JP2021151169A - Secondary battery device and control method for secondary battery - Google Patents

Secondary battery device and control method for secondary battery Download PDF

Info

Publication number
JP2021151169A
JP2021151169A JP2020051854A JP2020051854A JP2021151169A JP 2021151169 A JP2021151169 A JP 2021151169A JP 2020051854 A JP2020051854 A JP 2020051854A JP 2020051854 A JP2020051854 A JP 2020051854A JP 2021151169 A JP2021151169 A JP 2021151169A
Authority
JP
Japan
Prior art keywords
electrode
mode
secondary battery
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2020051854A
Other languages
Japanese (ja)
Inventor
栄二 關
Eiji Seki
栄二 關
耕平 本蔵
Kohei Motokura
耕平 本蔵
昌俊 杉政
Masatoshi Sugimasa
昌俊 杉政
渉太 伊藤
Shota Ito
渉太 伊藤
誠之 廣岡
Masayuki Hirooka
誠之 廣岡
健士 井上
Takeshi Inoue
健士 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020051854A priority Critical patent/JP2021151169A/en
Priority to PCT/JP2020/041684 priority patent/WO2021192394A1/en
Publication of JP2021151169A publication Critical patent/JP2021151169A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a secondary battery device in which a third electrode for measuring potential of positive/negative electrodes also serves as a lithium ion supply source to the positive/negative electrodes, capable of preventing loss of potential measurement function from the third electrode; and a control method for such a secondary battery.SOLUTION: A control unit 11 controls a control circuit 10 on the basis of at least one from among: a positive-negative interelectrode voltage between a positive electrode 211 and a negative electrode 212; a third-positive interelectrode voltage between a third electrode 213 and the positive electrode 211; and a third-negative interelectrode voltage between the third electrode 213 and the negative electrode 212. The control unit 11 controls the control circuit 10 to switch from/to: a first mode in which no current is caused to flow between the positive electrode 211, the negative electrode 212, and the third electrode 213; a second mode in which current is caused to flow from the negative electrode 212 to the third electrode 213; a third mode in which current is caused to flow from the positive electrode 211 to the third electrode 213; or a fourth mode in which current is caused to flow from the third electrode 213 to the positive electrode 211 or the negative electrode 212.SELECTED DRAWING: Figure 3

Description

本開示は、二次電池装置および二次電池の制御方法に関する。 The present disclosure relates to a secondary battery device and a method for controlling a secondary battery.

従来から蓄電システムに関する発明が知られている(下記特許文献1を参照)。特許文献1の蓄電システムは、複数の蓄電装置を備える(同文献、要約、第0020段落、請求項1等)。複数の蓄電装置のいずれか一つ以上の蓄電装置は、セル、正負極電位測定手段、および動的寿命コントローラを備える。セルは、正極および負極を備える二次電池である。 Inventions relating to power storage systems have been conventionally known (see Patent Document 1 below). The power storage system of Patent Document 1 includes a plurality of power storage devices (the same document, abstract, paragraph 0020, claim 1, etc.). One or more power storage devices of the plurality of power storage devices include a cell, positive and negative electrode potential measuring means, and a dynamic life controller. The cell is a secondary battery including a positive electrode and a negative electrode.

正負極電位測定手段は、セルの正極電位および負極電位を測定し、データベースサーバにセルの正極電位および負極電位の電位情報が伝送される。データベースサーバにおいて、セルの電位情報に基づき、セルの運用条件の変化に対応したセルの寿命予測関係が構築される。動的寿命コントローラは、セルの寿命予測関係に基づくセルの想定寿命に合わせて、複数の蓄電装置を制御する。 The positive / negative electrode potential measuring means measures the positive electrode potential and the negative electrode potential of the cell, and the potential information of the positive electrode potential and the negative electrode potential of the cell is transmitted to the database server. In the database server, a cell life prediction relationship corresponding to changes in cell operating conditions is constructed based on the cell potential information. The dynamic life controller controls a plurality of power storage devices according to the estimated life of the cell based on the cell life prediction relationship.

この発明により、二次電池を使用した蓄電システムにおいて、二次電池の劣化状態を正確に把握し、想定されている蓄電システムの寿命と二次電池の寿命とを近付けることができる(同文献、第0021段落)。 INDUSTRIAL APPLICABILITY According to the present invention, in a power storage system using a secondary battery, it is possible to accurately grasp the deterioration state of the secondary battery and bring the expected life of the power storage system closer to the life of the secondary battery (the same document, the same document). 0021).

さらに、この蓄電システムは、セルの内部にLiイオン供給制御手段が備えられる構成を含む(同文献、実施例3、図5、請求項5等)。この場合、蓄電装置は、コントローラ伝送手段を備える。コントローラ伝送手段は、動的寿命コントローラからの信号に基づき、セルの正極または負極にLiイオンを供給する信号をLiイオン供給制御手段に伝送し、その信号に基づき、正極または負極にLiイオンが供給される。 Further, this power storage system includes a configuration in which a Li ion supply control means is provided inside the cell (the same document, Example 3, FIG. 5, claim 5 and the like). In this case, the power storage device includes a controller transmission means. The controller transmission means transmits a signal for supplying Li ions to the positive electrode or the negative electrode of the cell to the Li ion supply control means based on the signal from the dynamic life controller, and Li ions are supplied to the positive electrode or the negative electrode based on the signal. Will be done.

より具体的には、セルの正極または負極にLiイオンを供給するLiイオン供給源を兼ねた第3電極が設けられている(同文献、第0054段落、図5)。このLiイオン供給源を兼ねた第3電極は、通常は第3電極として作用し、正負極の電位を測定する手段として用いられる(同文献、第0055段落)。 More specifically, a third electrode that also serves as a Li ion supply source for supplying Li ions to the positive electrode or the negative electrode of the cell is provided (the same document, paragraph 0054, FIG. 5). The third electrode, which also serves as a Li ion supply source, usually acts as a third electrode and is used as a means for measuring the potential of the positive and negative electrodes (paragraph 0055 of the same document).

