding method, and method for manufacturing hot-rolled steel sheet - Google Patents

Design method of mash seam welding machine, mash seam welding machine, mash seam welding method, and method for manufacturing hot-rolled steel sheet Download PDF

Info

Publication number
JP2021154358A
JP2021154358A JP2020058315A JP2020058315A JP2021154358A JP 2021154358 A JP2021154358 A JP 2021154358A JP 2020058315 A JP2020058315 A JP 2020058315A JP 2020058315 A JP2020058315 A JP 2020058315A JP 2021154358 A JP2021154358 A JP 2021154358A
Authority
JP
Japan
Prior art keywords
steel plate
pair
mash seam
electrode rings
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020058315A
Other languages
Japanese (ja)
Other versions
JP7173077B2 (en
Inventor
大朗 作本
Hiroo Sakumoto
大朗 作本
真一 奥野
Shinichi Okuno
真一 奥野
祐輔 太田
Yusuke Ota
祐輔 太田
一郎 田野口
Ichiro Tanokuchi
一郎 田野口
賢司 松村
Kenji Matsumura
賢司 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020058315A priority Critical patent/JP7173077B2/en
Publication of JP2021154358A publication Critical patent/JP2021154358A/en
Application granted granted Critical
Publication of JP7173077B2 publication Critical patent/JP7173077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a design method of a mash seam welding machine which makes a combination of a preceding steel sheet and a subsequent steel sheet to be welded suitable, and can avoid damage of an electrode ring or its peripheral components due to an axial load acting on the electrode ring; a mash seam welding machine; a mash seam welding method; and a method for manufacturing a hot-rolled steel sheet.SOLUTION: A design method of a mash seam welding machine designs each of a pair of electrode rings 11a and 11b and those peripheral components 12a, 13a, 14a, 12b, 13b and 14b so that when an axial load acting in an axial direction of the electrode ring to each of the pair of electrode rings is represented by F and a rigidity value of each of the pair of electrode rings and those peripheral components is represented by F0, which are calculated by the following expression (A): F=k×(t1×TS1+a×t2×TS2), plate thicknesses and tensile strengths of a preceding steel sheet 21 and a subsequent steel sheet 22 and rigidities of each of the pair of electrode rings and those components satisfy F≤F0.SELECTED DRAWING: Figure 1

Description

本発明は、マッシュシーム溶接機の設計方法、マッシュシーム溶接機、マッシュシーム溶接方法、及び熱延鋼板の製造方法に関する。 The present invention relates to a method for designing a mash seam welder, a mash seam welder, a mash seam welding method, and a method for manufacturing a hot-rolled steel sheet.

マッシュシーム溶接機は、先行鋼板の尾端部と後行鋼板の先端部とを重ね合わせ、その重ね合わせた部分を上下一対の電極輪で加圧し、溶接電流を流しながら連続的に溶接すると同時に高温に加熱され軟化した接合部を上下一対の電極輪で圧延することにより、接合部厚みを低減するものである。
従来、この種のマッシュシーム溶接機を用いたマッシュシーム溶接方法として、例えば、特許文献1及び2と、非特許文献1とに示すものが知られている。
The mash seam welder superimposes the tail end of the leading steel plate and the tip of the trailing steel plate, pressurizes the superposed portion with a pair of upper and lower electrode rings, and at the same time continuously welds while passing a welding current. The thickness of the joint is reduced by rolling the joint portion heated to a high temperature and softened with a pair of upper and lower electrode rings.
Conventionally, as a mash seam welding method using this type of mash seam welding machine, for example, those shown in Patent Documents 1 and 2 and Non-Patent Document 1 are known.

特許文献1に示すマッシュシーム溶接方法は、2枚の金属板の端部を重ね合わせ、その重ね合わせ部分を上下一対の電極輪で加圧し、溶接電流を流しながら連続的に溶接し、2枚の金属板を接合するマッシュシーム溶接方法である。そして、上下一対の電極輪の軸芯を、2枚の金属板の重ね合わせ部分に形成される溶接線に直交する軸線に対して、互いに反対方向に水平面内で傾斜させ、上下一対の電極輪を積極的に駆動しながら2枚の金属板を接合する。 In the mash seam welding method shown in Patent Document 1, the ends of two metal plates are overlapped, the overlapped portion is pressurized by a pair of upper and lower electrode rings, and the two pieces are continuously welded while passing a welding current. This is a mash seam welding method for joining metal plates of. Then, the axis cores of the pair of upper and lower electrode rings are inclined in the horizontal plane in opposite directions with respect to the axis orthogonal to the welding line formed in the overlapping portion of the two metal plates, and the pair of upper and lower electrode rings are tilted. Two metal plates are joined while actively driving.

また、特許文献2に示す金属板の接合方法は、2枚の金属板を接合した後、金属板の接合部を上下一対の加圧ローラで圧延する金属板の接合方法である。そして、一対の加圧ローラの軸芯を接合部の接合線に直交する直線に対して水平面内で傾斜させ、一対の加圧ローラを積極的に駆動しながら接合部の段差を加圧ローラの進行方向に圧延する。
更に、非特許文献1に示す新マッシュシーム溶接機は、最大板厚6mmまで耐圧延性を有する溶接を可能とするため、溶接条件及び溶接方法を実験及び解析により決定したものである。
Further, the metal plate joining method shown in Patent Document 2 is a metal plate joining method in which two metal plates are joined and then the joint portion of the metal plates is rolled by a pair of upper and lower pressure rollers. Then, the shaft cores of the pair of pressure rollers are inclined in a horizontal plane with respect to a straight line orthogonal to the joint line of the joint portion, and the step of the joint portion is raised while actively driving the pair of pressure rollers. Roll in the direction of travel.
Further, the new mash seam welder shown in Non-Patent Document 1 has determined welding conditions and welding methods by experiments and analysis in order to enable welding having rolling resistance up to a maximum plate thickness of 6 mm.

国際公開第2010/004656号International Publication No. 2010/004656 国際公開第2010/004657号International Publication No. 2010/004657

「鋼板板厚6mmまで連続圧延を実現する新マシュシーム溶接機の開発」、三菱重工技報、Vol.49、No.4、(2012)"Development of a new mash seam welder that realizes continuous rolling up to a steel plate thickness of 6 mm", Mitsubishi Heavy Industries Technical Report, Vol. 49, No. 4, (2012)

ところで、マッシュシーム溶接機での鋼板の溶接では、上下一対の電極輪にて先行鋼板の尾端部と後行鋼板の先端部とを重ね合わせた部分を加圧することにより、電極輪のアキシャル方向に材料流れが発生する。この材料流れにより電極輪にアキシャル方向の荷重(以下、アキシャル荷重という)が作用し、電極輪がアキシャル方向へ変位する現象が生ずる。従来、マッシュシーム溶接機は、主に2mm未満の比較的薄い鋼板の溶接に適用されていたが、近年では、板厚6mm程度の熱延鋼板のような比較的厚い鋼板の溶接にも適用されるようになってきた。このため、加圧時に電極輪のアキシャル方向に材料流れの発生する量が増加し、電極輪のアキシャル方向の変位量が増大し、電極輪と鋼板の重ね合わせ部とにずれが生じ、正常な溶接ができずに溶接部強度低下等の不具合が発生するようになった。 By the way, in the welding of steel plates with a mash seam welder, the axial direction of the electrode rings is obtained by pressurizing the portion where the tail end of the leading steel plate and the tip of the trailing steel plate are overlapped with a pair of upper and lower electrode rings. Material flow occurs in. Due to this material flow, a load in the axial direction (hereinafter referred to as an axial load) acts on the electrode ring, and a phenomenon occurs in which the electrode ring is displaced in the axial direction. Conventionally, mash seam welders have been mainly applied to welding relatively thin steel sheets of less than 2 mm, but in recent years, they have also been applied to welding relatively thick steel sheets such as hot-rolled steel sheets with a thickness of about 6 mm. It has come to be. For this reason, the amount of material flow generated in the axial direction of the electrode ring increases during pressurization, the amount of displacement of the electrode ring in the axial direction increases, and the electrode ring and the superposed portion of the steel plate are displaced, which is normal. Welding could not be performed, and problems such as a decrease in the strength of the welded portion began to occur.

ここで、前述した従来の特許文献1乃至3に示すマッシュシーム溶接のいずれにおいても、電極輪にアキシャル荷重が作用して電極輪と鋼板の重ね合わせ部とにずれが生じる現象については考察されておらず、正常な溶接ができずに溶接部強度低下等の不具合が発生する問題があった。
一方、従来の特許文献1乃至3に示すようなマッシュシーム溶接においては、溶接する先行鋼板と後行鋼板の組み合わせに明確な基準はなかった。このため、先行鋼板、後行鋼板の新規の組み合わせ毎に、予め溶接テストを実施して正常な溶接ができるか否かを判断する必要があり、溶接する先行鋼板、後行鋼板の組み合わせによっては、前述した材料流れの発生に起因して電極輪に過大なアキシャル荷重が作用し、電極輪あるいは電極輪の周辺部品を損傷させる可能性があった。
Here, in any of the above-mentioned conventional mash seam weldings shown in Patent Documents 1 to 3, the phenomenon that an axial load acts on the electrode ring and the overlapping portion of the electrode ring and the steel plate is displaced is considered. Therefore, there is a problem that normal welding cannot be performed and problems such as a decrease in the strength of the welded portion occur.
On the other hand, in the conventional mash seam welding as shown in Patent Documents 1 to 3, there is no clear standard for the combination of the leading steel plate and the trailing steel plate to be welded. Therefore, it is necessary to perform a welding test in advance for each new combination of the leading steel plate and the trailing steel plate to determine whether or not normal welding can be performed. Depending on the combination of the leading steel plate and the trailing steel plate to be welded, Due to the occurrence of the material flow described above, an excessive axial load acts on the electrode ring, which may damage the electrode ring or peripheral parts of the electrode ring.

従って、本発明はこれら従来の問題点を解決するためになされたものであり、その目的は、溶接する先行鋼板と後行鋼板の組み合わせを好適なものとして、電極輪に作用するアキシャル荷重に起因する電極輪あるいはその周辺部品の損傷を回避することができるマッシュシーム溶接機の設計方法、マッシュシーム溶接機、マッシュシーム溶接方法、及び熱延鋼板の製造方法を提供することにある。 Therefore, the present invention has been made to solve these conventional problems, and an object thereof is caused by an axial load acting on an electrode ring, in which a combination of a leading steel plate and a trailing steel plate to be welded is suitable. It is an object of the present invention to provide a method for designing a mash seam welder capable of avoiding damage to the electrode ring or its peripheral parts, a mash seam welder, a mash seam welding method, and a method for manufacturing a hot-rolled steel sheet.

上記目的を達成するために、本発明の一態様に係るマッシュシーム溶接機の設計方法は、溶接対象となる先行鋼板と後行鋼板との重ね合わせ部分を加圧する一対の電極輪を備え、該一対の電極輪を前記重ね合わせ部分で走行させながら溶接電流を流すことにより、前記先行鋼板と前記後行鋼板とを連続的に溶接するマッシュシーム溶接機の設計方法であって、前記先行鋼板及び前記後行鋼板におけるそれぞれの板厚及び抗張力と、前記一対の電極輪の各々及びその周辺部品の剛性とが、次の(A)式で算出される、前記一対の電極輪の各々の電極輪に対し該電極輪のアキシャル方向に作用するアキシャル荷重をF、前記一対の電極輪の各々及びその周辺部品の剛性値をF0としたとき、F≦F0となるように、前記一対の電極輪の各々及びその周辺部品を設計することを要旨とする。
ここで、F=k×(t1×TS1+a×t2×TS2) …(A)
t1:重ね合わせの上側となる鋼板の板厚(mm)
TS1:重ね合わせの上側となる鋼板の抗張力(kgf/mm
t2:重ね合わせの下側となる鋼板の板厚(mm)
TS2:重ね合わせの下側となる鋼板の抗張力(kgf/mm
k:マシュシーム溶接機によって決まる定数
a:上側となる鋼板に対する下側となる鋼板の寄与度を示す定数
In order to achieve the above object, the design method of the mash seam welder according to one aspect of the present invention includes a pair of electrode rings that pressurize the overlapped portion of the leading steel plate and the trailing steel plate to be welded. A method for designing a mash seam welder that continuously welds the leading steel plate and the trailing steel plate by passing a welding current while running a pair of electrode rings in the overlapped portion, wherein the leading steel plate and the trailing steel plate are welded together. The thickness and tensile strength of each of the trailing steel plates and the rigidity of each of the pair of electrode rings and their peripheral parts are calculated by the following equation (A), and each electrode ring of the pair of electrode rings. On the other hand, when the axial load acting in the axial direction of the electrode rings is F and the rigidity values of each of the pair of electrode rings and their peripheral parts are F0, the pair of electrode rings are arranged so that F ≦ F0. The gist is to design each and its peripheral parts.
Here, F = k × (t1 × TS1 + a × t2 × TS2)… (A)
t1: Thickness (mm) of the steel plate on the upper side of the superposition
TS1: The tensile strength of the steel plate on the upper side of the superposition (kgf / mm 2 )
t2: Plate thickness (mm) of the steel plate on the lower side of the superposition
TS2: tensile strength of the steel plate under the superposition (kgf / mm 2 )
k: Constant determined by the mash seam welder a: Constant indicating the contribution of the lower steel plate to the upper steel plate

また、本発明の別の態様に係るマッシュシーム溶接機は、溶接対象となる先行鋼板と後行鋼板との重ね合わせ部分を加圧する一対の電極輪を備え、該一対の電極輪を前記重ね合わせ部分で走行させながら溶接電流を流すことにより、前記先行鋼板と前記後行鋼板とを連続的に溶接するマッシュシーム溶接機であって、前記先行鋼板及び前記後行鋼板におけるそれぞれの板厚及び抗張力と、前記一対の電極輪の各々及びその周辺部品の剛性とが、前述のF≦F0となる関係にあることを要旨とする。 Further, the mash seam welder according to another aspect of the present invention includes a pair of electrode rings that pressurize the overlapped portion of the leading steel plate and the trailing steel plate to be welded, and the pair of electrode rings are overlapped with each other. A mash seam welder that continuously welds the leading steel plate and the trailing steel plate by passing a welding current while running on the portion, and the thickness and tensile strength of the leading steel plate and the trailing steel plate, respectively. The gist is that the rigidity of each of the pair of electrode rings and their peripheral parts has a relationship of F ≦ F0 described above.

