JP2021153451A - Detector - Google Patents

Detector Download PDF

Info

Publication number
JP2021153451A
JP2021153451A JP2020055958A JP2020055958A JP2021153451A JP 2021153451 A JP2021153451 A JP 2021153451A JP 2020055958 A JP2020055958 A JP 2020055958A JP 2020055958 A JP2020055958 A JP 2020055958A JP 2021153451 A JP2021153451 A JP 2021153451A
Authority
JP
Japan
Prior art keywords
light
excitation light
axis
excitation
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020055958A
Other languages
Japanese (ja)
Inventor
敏晴 江塚
Toshiharu Ezuka
敏晴 江塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2020055958A priority Critical patent/JP2021153451A/en
Publication of JP2021153451A publication Critical patent/JP2021153451A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

To provide a detector capable of increasing the utilization efficiency of fluorescent light to excitation light.SOLUTION: A detector comprises: an excitation light optical system that irradiates an enzyme holding film from the gas flow path side of a reaction part with excitation light; and a light guide member disposed on one axis so as to receive fluorescent light, and forming a light guide path along the one axis. The excitation light optical system is configured to condense the excitation light in either area on the gas flow path side from the enzyme holding film on the one axis, or inside the light guide member on the one axis.SELECTED DRAWING: Figure 2

Description

本発明は、気体試料中に含まれる物質を検出する検出装置に関する。 The present invention relates to a detection device that detects a substance contained in a gas sample.

酵素反応に伴う補酵素の減少を検出することにより、気体試料中に含まれる特定の物質を検出する検出装置が知られている。 A detection device is known that detects a specific substance contained in a gas sample by detecting a decrease in coenzymes associated with an enzymatic reaction.

このような検出装置としては、例えば、アセトン等のケトン類、又はノネナール等の基質の反応に伴って補酵素であるNADHが減少することを利用して、気体試料中に含まれる基質の検出を行うバイオセンサシステムが特許文献1に開示されている。具体的には、特許文献1のバイオセンサシステムは、補酵素に特定の励起光を照射すると蛍光を発することを利用して補酵素の減少を検出している。特許文献1のバイオセンサシステムでは、基質に起因して補酵素の濃度が変化する酵素近傍へ光ファイバプローブを介して補酵素への励起光の照射、及び補酵素が発する蛍光の検出を行っている。特許文献2には、上記バイオセンサシステムにおいて課題であった励起光及び蛍光の利用効率を向上することにより特定物質の検出精度の向上を図ると共に、装置の小型化を図ることが可能な検出装置を提示している。 As such a detection device, for example, it is possible to detect a substrate contained in a gas sample by utilizing the fact that NADH, which is a coenzyme, decreases with the reaction of a ketone such as acetone or a substrate such as nonenal. The biosensor system to be performed is disclosed in Patent Document 1. Specifically, the biosensor system of Patent Document 1 detects a decrease in coenzyme by utilizing the fact that when a coenzyme is irradiated with a specific excitation light, it emits fluorescence. In the biosensor system of Patent Document 1, the coenzyme is irradiated with excitation light via an optical fiber probe in the vicinity of the enzyme whose coenzyme concentration changes due to the substrate, and the fluorescence emitted by the coenzyme is detected. There is. Patent Document 2 describes a detection device capable of improving the detection accuracy of a specific substance and downsizing the device by improving the utilization efficiency of excitation light and fluorescence, which has been a problem in the biosensor system. Is presented.

特開2016-220573号公報Japanese Unexamined Patent Publication No. 2016-220573 WO2019-188304号公報WO2019-188304 Gazette

励起光は検出信号のS/N比を悪化させる不要光となる。そのため、不要励起光が検出部に受光される割合を減少させるために、特許文献2に記載の技術では、受光側コリメートレンズの焦点位置において励起光が最もデフォーカスされるように受光側コリメートレンズが配置されていた。 The excitation light becomes unnecessary light that deteriorates the S / N ratio of the detection signal. Therefore, in order to reduce the rate at which unnecessary excitation light is received by the detection unit, in the technique described in Patent Document 2, the light receiving side collimating lens is defocused most at the focal position of the light receiving side collimating lens. Was placed.

しかし、実際に、検出部に受光される励起光と蛍光の受光量を計算してみると、特許文献2に記載の光学系では、励起光の受光量が最小となるように設定される場合、蛍光の受光量も大きく低下してしまうことが分かった。すなわち、S/N比の改善という視点からみると、特許文献2に記載の光学系は最適な光学系の構成とは言えないという問題があった。 However, when the amount of excitation light and fluorescence received by the detection unit is actually calculated, in the optical system described in Patent Document 2, the amount of excitation light received is set to be the minimum. It was also found that the amount of light received by fluorescence was greatly reduced. That is, from the viewpoint of improving the S / N ratio, there is a problem that the optical system described in Patent Document 2 cannot be said to have an optimum optical system configuration.

本発明は上記した点に鑑みてなされたものであり、励起光に対する蛍光の利用効率を高める検出装置を提供することを課題の1つとする。 The present invention has been made in view of the above points, and one of the problems is to provide a detection device that enhances the utilization efficiency of fluorescence with respect to excitation light.

本願請求項1に記載の検出装置は、気体試料が流れる気体流路と、励起光が照射されることで蛍光を発する補酵素を含む溶液が流れる溶液流路と、前記溶液と前記気体試料に接しつつ前記気体流路と前記溶液流路を隔てるように形成され、かつ前記補酵素と結合することで前記気体試料の化学反応を触媒する酵素を保持する酵素保持膜と、を含む反応部と、 一の軸に沿って、前記反応部の前記気体流路側から前記酵素保持膜に前記励起光を照射する励起光光学系と、前記蛍光を受光するように前記一の軸上に設けられ、かつ前記一の軸に沿った導光路を形成する導光部材と、を備え、前記励起光光学系は、前記一の軸上の前記酵素保持膜よりも前記気体流路側、又は前記一の軸上の前記導光部材内のいずれかの一の領域に前記励起光を集光するように構成されることを特徴とする。 The detection device according to claim 1 of the present application includes a gas flow path through which a gas sample flows, a solution flow path through which a solution containing a coenzyme that emits fluorescence when irradiated with excitation light flows, and the solution and the gas sample. A reaction section including an enzyme-retaining membrane that is formed so as to separate the gas flow path and the solution flow path while being in contact with the gas sample and holds an enzyme that catalyzes a chemical reaction of the gas sample by binding to the coenzyme. Along one axis, an excitation photooptical system that irradiates the enzyme holding film with the excitation light from the gas flow path side of the reaction unit, and an excitation photooptical system that receives the fluorescence are provided on the one axis. The excitation optical optical system includes a light guide member that forms a light guide path along the one axis, and the excitation photooptical system is closer to the gas flow path than the enzyme holding film on the one axis, or the one axis. It is characterized in that it is configured to collect the excitation light in any one region in the light guide member.

実施例1に係る検出装置の構成を示す断面図である。It is sectional drawing which shows the structure of the detection apparatus which concerns on Example 1. FIG. 実施例1に係る検出装置の反応部の拡大断面図である。It is an enlarged cross-sectional view of the reaction part of the detection apparatus which concerns on Example 1. FIG. 実施例1に係る検出装置の励起光の光路を説明する説明図である。It is explanatory drawing explaining the optical path of the excitation light of the detection apparatus which concerns on Example 1. FIG. 図3に示す励起光LT1の集光点の周りの要部M1を説明する拡大部分断面図である。It is an enlarged partial cross-sectional view explaining the main part M1 around the condensing point of the excitation light LT1 shown in FIG. 比較例による、励起光の集光位置と蛍光光学系の受光範囲が共に溶液流路内にある場合の光検出素子の検出面上での蛍光の受光量S及び励起光の受光量Rの変化を示すグラフである。Changes in the received amount S of fluorescence and the received amount R of excitation light on the detection surface of the photodetector when both the focusing position of the excitation light and the light receiving range of the fluorescence optical system are in the solution flow path according to the comparative example. It is a graph which shows. 実施例1に係る検出装置の受光側コリメートレンズを比較例の位置から一の軸方向に移動させたときの光検出素子の検出面上で蛍光の受光量S及び励起光の受光量Rの変化を示すグラフである。Changes in the amount of fluorescence received S and the amount of excitation light received R on the detection surface of the photodetector when the light-receiving collimating lens of the detection device according to Example 1 is moved from the position of the comparative example in one axial direction. It is a graph which shows. 本発明の実施例2に係る検出装置の構成を示す断面図である。It is sectional drawing which shows the structure of the detection apparatus which concerns on Example 2 of this invention. 図7に示す励起光の集光点の周りの要部M2を説明する拡大部分断面図である。It is an enlarged partial cross-sectional view explaining the main part M2 around the focusing point of the excitation light shown in FIG. 7. 実施例2による、励起光の集光位置が導光部材内にあるように、受光側コリメートレンズを比較例(図5)のPc位置から一の軸AX方向にP2位置に移動させたときの蛍光及び励起光のS(蛍光LT2の受光量)/R(励起光LT1の受光量)の変化を示すグラフである。When the light receiving side collimating lens is moved from the Pc position of the comparative example (FIG. 5) to the P2 position in the AX direction of one axis so that the focused position of the excitation light is in the light guide member according to the second embodiment. It is a graph which shows the change of S (light receiving amount of fluorescence LT2) / R (light receiving amount of excitation light LT1) of fluorescence and excitation light. 本発明の実施例3に係る検出装置における一の軸に沿った気体流路、溶液流路及び酵素保持膜における励起光の集光状態の要部M3を説明する拡大部分断面図である。It is an enlarged partial cross-sectional view explaining the main part M3 of the condensed state of the excitation light in the gas flow path, the solution flow path and the enzyme holding membrane along one axis in the detection apparatus which concerns on Example 3 of this invention. 本発明の実施例4に係る検出装置としてのバイオセンサの一の軸に沿った断面図である。It is sectional drawing along one axis of the biosensor as the detection device which concerns on Example 4 of this invention.