このような構成により、想定以上に容量維持率が低下しても、セルの特性上の寿命と想定交換寿命を近付ける、望ましくは一致させることができる。また、想定よりきつい運用をされてしまって、セルの劣化が想定以上に進行してしまった場合でも、容量維持率を回復させて、想定寿命まで回復させることができる(同文献、第0059段落、図9等)。 With such a configuration, even if the capacity retention rate is lower than expected, the life due to the characteristics of the cell and the assumed replacement life can be brought close to each other, and preferably they can be matched. In addition, even if the cell is operated harder than expected and the deterioration of the cell progresses more than expected, the capacity retention rate can be recovered and the life can be recovered to the expected life (paragraph 0059 of the same document). , Fig. 9 etc.).

国際公開第2015/037068号International Publication No. 2015/037068

前記従来の蓄電システムは、前述のリチウムイオン供給源を兼ねた第3電極から正極または負極へのリチウムイオンの供給が過剰になり、第3電極による正負極の電位測定機能を喪失するおそれがある。 In the conventional power storage system, the supply of lithium ions from the third electrode, which also serves as the lithium ion supply source, to the positive electrode or the negative electrode becomes excessive, and the potential measurement function of the positive electrode and the negative electrode by the third electrode may be lost. ..

本開示は、正電極および負電極の電位を測定するための第3電極が、正電極および負電極へのリチウムイオンの供給源を兼ねる二次電池において、第3電極による電位測定機能の喪失を防止することが可能な二次電池装置および二次電池の制御方法を提供する。 In the present disclosure, in a secondary battery in which the third electrode for measuring the potentials of the positive electrode and the negative electrode also serves as a supply source of lithium ions to the positive electrode and the negative electrode, the loss of the potential measurement function by the third electrode is eliminated. A secondary battery device that can be prevented and a method for controlling the secondary battery are provided.

本開示の一態様は、正電極、負電極、および第3電極を有する二次電池と、該二次電池に接続された制御回路と、該制御回路を制御する制御部と、を備えた二次電池装置であって、前記制御部は、前記正電極と前記負電極との間の正負極間電圧、前記第3電極と前記正電極との間の第3正極間電圧、前記第3電極と前記負電極との間の第3負極間電圧の少なくとも一つに基づいて、前記制御回路において、前記正電極と前記負電極と前記第3電極との間に電流を流さない第1モードと、前記負電極から前記第3電極へ電流を流す第2モードと、前記正電極から前記第3電極へ電流を流す第3モードと、前記第3電極から前記正電極または前記負電極へ電流を流す第4モードとを切り替えることを特徴とする二次電池装置である。 One aspect of the present disclosure includes a secondary battery having a positive electrode, a negative electrode, and a third electrode, a control circuit connected to the secondary battery, and a control unit for controlling the control circuit. In the next battery device, the control unit includes a positive / negative electrode voltage between the positive electrode and the negative electrode, a third positive electrode voltage between the third electrode and the positive electrode, and the third electrode. A first mode in which no current flows between the positive electrode, the negative electrode, and the third electrode in the control circuit based on at least one of the voltage between the positive electrode and the third negative electrode. A second mode in which a current is passed from the negative electrode to the third electrode, a third mode in which a current is passed from the positive electrode to the third electrode, and a current is passed from the third electrode to the positive electrode or the negative electrode. It is a secondary battery device characterized by switching between a fourth mode of flowing.

本開示の上記一態様によれば、正電極および負電極の電位を測定するための第3電極が、正電極および負電極へのリチウムイオンの供給源を兼ねる二次電池において、第3電極による電位測定機能の喪失を防止することが可能な二次電池装置を提供することができる。 According to the above aspect of the present disclosure, in a secondary battery in which the third electrode for measuring the potentials of the positive electrode and the negative electrode also serves as a supply source of lithium ions to the positive electrode and the negative electrode, the third electrode is used. It is possible to provide a secondary battery device capable of preventing loss of the potential measurement function.

本開示の二次電池装置の一実施形態を示すブロック図。The block diagram which shows one Embodiment of the secondary battery apparatus of this disclosure. 図1の二次電池装置を構成する単電池の一例を示すブロック図。The block diagram which shows an example of the cell | cell which comprises the secondary battery device of FIG. 図2の二次電池に接続された制御回路の一例を示す回路図。The circuit diagram which shows an example of the control circuit connected to the secondary battery of FIG. 図3の制御回路に接続された制御部の動作の一例を説明するフロー図。The flow diagram explaining an example of the operation of the control part connected to the control circuit of FIG. 図2の二次電池の放電特性の一例を示すグラフ。The graph which shows an example of the discharge characteristic of the secondary battery of FIG. 図2の二次電池の放電特性の一例を示すグラフ。The graph which shows an example of the discharge characteristic of the secondary battery of FIG.

以下、図面を参照して本開示の二次電池装置および二次電池の制御方法の実施形態を説明する。 Hereinafter, embodiments of the secondary battery device and the control method for the secondary battery of the present disclosure will be described with reference to the drawings.

図1は、本開示の二次電池装置の一実施形態を示すブロック図である。本実施形態の二次電池装置1は、たとえば、単電池群2と、一対の外部端子3P,3Nと、電流センサ4と、温度センサ5と、電池管理部6と、状態演算部7と、情報入力端子8と、情報出力端子9と、を備えている。 FIG. 1 is a block diagram showing an embodiment of the secondary battery device of the present disclosure. The secondary battery device 1 of the present embodiment includes, for example, a cell group 2, a pair of external terminals 3P, 3N, a current sensor 4, a temperature sensor 5, a battery management unit 6, a state calculation unit 7, and the like. It includes an information input terminal 8 and an information output terminal 9.

