JP2021152193A - Oxide film and component with oxide film - Google Patents

Oxide film and component with oxide film Download PDF

Info

Publication number
JP2021152193A
JP2021152193A JP2020052960A JP2020052960A JP2021152193A JP 2021152193 A JP2021152193 A JP 2021152193A JP 2020052960 A JP2020052960 A JP 2020052960A JP 2020052960 A JP2020052960 A JP 2020052960A JP 2021152193 A JP2021152193 A JP 2021152193A
Authority
JP
Japan
Prior art keywords
oxide film
columnar
piston
component
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020052960A
Other languages
Japanese (ja)
Other versions
JP7095010B2 (en
Inventor
秀紀 藤井
Hidenori Fujii
秀紀 藤井
健太郎 渡邉
Kentaro Watanabe
健太郎 渡邉
裕行 成瀬
Hiroyuki Naruse
裕行 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020052960A priority Critical patent/JP7095010B2/en
Priority to CN202110257269.8A priority patent/CN113444997B/en
Publication of JP2021152193A publication Critical patent/JP2021152193A/en
Application granted granted Critical
Publication of JP7095010B2 publication Critical patent/JP7095010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

To provide an oxide film that can be formed on a surface of a component composed of aluminum base material easily at low cost and can suppress the outflow of heat from the surface of the component.SOLUTION: An oxide film (18) is formed on a surface (12a) of a component (12) composed of aluminum base material and has solid columnar structures (22) composed of Al2O3 bundled densely. Along a boundary (23) of adjacent columnar structures (22) a plurality of granular holes (24) are formed.SELECTED DRAWING: Figure 3

Description

本発明は、酸化被膜及び酸化被膜付部品に関する。 The present invention relates to an oxide film and a component with an oxide film.

内燃機関の燃焼室を形成するピストン等の部品表面から外部に流出する熱量は、熱損失となり、内燃機関の熱効率の低下につながる。部品表面における熱の流出を抑制する方法としては、部品表面の熱容量を小さくし、部品表面の温度を燃焼ガス温度に追従しやすくして温度差を小さくすることや、部品表面の断熱性を高めることが効果的である。特許文献1には、陽極酸化被膜の厚さ方向に延びる複数の孔の上方の開口をスパッタリング被膜によって封じ、複数の空孔部を形成した被膜を、ピストンの上面に形成して断熱性を高めることが開示されている。 The amount of heat that flows out from the surface of parts such as pistons that form the combustion chamber of an internal combustion engine causes heat loss, which leads to a decrease in thermal efficiency of the internal combustion engine. As a method of suppressing the outflow of heat on the component surface, the heat capacity of the component surface is reduced, the temperature of the component surface can be easily followed by the combustion gas temperature to reduce the temperature difference, and the heat insulating property of the component surface is improved. Is effective. In Patent Document 1, the openings above the plurality of holes extending in the thickness direction of the anodized coating are sealed by a sputtering coating, and a coating having a plurality of pores formed is formed on the upper surface of the piston to enhance heat insulation. Is disclosed.

特開2017−61722号公報JP-A-2017-61722

しかし、特許文献1のように、陽極酸化処理によって形成した孔をスパッタリング処理によって封じる方法は、工程数が多く煩雑で、コスト増につながる課題がある。 However, the method of sealing the pores formed by the anodizing treatment by the sputtering treatment as in Patent Document 1 has a problem that the number of steps is large and complicated, which leads to an increase in cost.

本発明は、低コストで容易に形成でき、部品表面における熱の流出を抑制できる酸化被膜、及び前記酸化被膜を備える酸化被膜付部品を提供することを目的とする。 An object of the present invention is to provide an oxide film that can be easily formed at low cost and can suppress heat outflow on the surface of a component, and a component with an oxide film having the oxide film.

上記課題の解決手段として、請求項1に記載した発明は、アルミニウム母材からなる部品(12)の表面(12a)に形成される酸化被膜(18)であって、束状に密集しているAlからなる中実の柱状組織(22)を含み、隣接する前記柱状組織(22)同士の境界(23)に沿って複数の粒状の空孔(24)が形成されている。
この構成によれば、複数の粒状の空孔(24)、すなわち複数の閉じた気泡が柱状組織(22)同士の境界(23)に沿って存在していることで、酸化被膜(18)の熱容量がアルミニウム母材よりも小さくなり、また断熱性が高まるため、酸化被膜(18)が断熱層として機能する。また、空孔(24)の形成にはスパッタリングによる封孔処理が必要ないため、酸化被膜(18)の形成が容易でコストを低減できる。
As a means for solving the above problems, the invention according to claim 1 is an oxide film (18) formed on the surface (12a) of a component (12) made of an aluminum base material, which is densely packed in a bundle. A plurality of granular pores (24) are formed along a boundary (23) between adjacent columnar structures (22) including a solid columnar structure (22) made of Al 2 O 3.
According to this configuration, a plurality of granular pores (24), that is, a plurality of closed bubbles are present along the boundary (23) between the columnar structures (22), whereby the oxide film (18) is formed. Since the heat capacity is smaller than that of the aluminum base material and the heat insulating property is improved, the oxide film (18) functions as a heat insulating layer. Further, since the pores (24) do not need to be sealed by sputtering, the oxide film (18) can be easily formed and the cost can be reduced.