以下、図面を参照しつつ本発明による実施例について説明する。なお、実施例において、実質的に同一の機能及び構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, examples according to the present invention will be described with reference to the drawings. In the examples, components having substantially the same function and configuration are designated by the same reference numerals, so that duplicate description will be omitted.

図1は、本発明の実施例である検出装置としてのバイオセンサ10の一の軸AXに沿った断面を示している。 FIG. 1 shows a cross section of a biosensor 10 as a detection device according to an embodiment of the present invention along one axis AX.

図1において、検出装置としてのバイオセンサ10は、アポ酵素と結合する補酵素が発する蛍光を検出して、検出対象である基質を検出する装置である。 In FIG. 1, the biosensor 10 as a detection device is a device that detects the fluorescence emitted by the coenzyme that binds to the apoenzyme and detects the substrate to be detected.

具体的には、バイオセンサ10の基質の検出に用いる補酵素は、基質の反応前後の一方の状態において励起光により励起されて蛍光を発する。したがって、バイオセンサ10は、基質の反応によって補酵素が発する蛍光の光量が変化することを利用して、基質を検出する。 Specifically, the coenzyme used for detecting the substrate of the biosensor 10 is excited by excitation light and fluoresces in one of the states before and after the reaction of the substrate. Therefore, the biosensor 10 detects the substrate by utilizing the fact that the amount of fluorescence emitted by the coenzyme changes depending on the reaction of the substrate.

例えば、化1に示すように、補酵素としてNADH(還元型ニコチンアミドアデニンジヌクレオチド)を用いた場合、酵素であるS−ADHは、基質であるアセトンが2−プロパノールに還元される反応を触媒する。この際、補酵素であるNADHは、酵素反応によりNAD+(酸化型ニコチンアミドアデニンジヌクレオチド)に酸化される。 For example, as shown in Chemical formula 1, when NADH (reduced nicotinamide adenine dinucleotide) is used as a coenzyme, the enzyme S-ADH catalyzes the reaction in which the substrate acetone is reduced to 2-propanol. do. At this time, the coenzyme NADH is oxidized to NAD + (oxidized nicotinamide adenine dinucleotide) by an enzymatic reaction.

ここでNADHは、所定の波長の励起光を受けて蛍光を発するが、同じ波長の励起光をNAD+が受けても蛍光を発しない。したがって、この反応の前後において検出される蛍光強度は変動する。 Here, NADH receives excitation light of a predetermined wavelength and emits fluorescence, but does not emit fluorescence even if NAD + receives excitation light of the same wavelength. Therefore, the fluorescence intensity detected before and after this reaction fluctuates.

本実施例のバイオセンサ10は、このNADHが発する蛍光の光量を測定することにより基質の濃度を測定する装置である。 The biosensor 10 of this embodiment is an apparatus for measuring the concentration of a substrate by measuring the amount of fluorescence emitted by the NADH.

Figure 2021153451
Figure 2021153451

バイオセンサ10は、図1に示すように、励起光光学系20とフローセル30と蛍光光学系50とを有する。バイオセンサ10は、ケースC1〜C5が図示しないネジ締結等によって連結され一体となって、光源LT、励起光光学系20、フローセル30、導光部材40、蛍光光学系50、光検出素子60の各々の周囲を覆う筒状に形成されている。すなわち、ケースC1〜C5は、光源LT、励起光光学系20、フローセル30、導光部材40、蛍光光学系50、光検出素子60を一の軸AX上に沿って内部に収容する。したがって、ケースC1〜C5からなるバイオセンサ10は、その内部に外光が入らないように構成されている。 As shown in FIG. 1, the biosensor 10 has an excitation optical optical system 20, a flow cell 30, and a fluorescence optical system 50. In the biosensor 10, the cases C1 to C5 are connected by fastening screws (not shown) or the like to be integrated, and the light source LT, the excitation optical optical system 20, the flow cell 30, the light guide member 40, the fluorescent optical system 50, and the photodetector element 60 are integrated. It is formed in a tubular shape that covers each circumference. That is, the cases C1 to C5 accommodate the light source LT, the excitation optical optical system 20, the flow cell 30, the light guide member 40, the fluorescent optical system 50, and the light detection element 60 along one axis AX. Therefore, the biosensor 10 composed of the cases C1 to C5 is configured to prevent outside light from entering the inside thereof.

[励起光光学系20]
図1において、ケースC1に収納される光源LTは、励起光を出射する発光装置である。光源LTは、例えば、励起光としてピーク波長が340nmである紫外光を出射する紫外光発光ダイオードである。発光装置は、紫外光発光ダイオードに限られず、例えば、紫外レーザーダイオード、水銀ランプ等を用いることができる。
[Excitation optical optical system 20]
In FIG. 1, the light source LT housed in the case C1 is a light emitting device that emits excitation light. The light source LT is, for example, an ultraviolet light emitting diode that emits ultraviolet light having a peak wavelength of 340 nm as excitation light. The light emitting device is not limited to the ultraviolet light emitting diode, and for example, an ultraviolet laser diode, a mercury lamp, or the like can be used.

ケースC1に一端が連結されるケースC2に収納される励起光光学系20は、一の軸AX上において、光源LTから出射された励起光を伝達する光学系である。励起光光学系20は、励起光を一の軸AX上に向けて集光する。一の軸AXは、本実施例においては励起光の光軸と同一の軸である。 The excitation optical optical system 20 housed in the case C2 whose one end is connected to the case C1 is an optical system that transmits the excitation light emitted from the light source LT on one axis AX. The excitation optical optical system 20 collects the excitation light toward one axis AX. One axis AX is the same axis as the optical axis of the excitation light in this embodiment.

励起光光学系20は、励起光を平行光にするコリメートレンズ21と、コリメートレンズ21によって平行光にされた励起光を一の軸AX上に集光する集光レンズであるボールレンズ22を含む。なお、ボールレンズ22は、少なくとも、導光部材40の開口数よりも高い開口数を有して構成されている。 The excitation optical optical system 20 includes a collimated lens 21 that makes the excitation light parallel, and a ball lens 22 that is a condensing lens that collects the excitation light made parallel by the collimated lens 21 on one axis AX. .. The ball lens 22 is configured to have at least a numerical aperture higher than the numerical aperture of the light guide member 40.

ボールレンズ22は、集光レンズの中でも焦点距離が短いため、バイオセンサ10の構成をより小型にすることができる。またボールレンズ22は集光レンズの中でも開口数(NA)が大きく、より多くの励起光を取り込むことが可能である。 Since the ball lens 22 has a short focal length among the condensing lenses, the configuration of the biosensor 10 can be made smaller. Further, the ball lens 22 has a large numerical aperture (NA) among the condensing lenses, and can take in more excitation light.

コリメートレンズ21とボールレンズ22の間には、励起光の波長を透過する励起光バンドパスフィルタEFが設けられている。励起光バンドパスフィルタEFが透過させる帯域は、補酵素が励起する励起光の波長を含む帯域である。補酵素に340nmの紫外線を吸収して蛍光を発するNADHを用いているので、励起光バンドパスフィルタEFは、例えば検出蛍光帯域と干渉する波長400nm以上の可視光を低減する。 An excitation light bandpass filter EF that transmits the wavelength of the excitation light is provided between the collimating lens 21 and the ball lens 22. The band transmitted by the excitation light bandpass filter EF is a band including the wavelength of the excitation light excited by the coenzyme. Since NADH that absorbs ultraviolet rays of 340 nm and emits fluorescence is used as a coenzyme, the excitation light bandpass filter EF reduces visible light having a wavelength of 400 nm or more that interferes with the detection fluorescence band, for example.