単電池群2は、たとえば、直列に接続された複数の単電池21によって構成されている。単電池21は、特に限定はされないが、たとえば、角形のリチウムイオン二次電池である。なお、図示を省略するが、二次電池装置1は、たとえば、複数の単電池群2を備えてもよい。複数の単電池群2は、たとえば、直列または並列に接続される。また、直列に接続された複数の単電池群2を、並列に接続してもよい。 The cell group 2 is composed of, for example, a plurality of cell cells 21 connected in series. The cell 21 is not particularly limited, but is, for example, a square lithium ion secondary battery. Although not shown, the secondary battery device 1 may include, for example, a plurality of cell groups 2. The plurality of cell groups 2 are connected in series or in parallel, for example. Further, a plurality of cell groups 2 connected in series may be connected in parallel.

一対の外部端子3P,3Nは、一方の外部端子3Pが電力配線を介して単電池群2の正極端子に接続され、他方の外部端子3Nが電力配線を介して単電池群2の負極端子に接続されている。図示を省略するが、一対の外部端子3P,3Nは、たとえば、電力配線を介してモータなどの外部の負荷に接続される。 In the pair of external terminals 3P and 3N, one external terminal 3P is connected to the positive electrode terminal of the cell group 2 via the power wiring, and the other external terminal 3N is connected to the negative electrode terminal of the cell group 2 via the power wiring. It is connected. Although not shown, the pair of external terminals 3P and 3N are connected to an external load such as a motor via, for example, power wiring.

電流センサ4は、たとえば、単電池群2と外部端子3Pとの間の電力配線に接続され、単電池群2を流れる電流を測定する。温度センサ5は、たとえば、単電池群2を構成する複数の単電池21のうちの少なくとも一つに取り付けられ、単電池群2の温度を測定する。 The current sensor 4 is connected to, for example, the power wiring between the cell group 2 and the external terminal 3P, and measures the current flowing through the cell group 2. The temperature sensor 5 is attached to at least one of a plurality of cell cells 21 constituting the cell group 2, for example, and measures the temperature of the cell group 2.

電池管理部6および状態演算部7は、たとえば、CPUなどの処理装置、RAMやROMなどの記憶装置、タイマ、および信号入出力部などを備えたマイクロコントローラまたはファームウェアである。電池管理部6および状態演算部7は、たとえば、記憶装置に記憶されたプログラムを処理装置によって実行することで、以下に説明する様々な機能を実現する。 The battery management unit 6 and the state calculation unit 7 are, for example, a microcontroller or firmware including a processing device such as a CPU, a storage device such as a RAM or ROM, a timer, and a signal input / output unit. The battery management unit 6 and the state calculation unit 7 realize various functions described below by, for example, executing a program stored in the storage device by the processing device.

電池管理部6は、たとえば、単電池群2を構成する個々の単電池21の電圧を測定する電圧センサとしての機能と、個々の単電池21の間の電圧を均一化する機能と、を有している。状態演算部7は、たとえば、信号入出力部を介して、電流センサ4、温度センサ5、および電池管理部6に接続されている。状態演算部7は、たとえば、単電池群2の状態、すなわち、電池状態を演算する機能を有している。 The battery management unit 6 has, for example, a function as a voltage sensor for measuring the voltage of each cell 21 constituting the cell group 2 and a function for equalizing the voltage between the individual cells 21. doing. The state calculation unit 7 is connected to the current sensor 4, the temperature sensor 5, and the battery management unit 6 via, for example, a signal input / output unit. The state calculation unit 7 has, for example, a function of calculating the state of the cell group 2, that is, the battery state.

状態演算部7が演算する単電池群2の電池状態は、たとえば、単電池群2の充電状態(SOC)、劣化状態(SOH)、入出力可能な最大電力または最大電流、異常の有無、特性パラメータ、履歴情報などを含む。また、状態演算部7は、たとえば、電流センサ4から取得した電流値と、電池管理部6から取得した個々の単電池21の電圧とを乗じることで、単電池群2の出力電力および入力電力を算出する機能を有する。 The battery state of the cell group 2 calculated by the state calculation unit 7 is, for example, the charge state (SOC), the deterioration state (SOH) of the cell group 2, the maximum power or current that can be input / output, the presence / absence of abnormality, and the characteristics. Includes parameters, history information, etc. Further, the state calculation unit 7 multiplies, for example, the current value acquired from the current sensor 4 and the voltage of each cell 21 acquired from the battery management unit 6, so that the output power and input power of the cell group 2 are multiplied. Has a function to calculate.

状態演算部7は、たとえば、算出した単電池群2の電池状態を含む情報を、情報出力端子9を介して、図示を省略する外部の制御装置へ出力する。また、状態演算部7は、たとえば、各種の演算に用いる情報を、情報入力端子8を介して、図示を省略する外部の制御装置から取得する。 The state calculation unit 7 outputs, for example, the calculated information including the battery state of the cell group 2 to an external control device (not shown) via the information output terminal 9. Further, the state calculation unit 7 acquires, for example, information used for various calculations from an external control device (not shown) via the information input terminal 8.

図2は、図1の二次電池装置1を構成する単電池21の一例を示すブロック図である。より具体的には、図2に示す単電池21は、図1の二次電池装置1の単電池群2を構成する複数の単電池21の一つである。単電池21は、たとえば、前述のように、リチウムイオン二次電池である。すなわち、二次電池装置1は、たとえば、二次電池として、複数の単電池21を備えている。 FIG. 2 is a block diagram showing an example of a cell 21 constituting the secondary battery device 1 of FIG. More specifically, the cell 21 shown in FIG. 2 is one of a plurality of cell 21s constituting the cell group 2 of the secondary battery device 1 of FIG. The cell 21 is, for example, a lithium ion secondary battery as described above. That is, the secondary battery device 1 includes, for example, a plurality of cell cells 21 as a secondary battery.