請求項2に記載した発明は、複数の柱状組織(22)が束状に密集した柱状組織束領域(26)が前記部品(12)の表面(12a)の面方向に複数形成されており、各々の前記柱状組織束領域(26)は少なくとも隣接する前記柱状組織束領域(26)と一部が重なり、前記柱状組織束領域(26)同士が重なる部分に境界(27)が存在している。
この構成によれば、柱状組織束領域(26)同士が重なっている境界(27)近傍に空孔(24)が多く形成されるため、酸化被膜(18)の断熱性が向上する。
In the invention according to claim 2, a plurality of columnar tissue bundle regions (26) in which a plurality of columnar tissues (22) are densely packed in a bundle are formed in the surface direction of the surface (12a) of the component (12). Each of the columnar tissue bundle regions (26) partially overlaps with at least the adjacent columnar tissue bundle regions (26), and a boundary (27) exists at a portion where the columnar tissue bundle regions (26) overlap each other. ..
According to this configuration, many pores (24) are formed in the vicinity of the boundary (27) where the columnar tissue bundle regions (26) overlap each other, so that the heat insulating property of the oxide film (18) is improved.

請求項3に記載した発明は、酸化被膜(18)の平均膜厚(H)が10μm以上75μm以下である。
この構成によれば、断熱性の維持と、酸化被膜(18)が熱を放出しやすくなることによる、燃焼ガス温度に対する表面温度の追従性の向上とを両立できる。
In the invention described in claim 3, the average film thickness (H) of the oxide film (18) is 10 μm or more and 75 μm or less.
According to this configuration, it is possible to both maintain the heat insulating property and improve the followability of the surface temperature with respect to the combustion gas temperature by making it easier for the oxide film (18) to release heat.

請求項4に記載した発明は、柱状組織(22)の平均幅(D)が1.1μm以下である。
この構成によれば、酸化被膜(18)の断熱効果が向上する。
In the invention according to claim 4, the average width (D) of the columnar structure (22) is 1.1 μm or less.
According to this configuration, the heat insulating effect of the oxide film (18) is improved.

請求項5に記載した発明は、アルミニウム母材からなる部品(12)の表面(12a)に酸化被膜(18)が形成されている酸化被膜付部品(20)である。
この構成によれば、低コストで容易に製造できる、優れた断熱効果を有する酸化被膜付部品(20)を提供できる。
The invention according to claim 5 is a component with an oxide film (20) in which an oxide film (18) is formed on the surface (12a) of the component (12) made of an aluminum base material.
According to this configuration, it is possible to provide a component with an oxide film (20) having an excellent heat insulating effect, which can be easily manufactured at low cost.

請求項6に記載した発明は、部品はピストン(12)であり、前記酸化被膜(18)は、前記ピストン(12)の上面(12a)における、平面視での前記ピストン(12)の輪郭に沿った所定の幅(d)の環状領域(A)よりも内側の領域(B)に形成されている。
この構成によれば、低コストで容易に製造できる、優れた断熱効果を有するピストン(12)となる。また、燃焼室(2)内のスキッシュエリアの面粗度管理が容易になるため、自己着火(ノッキング)を抑制しやすい。
In the invention according to claim 6, the component is a piston (12), and the oxide film (18) is formed on the contour of the piston (12) in a plan view on the upper surface (12a) of the piston (12). It is formed in a region (B) inside the annular region (A) having a predetermined width (d) along the line.
According to this configuration, the piston (12) has an excellent heat insulating effect and can be easily manufactured at low cost. Further, since the surface roughness of the squish area in the combustion chamber (2) can be easily controlled, self-ignition (knocking) can be easily suppressed.

本発明によれば、低コストで容易に形成でき、部品表面における熱の流出を抑制できる酸化被膜、及び前記酸化被膜を備える酸化被膜付部品を提供することができる。 According to the present invention, it is possible to provide an oxide film that can be easily formed at low cost and can suppress heat outflow on the surface of a component, and a component with an oxide film having the oxide film.

実施形態に係る酸化被膜付きのピストン(酸化被膜付部品)を備えるエンジンの主要部を示す概略図である。It is the schematic which shows the main part of the engine which includes the piston (part with an oxide film) with an oxide film which concerns on embodiment. 図1のエンジンが備えるピストンの平面図である。It is a top view of the piston included in the engine of FIG. 図2のピストンの上部のI−I断面図である。FIG. 2 is a cross-sectional view taken along the line I-I of the upper part of the piston of FIG. 図3における酸化被膜の一部を拡大して示した拡大図である。FIG. 3 is an enlarged view showing a part of the oxide film in FIG. 3 in an enlarged manner. ピストンの上面にレーザーを走査しながら照射して酸化被膜を形成する様子を示した説明図である。It is explanatory drawing which showed the appearance of forming an oxide film by irradiating the upper surface of a piston while scanning a laser. 他の実施形態の酸化被膜の一部を拡大して示した拡大図である。It is an enlarged view which showed the part of the oxide film of another embodiment enlarged. 実施例1の酸化被膜の厚さ方向の断面の顕微鏡写真である。It is a micrograph of the cross section of the oxide film of Example 1 in the thickness direction.

以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明において例示される図の寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the dimensions and the like of the figures illustrated in the following description are examples, and the present invention is not necessarily limited thereto, and the present invention can be appropriately modified without changing the gist thereof. ..

実施形態の酸化被膜は、アルミニウム母材からなる部品の表面に形成される酸化被膜である。図1は、実施形態に係るエンジン1の主要部を示す概略図である。
エンジン1は、シリンダ10と、ピストン12と、吸気バルブ14と、排気バルブ16と、を備えている。エンジン1の内部におけるシリンダ10の壁面10a、シリンダヘッドの燃焼室の壁面11、吸気バルブ14、排気バルブ16、及びピストン12の上面12aに囲まれた領域が燃焼室2になっている。
The oxide film of the embodiment is an oxide film formed on the surface of a component made of an aluminum base material. FIG. 1 is a schematic view showing a main part of the engine 1 according to the embodiment.
The engine 1 includes a cylinder 10, a piston 12, an intake valve 14, and an exhaust valve 16. The area surrounded by the wall surface 10a of the cylinder 10 inside the engine 1, the wall surface 11 of the combustion chamber of the cylinder head, the intake valve 14, the exhaust valve 16, and the upper surface 12a of the piston 12 is the combustion chamber 2.