[フローセル30]
ケースC2の他端側には、一の軸AX上においてケースC3と連結されて、フローセル30が構成されている。フローセル30は、化1に示した酵素反応が行われる反応部として機能する。フローセル30は、基質を含む気体試料が流れる気体流路31と、補酵素を含む溶液を保持する溶液流路32と、酵素を保持する多孔性膜である酵素保持膜33と、を有する。
[Flow cell 30]
On the other end side of the case C2, a flow cell 30 is formed by being connected to the case C3 on one axis AX. The flow cell 30 functions as a reaction unit on which the enzymatic reaction shown in Chemical formula 1 is carried out. The flow cell 30 has a gas flow path 31 through which a gas sample containing a substrate flows, a solution flow path 32 that holds a solution containing a coenzyme, and an enzyme holding film 33 that is a porous film that holds an enzyme.

ケースC2には、一の軸AXに垂直な方向にケースC2を貫通して設けられた2つの貫通穴HAが形成されている。この2つの貫通穴HAに気体流路31を挿通することで、気体流路31を一の軸AX上に取付けることができる。気体流路31は、フローセル30の光源LT側には、励起光を透過させる透光性の窓Wを有している。 The case C2 is formed with two through holes HA provided through the case C2 in a direction perpendicular to one axis AX. By inserting the gas flow path 31 through the two through holes HA, the gas flow path 31 can be mounted on one shaft AX. The gas flow path 31 has a translucent window W for transmitting excitation light on the light source LT side of the flow cell 30.

ケースC3には、一の軸AXに垂直な方向にケースC3を貫通して設けられた2つの貫通穴HBが形成されている。この2つの貫通穴HBに管構造を有する溶液流路32を挿通することで、溶液流路32を一の軸AX上に取付けることができる。 The case C3 is formed with two through holes HB provided so as to penetrate the case C3 in a direction perpendicular to one axis AX. By inserting the solution flow path 32 having a tubular structure into the two through holes HB, the solution flow path 32 can be mounted on one axis AX.

ここで、気体流路31は、例えば、少なくとも一の軸AX上の励起光ビームを透過させる透光性の管のような構造となっていてもよいし、透光性のシャーレ状容器のような構造になっていてもよい。また、溶液流路32は、補酵素を含む溶液を流す、例えば、少なくともの一の軸AX上の励起光ビームを透過させる透光性の管のような構造となっていてもよいし、透光性のシャーレ状容器のような構造になっていてもよい。この場合、溶液流路32の励起光ビームが照射される領域以外については、励起光の迷光を低減させるため遮光性の部材で形成するようにしてもよい。 Here, the gas flow path 31 may have a structure such as a translucent tube that transmits an excitation light beam on at least one axis AX, or may be a translucent Petri dish-like container. Structure may be used. Further, the solution flow path 32 may have a structure such as a translucent tube through which a solution containing a coenzyme flows, for example, through which an excitation light beam on at least one axis AX is transmitted. It may have a structure like a light chalet-like container. In this case, the area other than the region where the excitation light beam of the solution flow path 32 is irradiated may be formed of a light-shielding member in order to reduce the stray light of the excitation light.

気体流路31に流れる気体試料に含まれる基質は、ケトン基、アルデヒド基のいずれかを含んでいる。 The substrate contained in the gas sample flowing through the gas flow path 31 contains either a ketone group or an aldehyde group.

図2は、一の軸AXに沿った反応部であるフローセル30の部分の拡大断面を示している。 FIG. 2 shows an enlarged cross section of a portion of the flow cell 30 which is a reaction portion along one axis AX.

図2に示すように、溶液流路32は、溶液の流れ方向の上流側に設けられている上流側接続部と、溶液の流れ方向の下流側に設けられている下流側接続部と、上流側接続部及び下流側接続部から光源LT側に向かって湾曲して形成されている湾曲部(円筒部CBの内壁)と、を有する。 As shown in FIG. 2, the solution flow path 32 includes an upstream connection portion provided on the upstream side in the solution flow direction, a downstream connection portion provided on the downstream side in the solution flow direction, and an upstream side. It has a curved portion (inner wall of the cylindrical portion CB) formed by being curved from the side connecting portion and the downstream connecting portion toward the light source LT side.

円筒部CBの内壁は、一の軸AXに沿って伸びる溶液流路32の一部の貫通穴H2である。貫通穴H3は、導光部材40の外径と同等の大きさを有する小径部と、小径部から蛍光光学系50に向かって拡径して形成された拡径部と、を有する。 The inner wall of the cylindrical portion CB is a through hole H2 that is a part of the solution flow path 32 extending along one axis AX. The through hole H3 has a small diameter portion having a size equivalent to the outer diameter of the light guide member 40, and an enlarged diameter portion formed by expanding the diameter from the small diameter portion toward the fluorescence optical system 50.

したがって、導光部材40を小径部H3に嵌め合わせることにより、導光部材40は、フローセル30(ケースC3)によって溶液流路32の一部として保持される。 Therefore, by fitting the light guide member 40 into the small diameter portion H3, the light guide member 40 is held by the flow cell 30 (case C3) as a part of the solution flow path 32.

溶液流路32を流れる溶液は、補酵素と、酵素や補酵素の至適pH値を考慮したpH値を有する緩衝液と、を成分として含んでいる。当該溶液に含まれる補酵素は、基質の反応前後の一方の状態において励起光により励起されて蛍光を発するものが用いられる。このような補酵素の一例としては、NADH、NADPH(還元型ニコチンアミドアデニンジヌクレオチドリン酸)等が挙げられる。なお、補酵素は、基質の反応前後の2つの状態の間で可逆的に化学構造が変化する。 The solution flowing through the solution flow path 32 contains a coenzyme and a buffer solution having a pH value in consideration of the enzyme and the optimum pH value of the coenzyme as components. As the coenzyme contained in the solution, one that is excited by excitation light and emits fluorescence in one of the states before and after the reaction of the substrate is used. Examples of such coenzymes include NADH, NADPH (reduced nicotinamide adenine dinucleotide phosphate) and the like. The chemical structure of the coenzyme changes reversibly between the two states before and after the reaction of the substrate.

酵素を保持する酵素保持膜33(すなわち酵素が固定化された多孔質膜)は、気体流路31の貫通穴H1と溶液流路32の貫通穴H2とを塞ぐように、気体流路31と溶液流路32との両方に接して設けられている。すなわち、酵素保持膜33は、保持されている酵素が溶液流路32の溶液及び気体流路31の気体試料に接触可能であり、かつ溶液流路32と気体流路31とを隔てる隔膜である。 The enzyme retention membrane 33 (that is, the porous membrane on which the enzyme is immobilized) that retains the enzyme is formed with the gas flow path 31 so as to close the through hole H1 of the gas flow path 31 and the through hole H2 of the solution flow path 32. It is provided in contact with both the solution flow path 32. That is, the enzyme retention film 33 is a diaphragm that allows the retained enzyme to come into contact with the solution in the solution flow path 32 and the gas sample in the gas flow path 31, and separates the solution flow path 32 and the gas flow path 31. ..

酵素保持膜33は、膜材料である多孔質膜に酵素が固定化されたものである。酵素保持膜33の担体としては、例えば、ポリテトラフルオロエチレン、ポリジメチルシロキサン、ポリプロピレン、ポリエチレン、ポリメチルメタクリレート、ポリスチレン、ポリフッ化ビニリデン、ニトロセルロース、セルロース等が挙げられる。 The enzyme-retaining membrane 33 is a membrane material in which an enzyme is immobilized on a porous membrane. Examples of the carrier of the enzyme retention film 33 include polytetrafluoroethylene, polydimethylsiloxane, polypropylene, polyethylene, polymethylmethacrylate, polystyrene, polyvinylidene fluoride, nitrocellulose, and cellulose.