単電池21は、たとえば、正電極211と、負電極212と、第3電極213と、を備えている。正電極211、負電極212、および第3電極213は、たとえば、電解液に浸漬された状態で密封された電池容器214の内部に収容され、電池容器214との間に図示を省略する絶縁シートが配置され、電池容器214に対して電気的に絶縁されている。単電池21は、巻回電極型でもよく、積層電極型でもよい。 The cell 21 includes, for example, a positive electrode 211, a negative electrode 212, and a third electrode 213. The positive electrode 211, the negative electrode 212, and the third electrode 213 are housed inside, for example, a sealed battery container 214 while being immersed in an electrolytic solution, and an insulating sheet (not shown) is not shown between the positive electrode 211 and the negative electrode 212. Is arranged and electrically insulated from the battery container 214. The cell 21 may be a wound electrode type or a laminated electrode type.

正電極211は、たとえば、集電体と、集電体の表面に形成された合剤層とを備えている。正電極211の集電体としては、たとえば、アルミニウムまたはアルミニウム合金の金属箔を用いることができる。正電極211の合剤層は、たとえば、Ni、Co、Mnを含む遷移金属をMとして、組成式:LiMOで表される正極材料を含む。また、正極材料として、たとえば、一部を金属元素で置換またはドープしたリチウムマンガン複合酸化物、層状結晶構造を有するコバルト酸リチウムやチタン酸リチウム、これらの一部を金属元素で置換またはドープしたリチウム‐金属複合酸化物などを用いることができる。 The positive electrode 211 includes, for example, a current collector and a mixture layer formed on the surface of the current collector. As the current collector of the positive electrode 211, for example, a metal foil of aluminum or an aluminum alloy can be used. The mixture layer of the positive electrode 211 contains, for example, a positive electrode material represented by the composition formula: LiMO 2, with a transition metal containing Ni, Co, and Mn as M. Further, as the positive electrode material, for example, lithium manganese composite oxide partially substituted or doped with a metal element, lithium cobaltate or lithium titanate having a layered crystal structure, and lithium partially substituted or doped with a metal element. -A metal composite oxide or the like can be used.

負電極212は、たとえば、集電体と、集電体の表面に形成された合剤層とを備えている。負電極212の集電体としては、たとえば、銅または銅合金の金属箔を用いることができる。負電極212の合剤層は、たとえば、リチウムイオンを挿入脱離可能な天然黒鉛、人造の各種黒鉛材、コークスなどの炭素質材料、SiやSnなどの化合物(たとえば、SiO、TiSiなど)、またはこれらの複合材料を含む。 The negative electrode 212 includes, for example, a current collector and a mixture layer formed on the surface of the current collector. As the current collector of the negative electrode 212, for example, a metal foil of copper or a copper alloy can be used. The mixture layer of the negative electrode 212 is, for example, natural graphite capable of inserting and removing lithium ions, various artificial graphite materials, carbonaceous materials such as coke, and compounds such as Si and Sn (for example, SiO, TiSi 2 and the like). , Or a composite material of these.

第3電極213は、たとえば、集電体と、集電体の表面に形成された合剤層とを備えている。第3電極213は、たとえば、正電極211と同一の構成を備えることができる。すなわち、第3電極213は、たとえば、集電体と、集電体の表面に形成された合剤層とを備えている。第3電極213の集電体としては、たとえば、アルミニウムまたはアルミニウム合金の金属箔を用いることができる。また、第3電極213の合剤層は、たとえば、Ni、Co、Mnを含む遷移金属をMとして、組成式:LiMOで表される正極材料を含む。なお、第3電極213の合剤層に含まれる正極材料は、たとえば、Niを80%以上含むことができる。 The third electrode 213 includes, for example, a current collector and a mixture layer formed on the surface of the current collector. The third electrode 213 can have the same configuration as the positive electrode 211, for example. That is, the third electrode 213 includes, for example, a current collector and a mixture layer formed on the surface of the current collector. As the current collector of the third electrode 213, for example, a metal foil of aluminum or an aluminum alloy can be used. Further, the mixture layer of the third electrode 213 contains, for example, a positive electrode material represented by the composition formula: LiMO 2, with a transition metal containing Ni, Co, and Mn as M. The positive electrode material contained in the mixture layer of the third electrode 213 can contain, for example, 80% or more of Ni.

第3電極213は、たとえば、正電極211の電位および第3電極213の電位を測定するための基準電極として使用することができる。すなわち、第3電極213と正電極211との間の電圧である第3正極間電圧Vtpを測定することで、正電極211の電位を測定することができる。また、第3電極213と負電極212との間の電圧である第3負極間電圧Vtnを測定することで、負電極212の電位を測定することができる。また、詳細については後述するが、第3電極213は、正電極211または負電極212にリチウムイオンを供給するリチウムイオン供給源として使用することができる。 The third electrode 213 can be used, for example, as a reference electrode for measuring the potential of the positive electrode 211 and the potential of the third electrode 213. That is, the potential of the positive electrode 211 can be measured by measuring the voltage Vtp between the third positive electrodes, which is the voltage between the third electrode 213 and the positive electrode 211. Further, the potential of the negative electrode 212 can be measured by measuring the voltage Vtn between the third negative electrodes, which is the voltage between the third electrode 213 and the negative electrode 212. Further, as will be described in detail later, the third electrode 213 can be used as a lithium ion supply source for supplying lithium ions to the positive electrode 211 or the negative electrode 212.

巻回電極型の単電池21は、たとえば、長尺帯状の正電極211と、長尺帯状の負電極212とを、長尺帯状のセパレータを介して巻回した巻回電極群を備えている。セパレータは、たとえば、電気絶縁性を有する多孔質のシートである。巻回電極型の単電池21において、第3電極213は、たとえば、巻回電極群の内側の空洞部分に配置してもよく、巻回電極群の外側で巻回電極群と電池容器214との間に配置してもよい。 The wound electrode type cell 21 includes, for example, a group of wound electrodes in which a long strip-shaped positive electrode 211 and a long strip-shaped negative electrode 212 are wound via a long strip-shaped separator. .. The separator is, for example, a porous sheet having electrical insulation. In the wound electrode type cell 21, the third electrode 213 may be arranged in the hollow portion inside the wound electrode group, for example, and the wound electrode group and the battery container 214 are located outside the wound electrode group. It may be placed between.