ピストン12は、アルミニウムによって構成されている。すなわち、ピストン12は、アルミニウム母材からなる部品である。
ピストン12は、ピストンリング15を収容するピストンリング収容溝13を備えている。ピストンリング収容溝13は、ピストン軸線O1周りに周回するようにピストン12の外周面に形成されている。ピストン12のピストンリング収容溝13の下側には、ピストン軸線O1周りに周回するようにオイルリング収容溝17が形成されている。
The piston 12 is made of aluminum. That is, the piston 12 is a component made of an aluminum base material.
The piston 12 includes a piston ring accommodating groove 13 accommodating the piston ring 15. The piston ring accommodating groove 13 is formed on the outer peripheral surface of the piston 12 so as to orbit around the piston axis O1. An oil ring accommodating groove 17 is formed below the piston ring accommodating groove 13 of the piston 12 so as to orbit around the piston axis O1.

ピストンリング収容溝13のピストン軸線O1に略直行する一対の側面部13a,13bには、耐摩擦用のメッキを形成し、ピストンの摩擦を抑制するが知られている。しかし、この方法は専用のメッキ行程が必要となり、工程数が増えるうえ、メッキ設備が必要となりコストの増加に繋がる。 It is known that the pair of side surface portions 13a and 13b substantially perpendicular to the piston axis O1 of the piston ring accommodating groove 13 are formed with anti-friction plating to suppress the friction of the piston. However, this method requires a dedicated plating process, increases the number of processes, and requires plating equipment, which leads to an increase in cost.

本実施形態では、ピストンリング収容溝13のピストン12の往復運動方向に対して略直交し、互いに向かい合う一対の側面部13a,13bは、バニッシング加工が施されて表面仕上げされている。これにより、メッキ設備が必要なくなり、一連の機械加工の行程内でピストンリング収容溝13を成型する切削加工とピストンリング収容溝13の表面仕上げが可能となるため、コストを抑えつつ側面部13a,13bの耐摩耗性を向上させることができる。 In the present embodiment, the pair of side surface portions 13a and 13b that are substantially orthogonal to the reciprocating motion direction of the piston 12 of the piston ring accommodating groove 13 and face each other are surface-finished by being burnished. This eliminates the need for plating equipment, and enables cutting to mold the piston ring accommodating groove 13 and surface finishing of the piston ring accommodating groove 13 within a series of machining processes. The wear resistance of 13b can be improved.

なお、ピストンリング収容溝13の底面(ピストン軸線O1に略平行な円周面)にもバニッシング加工が施されていてもよい。ピストンリング収容溝13の対向する一対の側面部13a,13bは、互いに厳密な平行面である必要はなく、例えば底面部から半径方向外側に向けて互いに遠ざかるテーパー面からなる一対の側面部13a,13bであってもよい。
オイルリング収容溝17は、バニッシング加工を施してもよく、施さなくてもよい。
The bottom surface of the piston ring accommodating groove 13 (circumferential surface substantially parallel to the piston axis O1) may also be burnished. The pair of side surface portions 13a and 13b of the piston ring accommodating groove 13 do not have to be strictly parallel surfaces to each other. It may be 13b.
The oil ring accommodating groove 17 may or may not be burnished.

図1及び図2に示すように、アルミニウム母材からなる部品の表面、すなわちピストン12の上面12aには酸化被膜18が形成されている。このように、エンジン1は、酸化被膜18付きのピストン12である酸化被膜付部品20を備えている。 As shown in FIGS. 1 and 2, an oxide film 18 is formed on the surface of a component made of an aluminum base material, that is, on the upper surface 12a of the piston 12. As described above, the engine 1 includes a component 20 with an oxide film, which is a piston 12 with an oxide film 18.

図3及び図4に示すように、酸化被膜18は、束状に密集している複数の柱状組織22を含む。柱状組織22は、Alからなる中実の柱状の組織である。隣接する柱状組織22同士の境界23には、粒状の空孔24、すなわち閉じた気泡が境界23に沿って複数形成されている。 As shown in FIGS. 3 and 4, the oxide film 18 includes a plurality of columnar structures 22 that are densely packed in a bundle. The columnar structure 22 is a solid columnar structure made of Al 2 O 3. At the boundary 23 between adjacent columnar structures 22, a plurality of granular pores 24, that is, closed bubbles are formed along the boundary 23.

なお、「柱状組織が中実である」とは、組織内部に長さ方向に延びる中空部がある筒状ではなく、内部が実質的にAlで満たされている柱状組織を意味する。「中実の柱状組織」には、製造上、不可避的に内部に気泡が僅かに形成されている柱状組織も含まれ得る。 In addition, "the columnar structure is solid" means a columnar structure in which the inside is substantially filled with Al 2 O 3 rather than a tubular shape having a hollow portion extending in the length direction inside the structure. .. The "solid columnar structure" may also include a columnar structure in which a few bubbles are unavoidably formed inside in manufacturing.