また、本発明の別の態様に係るマッシュシーム溶接方法は、前述のマッシュシーム溶接機を用いて、溶接対象となる先行鋼板と後行鋼板との重ね合わせ部分を一対の電極輪で加圧し、かつ該一対の電極輪の各々を前記重ね合わせ部分で走行させながら溶接電流を流すことにより、前記先行鋼板と前記後行鋼板とを連続的に溶接することを要旨とする。
また、本発明の別の態様に係る熱延鋼板の製造方法は、前述のマッシュシーム溶接方法により熱延鋼板を製造することを要旨とする。
Further, in the mash seam welding method according to another aspect of the present invention, the overlapped portion of the leading steel plate and the trailing steel plate to be welded is pressed by a pair of electrode rings by using the mash seam welding machine described above. The gist is that the leading steel plate and the trailing steel plate are continuously welded by passing a welding current while running each of the pair of electrode rings in the overlapped portion.
The gist of the method for producing a hot-rolled steel sheet according to another aspect of the present invention is that the hot-rolled steel sheet is manufactured by the above-mentioned mash seam welding method.

また、本発明の別の態様に係る熱延鋼板の製造方法は、溶接対象となる先行鋼板と後行鋼板との重ね合わせ部分を加圧する一対の電極輪を、前記重ね合わせ部分で走行させながら溶接電流を流すことにより、前記先行鋼板と前記後行鋼板とを連続的に溶接するマッシュシーム溶接工程を有する熱延鋼板の製造方法であって、前記先行鋼板及び前記後行鋼板におけるそれぞれの板厚及び抗張力と、前記一対の電極輪の各々及びその周辺部品の剛性とが、前述のF≦F0となる関係を満たす場合にのみ溶接可能と判断することを要旨とする。 Further, in the method for manufacturing a hot-rolled steel sheet according to another aspect of the present invention, a pair of electrode rings that pressurize a superposed portion of a leading steel plate and a trailing steel sheet to be welded are run on the superposed portion. A method for manufacturing a hot-rolled steel sheet having a mash seam welding step of continuously welding the leading steel sheet and the trailing steel sheet by passing a welding current, and each of the leading steel sheet and the trailing steel sheet. The gist is that it is determined that welding is possible only when the thickness and tensile strength and the rigidity of each of the pair of electrode rings and their peripheral parts satisfy the above-mentioned relationship of F ≦ F0.

本発明に係るマッシュシーム溶接機の設計方法、マッシュシーム溶接機、マッシュシーム溶接方法、及び熱延鋼板の製造方法によれば、溶接する先行鋼板と後行鋼板の組み合わせを好適なものとして、電極輪に作用するアキシャル荷重に起因する電極輪あるいはその周辺部品の損傷を回避することができるマッシュシーム溶接機の設計方法、マッシュシーム溶接機、マッシュシーム溶接方法、及び熱延鋼板の製造方法を提供できる。また、本発明に係るマッシュシーム溶接方法によれば、溶接部強度低下等の不具合が発生することなく正常な溶接を実施することができる。 According to the design method of the mash seam welder, the mash seam welder, the mash seam welding method, and the method for manufacturing a hot-rolled steel plate according to the present invention, the combination of the leading steel plate and the trailing steel plate to be welded is suitable for the electrode. Provided are a method for designing a mash seam welder, a mash seam welder, a mash seam welder, and a method for manufacturing a hot-rolled steel plate, which can avoid damage to the electrode ring or its peripheral parts due to an axial load acting on the ring. can. Further, according to the mash seam welding method according to the present invention, normal welding can be performed without causing problems such as a decrease in the strength of the welded portion.

本発明の一実施形態に係るマッシュシーム溶接機の設計方法によって設計されたマッシュシーム溶接機の概略構成図である。It is a schematic block diagram of the mash seam welder designed by the design method of the mash seam welder which concerns on one Embodiment of this invention. 先行鋼板の尾端部と後行鋼板の先端部との重ね合わせ部分を上下一対の電極輪で溶接している状態を、電極輪のアキシャル方向に対して直交する方向から見た図である。It is the figure which looked at the state which the superposition part of the tail end part of the leading steel plate and the tip part of a trailing steel sheet was welded by a pair of upper and lower electrode rings from the direction orthogonal to the axial direction of the electrode rings. 先行鋼板の尾端部と後行鋼板の先端部との重ね合わせ部分を上下一対の電極輪で溶接している状態を、電極輪のアキシャル方向から見た図である。It is the figure which looked at the state in which the superposition part of the tail end part of the leading steel plate and the tip part of a trailing steel sheet was welded by a pair of upper and lower electrode rings from the axial direction of the electrode rings. 本発明の一実施形態に係るマッシュシーム溶接機の設計方法に適用されるマッシュシーム溶接の評価装置の機能ブロック図である。It is a functional block diagram of the evaluation apparatus of mash seam welding applied to the design method of the mash seam welding machine which concerns on one Embodiment of this invention. 図4に示すマッシュシーム溶接の評価装置における処理の流れを示すフローチャートである。It is a flowchart which shows the flow of processing in the evaluation apparatus of mash seam welding shown in FIG. 定数aと近似式の相関係数との関係を示すグラフである。It is a graph which shows the relationship between the constant a and the correlation coefficient of the approximate expression. 実測したアキシャル荷重と電極輪の変位量との関係を示すグラフである。It is a graph which shows the relationship between the measured axial load and the displacement amount of an electrode ring. (A)式で算出したアキシャル荷重Fと溶接回数との関係を示すグラフである。It is a graph which shows the relationship between the axial load F calculated by the formula (A), and the number of weldings.

発明者らは、電極輪がアキシャル方向へ変位し正常な溶接ができない現象について種々検討した。安定して正常な溶接ができる場合と正常な溶接ができない場合があるが、薄い鋼板では安定して溶接でき厚い鋼板では溶接不良が生じる傾向にある。そこで、電極輪のアキシャル方向(溶接方向に対して垂直方向)の変位量が増大するのは、板から生じる抗張力に対する設備剛性が足りないためではないかと考え、電極輪とその周辺部材を補強したところ、正常な溶接ができることがわかった。しかし、設備コストとの関係から無限に強度を上げるわけにはいかない。溶接機を設置する製造ラインで処理される鋼板スペックを考慮し、適切な設備を設計する必要がある。 The inventors have studied various phenomena in which the electrode ring is displaced in the axial direction and normal welding cannot be performed. There are cases where stable and normal welding can be performed and cases where normal welding cannot be performed. However, thin steel plates can be stably welded, and thick steel plates tend to have poor welding. Therefore, we thought that the reason why the amount of displacement of the electrode ring in the axial direction (perpendicular to the welding direction) increased was that the equipment rigidity against the tensile strength generated from the plate was insufficient, and reinforced the electrode ring and its peripheral members. However, it was found that normal welding was possible. However, the strength cannot be increased infinitely due to the relationship with the equipment cost. It is necessary to design appropriate equipment in consideration of the specifications of the steel sheet processed on the production line where the welding machine is installed.

発明者らは、そのラインで溶接対象となる板の各種スペックと設備の条件との関係を詳細に検討し、板の厚さ及び強度と設備剛性との間に溶接良否に関する相関があることを突き止めた。そして、溶接対象それぞれの板厚及び抗張力と、溶接設備,特に電極輪及びその周辺部材の剛性とを所定の関係に保てば、安定して溶接できることを見出し本発明に至ったのである。
本発明はかかる検討に基づくものであり、「所定の関係となるように」「設計する」、というのは、鋼板製造ラインで溶接対象となる板の厚さ及び抗張力に対応して設備の剛性を適宜設定していくことを意味している。
The inventors examined in detail the relationship between various specifications of the plate to be welded on the line and the equipment conditions, and found that there is a correlation between the thickness and strength of the plate and the equipment rigidity regarding the quality of welding. I found it. Then, they have found that stable welding can be performed by keeping the plate thickness and tensile strength of each welding target and the rigidity of the welding equipment, particularly the electrode ring and its peripheral members, in a predetermined relationship, and have reached the present invention.
The present invention is based on this study, and "designing""to have a predetermined relationship" means that the rigidity of the equipment corresponds to the thickness and tensile strength of the plate to be welded in the steel sheet production line. Means to set as appropriate.

以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, arrangement, etc. of the components. It is not specified in the following embodiments. The drawings are schematic. Therefore, it should be noted that the relationship, ratio, etc. between the thickness and the plane dimension are different from the actual ones, and there are parts where the relationship and ratio of the dimensions are different between the drawings.

図1には、本発明の一実施形態に係るマッシュシーム溶接機の設計方法によって設計されたマッシュシーム溶接機の概略構成が示されており、マッシュシーム溶接機1は、上下一対の電極輪11a,11bと、先側クランプ装置23及び後側クランプ装置24とを備えている。
上側の電極輪11aは、上側回転軸12aに固定され、上側回転軸12aの両端は一対の軸受13aを介して上側電極輪支持部材14aに回転可能に支持されている。そして、上側電極輪支持部材14aは、上側キャリッジ15aにリニアガイド19を介して昇降自在に設けられた押圧部材18の下端に固定されている。押圧部材18は、上側キャリッジ15aに固定された押圧シリンダ20によって昇降するようになっている。そして、上側キャリッジ15aは、上側フレーム17aにリニアガイド16aを介して通板方向に直交する方向(図1における紙面に対して直交する方向)に移動自在に設けられている。
FIG. 1 shows a schematic configuration of a mash seam welder designed by a method for designing a mash seam welder according to an embodiment of the present invention. The mash seam welder 1 has a pair of upper and lower electrode rings 11a. , 11b, and a front side clamping device 23 and a rear side clamping device 24.
The upper electrode ring 11a is fixed to the upper rotating shaft 12a, and both ends of the upper rotating shaft 12a are rotatably supported by the upper electrode ring supporting member 14a via a pair of bearings 13a. The upper electrode ring support member 14a is fixed to the lower end of the pressing member 18 provided on the upper carriage 15a via the linear guide 19 so as to be able to move up and down. The pressing member 18 is moved up and down by a pressing cylinder 20 fixed to the upper carriage 15a. The upper carriage 15a is movably provided on the upper frame 17a via the linear guide 16a in a direction orthogonal to the plate-passing direction (direction orthogonal to the paper surface in FIG. 1).

一方、下側の電極輪11bは、上側の電極輪11aに対して上下に対向する位置に配置され、下側回転軸12bに固定されている。下側回転軸12bの両端は一対の軸受13bを介して下側電極輪支持部材14bに回転可能に支持されている。そして、下側電極輪支持部材14bは、下側キャリッジ15bに固定されている。下側キャリッジ15bは、下側フレーム17bにリニアガイド16bを介して通板方向に直交する方向に移動自在に設けられている。下側キャリッジ15bは、上側キャリッジ15aと同期して移動する。 On the other hand, the lower electrode ring 11b is arranged at a position vertically opposed to the upper electrode ring 11a and is fixed to the lower rotating shaft 12b. Both ends of the lower rotary shaft 12b are rotatably supported by the lower electrode ring support member 14b via a pair of bearings 13b. The lower electrode ring support member 14b is fixed to the lower carriage 15b. The lower carriage 15b is provided on the lower frame 17b via a linear guide 16b so as to be movable in a direction orthogonal to the plate passing direction. The lower carriage 15b moves in synchronization with the upper carriage 15a.