積層電極型の単電池21は、たとえば、シート状の正電極211と、シート状の負電極212とが、シート状のセパレータを介して、交互に複数層にわたって積層された構成を有する。積層電極型の単電池21において、第3電極213は、たとえば、正電極211と負電極212との間、または正電極211と負電極212の積層体の外側に、セパレータを介して配置することができる。 The laminated electrode type cell 21 has, for example, a structure in which a sheet-shaped positive electrode 211 and a sheet-shaped negative electrode 212 are alternately laminated over a plurality of layers via a sheet-shaped separator. In the laminated electrode type cell 21, the third electrode 213 is arranged, for example, between the positive electrode 211 and the negative electrode 212, or outside the laminated body of the positive electrode 211 and the negative electrode 212 via a separator. Can be done.

正電極211、負電極212および第3電極213に含浸される電解液としては、たとえば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を用いることができる。 As the electrolytic solution impregnated in the positive electrode 211, the negative electrode 212 and the third electrode 213, for example, a lithium salt such as lithium hexafluorophosphate (LiPF 6) is dissolved in a carbonic acid ester-based organic solvent such as ethylene carbonate. A non-aqueous electrolyte solution can be used.

図2に示すように、個々の単電池21は、制御回路10に接続されている。より具体的には、正電極211の集電体が正極集電板または正極リードを介して単電池21の正極外部端子に接続され、単電池21の正極外部端子に制御回路10が接続されることで、正電極211が制御回路10に接続されている。また、負電極212の集電体が負極集電板または負極リードを介して単電池21の負極外部端子に接続され、単電池21の負極外部端子に制御回路10が接続されることで、負電極212が制御回路10に接続されている。 As shown in FIG. 2, each cell 21 is connected to the control circuit 10. More specifically, the current collector of the positive electrode 211 is connected to the positive electrode external terminal of the cell 21 via the positive electrode current collector plate or the positive electrode lead, and the control circuit 10 is connected to the positive electrode external terminal of the cell 21. As a result, the positive electrode 211 is connected to the control circuit 10. Further, the current collector of the negative electrode 212 is connected to the negative electrode external terminal of the cell 21 via the negative electrode current collector plate or the negative electrode lead, and the control circuit 10 is connected to the negative electrode external terminal of the cell 21 to be negative. The electrode 212 is connected to the control circuit 10.

同様に、第3電極213の集電体が第3集電板または第3リードを介して単電池21の第3外部端子に接続され、単電池21の第3外部端子に制御回路10が接続されることで、第3電極213が制御回路10に接続されている。すなわち、単電池21は、正極外部端子と負極外部端子と第3外部端子の3つの外部端子を備え、各外部端子が制御回路10に接続されている。制御回路10は、たとえば、図1に示す電池管理部6の一部である。 Similarly, the current collector of the third electrode 213 is connected to the third external terminal of the cell 21 via the third current collector plate or the third lead, and the control circuit 10 is connected to the third external terminal of the cell 21. By doing so, the third electrode 213 is connected to the control circuit 10. That is, the cell 21 includes three external terminals, a positive electrode external terminal, a negative electrode external terminal, and a third external terminal, and each external terminal is connected to the control circuit 10. The control circuit 10 is, for example, a part of the battery management unit 6 shown in FIG.

図3は、図2の単電池21に接続された制御回路10の一例を示す回路図である。制御回路10は、たとえば、単電池21の正極外部端子、負極外部端子、および第3外部端子のそれぞれに接続された配線を介して、正電極211、負電極212および第3電極213に接続される。また、制御回路10は、信号配線を介して、制御部11に接続されている。 FIG. 3 is a circuit diagram showing an example of the control circuit 10 connected to the cell 21 of FIG. The control circuit 10 is connected to the positive electrode 211, the negative electrode 212, and the third electrode 213 via wiring connected to each of the positive electrode external terminal, the negative electrode external terminal, and the third external terminal of the cell 21, for example. NS. Further, the control circuit 10 is connected to the control unit 11 via signal wiring.

制御回路10は、たとえば、電池管理部6を構成する回路基板の上に、各々の単電池21に対して設けられた電子回路である。制御回路10は、たとえば、電圧計101,102と、電力供給部103と、スイッチ104,105と、電流計106とを備えている。 The control circuit 10 is, for example, an electronic circuit provided for each cell 21 on a circuit board constituting the battery management unit 6. The control circuit 10 includes, for example, voltmeters 101 and 102, a power supply unit 103, switches 104 and 105, and an ammeter 106.

電圧計101は、たとえば、単電池21の正電極211と負電極212との間の電圧である正負極間電圧Vpnを測定し、測定結果を制御部11へ出力する。電圧計102は、たとえば、第3電極213と正電極211との間の電圧である第3正極間電圧Vtpを測定し、測定結果を制御部11へ出力する。また、電圧計102は、たとえば、第3電極213と負電極212との間の電圧である第3負極間電圧Vtnを測定し、測定結果を制御部11へ出力する。 The voltmeter 101 measures, for example, the voltage Vpn between the positive and negative electrodes, which is the voltage between the positive electrode 211 and the negative electrode 212 of the cell 21, and outputs the measurement result to the control unit 11. The voltmeter 102 measures, for example, the voltage Vtp between the third positive electrodes, which is the voltage between the third electrode 213 and the positive electrode 211, and outputs the measurement result to the control unit 11. Further, the voltmeter 102 measures, for example, the voltage Vtn between the third negative electrodes, which is the voltage between the third electrode 213 and the negative electrode 212, and outputs the measurement result to the control unit 11.