酸化被膜18は、ピストン12の上面12aに酸素を吹き付けながらレーザーを照射することで形成される。酸素を吹き付けながらレーザーを照射することで、ピストン12の上面12aが急速加熱、急速冷却される。これにより、アルミニウム母材が溶解し、酸素と反応してAlとなり、冷却時に柱状に成長することで、束状に密集した柱状組織22が形成される。また、柱状組織22同士の境界23に、吹き付けている酸素、又は大気よりも酸素濃度の濃い空気が混入し、境界23に沿って複数の空孔24が形成される。空孔24には、酸素、又は大気よりも酸素濃度の濃い空気が含まれる。 The oxide film 18 is formed by irradiating the upper surface 12a of the piston 12 with a laser while blowing oxygen. By irradiating the laser while blowing oxygen, the upper surface 12a of the piston 12 is rapidly heated and rapidly cooled. As a result, the aluminum base material dissolves and reacts with oxygen to form Al 2 O 3 , which grows into columns when cooled to form a bundle-like dense columnar structure 22. Further, the blowing oxygen or air having an oxygen concentration higher than that of the atmosphere is mixed in the boundary 23 between the columnar structures 22, and a plurality of pores 24 are formed along the boundary 23. The pores 24 contain oxygen or air having a higher oxygen concentration than the atmosphere.

柱状組織22の平均幅D(図3)は、1.1μm以下が好ましく、0.7μm以下がより好ましい。柱状組織22の平均幅Dが前記上限値以下であれば、酸化被膜18の断熱効果が向上する。柱状組織22の形成が容易な点では、柱状組織22の平均幅Dは、0.2μm以上が好ましい。
なお、柱状組織22の平均幅Dは、酸化被膜18を厚さ方向に切断した任意の断面において、無作為に選択した50個の柱状組織22について測定した幅の平均値を意味する。
The average width D (FIG. 3) of the columnar structure 22 is preferably 1.1 μm or less, more preferably 0.7 μm or less. When the average width D of the columnar structure 22 is equal to or less than the upper limit value, the heat insulating effect of the oxide film 18 is improved. The average width D of the columnar structure 22 is preferably 0.2 μm or more from the viewpoint that the columnar structure 22 can be easily formed.
The average width D of the columnar structure 22 means the average value of the widths measured for 50 randomly selected columnar structures 22 in an arbitrary cross section obtained by cutting the oxide film 18 in the thickness direction.

空孔24の平均直径は、0.05μm以上0.13μm以下が好ましく、0.09μm以上0.13μm以下がより好ましい。空孔24の平均直径が前記範囲内であれば、酸化被膜18の断熱効果が向上し、かつ熱容量が小さくなるため、表面温度が燃焼ガスの温度に追従しやすくなる。
なお、空孔24の平均直径は、酸化被膜18を厚さ方向に切断した任意の断面において、無作為に選択した200個の空孔24について測定した最大径の平均値を意味する。空孔の平均直径や数は、レーザーの走査速度やピッチ等の条件によって変化する。
The average diameter of the pores 24 is preferably 0.05 μm or more and 0.13 μm or less, and more preferably 0.09 μm or more and 0.13 μm or less. When the average diameter of the pores 24 is within the above range, the heat insulating effect of the oxide film 18 is improved and the heat capacity is reduced, so that the surface temperature easily follows the temperature of the combustion gas.
The average diameter of the pores 24 means the average value of the maximum diameters measured for 200 randomly selected pores 24 in an arbitrary cross section obtained by cutting the oxide film 18 in the thickness direction. The average diameter and number of pores vary depending on conditions such as laser scanning speed and pitch.

図2に示すように、酸化被膜18は、ピストン12の上面12aにおける、平面視でのピストン12の輪郭に沿った所定の幅dの環状領域Aよりも内側の領域Bに形成されている。ピストン12の上面12aにおける環状領域Aには酸化被膜18は形成されていない。これにより、燃焼室2内のスキッシュエリアの面粗度管理が容易になり、自己着火(ノッキング)を抑制しやすい。
環状領域Aの幅dは、2.5mm以上3.0mm以下が好ましい。
As shown in FIG. 2, the oxide film 18 is formed on the upper surface 12a of the piston 12 in a region B inside the annular region A having a predetermined width d along the contour of the piston 12 in a plan view. The oxide film 18 is not formed in the annular region A on the upper surface 12a of the piston 12. As a result, the surface roughness of the squish area in the combustion chamber 2 can be easily controlled, and self-ignition (knocking) can be easily suppressed.
The width d of the annular region A is preferably 2.5 mm or more and 3.0 mm or less.

図2〜4に示すように、この例の酸化被膜18では、複数の柱状組織22が束状に密集している柱状組織束領域26がピストン12の上面12aの面方向に複数形成されている。また、各々の柱状組織束領域26は、少なくとも隣接する柱状組織束領域26と一部が重なっている。柱状組織束領域26同士が重なっている部分には、柱状組織束領域26同士の境目である境界27が存在している。この例では、酸化被膜18において部分的に3つ又は4つの柱状組織束領域26が重なって層状になっている。 As shown in FIGS. 2 to 4, in the oxide film 18 of this example, a plurality of columnar tissue bundle regions 26 in which a plurality of columnar tissues 22 are densely packed in a bundle shape are formed in the surface direction of the upper surface 12a of the piston 12. .. Further, each columnar tissue bundle region 26 partially overlaps with at least the adjacent columnar tissue bundle region 26. In the portion where the columnar tissue bundle regions 26 overlap each other, there is a boundary 27 which is a boundary between the columnar tissue bundle regions 26. In this example, in the oxide film 18, three or four columnar tissue bundle regions 26 are partially overlapped and layered.

なお、酸化被膜18における柱状組織束領域26が重なり合う態様は、この例のように3層又は4層になっている態様には限定されない。例えば、各々の柱状組織束領域26が隣接する柱状組織束領域26のみと重なり2層になっている部分を含む態様であってもよく、柱状組織束領域26が5層以上重なっている部分を含む態様であってもよい。 The mode in which the columnar tissue bundle regions 26 in the oxide film 18 overlap is not limited to the mode in which there are three or four layers as in this example. For example, the embodiment may include a portion in which each columnar tissue bundle region 26 overlaps only the adjacent columnar tissue bundle region 26 and has two layers, and a portion in which the columnar tissue bundle region 26 overlaps five or more layers may be included. It may be an aspect including.