酵素保持膜33に保持される酵素は、補酵素としてNADH又はNADPHを用いる場合、例えば、アラニン脱水素酵素、アルコール脱水素酵素、アルデヒド脱水素酵素、イソクエン酸脱水素酵素、ウリジン−5’−ジホスフォ−グルコース脱水素酵素、ガラクトース脱水素酵素、ギ酸脱水素酵素、グリセルアルデヒド−3−リン酸脱水素酵素、グリセロール脱水素酵素、グリセロール−3−リン酸脱水素酵素、グルコース脱水素酵素、グルコース−6−リン酸脱水素酵素、グルタミン酸脱水素酵素、コレステロール脱水素酵素、サルコシン脱水素酵素、ソルビトール脱水素酵素、炭酸脱水素酵素、乳酸脱水素酵素、3−ヒドロキシ酪酸脱水素酵素、ピルビン酸脱水素酵素、フルクトース脱水素酵素、6−ホスフォグルコン酸脱水素酵素、ホルムアルデヒド脱水素酵素、マンニトール脱水素酵素、リンゴ酸脱水素酵素、ロイシン脱水素酵素等を挙げることができ、特に、NADH又はNADPHを電子供与体として用いてケトン(アセトン、2−ブタノン、2−ペンタノン等)又はアルデヒド(ノネナール等)を還元する酵素、より具体的には、二級アルコール脱水素酵素(S−ADH)(二級アルコール脱水素酵素(secondary alcohol dehydrogenase) EC:1.1.1.x)、エノン還元酵素(ER1)(エノン還元酵素(enone reductase type 1, ER1))等が利用できる。 When NADH or NADPH is used as the coenzyme, the enzyme retained in the enzyme retention membrane 33 is, for example, alanine dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, isocitrate dehydrogenase, uridine-5'-diphospho. -Glucose dehydrogenase, galactose dehydrogenase, formate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, glycerol dehydrogenase, glycerol-3-phosphate dehydrogenase, glucose dehydrogenase, glucose- 6-phosphate dehydrogenase, glutamate dehydrogenase, cholesterol dehydrogenase, sarcosine dehydrogenase, sorbitol dehydrogenase, carbonate dehydrogenase, lactic acid dehydrogenase, 3-hydroxybutyric acid dehydrogenase, pyruvate dehydrogenase Examples thereof include enzymes, fructose dehydrogenase, 6-phosphogluconic acid dehydrogenase, formaldehyde dehydrogenase, mannitol dehydrogenase, malic acid dehydrogenase, leucine dehydrogenase, etc., and in particular, NADH or NADPH. An enzyme that uses as an electron donor to reduce ketones (acetone, 2-butanone, 2-pentanone, etc.) or aldehydes (nonenal, etc.), more specifically, secondary alcohol dehydrogenase (S-ADH) (secondary). Alcohol dehydrogenase (secondary alcohol dehydrogenase) EC: 1.1.1.x), enone reductase (ER1) (enone reductase type 1, ER1) and the like can be used.

ケースC2には、気体流路31に接するように一の軸AXに垂直な方向において互いに対向して突出する円環状内壁CCが形成されている。円環状内壁CCは、一の軸AX上において、貫通穴HAと貫通穴HBとの間に形成されている。 The case C2 is formed with an annular inner wall CC that projects so as to be in contact with the gas flow path 31 so as to face each other in a direction perpendicular to one axis AX. The annular inner wall CC is formed between the through hole HA and the through hole HB on one axis AX.

ケースC3には、酵素保持膜33を介して気体流路31に連結するように一の軸AXに平行な方向において気体流路31へ突出する円筒部CBが形成されている。 The case C3 is formed with a cylindrical portion CB that projects into the gas flow path 31 in a direction parallel to one axis AX so as to be connected to the gas flow path 31 via the enzyme retention membrane 33.

円環状内壁CCに酵素保持膜33を被せて、これを挟んで円筒部CBを嵌め込むことによって、酵素保持膜33が一の軸AX上に取付けられている。すなわち、この円環状内壁CCは、酵素保持膜33を一の軸AX上の円筒部CBに取付可能とする取付部として機能する。このように、ケースC2、C3により、気体流路31、液体流路32及び酵素保持膜33は着脱可能となっている。 The enzyme-retaining membrane 33 is attached on one axis AX by covering the annular inner wall CC with the enzyme-retaining membrane 33 and fitting the cylindrical portion CB with the enzyme-retaining membrane 33 sandwiched therein. That is, the annular inner wall CC functions as an attachment portion that enables the enzyme holding membrane 33 to be attached to the cylindrical portion CB on one axis AX. As described above, the gas flow path 31, the liquid flow path 32, and the enzyme holding film 33 are detachable by the cases C2 and C3.

フローセル30は、一の軸AXに沿って延在する導光部材40の側面SSと貫通孔H3の拡径部の壁部との間に空間SPを有している。導光部材40の屈折率をn、空間SPの屈折率をnとすると、開口数(NA)は以下の式で与えられる。 The flow cell 30 has a space SP between the side surface SS of the light guide member 40 extending along one axis AX and the wall portion of the enlarged diameter portion of the through hole H3. Assuming that the refractive index of the light guide member 40 is n 1 and the refractive index of the space SP is n 2 , the numerical aperture (NA) is given by the following equation.

Figure 2021153451
Figure 2021153451

ここで、導光部材40の屈折率nが固定された条件下で開口数(NA)を最大とするためには、nを1、すなわち空間SPを空気とする必要がある。よって、導光部材40は、その側面SSの周囲を空気層とすることで開口数(NA)が最大となる。 Here, in order to maximize the numerical aperture (NA) under the condition that the refractive index n 1 of the light guide member 40 is fixed, it is necessary to set n 2 to 1, that is, the space SP to be air. Therefore, the numerical aperture (NA) of the light guide member 40 is maximized by forming an air layer around the side surface SS.

ここで、導光部材40の導光路41は、励起光が導光される量を少なくするように形成するとよい。具体的には、フローセル30の溶液流路32を通過した励起光の少なくとも一部の導光部材40に対する入射角は、導光部材40の導光路41の内面で全反射可能な最大受光角よりも大きくなるようにするとよい。 Here, the light guide path 41 of the light guide member 40 may be formed so as to reduce the amount of light guided by the excitation light. Specifically, the incident angle of the excitation light that has passed through the solution flow path 32 of the flow cell 30 with respect to at least a part of the light guide member 40 is from the maximum light receiving angle that can be totally reflected on the inner surface of the light guide path 41 of the light guide member 40. Should also be increased.

[蛍光光学系50]
図1に示すように、ケースC3に一端が、他端がケースC5に連結されるケースC4に収納される蛍光光学系50は、蛍光等を集める導光部材40と、蛍光等を平行光にする受光側コリメートレンズ51と、受光側コリメートレンズ51によって平行光にされた蛍光を一の軸AX上に集光する集光レンズ52を含む。蛍光光学系50は、一の軸AX上において、導光部材40から出射された蛍光を主に光検出素子60(ケースC5に収納されている)へ供給する光学系である。
[Fluorescent optical system 50]
As shown in FIG. 1, the fluorescent optical system 50 housed in the case C4 having one end connected to the case C3 and the other end connected to the case C5 has a light guide member 40 that collects fluorescence and the like and a light guide member 40 that collects the fluorescence and the like in parallel light. It includes a light receiving side collimating lens 51 and a condensing lens 52 that collects the fluorescence made into parallel light by the light receiving side collimating lens 51 on one axis AX. The fluorescence optical system 50 is an optical system that mainly supplies the fluorescence emitted from the light guide member 40 to the photodetector element 60 (stored in the case C5) on one axis AX.

導光部材40は、一の軸AX上において、フローセル30の溶液流路32に接して設けられている。導光部材40は、本実施例においては円柱状に形成されている。導光部材40は、円柱状以外の形状でもよく、例えば、非平面の端面を持つ円柱状、多角柱状、円錐台状の形状であってもよい。 The light guide member 40 is provided on one axis AX in contact with the solution flow path 32 of the flow cell 30. The light guide member 40 is formed in a columnar shape in this embodiment. The light guide member 40 may have a shape other than a columnar shape, for example, a columnar shape having a non-planar end face, a polygonal columnar shape, or a truncated cone shape.

導光部材40は、屈折率が均一なガラス等の同一素材で構成されている。なお、導光部材40は、屈折率が均一なガラス等の同一素材に限られず、例えば、互いに屈折率が異なるコア及びクラッドの2つの素材で構成されるようにしてもよい。また、導光部材40は、測定する蛍光波長に対して吸収が少ない、例えば、吸収係数が0.1以下の素材で構成されていてもよい。導光部材40の側面周囲には一の軸AXに沿って形成されている導光路41が設けられている。 The light guide member 40 is made of the same material such as glass having a uniform refractive index. The light guide member 40 is not limited to the same material such as glass having a uniform refractive index, and may be composed of two materials, a core and a clad, which have different refractive indexes from each other, for example. Further, the light guide member 40 may be made of a material having little absorption with respect to the fluorescence wavelength to be measured, for example, having an absorption coefficient of 0.1 or less. A light guide path 41 formed along one axis AX is provided around the side surface of the light guide member 40.