電力供給部103は、たとえば、外部の電源に接続され、制御部11から入力される制御信号に応じて、電流を流す方向を切り替える。電流計106は、第3電極213から正電極211または負電極212へ流れる電流の電流値Itと、正電極211または負電極212から第3電極213へ流れる電流の電流値Itを測定して制御部11へ出力する。 The power supply unit 103 is connected to, for example, an external power source, and switches the direction in which the current flows according to the control signal input from the control unit 11. The current meter 106 measures and controls the current value It of the current flowing from the third electrode 213 to the positive electrode 211 or the negative electrode 212 and the current value It of the current flowing from the positive electrode 211 or the negative electrode 212 to the third electrode 213. Output to unit 11.

スイッチ104は、たとえば、制御部11から入力される制御信号に応じて、第3電極213と電力供給部103とを接続した状態と、第3電極213と電力供給部103との接続を切断した状態とを切り替える。スイッチ105は、たとえば、制御部11から入力される制御信号に応じて、正電極211と第3電極213とを接続した状態と、負電極212と第3電極213とを接続した状態とを切り替える。 The switch 104, for example, disconnects the connection between the third electrode 213 and the power supply unit 103 and the connection between the third electrode 213 and the power supply unit 103 in response to the control signal input from the control unit 11. Switch between states. The switch 105 switches between a state in which the positive electrode 211 and the third electrode 213 are connected and a state in which the negative electrode 212 and the third electrode 213 are connected, for example, according to a control signal input from the control unit 11. ..

制御部11は、たとえば、図1に示す電池管理部6または状態演算部7の一部である。制御部11は、たとえば、複数の制御回路10に接続される。なお、各々の制御回路10に対して、それぞれ制御部11を設けてもよい。制御部11は、たとえば、処理装置111と、記憶装置112と、タイマ113と、入出力部114とを有している。 The control unit 11 is, for example, a part of the battery management unit 6 or the state calculation unit 7 shown in FIG. The control unit 11 is connected to, for example, a plurality of control circuits 10. A control unit 11 may be provided for each control circuit 10. The control unit 11 includes, for example, a processing device 111, a storage device 112, a timer 113, and an input / output unit 114.

処理装置111は、たとえば中央処理装置(CPU)を含む。記憶装置112は、たとえば、RAMやROMを含み、処理装置111が実行する制御プログラムが記憶されている。タイマ113は、たとえば、時刻や経過時間を測定する。入出力部114は、たとえば、処理装置111、記憶装置112、およびタイマ113に接続されている。これにより、処理装置111、記憶装置112、およびタイマ113は、入出力部114を介して情報通信可能に接続されている。 The processing device 111 includes, for example, a central processing unit (CPU). The storage device 112 includes, for example, a RAM or a ROM, and stores a control program executed by the processing device 111. The timer 113 measures, for example, the time and the elapsed time. The input / output unit 114 is connected to, for example, a processing device 111, a storage device 112, and a timer 113. As a result, the processing device 111, the storage device 112, and the timer 113 are connected to each other via the input / output unit 114 so that information can be communicated.

また、入出力部114は、たとえば、電圧計101,102、電力供給部103、スイッチ104,105、および電流計106を含む制御回路10の各部に対して、信号配線を介して接続されている。このような構成により、制御部11は、たとえば、記憶装置112に記憶された制御プラグラムを処理装置111によって実行し、制御回路10の各部から取得した情報に基づいて制御回路10の各部を制御することができる。 Further, the input / output unit 114 is connected to each unit of the control circuit 10 including, for example, the voltmeters 101 and 102, the power supply unit 103, the switches 104 and 105, and the ammeter 106 via signal wiring. .. With such a configuration, the control unit 11 executes, for example, the control program stored in the storage device 112 by the processing device 111, and controls each part of the control circuit 10 based on the information acquired from each part of the control circuit 10. be able to.

より具体的には、制御部11は、たとえば、制御回路10から取得した正負極間電圧Vpn、第3正極間電圧Vtp、および第3負極間電圧Vtnに基づいて、制御回路10の電力供給部103、スイッチ104,105を制御する。また、制御部11は、たとえば、制御回路10から取得した正負極間電圧Vpn、第3正極間電圧Vtp、第3負極間電圧Vtn、および電流値Itに基づいて、制御回路10の電力供給部103、スイッチ104,105を制御してもよい。 More specifically, the control unit 11 is a power supply unit of the control circuit 10 based on, for example, the positive / negative electrode voltage Vpn, the third positive electrode voltage Vtp, and the third negative electrode voltage Vtn obtained from the control circuit 10. 103, switches 104 and 105 are controlled. Further, the control unit 11 is, for example, a power supply unit of the control circuit 10 based on the positive / negative electrode voltage Vpn, the third positive electrode voltage Vtp, the third negative electrode voltage Vtn, and the current value It acquired from the control circuit 10. 103, switches 104 and 105 may be controlled.

図4は、図3の制御部11の動作の一例を説明するフロー図である。図5Aおよび図5Bは、図2の単電池21の放電特性の一例を示すグラフである。図5Aおよび図5Bの各グラフにおいて、横軸は放電容量[Ah]であり、縦軸は電位[V]である。図5Aのグラフは、単電池21において、負電極212のリチウムイオンが失活する前の放電特性を示している。図5Bのグラフは、単電池21において、負電極212のリチウムイオンの一部が失活した後の放電特性を示している。 FIG. 4 is a flow chart illustrating an example of the operation of the control unit 11 of FIG. 5A and 5B are graphs showing an example of the discharge characteristics of the cell 21 of FIG. In each of the graphs of FIGS. 5A and 5B, the horizontal axis is the discharge capacity [Ah] and the vertical axis is the potential [V]. The graph of FIG. 5A shows the discharge characteristics of the cell 21 before the lithium ions of the negative electrode 212 are deactivated. The graph of FIG. 5B shows the discharge characteristics of the cell 21 after a part of the lithium ions of the negative electrode 212 is deactivated.