複数の柱状組織束領域26が部分的に層状に重なり合っている酸化被膜18の形成方法は、特に限定されない。例えば、図5に示すように、ピストン12の上面12aの環状領域Bに対し、酸素を吹き付けつつ、矢印Y方向に所定の間隔をあけて矢印X方向及び矢印X方向と逆方向に走査しながらレーザーLを照射する方法を例示できる。レーザーLを走査しながら照射し、照射が重なった範囲では、前のレーザーLの照射によって溶解して固化した部分が一部再溶解し、柱状組織22が成長して層状に重なりながら柱状組織束領域26が順に形成されていく。
なお、図5で説明した実施例では、レーザーを図5の左右方向に往復するように走査させているが、走査方向を一方向(例えば、図5の左から右に向く向き(矢印x方向))のみとし、矢印Y方向に所定の間隔をあけてレーザーを複数回走査させる方法であってもよい。
The method for forming the oxide film 18 in which the plurality of columnar tissue bundle regions 26 are partially overlapped in layers is not particularly limited. For example, as shown in FIG. 5, while blowing oxygen onto the annular region B of the upper surface 12a of the piston 12, scanning in the arrow X direction and the direction opposite to the arrow X direction at predetermined intervals in the arrow Y direction. An example of a method of irradiating the laser L can be illustrated. Irradiation is performed while scanning the laser L, and in the range where the irradiation overlaps, a part of the portion melted and solidified by the previous irradiation of the laser L is partially redissolved, and the columnar tissue 22 grows and overlaps in layers while forming a columnar tissue bundle. Regions 26 are formed in order.
In the embodiment described with reference to FIG. 5, the laser is scanned so as to reciprocate in the left-right direction of FIG. 5, but the scanning direction is one direction (for example, the direction from left to right in FIG. 5 (arrow x direction). )) Only, and the laser may be scanned a plurality of times at a predetermined interval in the Y direction of the arrow.

走査するレーザーLの矢印Y方向のピッチ(間隔)Pが小さく、走査速度が遅いほど、被膜が再溶解する影響が大きく、柱状組織束領域26同士の境界27の傾きが大きくなる傾向がある。また、走査するレーザーLの矢印Y方向のピッチPが大きく、走査速度が速いほど、柱状組織束領域26同士の境界27の傾きが小さくなる傾向がある。 The smaller the pitch (interval) P in the arrow Y direction of the laser L to be scanned and the slower the scanning speed, the greater the effect of redissolving the coating film, and the greater the inclination of the boundary 27 between the columnar tissue bundle regions 26 tends to be. Further, the larger the pitch P in the arrow Y direction of the laser L to be scanned and the faster the scanning speed, the smaller the inclination of the boundary 27 between the columnar tissue bundle regions 26 tends to be.

各々の柱状組織束領域26間において、各柱状組織22の中心軸の方向は同じであってもよく、異なっていてもよい。1つの柱状組織束領域26内における各柱状組織22の中心軸の方向も、同じであってもよく、異なっていてもよい。 The direction of the central axis of each columnar structure 22 may be the same or different between the columnar tissue bundle regions 26. The direction of the central axis of each columnar structure 22 in one columnar tissue bundle region 26 may be the same or different.

図4に示すように、柱状組織束領域26同士の境界27におけるピストン12側(母材側)の柱状組織束領域26の境界27に面する表層部分は、柱状組織22よりも細かい微小柱状組織28が複数形成されてうろこ状になっている。微小柱状組織28同士の境界や微小柱状組織28と柱状組織22との間の境界にも、複数の粒状の空孔24が当該境界に沿って形成されている。このようなうろこ状の構造が形成されると、柱状組織束領域26の境界27に面する表層部分に多くの空孔24が形成されているため、酸化被膜18の断熱層としての機能が向上する。 As shown in FIG. 4, the surface layer portion of the boundary 27 between the columnar tissue bundle regions 26 facing the boundary 27 of the columnar tissue bundle region 26 on the piston 12 side (base material side) is a microcolumnar structure finer than the columnar structure 22. A plurality of 28s are formed to form a scaly shape. A plurality of granular pores 24 are also formed along the boundary between the microcolumnar structures 28 and the boundary between the microcolumnar structure 28 and the columnar structure 22. When such a scaly structure is formed, many pores 24 are formed in the surface layer portion of the columnar tissue bundle region 26 facing the boundary 27, so that the function of the oxide film 18 as a heat insulating layer is improved. do.

このようなうろこ状の構造は、照射範囲が部分的に重なるようにレーザーを走査しながら照射することで形成される。これは、必ずしも明らかではないが、柱状組織束領域26の上にさらに重なる柱状組織束領域26が形成される際の熱が影響し、既に柱状組織22が形成されていた部分に微小柱状組織28が形成されると考えられる。 Such a scaly structure is formed by irradiating while scanning the laser so that the irradiation ranges partially overlap. Although this is not always clear, the heat when the columnar tissue bundle region 26 that is further overlapped on the columnar tissue bundle region 26 is affected, and the microcolumnar structure 28 is formed in the portion where the columnar structure 22 has already been formed. Is considered to be formed.