上側の電極輪11a及び下側の電極輪11bのそれぞれは、図示しない駆動手段によって回転駆動する。
また、先側クランプ装置23は、溶接される先行鋼板21を上下からクランプするものであり、上下一対のクランプ部材23a,23bを備えている。上側のクランプ部材23aは、押圧シリンダ25によって昇降するようになっている。また、後側クランプ装置24は、溶接される後行鋼板22を上下からクランプするものであり、上下一対のクランプ部材24a,24bを備えている。上側のクランプ部材24aは、押圧シリンダ26によって昇降するようになっている。
Each of the upper electrode ring 11a and the lower electrode ring 11b is rotationally driven by a driving means (not shown).
Further, the front side clamping device 23 clamps the leading steel plate 21 to be welded from above and below, and includes a pair of upper and lower clamping members 23a and 23b. The upper clamp member 23a is moved up and down by the pressing cylinder 25. Further, the rear side clamping device 24 clamps the trailing steel plate 22 to be welded from above and below, and includes a pair of upper and lower clamping members 24a and 24b. The upper clamp member 24a is moved up and down by the pressing cylinder 26.

そして、先行鋼板21と後行鋼板22とを溶接する際には、まず、図2に示すように、先行鋼板21の尾端部21aと後行鋼板22の先端部22aとを先行鋼板21の尾端部21aを上側にして重ね合わせる。次いで、その状態で、先側クランプ装置23のクランプ部材23a,23bで先行鋼板21を把持して先行鋼板21の位置を固定し、後側クランプ装置24のクランプ部材24a,24bで後行鋼板22を把持して後行鋼板22の位置を固定する。次いで、押圧シリンダ20によって押圧部材18を下降させて上側の電極輪11aを下降させ、上下一対の電極輪11a,11bにて先行鋼板21の尾端部21aと後行鋼板22の先端部22aとの重ね合わせた部分を加圧する。そして、上下一対の電極輪11a,11bを通板方向に直交する方向(図1における紙面に対して直交する方向)に移動させて、溶接電流を流しながら連続的に溶接する。これにより、先行鋼板21の尾端部21aと後行鋼板22の先端部22aとが接合される。 When welding the leading steel plate 21 and the trailing steel plate 22, first, as shown in FIG. 2, the tail end portion 21a of the leading steel plate 21 and the tip end portion 22a of the trailing steel plate 22 are joined to the leading steel plate 21. The tail end 21a is placed on the upper side and overlapped. Next, in that state, the leading steel plate 21 is gripped by the clamp members 23a and 23b of the front side clamping device 23 to fix the position of the leading steel plate 21, and the trailing steel plate 22 is held by the clamping members 24a and 24b of the rear side clamping device 24. To fix the position of the trailing steel plate 22. Next, the pressing member 18 is lowered by the pressing cylinder 20 to lower the upper electrode ring 11a, and the pair of upper and lower electrode rings 11a and 11b form a tail end portion 21a of the leading steel plate 21 and a tip portion 22a of the trailing steel plate 22. Pressurize the overlapped part of. Then, the pair of upper and lower electrode rings 11a and 11b are moved in a direction orthogonal to the plate direction (direction orthogonal to the paper surface in FIG. 1), and welding is continuously performed while a welding current is applied. As a result, the tail end portion 21a of the leading steel plate 21 and the tip end portion 22a of the trailing steel plate 22 are joined.

ここで、先行鋼板21の尾端部21aと後行鋼板22の先端部22aとを溶接する際には、図2に示すように、先行鋼板21の尾端部21aと後行鋼板22の先端部22aとの重ね合わせ部は、上下一対の電極輪11a,11bの加圧で板厚が減少する。このとき、先行鋼板21及び後行鋼板22のそれぞれは、上下一対の電極輪11a,11bから一定間隔離れた部位を先側クランプ装置23及び後側クランプ装置24のそれぞれによって拘束されているため、溶接部の境界面で突っ張り合う状態となり、一部は境界面よりはみ出した状態で圧延される。 Here, when welding the tail end portion 21a of the leading steel plate 21 and the tip portion 22a of the trailing steel plate 22, as shown in FIG. 2, the tail end portion 21a of the leading steel plate 21 and the tip of the trailing steel plate 22 The thickness of the overlapped portion with the portion 22a is reduced by pressurizing the pair of upper and lower electrode rings 11a and 11b. At this time, each of the leading steel plate 21 and the trailing steel plate 22 is restrained by the front clamp device 23 and the rear clamp device 24 at a portion separated from the pair of upper and lower electrode rings 11a and 11b by a certain interval. It is in a state of being thrust at the boundary surface of the welded portion, and a part of the rolled portion is rolled so as to protrude from the boundary surface.

溶接部の境界面での先行鋼板21の反力をF1、後行鋼板22の反力をF2、上側にある先行鋼板21のはみ出した部位の押し出し力をF3とすると、F1〜F3のそれぞれは以下の(1)式〜(3)式のように表せる。下側にある後行鋼板22のはみ出した部位の押し出し力はF4である。なお、反力、押し出し力の影響は、上下対称に出る。
F1=α×TS1×t1×W …(1)
F2=β×TS2×t2×W …(2)
F3=γ×TS1×t1×W …(3)
ここで、α、β、γは比例定数、TS1は重ね合わせの上側となる先行鋼板21(上側の電極輪11aに接している側の先行鋼板21)の抗張力(kgf/mm)、t1は重ね合わせの上側となる先行鋼板21の板厚(mm)である。また、Wは図3に示す溶接部27の幅(mm)、TS2は重ね合わせの下側となる後行鋼板22の抗張力(kgf/mm)、t2は重ね合わせの下側となる後行鋼板22の板厚(mm)である。
Assuming that the reaction force of the leading steel plate 21 at the boundary surface of the welded portion is F1, the reaction force of the trailing steel plate 22 is F2, and the pushing force of the protruding portion of the leading steel plate 21 on the upper side is F3, each of F1 to F3 is It can be expressed as the following equations (1) to (3). The pushing force of the protruding portion of the trailing steel plate 22 on the lower side is F4. The effects of reaction force and pushing force appear vertically symmetrically.
F1 = α × TS1 × t1 × W… (1)
F2 = β × TS2 × t2 × W… (2)
F3 = γ × TS1 × t1 × W… (3)
Here, α, β, and γ are proportional constants, TS1 is the tensile strength (kgf / mm 2 ) of the leading steel plate 21 (the leading steel plate 21 on the side in contact with the upper electrode ring 11a) on the upper side of the superposition, and t1 is. It is the plate thickness (mm) of the leading steel plate 21 on the upper side of the superposition. Further, W is the width (mm) of the welded portion 27 shown in FIG. 3, TS2 is the tensile strength (kgf / mm 2 ) of the trailing steel plate 22 which is the lower side of the superposition, and t2 is the trailing side which is the lower side of the superposition. The thickness (mm) of the steel plate 22.

また、上側の電極輪11aと接する部分のアキシャル荷重F’は、以下の(4)式となる。
F’=F1−F2+F3 …(4)
この(4)式を前述の(1)式〜(3)式で展開すると、
F’=(α×TS1×t1×W)−(β×TS2×t2×W)+(γ×TS1×t1×W)=(α+γ)×TS1×t1×W−β×TS2×t2×W …(5)となる。
Further, the axial load F'of the portion in contact with the upper electrode ring 11a is given by the following equation (4).
F'= F1-F2 + F3 ... (4)
When this equation (4) is expanded by the above equations (1) to (3),
F'= (α x TS1 x t1 x W)-(β x TS2 x t2 x W) + (γ x TS1 x t1 x W) = (α + γ) x TS1 x t1 x W-β x TS2 x t2 x W ... (5).

ここで、上側の電極輪11aに作用するアキシャル荷重Fは、アキシャル荷重F’に比例するため、比例定数をμとすると、
F=μ×{(α+γ)×TS1×t1×W−β×TS2×t2×W} …(6)となる。
(6)式から定数をまとめると、上側の電極輪11aに作用するアキシャル荷重Fは、以下の(A)式のように表せる。
F=k×(TS1×t1+a×TS2×t2) …(A)
ここで、定数k=μ×(α+γ)×W、定数a=−β/(α+γ)。定数kは、マシュシーム溶接機によって決まる定数、定数aは、上側となる先行鋼板に対する下側となる後行鋼板の寄与度を示す定数である。
Here, since the axial load F acting on the upper electrode ring 11a is proportional to the axial load F', assuming that the proportionality constant is μ,
F = μ × {(α + γ) × TS1 × t1 × W-β × TS2 × t2 × W} ... (6).
Summarizing the constants from the equation (6), the axial load F acting on the upper electrode ring 11a can be expressed as the following equation (A).
F = k × (TS1 × t1 + a × TS2 × t2)… (A)
Here, the constant k = μ × (α + γ) × W, and the constant a = −β / (α + γ). The constant k is a constant determined by the mash seam welder, and the constant a is a constant indicating the contribution of the lower trailing steel sheet to the upper leading steel sheet.

一方、下側の電極輪11bに接する部分のアキシャル荷重F’’及び下側の電極輪11bに作用するアキシャル荷重Fについても計算してみる。溶接部の境界面での先行鋼板21の反力をF1、後行鋼板22の反力をF2、下側にある後行鋼板22のはみ出した部位の押し出し力をF4とすると、F1、F2、F4のそれぞれは以下の(7)式〜(9)式のように表せる。
F1=α×TS1×t1×W …(7)
F2=β×TS2×t2×W …(8)
F4=θ×TS2×t2×W …(9)
On the other hand, the axial load F'' at the portion in contact with the lower electrode ring 11b and the axial load F acting on the lower electrode ring 11b will also be calculated. Assuming that the reaction force of the leading steel plate 21 at the boundary surface of the welded portion is F1, the reaction force of the trailing steel plate 22 is F2, and the pushing force of the protruding portion of the trailing steel plate 22 on the lower side is F4, then F1, F2, Each of F4 can be expressed as the following equations (7) to (9).
F1 = α × TS1 × t1 × W… (7)
F2 = β × TS2 × t2 × W… (8)
F4 = θ × TS2 × t2 × W… (9)

ここで、α、β、θは比例定数、TS1は重ね合わせの上側となる先行鋼板21(上側の電極輪11aに接している側の先行鋼板21)の抗張力(kgf/mm)、t1は重ね合わせの上側となる先行鋼板21の板厚(mm)である。また、Wは図3に示す溶接部27の幅(mm)、TS2は重ね合わせの下側となる後行鋼板22の抗張力(kgf/mm)、t2は重ね合わせの下側となる後行鋼板22の板厚(mm)である。 Here, α, β, and θ are proportional constants, TS1 is the tensile strength (kgf / mm 2 ) of the leading steel plate 21 (the leading steel plate 21 on the side in contact with the upper electrode ring 11a) on the upper side of the superposition, and t1 is. It is the plate thickness (mm) of the leading steel plate 21 on the upper side of the superposition. Further, W is the width (mm) of the welded portion 27 shown in FIG. 3, TS2 is the tensile strength (kgf / mm 2 ) of the trailing steel plate 22 which is the lower side of the superposition, and t2 is the trailing side which is the lower side of the superposition. The thickness (mm) of the steel plate 22.

また、下側の電極輪11bと接する部分のアキシャル荷重F’’は、以下の(11)式となる。
F’’=−F1+F2+F4 …(10)
この(10)式を前述の(7)式〜(9)式で展開すると、
F’’=−(α×TS1×t1×W)+(β×TS2×t2×W)+θ×TS2×t2×W=−α×TS1×t1×W+(β+θ)×TS2×t2×W …(11)となる。
Further, the axial load F ″ of the portion in contact with the lower electrode ring 11b is given by the following equation (11).
F''=-F1 + F2 + F4 ... (10)
When this equation (10) is expanded by the above equations (7) to (9),
F''=-(α x TS1 x t1 x W) + (β x TS2 x t2 x W) + θ x TS2 x t2 x W = -α x TS1 x t1 x W + (β + θ) x TS2 x t2 x W ... (11).

下側の電極輪11bに作用するアキシャル荷重Fは、アキシャル荷重F’’に比例するため、比例定数をμとすると、
F=μ×{−α×TS1×t1×W+(β+θ)×TS2×t2×W} …(12)となる。
(12)式から定数をまとめると、下側の電極輪11bに作用するアキシャル荷重Fは、上側の電極輪11aに作用するアキシャル荷重Fと同様に、(A)式のように表せる。
F=k×(TS1×t1+a×TS2×t2) …(A)
ここで、定数k=−α×μ×W、定数a=−(β+θ)/α。定数kは、マシュシーム溶接機によって決まる定数、定数aは、上側となる後行鋼板に対する下側となる先行鋼板の寄与度を示す定数である。
Since the axial load F acting on the lower electrode ring 11b is proportional to the axial load F'', assuming that the proportionality constant is μ,
F = μ × {−α × TS1 × t1 × W + (β + θ) × TS2 × t2 × W} ... (12).
Summarizing the constants from the equation (12), the axial load F acting on the lower electrode ring 11b can be expressed as the equation (A) like the axial load F acting on the upper electrode ring 11a.
F = k × (TS1 × t1 + a × TS2 × t2)… (A)
Here, the constant k = −α × μ × W, the constant a = − (β + θ) / α. The constant k is a constant determined by the mash seam welder, and the constant a is a constant indicating the contribution of the lower leading steel plate to the upper trailing steel plate.