導光部材40と光検出素子60の検出面との間に蛍光の波長を含む帯域を透過する光学フィルタが設けられている。例えば、受光側コリメートレンズ51と集光レンズ52との間には、蛍光の波長を含む帯域を透過する蛍光バンドパスフィルタFFが設けられている。補酵素であるNADHが励起することにより発する蛍光の波長は、450〜510nm、より具体的には491nm付近である。従って、本実施例においては、蛍光バンドパスフィルタFFが透過させる波長の範囲は、440〜510nmとしている。 An optical filter that transmits a band including a wavelength of fluorescence is provided between the light guide member 40 and the detection surface of the photodetector 60. For example, a fluorescence bandpass filter FF that transmits a band including a wavelength of fluorescence is provided between the light receiving side collimating lens 51 and the condensing lens 52. The wavelength of fluorescence emitted by the excitation of NADH, which is a coenzyme, is 450 to 510 nm, and more specifically, around 491 nm. Therefore, in this embodiment, the range of wavelengths transmitted by the fluorescent bandpass filter FF is 440 to 510 nm.

一の軸AX上において、集光レンズ52を通過した蛍光を検出する光検出素子60が設けられている。光検出素子60は、光電子増倍管、フォトダイオード検出器、及びこれらを含む分光光度計を含み、検出した蛍光の光量、若しくは分光特性に基づいて気体試料中における基質の濃度を検出する。 A photodetector 60 for detecting fluorescence that has passed through the condenser lens 52 is provided on one axis AX. The photodetector 60 includes a photomultiplier tube, a photodiode detector, and a spectrophotometer including these, and detects the concentration of the substrate in the gas sample based on the detected fluorescence light intensity or spectroscopic characteristics.

[励起光光学系20の励起光の光線追跡]
図3は、光源LTから出射された励起光の態様を示している。図3において、一点鎖線矢印は、励起光LT1(紫外光)を示す。光源LTから照射された励起光LT1は、コリメートレンズ21で平行光にされる。図4は、図3に示す励起光LT1の集光点の周りの要部M1を説明する拡大部分断面図である。
[Ray tracing of excitation light of excitation optical optical system 20]
FIG. 3 shows an aspect of the excitation light emitted from the light source LT. In FIG. 3, the alternate long and short dash arrow indicates the excitation light LT1 (ultraviolet light). The excitation light LT1 emitted from the light source LT is made into parallel light by the collimating lens 21. FIG. 4 is an enlarged partial cross-sectional view illustrating the main part M1 around the focusing point of the excitation light LT1 shown in FIG.

コリメートレンズ21で一の軸AXと平行光にされた励起光LT1は、励起光バンドパスフィルタEFにおいて、所定の帯域以外の波長を有する光が低減される。励起光バンドパスフィルタEFを通過した励起光LT1は、ボールレンズ22によってフローセル30の溶液流路32に向けて集光される。 The excitation light LT1 collimated with the one axis AX by the collimating lens 21 reduces light having a wavelength other than a predetermined band in the excitation light bandpass filter EF. The excitation light LT1 that has passed through the excitation light bandpass filter EF is focused by the ball lens 22 toward the solution flow path 32 of the flow cell 30.

実施例1においては、溶液流路32の溶液内で励起光LT1が発散光となるように、ボールレンズ22により酵素保持膜33に向かって集光される。これは、励起光LT1の集光位置が一の軸AX上の酵素保持膜33の光源LT側(気体流路31内でも、その外の励起光LT1の光源LTに近い側でもよい)とすることにより、達成できる。励起光LT1の集光位置の調整は、一の軸AX上のボールレンズ22の位置を変える、ボールレンズ22の屈折率を変えて集光位置を変える、もしくは、焦点距離fの短いレンズに置き換えることで可能となる。 In the first embodiment, the excitation light LT1 is focused toward the enzyme retention film 33 by the ball lens 22 so as to become divergent light in the solution of the solution flow path 32. This is on the light source LT side of the enzyme retention membrane 33 on the axis AX where the focusing position of the excitation light LT1 is one (either inside the gas flow path 31 or on the side close to the light source LT of the excitation light LT1 outside the gas flow path 31). This can be achieved. To adjust the focusing position of the excitation light LT1, change the position of the ball lens 22 on one axis AX, change the refractive index of the ball lens 22 to change the focusing position, or replace it with a lens having a short focal length f. This makes it possible.

図4に示すように、実施例1の励起光光学系20によれば、励起光LT1を、酵素保持膜33の光源LT側(気体流路31内でも、その外の励起光LT1の光源LTに近い側でもよい)で集光させて、溶液流路32の溶液では拡散過程の状態でNADH群を励起させる故に、光検出素子60の検出面への集光率が励起光LT1についてはなるべく低く、更に、蛍光LT2についてはなるべく高くなるように調整できる。 As shown in FIG. 4, according to the excitation photooptical system 20 of Example 1, the excitation light LT1 is directed to the light source LT side of the enzyme holding film 33 (even in the gas flow path 31 and outside the excitation light LT1 light source LT1. Since the NADH group is excited in the state of the diffusion process in the solution of the solution flow path 32, the focusing rate on the detection surface of the light detection element 60 is as much as possible for the excitation light LT1. It can be adjusted to be low, and the fluorescent LT2 can be adjusted to be as high as possible.

このように、ボールレンズ22により酵素保持膜33に向かって励起光LT1が集光されるとき、集光位置が酵素保持膜33と溶液流路32の溶液の間でなく、酵素保持膜33の光源LT側(気体流路31内でも、その外の励起光LT1の光源LTに近い側でもよい)に来るようにすれば、溶液流路32の溶液内では励起光LT1が発散光の状態になるように、励起光光学系20を設定することができる。これにより、後段のコリメートレンズの配置により励起光LT1のコリメート(光検出素子60への導光)を抑制することもできる。 In this way, when the excitation light LT1 is focused toward the enzyme holding film 33 by the ball lens 22, the focusing position is not between the enzyme holding film 33 and the solution in the solution flow path 32, but on the enzyme holding film 33. If it comes to the light source LT side (either inside the gas flow path 31 or near the light source LT of the excitation light LT1 outside the gas flow path 31), the excitation light LT1 becomes a divergent light state in the solution of the solution flow path 32. The excitation optical optical system 20 can be set so as to be. As a result, the collimation of the excitation light LT1 (light guide to the photodetector element 60) can be suppressed by arranging the collimating lens in the subsequent stage.

また、ボールレンズ22は、導光部材40の開口数よりも大きい開口数で構成されているため、一の軸AXに対して鋭角に導光路41に入射する励起光LT1が増加する。すなわち、導光路41の最大受光角よりも大きい入射角度で導光路41に入射する励起光LT1の量が増加する。この結果、導光部材40を導光せずに外部の導光路41に透過する励起光LT1の量が多くなる。 Further, since the ball lens 22 has a numerical aperture larger than the numerical aperture of the light guide member 40, the excitation light LT1 incident on the light guide path 41 at a sharp angle with respect to one axis AX increases. That is, the amount of excitation light LT1 incident on the light guide path 41 increases at an incident angle larger than the maximum light receiving angle of the light guide path 41. As a result, the amount of excitation light LT1 transmitted through the external light guide path 41 without guiding the light guide member 40 increases.

なお、受光側コリメートレンズ51で平行光にされた励起光LT1は、蛍光バンドパスフィルタFFによって反射又は吸収される。 The excitation light LT1 made parallel by the light receiving side collimating lens 51 is reflected or absorbed by the fluorescent bandpass filter FF.

[蛍光光学系50の蛍光の光線追跡]
図3において、二点鎖線矢印は、蛍光LT2を示す。補酵素は励起光LT1を受光すると、蛍光LT2を発する。蛍光LT2は、溶液流路32の溶液中を透過して導光部材40に入射する。導光部材40を導光した蛍光LT2は、導光部材40の出射端から受光側コリメートレンズ51に向けて出射される。
[Fluorescent ray tracing of fluorescent optical system 50]
In FIG. 3, the alternate long and short dash arrow indicates fluorescent LT2. When the coenzyme receives the excitation light LT1, it emits a fluorescent LT2. The fluorescent LT2 passes through the solution in the solution flow path 32 and enters the light guide member 40. The fluorescent LT2 that has guided the light guide member 40 is emitted from the emission end of the light guide member 40 toward the light receiving side collimating lens 51.

受光側コリメートレンズ51によってコリメートされた蛍光LT2は、蛍光バンドパスフィルタFFによって所定の帯域以外の波長を有する光が低減される。蛍光バンドパスフィルタFFを通過した蛍光LT2は、集光レンズにて光検出素子60の検出面に向けて集光される。 In the fluorescent LT2 collimated by the light receiving side collimating lens 51, light having a wavelength other than a predetermined band is reduced by the fluorescent bandpass filter FF. The fluorescent LT2 that has passed through the fluorescent bandpass filter FF is focused by the condenser lens toward the detection surface of the photodetector 60.