酸化被膜18の平均膜厚H(図1)は、10μm以上75μm以下が好ましく、50μm以上75μm以下がより好ましい。酸化被膜18の平均膜厚が前記下限値以上であれば、断熱性を維持しやすい。酸化被膜18の平均膜厚が前記上限値以下であれば、酸化被膜18が熱を放出しやすくなり、燃焼ガス温度に対する表面温度の追従性が向上する。
なお、酸化被膜18の平均膜厚Hは、酸化被膜18における無作為に選択した20箇所について測定した膜厚の平均値を意味する。酸化被膜18の平均膜厚Hは、レーザーの走査速度、ピッチP等の条件によって調整できる。
The average film thickness H (FIG. 1) of the oxide film 18 is preferably 10 μm or more and 75 μm or less, and more preferably 50 μm or more and 75 μm or less. When the average film thickness of the oxide film 18 is at least the above lower limit value, it is easy to maintain the heat insulating property. When the average film thickness of the oxide film 18 is not more than the upper limit value, the oxide film 18 easily releases heat, and the followability of the surface temperature with respect to the combustion gas temperature is improved.
The average film thickness H of the oxide film 18 means the average value of the film thickness measured at 20 randomly selected points in the oxide film 18. The average film thickness H of the oxide film 18 can be adjusted by conditions such as the scanning speed of the laser and the pitch P.

酸化被膜付部品20の製造方法としては、例えば、前述のように、ピストン12の上面12aに酸素を吹き付けながらレーザーを走査して照射し、酸化被膜18を形成する方法が挙げられる。
使用するレーザーは、特に限定されず、例えば、イットリウムを含む固体レーザーを例示できる。レーザーの走査速度、ピッチP、エネルギー密度等の条件は、適宜設定できる。
As a method for manufacturing the oxide film-attached component 20, for example, as described above, a method of forming the oxide film 18 by scanning and irradiating a laser while blowing oxygen onto the upper surface 12a of the piston 12 can be mentioned.
The laser used is not particularly limited, and examples thereof include a solid-state laser containing yttrium. Conditions such as laser scanning speed, pitch P, and energy density can be set as appropriate.

以上説明したように、エンジン1では、燃焼室2に面するピストン12の上面12aに酸化被膜18が形成されている。そして、酸化被膜18は、束状に密集したAlからなる複数の中実の柱状組織22を含み、柱状組織22同士の境界23に沿って複数の空孔24が形成されている。空孔24に含まれる酸素、又は大気よりも酸素濃度の濃い空気は、アルミニウムに比べて熱容量が小さい。そのため、酸化被膜18はピストン12よりも熱容量が小さく、表面温度が燃焼ガス温度に追従しやすくなる。また、酸素、又は大気よりも酸素濃度の濃い空気は、アルミニウムに比べて断熱性に優れるため、酸化被膜18はピストン12よりも断熱性に優れている。これらのことから、ピストン12の上面12aに酸化被膜18を形成することにより、ピストン12を介した燃焼室2からの熱の流出量を低減することができる。 As described above, in the engine 1, the oxide film 18 is formed on the upper surface 12a of the piston 12 facing the combustion chamber 2. The oxide film 18 includes a plurality of solid columnar structures 22 made of Al 2 O 3 densely packed in a bundle, and a plurality of pores 24 are formed along the boundary 23 between the columnar structures 22. The oxygen contained in the pores 24 or the air having an oxygen concentration higher than that of the atmosphere has a smaller heat capacity than that of aluminum. Therefore, the oxide film 18 has a smaller heat capacity than the piston 12, and the surface temperature easily follows the combustion gas temperature. Further, since oxygen or air having an oxygen concentration higher than that of the atmosphere is superior in heat insulating property as compared with aluminum, the oxide film 18 is superior in heat insulating property as compared with the piston 12. From these facts, by forming the oxide film 18 on the upper surface 12a of the piston 12, the amount of heat outflow from the combustion chamber 2 through the piston 12 can be reduced.

また、空孔(気泡)24は、酸素を吹き付けながらレーザーを照射することで柱状組織22間に閉じた状態で形成される。そのため、従来技術のような封孔工程が必要なく、容易に低コストで酸化被膜18を形成できる。 Further, the pores (air bubbles) 24 are formed in a closed state between the columnar tissues 22 by irradiating the laser while blowing oxygen. Therefore, the oxide film 18 can be easily formed at low cost without the need for a sealing step as in the prior art.

本発明の酸化被膜は、特に単気筒エンジンを搭載した二輪車等の鞍乗り型車両等、比較的車両価格を低く抑える必要のある車両のエンジンに好適である。さらに、空冷エンジンはエンジンの冷却量を積極的に変化させることが難しいため、本発明の酸化被膜は空冷エンジンの燃焼室外部への熱の拡散量を低減するのに特に適している。 The oxide film of the present invention is particularly suitable for an engine of a vehicle such as a saddle-riding vehicle such as a two-wheeled vehicle equipped with a single-cylinder engine, which needs to keep the vehicle price relatively low. Further, since it is difficult for an air-cooled engine to positively change the cooling amount of the engine, the oxide film of the present invention is particularly suitable for reducing the amount of heat diffusion to the outside of the combustion chamber of the air-cooled engine.

なお、本発明の酸化被膜は、ピストンの上面に形成する態様には限定されない。例えば、エンジンのシリンダヘッドの燃焼室側の壁面に酸化被膜を形成した酸化被膜付部品としてもよい。 The oxide film of the present invention is not limited to the mode formed on the upper surface of the piston. For example, it may be a component with an oxide film having an oxide film formed on the wall surface of the cylinder head of the engine on the combustion chamber side.