ここで、本発明の一実施形態に係るマッシュシーム溶接機の設計方法に適用されるマッシュシーム溶接の評価装置は、上下一対の電極輪11a,11bにアキシャル荷重が作用して電極輪11a,11bと先行鋼板21及び後行鋼板22の重ね合わせ部とにずれが生じないような溶接する先行鋼板21と後行鋼板22の溶接可能な組み合わせについて予め溶接テストを行うことなく迅速に評価するために、図4の機能ブロック図に示す構成をとる。 Here, in the mash seam welding evaluation device applied to the design method of the mash seam welding machine according to the embodiment of the present invention, an axial load acts on a pair of upper and lower electrode wheels 11a and 11b to act on the pair of upper and lower electrode wheels 11a and 11b. In order to quickly evaluate the weldable combination of the leading steel plate 21 and the trailing steel plate 22 to be welded so that the overlapped portion of the leading steel plate 21 and the trailing steel plate 22 does not shift, without performing a welding test in advance. , The configuration shown in the functional block diagram of FIG. 4 is adopted.

即ち、マッシュシーム溶接の評価装置30は、アキシャル荷重算出部31と、評価部32と、出力部33とを備えている。
ここで、マッシュシーム溶接の評価装置30は、アキシャル荷重算出部31及び評価部32の各機能をコンピュータソフトウェア上で、すなわちコンピュータ読取り可能なプログラムを実行することで実現するためのコンピュータシステムである。そして、このコンピュータシステムは、ハードウェアに予め記憶された各種専用のコンピュータプログラムを、あるいは、CD−ROM、やDVD−ROM、フレキシブルディスク(FD)などの記録媒体を介して、またはインターネットなどの通信ネットワークを介して、ハードウェアにインストールされたコンピュータプログラムを実行することにより、前述した各機能をソフトウェア上で実現できるようになっている。また、出力部33は、プリンタなどの出力装置によって実現される。
That is, the evaluation device 30 for mash seam welding includes an axial load calculation unit 31, an evaluation unit 32, and an output unit 33.
Here, the evaluation device 30 for mash seam welding is a computer system for realizing each function of the axial load calculation unit 31 and the evaluation unit 32 on computer software, that is, by executing a computer-readable program. Then, this computer system communicates with various dedicated computer programs stored in advance in the hardware, via a recording medium such as a CD-ROM, a DVD-ROM, or a flexible disk (FD), or via the Internet or the like. By executing a computer program installed in hardware via a network, each of the above-mentioned functions can be realized by software. Further, the output unit 33 is realized by an output device such as a printer.

アキシャル荷重算出部31は、上側の電極輪11a及び下側の電極輪11bの各々に作用する前述の(A)式で表されるアキシャル荷重Fを算出する。
ここで、アキシャル荷重Fの算出に際し、(A)式における定数aの値は、−1≦a≦0の範囲とすることが好適である。その理由について説明する。
実溶接機にて上側の電極輪11aに作用するアキシャル荷重Fを実測し、前述の(A)式に近似させた。電極輪11aの変位量に影響するパラメータを抽出し、そのパラメータの中で「先行鋼板の抗張力TS1×板厚t1」と「後行鋼板の抗張力TS2×板厚t2」がアキシャル荷重Fとの間で相関係数(分散比)が高いことを見出した。「先行鋼板の抗張力TS1×板厚t1」、「後行鋼板の抗張力TS2×板厚t2」とアキシャル荷重Fとの間の相関係数(近似式の相関係数)は定数aによって変化し、近似式の相関係数と定数aとの関係は図6に示すようであった。図6を参照すると、前述の(A)式における定数k=10、定数a=−0.5のときに近似式の相関係数が0.8となり、相関が最も高かった。これにより、前述の(A)式における定数aの値は、−0.5、定数kの値は10としてアキシャル荷重Fを算出する。なお、図6に示すように、定数aが−01未満の場合及び0よりも大きい場合には、近似式の相関係数が0.4未満となり相関が少ないと考えられるため、(A)式における定数aの値は、0.8に限らず、−1≦a≦0の範囲とすることが好ましい。この定数aの値を、0.8に限らず、−1≦a≦0の範囲とし、定数kの値を10とするのは、上側の電極輪11aに作用するアキシャル荷重Fを算出する場合のみならず、下側の電極輪11bに作用するアキシャル荷重Fを算出する場合も同様である。
The axial load calculation unit 31 calculates the axial load F represented by the above equation (A) acting on each of the upper electrode ring 11a and the lower electrode ring 11b.
Here, when calculating the axial load F, it is preferable that the value of the constant a in the equation (A) is in the range of -1 ≦ a ≦ 0. The reason will be explained.
The axial load F acting on the upper electrode ring 11a was actually measured with an actual welding machine and approximated to the above equation (A). Parameters that affect the displacement of the electrode ring 11a are extracted, and among the parameters, "tensile tension TS1 of the leading steel plate x plate thickness t1" and "tensile tension TS2 of the trailing steel plate x plate thickness t2" are between the axial load F. It was found that the correlation coefficient (dispersion ratio) was high. The correlation coefficient (correlation coefficient of the approximate expression) between "strength TS1 of the leading steel plate x plate thickness t1", "tensile tension TS2 of the trailing steel plate x plate thickness t2" and the axial load F changes depending on the constant a. The relationship between the correlation coefficient of the approximate expression and the constant a was as shown in FIG. Referring to FIG. 6, when the constant k = 10 and the constant a = −0.5 in the above equation (A), the correlation coefficient of the approximate equation was 0.8, and the correlation was the highest. As a result, the axial load F is calculated assuming that the value of the constant a in the above equation (A) is −0.5 and the value of the constant k is 10. As shown in FIG. 6, when the constant a is less than -01 or larger than 0, the correlation coefficient of the approximate expression is less than 0.4 and the correlation is considered to be small. Therefore, the equation (A) The value of the constant a in is not limited to 0.8, and is preferably in the range of -1 ≦ a ≦ 0. The value of the constant a is not limited to 0.8, but is set in the range of -1≤a≤0, and the value of the constant k is set to 10 when calculating the axial load F acting on the upper electrode ring 11a. The same applies not only when calculating the axial load F acting on the lower electrode ring 11b.

また、評価部32は、アキシャル荷重算出部31で算出されたアキシャル荷重Fに基づいて先行鋼板21及び後行鋼板22の溶接の可否を評価する。
ここで、評価部32では、アキシャル荷重算出部31で算出されたアキシャル荷重Fが、以下の(B)式を満たすときに先行鋼板21及び後行鋼板22の溶接を可能と評価し、(B)式を満たさないときに先行鋼板21及び後行鋼板22の溶接を不可能と評価する。
F≦F0 …(B)
F0:一対の電極輪11a,11bの各々及びその周辺部品の剛性値
Further, the evaluation unit 32 evaluates whether or not the leading steel plate 21 and the trailing steel plate 22 can be welded based on the axial load F calculated by the axial load calculating unit 31.
Here, the evaluation unit 32 evaluates that the leading steel plate 21 and the trailing steel plate 22 can be welded when the axial load F calculated by the axial load calculating unit 31 satisfies the following equation (B), and (B). ) When the equation is not satisfied, welding of the leading steel plate 21 and the trailing steel plate 22 is evaluated as impossible.
F ≤ F0 ... (B)
F0: Rigidity value of each of the pair of electrode rings 11a and 11b and their peripheral parts

ここで、上側の電極輪11aの周辺部品とは、上側の電極輪11aを固定する上側回転軸12a、上側回転軸12aの両端に設けられた一対の軸受13a及び上側回転軸12aを軸受13aを介して支持する上側電極輪支持部材14aを意味する。また、下側の電極輪11bの周辺部品とは、下側の電極輪11bを固定する下側回転軸12b、下側回転軸12bの両端に設けられた一対の軸受13b及び下側回転軸12bを軸受13bを介して支持する下側電極輪支持部材14bを意味する。 Here, the peripheral parts of the upper electrode ring 11a are an upper rotating shaft 12a for fixing the upper electrode ring 11a, a pair of bearings 13a provided at both ends of the upper rotating shaft 12a, and a bearing 13a for the upper rotating shaft 12a. It means the upper electrode ring support member 14a that is supported via the upper electrode ring. Further, the peripheral parts of the lower electrode ring 11b are a lower rotary shaft 12b for fixing the lower electrode ring 11b, a pair of bearings 13b provided at both ends of the lower rotary shaft 12b, and a lower rotary shaft 12b. Means the lower electrode ring support member 14b that supports the vehicle via the bearing 13b.

アキシャル荷重算出部31で算出されたアキシャル荷重Fが、(B)式を満たさないときには、アキシャル荷重FはF0よりも大きく、上側の電極輪11aと下側の電極輪11bとの変位量の差が増大し、脱輪が発生するため、溶接不良が発生する。また、この場合、電極輪11a,11bの軸受ユニットで損傷が発生するおそれがある。一方、アキシャル荷重算出部31で算出されたアキシャル荷重Fが、(B)式を満たすときには、アキシャル荷重FがF0以下となり、上側の電極輪11a及び下側の電極輪11bの変位量がさほど大きくならず、溶接不良が発生しない。また、この場合、電極輪11a,11bの軸受ユニットで損傷が発生することもない。
ここで、F0:一対の電極輪11a,11bの各々及びその周辺部品の剛性値は、使用するマッシュシーム溶接機の剛性に応じて定まる値であり、使用するマッシュシーム溶接機に応じて適宜決定される。
When the axial load F calculated by the axial load calculation unit 31 does not satisfy the equation (B), the axial load F is larger than F0, and the difference in the amount of displacement between the upper electrode ring 11a and the lower electrode ring 11b. Will increase and derailment will occur, resulting in poor welding. Further, in this case, the bearing units of the electrode rings 11a and 11b may be damaged. On the other hand, when the axial load F calculated by the axial load calculation unit 31 satisfies the equation (B), the axial load F becomes F0 or less, and the displacement amounts of the upper electrode ring 11a and the lower electrode ring 11b are so large. No welding defects occur. Further, in this case, the bearing units of the electrode rings 11a and 11b are not damaged.
Here, the rigidity values of F0: each of the pair of electrode rings 11a and 11b and their peripheral parts are determined according to the rigidity of the mash seam welder to be used, and are appropriately determined according to the mash seam welder to be used. Will be done.

なお、図7には、後述する実施例の溶接条件で溶接したときの実測したアキシャル荷重と電極輪11a,11bの変位量との関係を示す。図7に示すように、実測したアキシャル荷重が4000kgf以下の場合には、電極輪11a,11bのアキシャル方向の変位量は±4.0mmの範囲にあり、電極輪11a,11bの脱輪はなく、溶接が良好であった。なお、変位量の正負の符号は、図2における電極輪11aが右方向にずれ、電極輪11bが左方向にずれる場合を正としている。一方、実測したアキシャル荷重が4000kgfより大きい場合には、電極輪11a,11bのアキシャル方向の変位量は6.0mmを超え、電極輪11a,11bが脱輪し、溶接不良となった。なお、一対の電極輪11a,11bのアキシャル方向の変位量とは、溶接時の一対の電極輪11a,11bの鋼板21,22との接触位置における各電極輪11a,11bの中心位置のアキシャル方向での距離を示す。従って、本実施形態にあっては、F0:一対の電極輪11a,11bの各々及びその周辺部品の剛性値を4000kgfとして先行鋼板21及び後行鋼板22の溶接の可否を評価する。
また、出力部33は、評価部32で評価された先行鋼板21及び後行鋼板22の溶接の可否を出力する。
Note that FIG. 7 shows the relationship between the measured axial load and the displacement amounts of the electrode rings 11a and 11b when welding is performed under the welding conditions of the examples described later. As shown in FIG. 7, when the measured axial load is 4000 kgf or less, the displacement amount of the electrode rings 11a and 11b in the axial direction is in the range of ± 4.0 mm, and the electrode rings 11a and 11b are not derailed. , Welding was good. The positive and negative signs of the displacement amount are positive when the electrode ring 11a in FIG. 2 is displaced to the right and the electrode ring 11b is displaced to the left. On the other hand, when the measured axial load was larger than 4000 kgf, the displacement amount of the electrode rings 11a and 11b in the axial direction exceeded 6.0 mm, and the electrode rings 11a and 11b were derailed, resulting in poor welding. The amount of displacement of the pair of electrode rings 11a and 11b in the axial direction is the axial direction of the center position of the pair of electrode rings 11a and 11b at the contact positions of the pair of electrode rings 11a and 11b with the steel plates 21 and 22. Indicates the distance at. Therefore, in the present embodiment, the possibility of welding the leading steel plate 21 and the trailing steel plate 22 is evaluated with the rigidity value of each of the pair of electrode rings 11a and 11b and their peripheral parts being 4000 kgf.
Further, the output unit 33 outputs whether or not the leading steel plate 21 and the trailing steel plate 22 evaluated by the evaluation unit 32 can be welded.