蛍光光学系50に蛍光バンドパスフィルタFFが設けられることにより、集光レンズ52に到達する励起光の光量は低減されるが、蛍光バンドパスフィルタFFの透過帯域以外の光に対する減衰率は0とはならないため、励起光を完全に除去することはできない。このため、光検出素子60の検出面に到達する励起光の光量をさらに低減させることができれば、蛍光の測定精度をより向上させることができる。この点において、上記のように励起光LT1の集光点(気体流路31中)を蛍光LT2の光源(溶液流路32内の励起されたNADH群)から遠ざけたことで、励起光LT1のみを光検出素子60の検出面上でデフォーカス可能となる。 By providing the fluorescent bandpass filter FF in the fluorescent optical system 50, the amount of excitation light reaching the condenser lens 52 is reduced, but the attenuation rate of the fluorescent bandpass filter FF with respect to light other than the transmission band is 0. Therefore, the excitation light cannot be completely removed. Therefore, if the amount of excitation light reaching the detection surface of the photodetector 60 can be further reduced, the fluorescence measurement accuracy can be further improved. At this point, by moving the focusing point (in the gas flow path 31) of the excitation light LT1 away from the light source of the fluorescent LT2 (excited NADH group in the solution flow path 32) as described above, only the excitation light LT1 Can be defocused on the detection surface of the light detection element 60.

励起光LT1の集光位置が酵素保持膜33の手前にある実施例1にて、その効果を、比較例を用いて以下に示す。 In Example 1 in which the focusing position of the excitation light LT1 is in front of the enzyme retention film 33, the effect is shown below using a comparative example.

従来技術のように励起光の集光点と蛍光の光源(励起されたNADH群)の位置が非常に近い光学系を比較例として、比較例と本実施例のように励起光の集光点を蛍光の光源から遠ざけた光学系のそれぞれについて、受光側コリメートレンズ51を一の軸AX方向に沿って移動させた場合の、光検出素子による励起光及び蛍光の受光量をシミュレートした。 As a comparative example, an optical system in which the positions of the excitation light condensing point and the fluorescent light source (excited NADH group) are very close to each other as in the prior art is used as a comparative example, and the excitation light condensing point is as in the comparative example and the present embodiment. For each of the optical systems away from the fluorescent light source, the amount of excitation light and fluorescence received by the light detection element when the light receiving side collimating lens 51 was moved along one axis AX direction was simulated.

図5は、比較例による、励起光の集光位置が溶液流路32内にあって、受光側コリメートレンズ51を一の軸AX方向に移動させた場合の、光検出素子60の検出面上で蛍光LT2の受光量S及び励起光LT1の受光量Rの変化を示す。また、図6は、実施例1による図4の状態(励起光LT1の集光位置が酵素保持膜33の光源LT側に存在)で、受光側コリメートレンズ51を一の軸AX方向に移動させたときの、光検出素子60の検出面上で蛍光LT2の受光量S及び励起光LT1の受光量Rの変化を示す。比較例の場合では、Pc位置において励起光LT1の受光量Rはボトムに近いが、蛍光LT2の受光量Sもボトムの位置にあり、光学系としてのS/N比は最適になっていない。 FIG. 5 shows a comparative example on the detection surface of the photodetector element 60 when the light collecting position of the excitation light is in the solution flow path 32 and the light receiving side collimating lens 51 is moved in the direction of one axis AX. The changes in the light receiving amount S of the fluorescent LT2 and the light receiving amount R of the excitation light LT1 are shown in. Further, in FIG. 6, in the state of FIG. 4 according to the first embodiment (the focusing position of the excitation light LT1 exists on the light source LT side of the enzyme holding film 33), the light receiving side collimating lens 51 is moved in the direction of one axis AX. The changes in the light receiving amount S of the fluorescent LT2 and the light receiving amount R of the excitation light LT1 are shown on the detection surface of the photodetector element 60 at that time. In the case of the comparative example, the light receiving amount R of the excitation light LT1 is close to the bottom at the Pc position, but the light receiving amount S of the fluorescent LT2 is also at the bottom position, and the S / N ratio as an optical system is not optimal.

一方、ボールレンズ22を比較例のPc位置から一の軸AX方向に励起光LT1の光源LTに近い側に移動させて、励起光LT1の集光位置を酵素保持膜33の手前に来るようにし、この状態で受光側コリメートレンズ51を一の軸AX方向に移動させたときの蛍光LT2及び励起光LT1の受光量の変化をみると図6のようになる。図6において受光側コリメートレンズ51を位置P1の位置にしたとき、蛍光LT2の受光量が最大近くになると同時に励起光LT1の受光量が最小とすることができている。蛍光光学系50の設定は、S(蛍光LT2の受光量)/R(励起光LT1の受光量)が最大となるようにすることが好ましいため、蛍光光学系50は、化学反応が起きていない状態において、光検出素子60により検出される励起光LT1の光量に対する蛍光LT2の光量の比(S/R)が所定比以上となるように構成される。 On the other hand, the ball lens 22 is moved from the Pc position of the comparative example in the direction of one axis AX to the side closer to the light source LT of the excitation light LT1 so that the focusing position of the excitation light LT1 comes in front of the enzyme retention film 33. In this state, changes in the amount of light received by the fluorescent LT2 and the excitation light LT1 when the light receiving side collimating lens 51 is moved in the direction of one axis AX are as shown in FIG. When the light receiving side collimating lens 51 is set to the position P1 in FIG. 6, the light receiving amount of the fluorescence LT2 is close to the maximum, and at the same time, the light receiving amount of the excitation light LT1 can be minimized. Since it is preferable that the fluorescence optical system 50 is set so that S (the amount of light received by the fluorescent LT2) / R (the amount of light received by the excitation light LT1) is maximized, the fluorescent optical system 50 does not undergo a chemical reaction. In the state, the ratio (S / R) of the light amount of the fluorescent LT2 to the light amount of the excitation light LT1 detected by the light detection element 60 is configured to be equal to or higher than a predetermined ratio.

この結果、本実施例によれば、蛍光光学系50は、導光部材40を通過した励起光LT1が光検出素子60の検出面上においてデフォーカスされるように構成されている。蛍光光学系50は、一の軸AXに沿って配置され、かつ導光部材40を通過した蛍光LT2の少なくとも一部を光検出素子60の検出面に集光させる。したがって、光検出素子60の検出面において検出される励起光LT1の受光量を減らすことが可能となり、検出精度の向上を図ることが可能となる。 As a result, according to the present embodiment, the fluorescence optical system 50 is configured such that the excitation light LT1 that has passed through the light guide member 40 is defocused on the detection surface of the photodetector element 60. The fluorescence optical system 50 is arranged along one axis AX, and at least a part of the fluorescence LT2 that has passed through the light guide member 40 is focused on the detection surface of the photodetector element 60. Therefore, it is possible to reduce the amount of light received by the excitation light LT1 detected on the detection surface of the photodetector element 60, and it is possible to improve the detection accuracy.

図7は、本発明の実施例2に係る検出装置の構成を示す断面図である。図8は、図7に示す励起光LT1の集光点の周りの要部M2を説明する拡大部分断面図である。 FIG. 7 is a cross-sectional view showing the configuration of the detection device according to the second embodiment of the present invention. FIG. 8 is an enlarged partial cross-sectional view illustrating the main part M2 around the focusing point of the excitation light LT1 shown in FIG.

本実施例は、図7、図8に示すように、励起光LT1の集光位置を酵素保持膜33の光源LT側に置き溶液流路32の溶液内で励起光LT1が発散光の状態とすることに代えて、溶液流路32の溶液内で励起光LT1が集光過程の状態になるように光学系を構成して励起光LT1の集光位置が導光部材40内にある以外、第1の実施例と同一である。 In this embodiment, as shown in FIGS. 7 and 8, the focusing position of the excitation light LT1 is placed on the light source LT side of the enzyme holding film 33, and the excitation light LT1 is in a divergent light state in the solution of the solution flow path 32. Instead of doing so, the optical system is configured so that the excitation light LT1 is in the state of the focusing process in the solution of the solution flow path 32, except that the focusing position of the excitation light LT1 is in the light guide member 40. It is the same as the first embodiment.