例えば、図6に示すように、ピストン12の上面12aに、酸化被膜18の代わりに酸化被膜18Aを形成してもよい。酸化被膜18Aは、柱状組織束領域26内の他の柱状組織22とは中心軸方向が異なる柱状組織22の塊30が柱状組織束領域26同士の境界27を跨ぐように存在し、塊30の周囲の粒界31に沿って複数の空孔24が形成されている以外は、酸化被膜18と同様の態様である。 For example, as shown in FIG. 6, an oxide film 18A may be formed on the upper surface 12a of the piston 12 instead of the oxide film 18. In the oxide film 18A, the mass 30 of the columnar structure 22 having a central axis direction different from that of the other columnar structure 22 in the columnar tissue bundle region 26 exists so as to straddle the boundary 27 between the columnar tissue bundle regions 26, and the mass 30 is formed. The embodiment is the same as that of the oxide film 18 except that a plurality of pores 24 are formed along the surrounding grain boundaries 31.

酸化被膜18Aも、複数の中実の柱状組織22を含み、柱状組織22同士の境界23や塊30の粒界31に沿って複数の空孔24が形成されているため、断熱効果が高い。酸化被膜18Aは、例えば、ピストン12の上面12aに対し、酸素を吹き付けながらレーザー照射を2度以上行うことで形成される。 The oxide film 18A also contains a plurality of solid columnar structures 22, and a plurality of pores 24 are formed along the boundaries 23 between the columnar structures 22 and the grain boundaries 31 of the lumps 30, so that the heat insulating effect is high. The oxide film 18A is formed, for example, by irradiating the upper surface 12a of the piston 12 with a laser twice or more while blowing oxygen.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description.

[実施例1]
アルミニウム製の板状の試験片(縦20mm×横20mm×厚さ10mm)の表面に、酸素を吹き付けつつ、横方向に0.075mmのピッチで間隔をあけて縦方向にレーザー(エネルギー密度:500J/cm)を50mm/sで走査させながら照射し、Alからなる酸化被膜を形成した。前記試験片の縦方向に垂直な面で酸化被膜を切断した断面をFE−SEMによって観察した顕微鏡写真を図7に示す。
[Example 1]
While spraying oxygen on the surface of an aluminum plate-shaped test piece (length 20 mm x width 20 mm x thickness 10 mm), a laser (energy density: 500J) is used in the vertical direction at intervals of 0.075 mm in the horizontal direction. / Cm 2 ) was irradiated while scanning at 50 mm / s to form an oxide film made of Al 2 O 3. FIG. 7 shows a micrograph of the cross section obtained by cutting the oxide film on a plane perpendicular to the vertical direction of the test piece by FE-SEM.

酸化被膜の平均膜厚は50μm、柱状組織の平均幅は0.7μm、空孔の平均直径は0.06μmであった。レーザーフラッシュ法によって酸化被膜の熱伝導率を測定したところ、6.0W/m・Kであり、断熱性に優れていた。 The average film thickness of the oxide film was 50 μm, the average width of the columnar structure was 0.7 μm, and the average diameter of the pores was 0.06 μm. The thermal conductivity of the oxide film was measured by the laser flash method and found to be 6.0 W / m · K, which was excellent in heat insulating properties.

1 エンジン1
10 シリンダ
12 ピストン(部品)
12a ピストンの上面(部品の表面)
14 吸気バルブ
16 排気バルブ
18,18A 酸化被膜
20 酸化被膜付部品
22 柱状組織
23 柱状組織同士の境界
24 空孔
26 柱状組織束領域
27 柱状組織束領域同士の境界
28 微小柱状組織
30 塊
31 粒界
1 engine 1
10 cylinders 12 pistons (parts)
12a Top surface of piston (surface of parts)
14 Intake valve 16 Exhaust valve 18, 18A Oxidized film 20 Oxidized film parts 22 Columnar structure 23 Boundary between columnar structures 24 Pore 26 Boundary between columnar tissue bundle areas 27 Boundary between columnar tissue bundle areas 28 Microcolumnar structure 30 lumps 31 Grain boundaries

Claims (6)

アルミニウム母材からなる部品(12)の表面(12a)に形成される酸化被膜(18)であって、
束状に密集しているAlからなる中実の柱状組織(22)を含み、
隣接する前記柱状組織(22)同士の境界(23)に沿って複数の粒状の空孔(24)が形成されている、酸化被膜。
An oxide film (18) formed on the surface (12a) of a component (12) made of an aluminum base material.
It contains a solid columnar structure (22) consisting of Al 2 O 3 densely packed in a bundle.
An oxide film in which a plurality of granular pores (24) are formed along a boundary (23) between adjacent columnar structures (22).
複数の柱状組織(22)が束状に密集した柱状組織束領域(26)が前記部品(12)の表面(12a)の面方向に複数形成されており、
各々の前記柱状組織束領域(26)は少なくとも隣接する前記柱状組織束領域(26)と一部が重なり、前記柱状組織束領域(26)同士が重なる部分に境界(27)が存在している、請求項1に記載の酸化被膜。
A plurality of columnar tissue bundle regions (26) in which a plurality of columnar structures (22) are densely packed in a bundle are formed in the surface direction of the surface (12a) of the component (12).
Each of the columnar tissue bundle regions (26) partially overlaps with at least the adjacent columnar tissue bundle regions (26), and a boundary (27) exists at a portion where the columnar tissue bundle regions (26) overlap each other. , The oxide film according to claim 1.
平均膜厚(H)が10μm以上75μm以下である、請求項1又は2に記載の酸化被膜。 The oxide film according to claim 1 or 2, wherein the average film thickness (H) is 10 μm or more and 75 μm or less. 前記柱状組織(22)の平均幅(D)が1.1μm以下である、請求項1〜3のいずれか一項に記載の酸化被膜。 The oxide film according to any one of claims 1 to 3, wherein the columnar structure (22) has an average width (D) of 1.1 μm or less. アルミニウム母材からなる部品(12)の表面(12a)に、請求項1〜4のいずれか一項に記載の酸化被膜(18)が形成されている、酸化被膜付部品。 A component with an oxide film, wherein the oxide film (18) according to any one of claims 1 to 4 is formed on the surface (12a) of the component (12) made of an aluminum base material. 前記部品はピストン(12)であり、
前記酸化被膜は、前記ピストン(12)の上面(12a)における、平面視での前記ピストン(12)の輪郭に沿った所定の幅(d)の環状領域(A)よりも内側の領域(B)に形成されている、請求項5に記載の酸化被膜付部品。
The component is a piston (12).
The oxide film is a region (B) on the upper surface (12a) of the piston (12) inside the annular region (A) having a predetermined width (d) along the contour of the piston (12) in a plan view. ), The oxide film-coated component according to claim 5.
JP2020052960A 2020-03-24 2020-03-24 Oxide film and parts with oxide film Active JP7095010B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020052960A JP7095010B2 (en) 2020-03-24 2020-03-24 Oxide film and parts with oxide film
CN202110257269.8A CN113444997B (en) 2020-03-24 2021-03-09 Oxide film and member with oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052960A JP7095010B2 (en) 2020-03-24 2020-03-24 Oxide film and parts with oxide film