次に、マッシュシーム溶接の評価装置30の処理の流れについて、図5を参照して説明する。
評価装置30のアキシャル荷重算出部31は、アキシャル荷重算出ステップである以下で示すステップS1〜ステップS4を実行する。また、評価部32は、評価ステップであるステップS5〜ステップS7を実行する。また、出力部33は、ステップS8を実行する。
先ず、ステップS1で、アキシャル荷重算出部31は、図示しない入力装置からの評価開始指令を受け取ると、図1に示すマッシュシーム溶接機1で溶接する先行鋼板21の板厚t1及び抗張力TS1を取得する。アキシャル荷重算出部31は、図示しない入力装置に作業者より入力された溶接する先行鋼板21の板厚t1及び抗張力TS1を取得する。
Next, the processing flow of the evaluation device 30 for mash seam welding will be described with reference to FIG.
The axial load calculation unit 31 of the evaluation device 30 executes steps S1 to S4 shown below, which are the axial load calculation steps. Further, the evaluation unit 32 executes the evaluation steps S5 to S7. Further, the output unit 33 executes step S8.
First, in step S1, when the axial load calculation unit 31 receives the evaluation start command from an input device (not shown), it acquires the plate thickness t1 and the tensile strength TS1 of the preceding steel plate 21 to be welded by the mash seam welder 1 shown in FIG. do. The axial load calculation unit 31 acquires the plate thickness t1 and the tensile strength TS1 of the preceding steel plate 21 to be welded, which is input by the operator to an input device (not shown).

次いで、ステップS2で、アキシャル荷重算出部31は、図1に示すマッシュシーム溶接機1で溶接する後行鋼板22の板厚t2及び抗張力TS2を取得する。アキシャル荷重算出部31は、図示しない入力装置に作業者より入力された溶接する後行鋼板22の板厚t2及び抗張力TS2を取得する。
そして、ステップS3で、アキシャル荷重算出部31は、図示しない入力装置に作業者により入力された(A)式におけるk:マシュシーム溶接機によって決まる定数及びa:上側となる鋼板に対する下側となる鋼板の寄与度を示す定数を取得する。定数kは、前述したように本実施形態では10.定数aは、前述したように本実施形態では−0.5とする。
Next, in step S2, the axial load calculation unit 31 acquires the plate thickness t2 and the tensile strength TS2 of the trailing steel plate 22 to be welded by the mash seam welder 1 shown in FIG. The axial load calculation unit 31 acquires the plate thickness t2 and the tensile strength TS2 of the trailing steel plate 22 to be welded, which is input by the operator to an input device (not shown).
Then, in step S3, the axial load calculation unit 31 inputs a constant determined by the k: mash seam welder in the equation (A) input to an input device (not shown) by an operator, and a: a steel plate on the lower side with respect to the steel plate on the upper side. Get a constant that indicates the contribution of. As described above, the constant k is 10. As described above, the constant a is set to −0.5 in the present embodiment.

次いで、ステップS4で、アキシャル荷重算出部31は、上下一対の電極輪11a,11bの各々の電極輪11a,11bに対しアキシャル方向に作用するアキシャル荷重Fを前述の(A)式により算出する。
そして、ステップS5で、評価部32は、ステップS4で算出されたアキシャル荷重Fが前述の(B)式を満たすか否かを判定する。即ち、F≦F0か否かを判定する。
この際に、F0:一対の電極輪11a,11bの各々及びその周辺部品の剛性値を一例として、4000kgfとして判定する。F0は、予め記憶部に記憶されている。
Next, in step S4, the axial load calculation unit 31 calculates the axial load F acting in the axial direction on the respective electrode rings 11a and 11b of the pair of upper and lower electrode rings 11a and 11b by the above equation (A).
Then, in step S5, the evaluation unit 32 determines whether or not the axial load F calculated in step S4 satisfies the above equation (B). That is, it is determined whether or not F ≦ F0.
At this time, F0: the rigidity values of each of the pair of electrode rings 11a and 11b and their peripheral parts are determined as 4000 kgf as an example. F0 is stored in the storage unit in advance.

そして、判定結果がYESの場合、即ち算出されたアキシャル荷重Fが一対の電極輪11a,11bの各々及びその周辺部品の剛性値F0=4000kgf以下の場合、ステップS6に移行し、判定結果がNoの場合、即ち算出されたアキシャル荷重Fがマッシュシーム溶接機の剛性値F0=4000kgfよりも大きい場合、ステップS7に移行する。
そして、ステップS6では、評価部32は、先行鋼板21及び後行鋼板22の溶接を可能と評価する。
一方、ステップS7では、評価部32は、先行鋼板21及び後行鋼板22の溶接を不可能と評価する。
そして、ステップS8では、出力部33は、評価結果を出力する。
Then, when the determination result is YES, that is, when the calculated axial load F is the rigidity value F0 = 4000 kgf or less of each of the pair of electrode wheels 11a and 11b and their peripheral parts, the process proceeds to step S6, and the determination result is No. In the case of, that is, when the calculated axial load F is larger than the rigidity value F0 = 4000 kgf of the mash seam welder, the process proceeds to step S7.
Then, in step S6, the evaluation unit 32 evaluates that the leading steel plate 21 and the trailing steel plate 22 can be welded.
On the other hand, in step S7, the evaluation unit 32 evaluates that welding of the leading steel plate 21 and the trailing steel plate 22 is impossible.
Then, in step S8, the output unit 33 outputs the evaluation result.

このように、本実施形態に係るマッシュシーム溶接機の設計方法に適用されるマッシュシーム溶接の評価方法及び評価装置30によれば、上下一対の電極輪11a,11bの各々の電極輪11a,11bに対し電極輪11a,11のアキシャル方向に作用する荷重をアキシャル荷重Fとしたとき、このアキシャル荷重Fを前述の(A)式により算出する(アキシャル荷重算出ステップ:ステップS1〜ステップS4、アキシャル荷重算出部31)。そして、算出されたアキシャル荷重Fに基づいて先行鋼板21及び後行鋼板22の溶接の可否を評価する(評価ステップ:ステップS5〜ステップS7、評価部32)。これにより、溶接する先行鋼板21の板厚t1、抗張力TS1と後行鋼板22の板厚t2、抗張力TS2とを用いて、前述の(A)式により、先行鋼板21及び後行鋼板22の溶接の可否を評価することができる。これにより、電極輪11a,11bにアキシャル荷重Fが作用して電極輪11a,11bと先行鋼板21及び後行鋼板22の重ね合わせ部とにずれが生じないような溶接する先行鋼板21と後行鋼板22の溶接可能な組み合わせについて予め溶接テストを行うことなく迅速に評価することができる。 As described above, according to the mash seam welding evaluation method and the evaluation device 30 applied to the design method of the mash seam welder according to the present embodiment, the electrode rings 11a and 11b of the pair of upper and lower electrode rings 11a and 11b are respectively. On the other hand, when the load acting on the electrode rings 11a and 11 in the axial direction is an axial load F, this axial load F is calculated by the above equation (A) (axial load calculation step: steps S1 to S4, axial load). Calculation unit 31). Then, based on the calculated axial load F, whether or not the leading steel plate 21 and the trailing steel plate 22 can be welded is evaluated (evaluation steps: steps S5 to S7, evaluation unit 32). As a result, the leading steel plate 21 and the trailing steel plate 22 are welded according to the above equation (A) using the plate thickness t1 and tensile strength TS1 of the leading steel plate 21 to be welded and the plate thickness t2 and tensile strength TS2 of the trailing steel plate 22. Can be evaluated. As a result, the axial load F acts on the electrode rings 11a and 11b to weld the leading steel plate 21 and the trailing steel plate so that the overlapped portions of the electrode rings 11a and 11b and the leading steel plate 21 and the trailing steel plate 22 do not deviate from each other. The weldable combination of the steel plates 22 can be quickly evaluated without performing a welding test in advance.

また、評価ステップ(ステップS5〜ステップS7、評価部32)では、アキシャル荷重算出ステップ(ステップS1〜ステップS4、アキシャル荷重算出部31)で算出されたアキシャル荷重Fが、前述の(B)式を満たすときに先行鋼板21及び後行鋼板22の溶接を可能と評価し、(B)式を満たさないときに先行鋼板21及び後行鋼板22の溶接を不可能と評価する。これにより、電極輪11a,11bにアキシャル荷重Fが作用して電極輪11a,11bと先行鋼板21及び後行鋼板22の重ね合わせ部とにずれが生じないような溶接する先行鋼板21と後行鋼板22の溶接可能な組み合わせについてより精度高く評価することができる。 Further, in the evaluation steps (steps S5 to step S7, evaluation unit 32), the axial load F calculated in the axial load calculation steps (steps S1 to step S4, axial load calculation unit 31) is the same as the above equation (B). It is evaluated that welding of the leading steel plate 21 and the trailing steel plate 22 is possible when the preceding steel plate 21 and the trailing steel plate 22 are satisfied, and it is evaluated that welding of the leading steel plate 21 and the trailing steel plate 22 is impossible when the equation (B) is not satisfied. As a result, the axial load F acts on the electrode rings 11a and 11b to weld the leading steel plate 21 and the trailing steel plate so that the overlapping portions of the electrode rings 11a and 11b and the leading steel plate 21 and the trailing steel plate 22 do not deviate from each other. The weldable combination of the steel plates 22 can be evaluated with higher accuracy.

また、アキシャル荷重算出ステップ(ステップS1〜ステップS4、アキシャル荷重算出部31)では、前述の(A)式における定数aの値を−1≦a≦0の範囲としてアキシャル荷重Fを算出する。これにより、パラメータ「先行鋼板の抗張力TS1×板厚t1」、「後行鋼板の抗張力TS2×板厚t2」とアキシャル荷重Fとの間の相関係数が高い値で(A)式におけるアキシャル荷重Fを算出することができ、溶接する先行鋼板21と後行鋼板22の溶接可能な組み合わせについてより精度高く評価することができる。
そして、出力部33で出力される評価結果に基づき、溶接が可能と評価された先行鋼板21及び後行鋼板22を図1に示すマッシュシーム溶接機1によって溶接する。
Further, in the axial load calculation step (steps S1 to S4, axial load calculation unit 31), the axial load F is calculated with the value of the constant a in the above equation (A) as the range of -1≤a≤0. As a result, the correlation coefficient between the parameters "strength TS1 of the leading steel plate x plate thickness t1" and "tensile tension TS2 of the trailing steel plate x plate thickness t2" and the axial load F is high, and the axial load in the equation (A) is high. F can be calculated, and the weldable combination of the leading steel plate 21 and the trailing steel plate 22 to be welded can be evaluated with higher accuracy.
Then, based on the evaluation result output by the output unit 33, the leading steel plate 21 and the trailing steel plate 22 evaluated to be weldable are welded by the mash seam welder 1 shown in FIG.

次に、本発明の一実施形態に係るマッシュシーム溶接機の設計方法について説明する。
マッシュシーム溶接機1の設計方法は、先行鋼板21及び後行鋼板22におけるそれぞれの板厚及び抗張力と、一対の電極輪11a,11bの各々及びその周辺部品の剛性とが、次の(A)式(前記した評価方法での(A)式と同じ)で算出される、一対の電極輪11a,11bの各々の電極輪11a,11bに対し電極輪11a,11bのアキシャル方向に作用するアキシャル荷重をF、一対の電極輪11a,11bの各々及びその周辺部品の剛性値をF0としたとき、F≦F0となるように、一対の電極輪11a,11bの各々及びその周辺部品を設計する。
ここで、F=k×(t1×TS1+a×t2×TS2) …(A)
t1:重ね合わせの上側となる鋼板の板厚(mm)
TS1:重ね合わせの上側となる鋼板の抗張力(kgf/mm
t2:重ね合わせの下側となる鋼板の板厚(mm)
TS2:重ね合わせの下側となる鋼板の抗張力(kgf/mm
k:マシュシーム溶接機によって決まる定数
a:上側となる鋼板に対する下側となる鋼板の寄与度を示す定数
Next, a method for designing a mash seam welder according to an embodiment of the present invention will be described.
In the design method of the mash seam welder 1, the thickness and tensile strength of the leading steel plate 21 and the trailing steel plate 22 and the rigidity of each of the pair of electrode rings 11a and 11b and their peripheral parts are as follows (A). Axial load acting on the electrode rings 11a and 11b of the pair of electrode rings 11a and 11b in the axial direction of the electrode rings 11a and 11b, which is calculated by the formula (same as the formula (A) in the evaluation method described above). , And when the rigidity value of each of the pair of electrode rings 11a and 11b and their peripheral parts is F0, each of the pair of electrode rings 11a and 11b and its peripheral parts are designed so that F ≦ F0.
Here, F = k × (t1 × TS1 + a × t2 × TS2)… (A)
t1: Thickness (mm) of the steel plate on the upper side of the superposition
TS1: The tensile strength of the steel plate on the upper side of the superposition (kgf / mm 2 )
t2: Plate thickness (mm) of the steel plate on the lower side of the superposition
TS2: tensile strength of the steel plate under the superposition (kgf / mm 2 )
k: Constant determined by the mash seam welder a: Constant indicating the contribution of the lower steel plate to the upper steel plate

これら(A)式におけるt1、TS1、t2、TS2、k、aは、前記した評価方法での(A)式におけるt1、TS1、t2、TS2、k、aと同じであり、その好適数値も同様である。
つまり、マッシュシーム溶接機1の設計方法では、前述の評価部32で評価基準となった(B)式F≦F0を満たすように、一対の電極輪11a,11bの各々及びその周辺部品、つまり上側の電極輪11a及びその周辺部品、下側の電極輪11b及びその周辺部品を設計する。ここで、上側の電極輪11aの周辺部品とは、上側の電極輪11aを固定する上側回転軸12a、上側回転軸12aの両端に設けられた一対の軸受13a及び上側回転軸12aを軸受13aを介して支持する上側電極輪支持部材14aを意味する。また、下側の電極輪11bの周辺部品とは、下側の電極輪11bを固定する下側回転軸12b、下側回転軸12bの両端に設けられた一対の軸受13b及び下側回転軸12bを軸受13bを介して支持する下側電極輪支持部材14bを意味する。
The t1, TS1, t2, TS2, k, and a in the formula (A) are the same as the t1, TS1, t2, TS2, k, and a in the formula (A) in the above-mentioned evaluation method, and their preferred numerical values are also The same is true.
That is, in the design method of the mash seam welder 1, each of the pair of electrode rings 11a and 11b and its peripheral parts, that is, so as to satisfy the evaluation standard (B) F ≦ F0 in the evaluation unit 32 described above. The upper electrode ring 11a and its peripheral parts are designed, and the lower electrode ring 11b and its peripheral parts are designed. Here, the peripheral parts of the upper electrode ring 11a are an upper rotating shaft 12a for fixing the upper electrode ring 11a, a pair of bearings 13a provided at both ends of the upper rotating shaft 12a, and a bearing 13a for the upper rotating shaft 12a. It means the upper electrode ring support member 14a that is supported via the upper electrode ring. Further, the peripheral parts of the lower electrode ring 11b are a lower rotary shaft 12b for fixing the lower electrode ring 11b, a pair of bearings 13b provided at both ends of the lower rotary shaft 12b, and a lower rotary shaft 12b. Means the lower electrode ring support member 14b that supports the vehicle via the bearing 13b.