本実施例の励起光LT1が集光点の調整は、ボールレンズ22の位置を変える、ボールレンズ22の屈折率を変えて集光位置を変える、もしくは、焦点距離fの長いレンズに置き換えることで、達成できる。導光部材40内で励起光LT1を集光させ、溶液流路32の溶液では集光過程の状態で励起させることにより、励起光LT1の集光点を蛍光LT2の光源(励起されたNADH群)から遠ざけ、励起光LT1のみを光検出素子60の検出面上でデフォーカス可能となる。 The excitation light LT1 of this embodiment adjusts the focusing point by changing the position of the ball lens 22, changing the refractive index of the ball lens 22 to change the focusing position, or replacing the lens with a lens having a long focal length f. , Can be achieved. By condensing the excitation light LT1 in the light guide member 40 and exciting the solution in the solution flow path 32 in the state of the condensing process, the condensing point of the excitation light LT1 is set to the light source of the fluorescent LT2 (excited NADH group). ), Only the excitation light LT1 can be defocused on the detection surface of the light detection element 60.

図9は、実施例2による、励起光LT1の集光位置が導光部材40内にあるようにボールレンズ22を移動させたのち、受光側コリメートレンズ51を比較例(図5)のPc位置から一の軸AX方向に移動させたときの蛍光LT2及び励起光LT1のS(蛍光LT2の受光量)/R(励起光LT1の受光量)の変化を示す。受光側コリメートレンズ51を位置P2(蛍光受光量の2番目に大きい極大の近傍&励起光受光量最小となる位置)にしたとき、比較例の場合(Pc位置)に対して蛍光LT2の受光量Sが増加し、かつ励起光LT1の受光量Rは最小に近くなる。このとき、実施例1と比較すると蛍光LT2の受光量Sは低いものとなるが、S/N比の劣化要因である励起光LT1の受光量が最小となるという意味では、実施例1と同様の効果が得られる。 In FIG. 9, the ball lens 22 is moved so that the focused position of the excitation light LT1 is in the light guide member 40 according to the second embodiment, and then the light receiving side collimating lens 51 is moved to the Pc position of the comparative example (FIG. 5). The change of S (light reception amount of fluorescence LT2) / R (light reception amount of excitation light LT1) of fluorescence LT2 and excitation light LT1 when moved in the direction of one axis AX is shown. When the light receiving side collimating lens 51 is set to position P2 (near the maximum that receives the second largest amount of fluorescent light and the position that minimizes the amount of received excitation light), the amount of light received by the fluorescent LT2 is relative to the case of the comparative example (Pc position). S increases, and the light receiving amount R of the excitation light LT1 becomes close to the minimum. At this time, the received amount S of the fluorescent LT2 is lower than that of the first embodiment, but it is the same as that of the first embodiment in the sense that the received amount of the excitation light LT1 which is a deterioration factor of the S / N ratio is minimized. The effect of is obtained.

図10は、本発明の実施例3に係る検出装置における一の軸AXに沿った気体流路31、溶液流路32及び酵素保持膜33における励起光LT1の集光状態の要部M3を説明する拡大部分断面図である。 FIG. 10 describes a main part M3 of the focused state of the excitation light LT1 in the gas flow path 31, the solution flow path 32, and the enzyme retention film 33 along one axis AX in the detection device according to the third embodiment of the present invention. It is an enlarged partial cross-sectional view.

本実施例は、図10に示すように、励起光光学系20が一の軸AX上に配されて励起光LT1を遮光可能な遮光膜70を含んでいる以外、第2の実施例と同一である。 As shown in FIG. 10, this embodiment is the same as that of the second embodiment except that the excitation optical optical system 20 is arranged on one axis AX and includes a light-shielding film 70 capable of blocking the excitation light LT1. Is.

本実施例は、溶液流路32の溶液内で励起光LT1が集光過程の状態になる光学系の実施例2の変形例であって、導光部材40は、一の軸AX上の溶液流路32側に励起光LT1の少なくとも一部を遮る遮光膜70を有する。すなわち、励起光LT1が照射される導光部材40の受光面に、励起光LT1を遮光するための遮光膜70を設けるようにしてもよい。 This example is a modification of Example 2 of the optical system in which the excitation light LT1 is in the state of condensing in the solution of the solution flow path 32, and the light guide member 40 is a solution on one axis AX. A light-shielding film 70 that blocks at least a part of the excitation light LT1 is provided on the flow path 32 side. That is, a light-shielding film 70 for shielding the excitation light LT1 may be provided on the light receiving surface of the light guide member 40 irradiated with the excitation light LT1.

本実施例により、導光部材40に入射する励起光LT1を減らせるため、蛍光LT2の検出感度を高める(S/N比をさらに高める)ことができる。 According to this embodiment, the excitation light LT1 incident on the light guide member 40 can be reduced, so that the detection sensitivity of the fluorescent LT2 can be increased (the S / N ratio can be further increased).

なお、遮光膜70は、吸光膜でも反射膜でもよい。反射膜の場合、反射した励起光LT1により、補酵素が再度励起されるため、励起光LT1の励起効率を高めることができる。 The light-shielding film 70 may be an absorbent film or a reflective film. In the case of the reflective film, the coenzyme is excited again by the reflected excitation light LT1, so that the excitation efficiency of the excitation light LT1 can be increased.

本実施例の遮光膜70により、導光部材40に入射できない蛍光LT2も発生するが、図のように蛍光LT2は補酵素の一つ一つからあらゆる方向に放射される放射光であるため、一部の放射光は、遮光膜70で遮光されることなく導光部材40に入射する。これに対して、励起光LT1は集光であるため、遮光膜70に向かう部分の光は導光部材40に入射できない。 The light-shielding film 70 of this embodiment also generates fluorescent LT2 that cannot be incident on the light guide member 40. However, as shown in the figure, fluorescent LT2 is synchrotron radiation emitted from each coenzyme in all directions. Some synchrotron radiation enters the light guide member 40 without being shielded by the light shielding film 70. On the other hand, since the excitation light LT1 is focused, the light in the portion toward the light-shielding film 70 cannot enter the light guide member 40.

また、遮光膜70は、導光部材40の受光面上の励起光LT1のスポット全体を覆い隠すものであってもよいし、特にエネルギー密度の高い励起光LT1ビーム中心を含む一部のみを覆い隠すものであってもよい。 Further, the light-shielding film 70 may cover the entire spot of the excitation light LT1 on the light receiving surface of the light guide member 40, or cover only a part including the center of the excitation light LT1 beam having a particularly high energy density. It may be hidden.

以上のように、本実施例に係るバイオセンサ10によれば、一の軸AX上を直進する励起光LT1を遮断することができる。また、導光部材40に入射される励起光LT1の入射角度を大きくすることができ、多くの励起光LT1を導光路41において導光させないようにすることができる。この結果、光検出素子60の検出面で検出される励起光LT1の受光量を減らすことができ、検出精度の向上を図ることが可能となる。 As described above, according to the biosensor 10 according to the present embodiment, the excitation light LT1 traveling straight on one axis AX can be blocked. Further, the incident angle of the excitation light LT1 incident on the light guide member 40 can be increased, and a large amount of the excitation light LT1 can be prevented from being guided in the light guide path 41. As a result, the amount of light received by the excitation light LT1 detected on the detection surface of the photodetector 60 can be reduced, and the detection accuracy can be improved.

図11は、本発明の実施例4に係る検出装置としてのバイオセンサ10の一の軸AXに沿った断面を示している。 FIG. 11 shows a cross section of the biosensor 10 as the detection device according to the fourth embodiment of the present invention along one axis AX.

本実施例は、図11に示すように、励起光光学系20における集光レンズの肉厚の厚いボールレンズ22に代えて励起光LT1を出射する平面を有する平凸レンズ22a等の肉厚の薄い集光レンズに置き換え以外、上記の実施例と同一である。 In this embodiment, as shown in FIG. 11, the wall thickness of the plano-convex lens 22a or the like having a plane for emitting the excitation light LT1 instead of the thick ball lens 22 of the condenser lens in the excitation optical optical system 20 is thin. It is the same as the above embodiment except that it is replaced with a condenser lens.

ボールレンズ22は、その形状からレンズが厚くなりバックフォーカス距離が短くなるため、一の軸AX方向の移動範囲が狭くなる。本実施例によれば、ボールレンズを平凸レンズ22aに置き換えることで集光レンズの移動範囲が狭くなる問題を改善することができる。 Due to the shape of the ball lens 22, the lens becomes thicker and the back focus distance becomes shorter, so that the moving range in the AX direction of one axis becomes narrower. According to this embodiment, by replacing the ball lens with the plano-convex lens 22a, it is possible to improve the problem that the moving range of the condenser lens is narrowed.