二次電池装置1の使用開始時において、単電池21は、たとえば、図5Aに示すような放電特性を示す。単電池21は、たとえば、正負極間電圧Vpnが、充電終止電圧Vcから放電終止電圧Vdまでの範囲で使用される。 At the start of use of the secondary battery device 1, the cell 21 exhibits, for example, the discharge characteristics as shown in FIG. 5A. In the cell 21, for example, the voltage Vpn between the positive and negative electrodes is used in a range from the end-of-charge voltage Vc to the end-of-discharge voltage Vd.

単電池21の充電終止電圧Vcは、たとえば、正電極211の充電可能な最大電圧よりも低い正電極211の充電終止電圧Vpcに基づいて決定される。この充電終止電圧Vpcの正電極211の容量は、充電可能な最大電圧の正電極211の容量よりも、所定の容量δpだけ小さくなっている。また、正電極211の充電終止電圧Vpcに対応する、充電終止電圧Vncの負電極212の放電容量は、充電可能な最大電圧の負電極212の容量よりも、所定の容量δnだけ小さくなっている。 The end-of-charge voltage Vc of the cell 21 is determined, for example, based on the end-of-charge voltage Vpc of the positive electrode 211, which is lower than the maximum chargeable voltage of the positive electrode 211. The capacity of the positive electrode 211 having the charge termination voltage Vpc is smaller than the capacity of the positive electrode 211 having the maximum chargeable voltage by a predetermined capacity δp. Further, the discharge capacity of the negative electrode 212 having the end-of-charge voltage Vnc corresponding to the end-of-charge voltage Vpc of the positive electrode 211 is smaller than the capacity of the negative electrode 212 having the maximum chargeable voltage by a predetermined capacity δn. ..

また、単電池21の放電終止電圧Vdは、たとえば、負電極212の電位が急激に増加する前の放電終止電圧Vndに基づいて決定される。このように、単電池21の正負極間電圧Vpnの範囲を、充電終止電圧Vcから放電終止電圧Vdまでとすることで、単電池21を安全に長期間にわたって使用することができる。二次電池装置1の使用開始時において、制御部11は、図4に示すように、まず、制御回路10の制御モードMを第1モードに切り替える処理P1を実行する。 Further, the discharge end voltage Vd of the cell 21 is determined based on, for example, the discharge end voltage Vnd before the potential of the negative electrode 212 suddenly increases. As described above, by setting the range of the voltage Vpn between the positive and negative electrodes of the cell 21 from the charge termination voltage Vc to the discharge termination voltage Vd, the cell 21 can be safely used for a long period of time. At the start of use of the secondary battery device 1, the control unit 11 first executes a process P1 for switching the control mode M of the control circuit 10 to the first mode, as shown in FIG.

処理P1において、制御部11は、たとえば、制御回路10のスイッチ104へ制御信号を出力して、第3電極213と電力供給部103との接続を切断して、第3電極213と電圧計102とを接続するようにスイッチ104を切り替える。また、制御部11は、たとえば、制御回路10のスイッチ105へ制御信号を出力して、負電極212と電圧計102とを接続するように、スイッチ105を切り替える。 In process P1, the control unit 11 outputs a control signal to, for example, the switch 104 of the control circuit 10, disconnects the third electrode 213 and the power supply unit 103, and disconnects the third electrode 213 and the voltmeter 102. The switch 104 is switched so as to connect with. Further, the control unit 11 outputs a control signal to the switch 105 of the control circuit 10, for example, and switches the switch 105 so as to connect the negative electrode 212 and the voltmeter 102.

この制御回路10の第1モードでは、制御回路10において、正電極211と負電極212と第3電極213との間に電流が流れない。そのため、図1に示す二次電池装置1において、単電池21は、通常の動作を行う。すなわち、単電池群2を構成する複数の単電池21は、電池管理部6および状態演算部7の制御の下で充電と放電を行う。 In the first mode of the control circuit 10, no current flows between the positive electrode 211, the negative electrode 212, and the third electrode 213 in the control circuit 10. Therefore, in the secondary battery device 1 shown in FIG. 1, the cell 21 performs a normal operation. That is, the plurality of cell cells 21 constituting the cell cell group 2 are charged and discharged under the control of the battery management unit 6 and the state calculation unit 7.

次に、制御部11は、電圧計102から入力された第3負極間電圧Vtnに基づいて、第3負極間電圧Vtnが閾値Vtn1よりも低下したか否かを判定する処理P2を実行する。第3電極213と負電極212との間の電圧である第3負極間電圧Vtnの閾値Vtn1は、たとえば、前述の負電極212の放電終止電圧Vndに基づいてあらかじめ設定され、制御部11の記憶装置112に記憶されている。 Next, the control unit 11 executes a process P2 for determining whether or not the third negative electrode voltage Vtn is lower than the threshold value Vtn1 based on the third negative electrode voltage Vtn input from the voltmeter 102. The threshold value Vtn1 of the third negative electrode voltage Vtn, which is the voltage between the third electrode 213 and the negative electrode 212, is set in advance based on, for example, the discharge end voltage Vnd of the negative electrode 212 described above, and is stored in the control unit 11. It is stored in the device 112.

この処理P2において、制御部11は、第3負極間電圧Vtnが閾値Vtn1よりも低下していない(NO)と判定すると、たとえば、制御回路10のスイッチ105へ制御信号を出力して、次の処理P3を実行する。スイッチ105は、制御部11から入力された制御信号に基づいて、たとえば、負電極212と電圧計102との間の接続を切断して、正電極211と電圧計102とを接続する状態に切り替わる。 In this process P2, when the control unit 11 determines that the voltage Vtn between the third negative electrodes is not lower than the threshold value Vtn1 (NO), for example, it outputs a control signal to the switch 105 of the control circuit 10 to output the next Process P3 is executed. Based on the control signal input from the control unit 11, the switch 105 disconnects, for example, the connection between the negative electrode 212 and the voltmeter 102, and switches to a state in which the positive electrode 211 and the voltmeter 102 are connected. ..