従って、前述の評価部32での評価結果が溶接可能の場合、上側の電極輪11a及びその周辺部品、下側の電極輪11b及びその周辺部品を設計変更することなく、そのままとする。
一方、前述の評価部32での評価結果が溶接不可能の場合、上側の電極輪11a及びその周辺部品あるいは下側の電極輪11b及びその周辺部品を、それぞれF≦F0となるように、設計変更する。例えば、上側の電極輪11a及びその周辺部品の剛性値あるいは下側の電極輪11b及びその周辺部品の剛性値を高めるべく、上側電極輪支持部材14aあるいは下側電極輪支持部材14bの材質を変更したり、上側電極輪支持部材14aあるいは下側電極輪支持部材14bを構成する部品点数を減らして接合箇所を減少させたりする。
Therefore, when the evaluation result by the evaluation unit 32 described above is weldable, the upper electrode ring 11a and its peripheral parts and the lower electrode ring 11b and its peripheral parts are left as they are without any design change.
On the other hand, when the evaluation result by the evaluation unit 32 described above is not weldable, the upper electrode ring 11a and its peripheral parts or the lower electrode ring 11b and its peripheral parts are designed so that F ≦ F0, respectively. change. For example, the material of the upper electrode ring support member 14a or the lower electrode ring support member 14b is changed in order to increase the rigidity value of the upper electrode ring 11a and its peripheral parts or the rigidity value of the lower electrode ring 11b and its peripheral parts. Alternatively, the number of parts constituting the upper electrode ring support member 14a or the lower electrode ring support member 14b is reduced to reduce the number of joints.

これにより、溶接する先行鋼板21と後行鋼板22の組み合わせを好適なものとして、電極輪11a,11bに作用するアキシャル荷重Fに起因する電極輪11a,11bあるいはその周辺部品の損傷を回避することができるマッシュシーム溶接機1の設計方法を提供できる。
また、上側の電極輪11a及びその周辺部品、下側の電極輪11b及びその周辺部品を、それぞれF≦F0となるように、設計することで、上側の電極輪11a及び下側の電極輪11bのアキシャル方向の変位量を所定値以下(5.0mm以下)とすることができる。
As a result, the combination of the leading steel plate 21 and the trailing steel plate 22 to be welded is suitable, and damage to the electrode rings 11a, 11b or its peripheral parts due to the axial load F acting on the electrode rings 11a, 11b is avoided. It is possible to provide a design method for a mash seam welder 1 capable of forming a mash seam welder 1.
Further, by designing the upper electrode ring 11a and its peripheral parts, the lower electrode ring 11b and its peripheral parts so that F ≦ F0, respectively, the upper electrode ring 11a and the lower electrode ring 11b are designed. The amount of displacement in the axial direction can be set to a predetermined value or less (5.0 mm or less).

そして、前述の設計方法によって設計されたマッシュシーム溶接機1は、先行鋼板21及び後行鋼板22におけるそれぞれの板厚及び抗張力と、一対の電極輪11a,11bの各々及びその周辺部品の剛性とが、前述の(A)式(前記した評価方法での(A)式と同じ)で算出される、一対の電極輪11a,11bの各々の電極輪11a,11bに対し電極輪11a,11bのアキシャル方向に作用するアキシャル荷重をF、一対の電極輪11a,11bの各々及びその周辺部品の剛性値をF0としたとき、F≦Fとなる関係にある。 The mash seam welder 1 designed by the above-mentioned design method has the thickness and tensile strength of the leading steel plate 21 and the trailing steel plate 22, and the rigidity of each of the pair of electrode rings 11a and 11b and their peripheral parts. However, the electrode rings 11a and 11b are calculated with respect to the electrode rings 11a and 11b of the pair of electrode rings 11a and 11b, which are calculated by the above-mentioned equation (A) (the same as the equation (A) in the evaluation method described above). When the axial load acting in the axial direction is F and the rigidity values of each of the pair of electrode rings 11a and 11b and their peripheral parts are F0, F ≦ F.

これにより、溶接する先行鋼板21と後行鋼板22の組み合わせを好適なものとして、電極輪11a,11bに作用するアキシャル荷重Fに起因する電極輪11a,11bあるいはその周辺部品の損傷を回避することができるマッシュシーム溶接機1を提供できる。
また、マッシュシーム溶接機1において、F≦F0とすることで、上側の電極輪11a及び下側の電極輪11bのアキシャル方向の変位量を所定値以下(5.0mm以下)とすることができる。
As a result, the combination of the leading steel plate 21 and the trailing steel plate 22 to be welded is suitable, and damage to the electrode rings 11a, 11b or its peripheral parts due to the axial load F acting on the electrode rings 11a, 11b is avoided. It is possible to provide a mash seam welder 1 capable of providing a mash seam welder 1.
Further, in the mash seam welder 1, by setting F ≦ F0, the displacement amount of the upper electrode ring 11a and the lower electrode ring 11b in the axial direction can be set to a predetermined value or less (5.0 mm or less). ..

また、本発明に係るマッシュシーム溶接方法は、このようなマッシュシーム溶接機1を用いて、溶接対象となる先行鋼板21と後行鋼板22との重ね合わせ部分を一対の電極輪11a,11bで加圧し、かつ該一対の電極輪11a,11bの各々を前述の重ね合わせ部分で走行させながら溶接電流を流すことにより、先行鋼板21と後行鋼板22とを連続的に溶接する。
更に、本発明に係る熱延鋼板の製造方法は、前述のマッシュシーム溶接方法により熱延鋼板を製造する。
Further, in the mash seam welding method according to the present invention, using such a mash seam welder 1, the overlapping portion of the leading steel plate 21 and the trailing steel plate 22 to be welded is formed by a pair of electrode rings 11a and 11b. The leading steel plate 21 and the trailing steel plate 22 are continuously welded by applying pressure and applying a welding current while running each of the pair of electrode rings 11a and 11b in the above-mentioned overlapping portion.
Further, in the method for manufacturing a hot-rolled steel sheet according to the present invention, the hot-rolled steel sheet is manufactured by the above-mentioned mash seam welding method.

また、本発明に係る熱延鋼板の製造方法は、溶接対象となる先行鋼板21と後行鋼板22との重ね合わせ部分を加圧する一対の電極輪11a,11bを、重ね合わせ部分で走行させながら溶接電流を流すことにより、先行鋼板21と後行鋼板22とを連続的に溶接するマッシュシーム溶接工程を有する熱延鋼板の製造方法である。そして、この熱延鋼板の製造方法では、先行鋼板21及び後行鋼板22におけるそれぞれの板厚及び抗張力と、一対の電極輪11a,11bの各々及びその周辺部品の剛性とが、前述の(A)式(前記した評価方法での(A)式と同じ)で算出される、一対の電極輪11a,11bの各々の電極輪11a,11bに対し電極輪11a,11bのアキシャル方向に作用するアキシャル荷重をF、一対の電極輪11a,11bの各々及びその周辺部品の剛性値をF0としたとき、F≦F0を満たす場合にのみ溶接可能と判断する。 Further, in the method for manufacturing a hot-rolled steel sheet according to the present invention, while running a pair of electrode rings 11a and 11b that pressurize the overlapped portion of the leading steel sheet 21 and the trailing steel sheet 22 to be welded at the overlapped portion. This is a method for manufacturing a hot-rolled steel sheet having a mash seam welding step in which a leading steel sheet 21 and a trailing steel sheet 22 are continuously welded by passing a welding current. In this method of manufacturing the hot-rolled steel plate, the thickness and tensile strength of the leading steel plate 21 and the trailing steel plate 22 and the rigidity of each of the pair of electrode rings 11a and 11b and their peripheral parts are determined by the above-mentioned (A). ) (Same as equation (A) in the evaluation method described above), which acts on the electrode rings 11a and 11b of the pair of electrode rings 11a and 11b in the axial direction of the electrode rings 11a and 11b. When the load is F and the rigidity values of each of the pair of electrode rings 11a and 11b and their peripheral parts are F0, it is determined that welding is possible only when F ≦ F0 is satisfied.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
例えば、先行鋼板21を上側、後行鋼板22を下側として溶接した例について説明したが、先行鋼板21を下側、後行鋼板22を下側として溶接するようにしてもよい。
また、(A)式における定数kは10に限られず適切に設定しうる。また、(A)式における定数aは、−0.5に限らず、−1≦a≦0の範囲内で適切に設定しうる。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and various modifications and improvements can be made.
For example, although the example of welding with the leading steel plate 21 on the upper side and the trailing steel plate 22 on the lower side has been described, the leading steel plate 21 may be welded on the lower side and the trailing steel plate 22 may be welded on the lower side.
Further, the constant k in the equation (A) is not limited to 10 and can be appropriately set. Further, the constant a in the equation (A) is not limited to −0.5, and can be appropriately set within the range of -1 ≦ a ≦ 0.

また、(B)式におけるF0は、4000kgfに限られない。すなわち、F0は、一対の電極輪11a,11bの走行方向の変位量を5.0mm以下となるに十分な剛性値であり、接合される先行鋼板21及び後行鋼板22の抗張力、板厚により変化しうる。なお、一対の電極輪11a,11bのアキシャル方向の変位量は、より好ましくは4.0mm以下であり、さらに好ましくは、2.0mm以下である。
また、マッシュシーム溶接の評価方法について、コンピュータシステム(評価装置30)を用いて、アキシャル荷重Fもしくはこれに相当する荷重を(A)式もしくはこれに相当する関係式により算出し、算出されたアキシャル荷重Fに基づいて先行鋼板21及び後行鋼板22の溶接の可否を評価しているが、コンピュータシステムを用いることなく、人手で計算し、評価するようにしてもよい。
Further, F0 in the equation (B) is not limited to 4000 kgf. That is, F0 is a rigidity value sufficient to reduce the displacement amount of the pair of electrode rings 11a and 11b in the traveling direction to 5.0 mm or less, and depends on the tensile strength and thickness of the leading steel plate 21 and the trailing steel plate 22 to be joined. Can change. The amount of displacement of the pair of electrode rings 11a and 11b in the axial direction is more preferably 4.0 mm or less, still more preferably 2.0 mm or less.
Further, regarding the evaluation method of mash seam welding, the axial load F or the load corresponding thereto is calculated by the equation (A) or the relational expression corresponding thereto using a computer system (evaluation device 30), and the calculated axial load is calculated. Weldability of the leading steel plate 21 and the trailing steel plate 22 is evaluated based on the load F, but it may be calculated and evaluated manually without using a computer system.

また、上側の電極輪11a及びその周辺部品を、F≦F0となるように、設計変更するに際して、上側の電極輪11a及びその周辺部品の双方を設計変更することなく、上側の電極輪11a及びその周辺部品のうち少なくとも何れか一方を設計変更して上側の電極輪11a及びその周辺部品の剛性値F0を高めるようにしてもよい。
また、下側の電極輪11b及びその周辺部品を、F≦F0となるように、設計変更するに際して、下側の電極輪11b及びその周辺部品の双方を設計変更することなく、下側の電極輪11b及びその周辺部品のうち少なくとも何れか一方を設計変更して下側の電極輪11b及びその周辺部品の剛性値F0を高めるようにしてもよい。
Further, when the design of the upper electrode ring 11a and its peripheral parts is changed so that F ≦ F0, the upper electrode ring 11a and its peripheral parts are not changed in design, and the upper electrode ring 11a and its peripheral parts are not changed. At least one of the peripheral parts may be redesigned to increase the rigidity value F0 of the upper electrode ring 11a and the peripheral parts thereof.
Further, when the design of the lower electrode ring 11b and its peripheral parts is changed so that F ≦ F0, the lower electrode is not changed in design of both the lower electrode ring 11b and its peripheral parts. At least one of the ring 11b and its peripheral parts may be redesigned to increase the rigidity value F0 of the lower electrode ring 11b and its peripheral parts.