また、平凸レンズ22aの方がボールレンズ22に比べてコスト的にも有利になると考えられる。このとき、平凸レンズの集光レンズ22aによってボールレンズ22よりも焦点距離fを長くすることにより、一の軸AX上を移動させたときの励起光LT1の集光状態の変化が緩くなることから調整がしやすくなる。 Further, it is considered that the plano-convex lens 22a is more cost effective than the ball lens 22. At this time, by making the focal length f longer than that of the ball lens 22 by the condensing lens 22a of the plano-convex lens, the change in the condensing state of the excitation light LT1 when moved on one axis AX becomes gentle. Easy to adjust.

上述した実施例における機器、装置の構成等は、例示に過ぎず、用途等に応じて、適宜選択又は変更することができる。例えば、本装置は酵素を利用して気体中に含まれる微量な有機揮発成分量を選択性良く検出するバイオセンサであり、環境計測、医療用生体診断、運動生理計測、製造ライン計測等で利用される。 The equipment, the configuration of the device, etc. in the above-described embodiment are merely examples, and can be appropriately selected or changed depending on the intended use and the like. For example, this device is a biosensor that selectively detects a small amount of organic volatile components contained in a gas using an enzyme, and is used for environmental measurement, medical biodiagnosis, exercise physiology measurement, production line measurement, etc. Will be done.

10 バイオセンサ
20 励起光光学系
30 フローセル
31 気体流路
32 溶液流路
33 酵素保持膜
40 導光部材
41 導光路
50 蛍光光学系
51 受光側コリメートレンズ
52 集光レンズ
60 光検出素子
70 遮光膜
AX 一の軸
10 Biosensor 20 Excitation optical optical system 30 Flow cell 31 Gas flow path 32 Solution flow path 33 Enzyme holding film 40 Light guide member 41 Light guide path 50 Fluorescent optical system 51 Light receiving side collimating lens 52 Condensing lens 60 Light detection element 70 Light shielding film AX One axis

Claims (9)

気体試料が流れる気体流路と、励起光が照射されることで蛍光を発する補酵素を含む溶液が流れる溶液流路と、前記溶液と前記気体試料に接しつつ前記気体流路と前記溶液流路を隔てるように形成され、かつ前記補酵素と結合することで前記気体試料の化学反応を触媒する酵素を保持する酵素保持膜と、を含む反応部と、
一の軸に沿って、前記反応部の前記気体流路側から前記酵素保持膜に前記励起光を照射する励起光光学系と、
前記蛍光を受光するように前記一の軸上に設けられ、かつ前記一の軸に沿った導光路を形成する導光部材と、
を備え、
前記励起光光学系は、前記一の軸上の前記酵素保持膜よりも前記気体流路側、又は前記一の軸上の前記導光部材内のいずれかの一の領域に前記励起光を集光するように構成されることを特徴とする検出装置。
A gas flow path through which a gas sample flows, a solution flow path through which a solution containing a coenzyme that emits fluorescence when irradiated with excitation light flows, and the gas flow path and the solution flow path while being in contact with the solution and the gas sample. A reaction section including an enzyme-holding membrane that is formed so as to separate the two and holds an enzyme that catalyzes the chemical reaction of the gas sample by binding to the coenzyme.
An excitation optical optical system that irradiates the enzyme holding membrane with the excitation light from the gas flow path side of the reaction unit along one axis.
A light guide member provided on the one axis so as to receive the fluorescence and forming a light guide path along the one axis.
With
The excitation photooptical system collects the excitation light on the gas flow path side of the enzyme holding film on the one axis or in any one region in the light guide member on the one axis. A detection device characterized in that it is configured to.
前記一の軸に沿って配置され、かつ前記導光路を通過した前記蛍光の少なくとも一部を光検出素子の検出面に集光させる蛍光光学系を備え、
前記蛍光光学系は、前記導光路を通過した前記励起光が前記検出面上においてデフォーカスされるように構成されていることを特徴とする請求項1に記載の検出装置。
A fluorescence optical system arranged along the one axis and condensing at least a part of the fluorescence that has passed through the light guide path on the detection surface of the photodetector is provided.
The detection device according to claim 1, wherein the fluorescence optical system is configured such that the excitation light passing through the light guide path is defocused on the detection surface.
前記蛍光光学系は、前記化学反応が起きていない状態において、前記光検出素子により検出される前記励起光の光量に対する前記蛍光の光量の比が所定比以上となるように構成されていることを特徴とする請求項2に記載の検出装置。 The fluorescence optical system is configured such that the ratio of the amount of fluorescence light to the amount of excitation light detected by the photodetector is equal to or greater than a predetermined ratio in a state where the chemical reaction does not occur. The detection device according to claim 2, wherein the detection device is characterized. 前記励起光光学系は、前記導光部材の開口数よりも大きい開口数で構成されていることを特徴とする請求項1乃至3の何れか一項に記載の検出装置。 The detection device according to any one of claims 1 to 3, wherein the excitation optical optical system is composed of a numerical aperture larger than the numerical aperture of the light guide member. 前記導光部材の前記一の軸と沿った方向に延在する側面に沿って、空間を有していることを特徴とする請求項1乃至4の何れか一項に記載の検出装置。 The detection device according to any one of claims 1 to 4, wherein a space is provided along a side surface of the light guide member extending in a direction along the one axis. 前記酵素保持膜は多孔性膜であることを特徴とする請求項1乃至5の何れか一項に記載の検出装置。 The detection device according to any one of claims 1 to 5, wherein the enzyme-retaining membrane is a porous membrane. 前記励起光光学系は、前記酵素保持膜に前記励起光を照射する平面を有する平凸レンズを有することを特徴とする請求項1乃至6の何れか一項に記載の検出装置。 The detection device according to any one of claims 1 to 6, wherein the excitation optical optical system has a plano-convex lens having a plane for irradiating the enzyme holding film with the excitation light. 前記導光部材は、前記一の軸上の前記溶液流路側に前記励起光の少なくとも一部を遮る遮光膜を有することを特徴とする請求項1乃至7の何れか一項に記載の検出装置。 The detection device according to any one of claims 1 to 7, wherein the light guide member has a light-shielding film that blocks at least a part of the excitation light on the solution flow path side on the one axis. .. 前記導光部材と前記検出面との間に前記蛍光の波長を含む帯域を透過する光学フィルタが設けられていることを特徴とする請求項1乃至8の何れか一項に記載の検出装置。

The detection device according to any one of claims 1 to 8, wherein an optical filter that transmits a band including a wavelength of fluorescence is provided between the light guide member and the detection surface.

JP2020055958A 2020-03-26 2020-03-26 Detector Pending JP2021153451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020055958A JP2021153451A (en) 2020-03-26 2020-03-26 Detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020055958A JP2021153451A (en) 2020-03-26 2020-03-26 Detector

Publications (1)

Publication Number Publication Date
JP2021153451A true JP2021153451A (en) 2021-10-07

Family

ID=77915861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020055958A Pending JP2021153451A (en) 2020-03-26 2020-03-26 Detector

Country Status (1)

Country Link
JP (1) JP2021153451A (en)

Similar Documents

Publication Publication Date Title
JP6992164B2 (en) Detection device
US6710870B1 (en) Method and device for measuring luminescence
JP2009510475A (en) Sensitive emission collection and detection system
US7405824B2 (en) Optical coupling system of light measuring device and sample
JPH03503453A (en) Optical read head for immunoassay test equipment
JP4540509B2 (en) Fluorescence detection method, flow cell unit and flow cytometer
JP2009156659A (en) Measuring apparatus and method
JP4818636B2 (en) Spectral analysis using evanescent field excitation
JP2021153451A (en) Detector
JP2014032148A (en) Surface plasmon excitation enhanced fluorescence acquisition structure and surface plasmon excitation enhanced fluorescence measurement system
JP7042047B2 (en) Detection device
EP2565629B1 (en) Automatic analyzer
JP7128007B2 (en) Gas component detection flow cell and detector
JP2020171239A (en) Flow cell for detecting gas component and gas component detector
JP2021193967A (en) Replacement component
CN215066133U (en) Wide-wavelength-coverage photo-thermal deflection spectrum testing device
JP2006242623A (en) Flow cytometer and fluorescence collecting method
JP5800472B2 (en) Light source device
JP4445886B2 (en) Flow cell unit, flow cytometer, and fluorescence detection method
JP2003344323A (en) Photothermal conversion spectroscopic analysis method and photothermal conversion spectroscopic analyzer implementing the method
CN113109282A (en) Wide-wavelength-coverage photo-thermal deflection spectrum testing device
JP2020171240A (en) Flow cell for detecting gas component and gas component detector
JP2004020262A (en) Photothermal conversion spectroscopic method and apparatus therefor
JP2003149154A (en) Fluorescence spectrophotometer
WO2022168374A1 (en) Emission optical system, emission device, and optical measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240611