Publications (2)

Publication Number Publication Date
JP2021152193A true JP2021152193A (en) 2021-09-30
JP7095010B2 JP7095010B2 (en) 2022-07-04

Family

ID=77808968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052960A Active JP7095010B2 (en) 2020-03-24 2020-03-24 Oxide film and parts with oxide film

Country Status (2)

Country Link
JP (1) JP7095010B2 (en)
CN (1) CN113444997B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108740U (en) * 1983-12-27 1985-07-24 三井造船株式会社 internal combustion engine
JP2008111190A (en) * 2006-10-30 2008-05-15 Ahc Oberflaechentechnik Gmbh Method for producing wear-resistant layer on material of barrier-layer-forming metal and material of barrier-layer-forming metal
JP2018080360A (en) * 2016-11-15 2018-05-24 株式会社デンソー Metal member and composite body of metal member and resin member, and method for manufacturing them

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113756A (en) * 1984-11-09 1986-05-31 Yoshikawa Kogyo Kk Manufacture of seawater-resistant al-coated steel material
JPH0920941A (en) * 1995-07-05 1997-01-21 Mitsubishi Motors Corp Brake rotor for disk brake and its production
JP2004131849A (en) * 2002-10-11 2004-04-30 Kazuhiro Ogawa Heat shield coating member-manufacturing method and heat shield coating member
DE102006046503A1 (en) * 2006-08-18 2008-02-21 Mg-Micro Galva Gmbh Laser oxidation of magnesium, titanium or aluminum materials
JP2013129899A (en) * 2011-12-22 2013-07-04 Toyota Motor Corp Method for manufacturing heat insulating member, and internal combustion engine manufactured therewith
JP2017015053A (en) * 2015-07-06 2017-01-19 トヨタ自動車株式会社 Method for manufacturing internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108740U (en) * 1983-12-27 1985-07-24 三井造船株式会社 internal combustion engine
JP2008111190A (en) * 2006-10-30 2008-05-15 Ahc Oberflaechentechnik Gmbh Method for producing wear-resistant layer on material of barrier-layer-forming metal and material of barrier-layer-forming metal
JP2018080360A (en) * 2016-11-15 2018-05-24 株式会社デンソー Metal member and composite body of metal member and resin member, and method for manufacturing them

Also Published As

Publication number Publication date
CN113444997B (en) 2023-07-07
CN113444997A (en) 2021-09-28
JP7095010B2 (en) 2022-07-04

Similar Documents

Publication Publication Date Title
US6123052A (en) Waffle cast iron cylinder liner
US7104240B1 (en) Internal combustion engine with localized lubrication control of combustion cylinders
EP3030686B1 (en) Internal combustion engine and manufacturing method therefor
BRPI0612791B1 (en) CYLINDER SHIRT AND METHOD FOR MANUFACTURING IT
US20160130716A1 (en) Forming method of thermal insulation film
EP2422902A2 (en) Cylinder liner for insert casting use
US4447275A (en) Cylinder liner
JP2002201962A5 (en)
JP6927057B2 (en) Compression self-ignition internal combustion engine
RU2675989C1 (en) Internal combustion engine cylinder block and the cylinder block manufacturing method
JP2009115029A (en) Cylinder block and method of manufacturing the same
JP2011220207A (en) Internal combustion engine, and method for manufacturing piston
JP7095010B2 (en) Oxide film and parts with oxide film
KR101837263B1 (en) Piston for internal combustion engine, internal combustion engine including this piston, and manufacturing method of this piston
JP2017115781A (en) Internal combustion engine piston, internal combustion engine and process of manufacture of internal combustion engine piston
JP2010203334A (en) Piston for internal combustion engine
JP2013129899A (en) Method for manufacturing heat insulating member, and internal combustion engine manufactured therewith
JP2023011773A (en) Manufacturing method of piston of internal combustion engine
JP7135758B2 (en) spark ignition internal combustion engine
JP2006159571A (en) Fundamental honeycomb structure, its extrusion molding die and manufacturing method of large-sized honeycomb structure
JPS58133454A (en) Cylinder whose inner circumference is treated by hardening
JP2012112332A (en) Cylinder block of internal combustion engine
JP2684263B2 (en) Manufacturing method of piston ring
JP2023004190A (en) Piston for internal combustion engine and manufacturing method thereof
JPH0252152A (en) Cooling drum for strip continuous casting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220622

R150 Certificate of patent or registration of utility model

Ref document number: 7095010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150