また、マッシュシーム溶接機の設計方法は、溶接対象となる先行鋼板21と後行鋼板22との重ね合わせ部分を加圧する一対の電極輪11a、11bを備え、一対の電極輪11a、11bを重ね合わせ部分で走行させながら溶接電流を流すことにより、先行鋼板21と後行鋼板22とを連続的に溶接するマッシュシーム溶接機の設計方法である。このマッシュシーム溶接機の設計方法において、一対の電極輪11a、11bの各々のアキシャル方向に作用するアキシャル荷重と、一対の電極輪11a、11bの各々及びその周辺部品の剛性とが、所定の関係となるように一対の電極輪11a、11b及びその周辺部品を設計するようにしてもよい。ここで、アキシャル荷重とは、先行鋼板21及び後行鋼板22におけるそれぞれの板厚及び抗張力から決定されるものである。また、「所定の関係」はF≦F0以外を満足するものでもよく、「所定の関係となるように」「設計する」、というのは、鋼板製造ラインで溶接対象となる鋼板の厚さ及び抗張力から決定される一対の電極輪11a、11bの各々のアキシャル荷重に対応して設備の剛性を適宜決定していくことを意味しているものである。 Further, the design method of the mash seam welder includes a pair of electrode rings 11a and 11b that pressurize the overlapped portion of the leading steel plate 21 and the trailing steel plate 22 to be welded, and the pair of electrode rings 11a and 11b are overlapped. This is a design method for a mash seam welder that continuously welds the leading steel plate 21 and the trailing steel plate 22 by passing a welding current while running at the mating portion. In the design method of this mash seam welder, the axial load acting on each of the pair of electrode rings 11a and 11b in the axial direction and the rigidity of each of the pair of electrode rings 11a and 11b and their peripheral parts have a predetermined relationship. The pair of electrode rings 11a and 11b and their peripheral parts may be designed so as to be. Here, the axial load is determined from the respective plate thicknesses and tensile strengths of the leading steel plate 21 and the trailing steel plate 22. Further, the "predetermined relationship" may satisfy other than F≤F0, and "designing" "to have a predetermined relationship" means the thickness of the steel sheet to be welded in the steel sheet production line and the thickness of the steel sheet to be welded. This means that the rigidity of the equipment is appropriately determined according to the axial load of each of the pair of electrode rings 11a and 11b determined from the tensile strength.

このマッシュシーム溶接機の設計方法において、一対の電極輪11a、11bのアキシャル方向の変位量を5.0mm以下とすることが好ましい。
また、マッシュシーム溶接機は、溶接対象となる先行鋼板21と後行鋼板22との重ね合わせ部分を加圧する一対の電極輪11a、11bを備え、一対の電極輪11a、11bを重ね合わせ部分で走行させながら溶接電流を流すことにより、先行鋼板21と後行鋼板22とを連続的に溶接するマッシュシーム溶接機である。そして、このマッシュシーム溶接機において、一対の電極輪11a、11bの各々のアキシャル方向に作用するアキシャル荷重と、一対の電極輪11a、11bの各々及びその周辺部品の剛性とが、所定の関係を満たすようにしてもよい。「アキシャル荷重」及び「所定の関係」の意味は、前述のマッシュシーム溶接機の設計方法の場合と同様である。
In the design method of this mash seam welder, it is preferable that the displacement amount of the pair of electrode rings 11a and 11b in the axial direction is 5.0 mm or less.
Further, the mash seam welder includes a pair of electrode rings 11a and 11b that pressurize the overlapped portion of the leading steel plate 21 and the trailing steel plate 22 to be welded, and the pair of electrode rings 11a and 11b are overlapped at the overlapped portion. This is a mash seam welder that continuously welds the leading steel plate 21 and the trailing steel plate 22 by passing a welding current while running. Then, in this mash seam welder, the axial load acting on each of the pair of electrode rings 11a and 11b in the axial direction and the rigidity of each of the pair of electrode rings 11a and 11b and their peripheral parts have a predetermined relationship. You may try to meet. The meanings of "axial load" and "predetermined relationship" are the same as in the case of the above-mentioned mash seam welder design method.

このマッシュシーム溶接機において、一対の電極輪11a、11bのアキシャル方向の変位量を5.0mm以下とすることが好ましい。
また、マッシュシーム溶接方法では、前述のマッシュシーム溶接機を用いて、溶接対象となる先行鋼板21と後行鋼板22との重ね合わせ部分を一対の電極輪11a、11bで加圧し、かつ一対の電極輪11a、11bの各々を重ね合わせ部分で走行させながら溶接電流を流すことにより、先行鋼板21と後行鋼板22とを連続的に溶接するようにしてもよい。
In this mash seam welder, it is preferable that the displacement amount of the pair of electrode rings 11a and 11b in the axial direction is 5.0 mm or less.
Further, in the mash seam welding method, the overlapped portion of the leading steel plate 21 and the trailing steel plate 22 to be welded is pressed by a pair of electrode rings 11a and 11b by using the mash seam welding machine described above, and a pair of electrode rings 11a and 11b are used. The leading steel plate 21 and the trailing steel plate 22 may be continuously welded by passing a welding current while running each of the electrode rings 11a and 11b at the overlapped portion.

また、熱延鋼板の製造方法では、前述のマッシュシーム溶接方法により熱延鋼板を製造するようにしてもよい。
また、熱延鋼板の製造方法は、溶接対象となる先行鋼板21と後行鋼板22との重ね合わせ部分を加圧する一対の電極輪11a、11bを、重ね合わせ部分で走行させながら溶接電流を流すことにより、先行鋼板21と後行鋼板22とを連続的に溶接するマッシュシーム溶接工程を有するものである。この熱延鋼板の製造方法において、一対の電極輪11a、11bの各々のアキシャル方向に作用するアキシャル荷重と、一対の電極輪11a、11bの各々及びその周辺部品の剛性とが、所定の関係を満たす場合にのみ溶接可能と判断するようにしてもよい。「アキシャル荷重」及び「所定の関係」の意味は、前述のマッシュシーム溶接機の設計方法の場合と同様である。
Further, in the method for manufacturing the hot-rolled steel sheet, the hot-rolled steel sheet may be manufactured by the above-mentioned mash seam welding method.
Further, in the method of manufacturing a hot-rolled steel sheet, a welding current is passed while running a pair of electrode rings 11a and 11b that pressurize the overlapped portion of the leading steel sheet 21 and the trailing steel sheet 22 to be welded at the overlapped portion. As a result, it has a mash seam welding step in which the leading steel plate 21 and the trailing steel plate 22 are continuously welded. In this method for manufacturing a hot-rolled steel sheet, the axial load acting on each of the pair of electrode rings 11a and 11b in the axial direction and the rigidity of each of the pair of electrode rings 11a and 11b and their peripheral parts have a predetermined relationship. It may be determined that welding is possible only when the condition is satisfied. The meanings of "axial load" and "predetermined relationship" are the same as in the case of the above-mentioned mash seam welder design method.

溶接条件の設定に当たり、先ず、図1に示すマッシュシーム溶接機1において、板厚1.5〜6.0mm、抗張力20〜60kgf/mmの範囲より適宜選択された様々な鋼板の組み合わせで溶接を行った。そして、電極輪11a,11bに作用するアキシャル荷重を実測して近似式を導き、図6に示すように評価したところ、k=10、a=−0.5で「先行鋼板の抗張力TS1×板厚t1」、「後行鋼板の抗張力TS2×板厚t2」とアキシャル荷重Fとの間で最も相関が高いことがわかった。また、図7に示すように、実測したアキシャル荷重と電極輪11a,11bの変位量との関係について評価したところ、この条件においては、アキシャル荷重が4000kgfを超えた場合に溶接不良が発生した。 In setting the welding conditions, first, in the mash seam welder 1 shown in FIG. 1, welding is performed with a combination of various steel plates appropriately selected from the range of plate thickness 1.5 to 6.0 mm and tensile strength 20 to 60 kgf / mm 2. Was done. Then, the axial load acting on the electrode rings 11a and 11b was actually measured, an approximate expression was derived, and the evaluation was performed as shown in FIG. It was found that the highest correlation was found between "thickness t1", "strength TS2 of trailing steel plate x plate thickness t2" and the axial load F. Further, as shown in FIG. 7, when the relationship between the actually measured axial load and the displacement amount of the electrode rings 11a and 11b was evaluated, welding failure occurred when the axial load exceeded 4000 kgf under this condition.

従って、本実施形態に係るマッシュシーム溶接機の設計方法に適用される評価方法によって溶接可能な先行鋼板21及び後行鋼板22の組み合わせの評価を行う際に、(A)式における定数kを10、定数aを−0.5として先行鋼板21及び後行鋼板22の組み合わせのそれぞれにつきアキシャル荷重Fを算出し、(B)式におけるF0を4000kgfとして評価を行うこととした。
板厚1.5〜6.0mm、抗張力20〜60kgf/mmの範囲より先行鋼板21、後行鋼板22の種々の組み合わせを適宜選択し、それぞれの組み合わせにつき、評価装置30によって(A)式における定数kを10、定数aを−0.5としてアキシャル荷重Fを算出した。そして、それぞれの組み合わせについて溶接を450回行い、それぞれの先行鋼板21及び後行鋼板22の組み合わせについて溶接可否の評価を行った。その結果を図8に示す。
Therefore, when evaluating the combination of the leading steel plate 21 and the trailing steel plate 22 that can be welded by the evaluation method applied to the design method of the mash seam welder according to the present embodiment, the constant k in the equation (A) is set to 10. The axial load F was calculated for each combination of the leading steel plate 21 and the trailing steel plate 22 with the constant a set to −0.5, and the evaluation was performed with F0 in the equation (B) set to 4000 kgf.
Various combinations of the leading steel plate 21 and the trailing steel plate 22 are appropriately selected from the range of the plate thickness of 1.5 to 6.0 mm and the tensile strength of 20 to 60 kgf / mm 2, and each combination is subjected to the formula (A) by the evaluation device 30. The axial load F was calculated with the constant k set to 10 and the constant a set to −0.5. Then, welding was performed 450 times for each combination, and whether or not welding was possible was evaluated for each combination of the leading steel plate 21 and the trailing steel plate 22. The result is shown in FIG.

図8の横軸には本実施形態に係るマッシュシーム溶接機の設計方法に適用される評価方法によって(A)式により算出されたアキシャル荷重Fをとり、縦軸には、溶接回数(回)をとった。
図8に示すように、(A)式により算出されたアキシャル荷重Fが4000kgf以下の場合、いずれの先行鋼板21及び後行鋼板22の組み合わせにおいても溶接良好(成功)であった。一方、(A)式により算出されたアキシャル荷重Fが4000kgfよりも大きい場合、溶接回数が20回のうち16回が溶接不良(溶接失敗)であった。
従って、本発明に係るマッシュシーム溶接機の設計方法に適用される評価方法及び評価装置30が溶接する先行鋼板21と後行鋼板22の溶接可能な組み合わせについて精度高く評価できることが確認された。
The horizontal axis of FIG. 8 is the axial load F calculated by the evaluation method (A) according to the evaluation method applied to the design method of the mash seam welder according to the present embodiment, and the vertical axis is the number of weldings (times). I took.
As shown in FIG. 8, when the axial load F calculated by the formula (A) is 4000 kgf or less, welding is good (successful) in any combination of the leading steel plate 21 and the trailing steel plate 22. On the other hand, when the axial load F calculated by the formula (A) is larger than 4000 kgf, 16 out of 20 welds were poor welding (welding failure).
Therefore, it was confirmed that the evaluation method applied to the design method of the mash seam welder according to the present invention and the weldable combination of the leading steel plate 21 and the trailing steel plate 22 to be welded by the evaluation device 30 can be evaluated with high accuracy.

1 マッシュシーム溶接機
11a 上側の電極輪(電極輪)
11b 下側の電極輪(電極輪)
12a 上側回転軸
12b 下側回転軸
13a 軸受
13b 軸受
14a 上側電極輪支持部材
14b 下側電極輪支持部材
15a 上側キャリッジ
15b 下側キャリッジ
16a リニアガイド
16b リニアガイド
17a 上側フレーム
17b 下側フレーム
18 押圧部材
19 リニアガイド
20 押圧シリンダ
21 先行鋼板
21a 尾端部
22 後行鋼板
22a 先端部
23 先側クランプ装置
23a 上側のクランプ部材
23b 下側のクランプ部材
24 後側クランプ装置
24a 上側のクランプ部材
24b 下側のクランプ部材
25 押圧シリンダ
26 押圧シリンダ
27 溶接部
30 評価装置
31 アキシャル荷重算出部
32 評価部
33 出力部
1 Mash seam welder 11a Upper electrode ring (electrode ring)
11b Lower electrode ring (electrode ring)
12a Upper rotary shaft 12b Lower rotary shaft 13a Bearing 13b Bearing 14a Upper electrode ring support member 14b Lower electrode wheel support member 15a Upper carriage 15b Lower carriage 16a Linear guide 16b Linear guide 17a Upper frame 17b Lower frame 18 Pressing member 19 Linear Guide 20 Pressing Cylinder 21 Leading Steel Plate 21a Tail End 22a Trailing Steel Plate 22a Tip 23 Front Clamping Device 23a Upper Clamping Member 23b Lower Clamping Member 24 Rear Clamping Device 24a Upper Clamping Member 24b Lower Clamping Member 25 Pressing cylinder 26 Pressing cylinder 27 Welding part 30 Evaluation device 31 Axial load calculation part 32 Evaluation part 33 Output part

Claims (7)

溶接対象となる先行鋼板と後行鋼板との重ね合わせ部分を加圧する一対の電極輪を備え、該一対の電極輪を前記重ね合わせ部分で走行させながら溶接電流を流すことにより、前記先行鋼板と前記後行鋼板とを連続的に溶接するマッシュシーム溶接機の設計方法であって、
前記先行鋼板及び前記後行鋼板におけるそれぞれの板厚及び抗張力と、前記一対の電極輪の各々及びその周辺部品の剛性とが、次の(A)式で算出される、前記一対の電極輪の各々の電極輪に対し該電極輪のアキシャル方向に作用するアキシャル荷重をF、前記一対の電極輪の各々及びその周辺部品の剛性値をF0としたとき、F≦F0となるように、前記一対の電極輪の各々及びその周辺部品を設計することを特徴とするマッシュシーム溶接機の設計方法。
ここで、F=k×(t1×TS1+a×t2×TS2) …(A)
t1:重ね合わせの上側となる鋼板の板厚(mm)
TS1:重ね合わせの上側となる鋼板の抗張力(kgf/mm
t2:重ね合わせの下側となる鋼板の板厚(mm)
TS2:重ね合わせの下側となる鋼板の抗張力(kgf/mm
k:マシュシーム溶接機によって決まる定数
a:上側となる鋼板に対する下側となる鋼板の寄与度を示す定数
A pair of electrode rings that pressurize the overlapped portion of the leading steel plate and the trailing steel plate to be welded are provided, and the welding current is passed while running the pair of electrode rings in the superposed portion to obtain the leading steel plate. It is a design method of a mash seam welder that continuously welds the trailing steel sheet.
The thickness and tensile strength of the leading steel plate and the trailing steel plate, and the rigidity of each of the pair of electrode rings and their peripheral parts are calculated by the following equation (A). When the axial load acting on each electrode ring in the axial direction of the electrode ring is F and the rigidity value of each of the pair of electrode rings and its peripheral parts is F0, the pair is set to F≤F0. A method for designing a mash seam welder, which comprises designing each of the electrode rings and their peripheral parts.
Here, F = k × (t1 × TS1 + a × t2 × TS2)… (A)
t1: Thickness (mm) of the steel plate on the upper side of the superposition
TS1: The tensile strength of the steel plate on the upper side of the superposition (kgf / mm 2 )
t2: Plate thickness (mm) of the steel plate on the lower side of the superposition
TS2: tensile strength of the steel plate under the superposition (kgf / mm 2 )
k: Constant determined by the mash seam welder a: Constant indicating the contribution of the lower steel plate to the upper steel plate
前記一対の電極輪のアキシャル方向の変位量を5.0mm以下とすることを特徴とする請求項1に記載のマッシュシーム溶接機の設計方法。 The method for designing a mash seam welder according to claim 1, wherein the displacement amount of the pair of electrode rings in the axial direction is 5.0 mm or less. 溶接対象となる先行鋼板と後行鋼板との重ね合わせ部分を加圧する一対の電極輪を備え、該一対の電極輪を前記重ね合わせ部分で走行させながら溶接電流を流すことにより、前記先行鋼板と前記後行鋼板とを連続的に溶接するマッシュシーム溶接機であって、
前記先行鋼板及び前記後行鋼板におけるそれぞれの板厚及び抗張力と、前記一対の電極輪の各々及びその周辺部品の剛性とが、次の(A)式で算出される、前記一対の電極輪の各々の電極輪に対し該電極輪のアキシャル方向に作用するアキシャル荷重をF、前記一対の電極輪の各々及びその周辺部品の剛性値をF0としたとき、F≦F0となる関係にあることを特徴とするマッシュシーム溶接機。
ここで、F=k×(t1×TS1+a×t2×TS2) …(A)
t1:重ね合わせの上側となる鋼板の板厚(mm)
TS1:重ね合わせの上側となる鋼板の抗張力(kgf/mm
t2:重ね合わせの下側となる鋼板の板厚(mm)
TS2:重ね合わせの下側となる鋼板の抗張力(kgf/mm
k:マシュシーム溶接機によって決まる定数
a:上側となる鋼板に対する下側となる鋼板の寄与度を示す定数
A pair of electrode rings that pressurize the overlapped portion of the leading steel plate and the trailing steel plate to be welded are provided, and the welding current is passed while running the pair of electrode rings in the superposed portion to obtain the leading steel plate. A mash seam welder that continuously welds the trailing steel sheet.
The thickness and tensile strength of the leading steel plate and the trailing steel plate, and the rigidity of each of the pair of electrode rings and their peripheral parts are calculated by the following equation (A). When the axial load acting on each electrode ring in the axial direction of the electrode ring is F and the rigidity value of each of the pair of electrode rings and its peripheral parts is F0, the relationship is that F ≦ F0. A featured mash seam welder.
Here, F = k × (t1 × TS1 + a × t2 × TS2)… (A)
t1: Thickness (mm) of the steel plate on the upper side of the superposition
TS1: The tensile strength of the steel plate on the upper side of the superposition (kgf / mm 2 )
t2: Plate thickness (mm) of the steel plate on the lower side of the superposition
TS2: tensile strength of the steel plate under the superposition (kgf / mm 2 )
k: Constant determined by the mash seam welder a: Constant indicating the contribution of the lower steel plate to the upper steel plate
前記一対の電極輪のアキシャル方向の変位量を5.0mm以下とすることを特徴とする請求項3に記載のマッシュシーム溶接機。 The mash seam welder according to claim 3, wherein the displacement amount of the pair of electrode rings in the axial direction is 5.0 mm or less. 請求項3又は4に記載のマッシュシーム溶接機を用いて、溶接対象となる先行鋼板と後行鋼板との重ね合わせ部分を一対の電極輪で加圧し、かつ該一対の電極輪の各々を前記重ね合わせ部分で走行させながら溶接電流を流すことにより、前記先行鋼板と前記後行鋼板とを連続的に溶接することを特徴とするマッシュシーム溶接方法。 Using the mash seam welder according to claim 3 or 4, the overlapped portion of the leading steel plate and the trailing steel plate to be welded is pressed by a pair of electrode rings, and each of the pair of electrode rings is pressed. A mash seam welding method characterized in that the leading steel plate and the trailing steel plate are continuously welded by passing a welding current while traveling in the overlapped portion. 請求項5に記載のマッシュシーム溶接方法により熱延鋼板を製造することを特徴とする熱延鋼板の製造方法。 A method for manufacturing a hot-rolled steel sheet, which comprises manufacturing a hot-rolled steel sheet by the mash seam welding method according to claim 5. 溶接対象となる先行鋼板と後行鋼板との重ね合わせ部分を加圧する一対の電極輪を、前記重ね合わせ部分で走行させながら溶接電流を流すことにより、前記先行鋼板と前記後行鋼板とを連続的に溶接するマッシュシーム溶接工程を有する熱延鋼板の製造方法であって、
前記先行鋼板及び前記後行鋼板におけるそれぞれの板厚及び抗張力と、前記一対の電極輪の各々及びその周辺部品の剛性とが、次の(A)式で算出される、前記一対の電極輪の各々の電極輪に対し該電極輪のアキシャル方向に作用するアキシャル荷重をF、前記一対の電極輪の各々及びその周辺部品の剛性値をF0としたとき、F≦F0となる関係を満たす場合にのみ溶接可能と判断することを特徴とする熱延鋼板の製造方法。
ここで、F=k×(t1×TS1+a×t2×TS2) …(A)
t1:重ね合わせの上側となる鋼板の板厚(mm)
TS1:重ね合わせの上側となる鋼板の抗張力(kgf/mm
t2:重ね合わせの下側となる鋼板の板厚(mm)
TS2:重ね合わせの下側となる鋼板の抗張力(kgf/mm
k:マシュシーム溶接機によって決まる定数
a:上側となる鋼板に対する下側となる鋼板の寄与度を示す定数
By passing a welding current while running a pair of electrode rings that pressurize the overlapped portion of the leading steel plate and the trailing steel plate to be welded at the superposed portion, the leading steel plate and the trailing steel plate are continuously connected. A method for manufacturing a hot-rolled steel sheet having a mash seam welding process for welding.
The thickness and tensile strength of the leading steel plate and the trailing steel plate, and the rigidity of each of the pair of electrode rings and their peripheral parts are calculated by the following equation (A). When the axial load acting on each electrode ring in the axial direction of the electrode ring is F, and the rigidity value of each of the pair of electrode rings and its peripheral parts is F0, the relationship of F ≦ F0 is satisfied. A method for manufacturing a hot-rolled steel sheet, which is characterized in that only welding is possible.
Here, F = k × (t1 × TS1 + a × t2 × TS2)… (A)
t1: Thickness (mm) of the steel plate on the upper side of the superposition
TS1: The tensile strength of the steel plate on the upper side of the superposition (kgf / mm 2 )
t2: Plate thickness (mm) of the steel plate on the lower side of the superposition
TS2: tensile strength of the steel plate under the superposition (kgf / mm 2 )
k: Constant determined by the mash seam welder a: Constant indicating the contribution of the lower steel plate to the upper steel plate
JP2020058315A 2020-03-27 2020-03-27 Method for designing mash seam welding machine, mash seam welding machine, mash seam welding method, and method for manufacturing hot rolled steel sheet Active JP7173077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020058315A JP7173077B2 (en) 2020-03-27 2020-03-27 Method for designing mash seam welding machine, mash seam welding machine, mash seam welding method, and method for manufacturing hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020058315A JP7173077B2 (en) 2020-03-27 2020-03-27 Method for designing mash seam welding machine, mash seam welding machine, mash seam welding method, and method for manufacturing hot rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2021154358A true JP2021154358A (en) 2021-10-07
JP7173077B2 JP7173077B2 (en) 2022-11-16

Family

ID=77916511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020058315A Active JP7173077B2 (en) 2020-03-27 2020-03-27 Method for designing mash seam welding machine, mash seam welding machine, mash seam welding method, and method for manufacturing hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP7173077B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315854A (en) * 2004-03-31 2005-11-10 Nippon Steel Corp Estimation method for rupture limit moment of spot welding part
JP2010004656A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Bursting plate, bursting apparatus and gas-insulated switching apparatus using the bursting plate
JP2011005527A (en) * 2009-06-26 2011-01-13 Honda Motor Co Ltd Seam welding apparatus and seam welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315854A (en) * 2004-03-31 2005-11-10 Nippon Steel Corp Estimation method for rupture limit moment of spot welding part
JP2010004656A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Bursting plate, bursting apparatus and gas-insulated switching apparatus using the bursting plate
JP2011005527A (en) * 2009-06-26 2011-01-13 Honda Motor Co Ltd Seam welding apparatus and seam welding method

Also Published As

Publication number Publication date
JP7173077B2 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP4500884B2 (en) Method and apparatus for joining metal plates
JP4500883B2 (en) Mash seam welding method and apparatus
JP6108030B2 (en) Resistance spot welding method
KR100228252B1 (en) The method for producing electric-resistance-welded steel pipe
KR101415364B1 (en) Mash seam welding method and device
JP2021154358A (en) Design method of mash seam welding machine, mash seam welding machine, mash seam welding method, and method for manufacturing hot-rolled steel sheet
WO2018180810A1 (en) Welded joint manufacturing method, and welded joint
JPH06155084A (en) Method and device for butt welding metal sheets by laser beam
JP2001087871A (en) Manufacture of panel joined structure
JPH0557455A (en) Welding method for steel strips
JP6059649B2 (en) Double-side friction stir welding method and double-side friction stir welding apparatus
JP4264186B2 (en) Method and apparatus for butt joining steel plates or steel strips
JP2712117B2 (en) Horizontal Butt Arc Welding Method for Different Thickness Metallic Materials
WO2013031803A1 (en) Manufacturing method and manufacturing equipment for small diameter metal tube
JPH0647406A (en) Method for joining sheet bar completely continuously rolled
JP2023080401A (en) Lap welding method and welding device for steel plate
JPS60213380A (en) Press-welding method of hot rolled plates
JPH07124610A (en) Joining method by spot welding for steel strip
Rodrigues et al. Formability of steel and aluminium tailor welded blanks
JP2011143466A (en) Method and apparatus for resistance seam welding
JPH11245047A (en) Method and device for mash seam welding
JPS63126603A (en) Method for joining hot rolled sheets
JPS58192621A (en) Pipe forming device
JPS606278A (en) Production of spiral steel pipe
JPH10180351A (en) Manufacturing device of laser beam welded tube and manufacture of laser beam welded tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7173077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150