処理P3において、制御部11は、電圧計102から入力された第3電極213と正電極211との間の電圧である第3正極間電圧Vtpに基づいて、第3正極間電圧Vtpが閾値Vtp1よりも低下していないか否かを判定する。この閾値Vtp1は、たとえば、図5Aに示す単電池21の放電特性において、第3正極間電圧Vtpが急激に低下する電圧に基づいてあらかじめ設定され、制御部11の記憶装置112に記憶されている。 In the process P3, the control unit 11 sets the third positive electrode voltage Vtp to the threshold Vtp1 based on the third positive electrode voltage Vtp which is the voltage between the third electrode 213 and the positive electrode 211 input from the voltmeter 102. It is judged whether or not it is lower than. This threshold value Vtp1 is set in advance based on, for example, in the discharge characteristics of the cell 21 shown in FIG. 5A, based on the voltage at which the voltage Vtp between the third positive electrodes sharply drops, and is stored in the storage device 112 of the control unit 11. ..

処理P3において、制御部11は、第3正極間電圧Vtpが閾値Vtp1よりも低下していない(NO)と判定すると、前述の処理P1,P2を繰り返す。処理P1から処理P3までを繰り返しながら、二次電池装置1が単電池群2の充放電を繰り返し行うと、時間の経過とともに、たとえば、単電池21の負電極212の表面上の副反応によるリチウムイオンの失活が発生する。 When the control unit 11 determines in the process P3 that the voltage Vtp between the third positive electrodes is not lower than the threshold value Vtp1 (NO), the above-mentioned processes P1 and P2 are repeated. When the secondary battery device 1 repeatedly charges and discharges the cell group 2 while repeating the process P1 to the process P3, for example, lithium due to a side reaction on the surface of the negative electrode 212 of the cell 21 with the passage of time. Ion deactivation occurs.

その結果、図5Aに矢印A1で示すように、負電極212の放電容量が減少し、図5Bに矢印A2,A3で示すように、負電極212の放電特性を示す第3負極間電圧Vtnの曲線が左側へシフトする。そのため、単電池21の正負極間電圧Vpnも、同様に左側へシフトする。 As a result, as shown by arrow A1 in FIG. 5A, the discharge capacity of the negative electrode 212 decreases, and as shown by arrows A2 and A3 in FIG. 5B, the third negative electrode voltage Vtn showing the discharge characteristics of the negative electrode 212. The curve shifts to the left. Therefore, the voltage Vpn between the positive and negative electrodes of the cell 21 also shifts to the left side in the same manner.

その結果、単電池21は、正負極間電圧Vpnが、充電終止電圧Vcから放電終止電圧Vdまでの範囲で使用されていても、放電容量が減少する。また、図5Bに示すように、正電極211の充電終止電圧Vpcに対応する充電終止電圧Vncの負電極212の放電容量と、充電可能な最大電圧の負電極212の容量との差である容量δnは、図5Aに示す単電池21の使用開始時と比較して、より拡大する。 As a result, the discharge capacity of the cell 21 is reduced even if the voltage Vpn between the positive and negative electrodes is used in the range from the end-of-charge voltage Vc to the end-of-discharge voltage Vd. Further, as shown in FIG. 5B, the capacity which is the difference between the discharge capacity of the negative electrode 212 of the charge termination voltage Vnc corresponding to the charge end voltage Vpc of the positive electrode 211 and the capacity of the negative electrode 212 of the maximum chargeable voltage. δn is further enlarged as compared with the start of use of the cell 21 shown in FIG. 5A.

このような状態になる前に、図4に示す処理P2において、制御部11は、第3負極間電圧Vtnが閾値Vtn1よりも低下している(YES)と判定する。すると、制御部11は、制御回路10の制御モードMを、負電極212から第3電極213へ電流を流す第2モードへ切り替える処理P4を実行する。 Before such a state occurs, in the process P2 shown in FIG. 4, the control unit 11 determines that the third negative electrode voltage Vtn is lower than the threshold value Vtn1 (YES). Then, the control unit 11 executes the process P4 of switching the control mode M of the control circuit 10 to the second mode in which the current flows from the negative electrode 212 to the third electrode 213.

処理P4において、制御部11は、たとえば、制御回路10のスイッチ104へ制御信号を出力して、第3電極213と電力供給部103とを接続して、第3電極213と電圧計102との接続を切断するようにスイッチ104を切り替える。また、制御部11は、たとえば、制御回路10のスイッチ105へ制御信号を出力して、負電極212と電力供給部103とを接続するように、スイッチ105を切り替える。また、制御部11は、電力供給部103に制御信号を出力して、電力供給部103によって負電極212から第3電極213へ電流を流す。 In process P4, for example, the control unit 11 outputs a control signal to the switch 104 of the control circuit 10, connects the third electrode 213 and the power supply unit 103, and connects the third electrode 213 and the voltmeter 102. Toggle switch 104 to disconnect. Further, the control unit 11 outputs a control signal to the switch 105 of the control circuit 10, for example, and switches the switch 105 so as to connect the negative electrode 212 and the power supply unit 103. Further, the control unit 11 outputs a control signal to the power supply unit 103, and the power supply unit 103 causes a current to flow from the negative electrode 212 to the third electrode 213.

この処理P4により、第3電極213から負電極212へリチウムイオンが移動し、負電極212の表面で失活したリチウムイオンが補われる。次に、制御部11は、たとえば、第3負極間電圧Vtnが閾値Vtn2以上になったか否かを判定する処理P5を実行する。閾値Vtn2は、たとえば、前述の負電極212の放電終止電圧Vndに基づいてあらかじめ設定され、制御部11の記憶装置112に記憶されている。 By this treatment P4, lithium ions move from the third electrode 213 to the negative electrode 212, and the lithium ions deactivated on the surface of the negative electrode 212 are supplemented. Next, the control unit 11 executes, for example, a process P5 for determining whether or not the third negative electrode voltage Vtn is equal to or higher than the threshold value Vtn2. The threshold value Vtn2 is set in advance based on, for example, the discharge end voltage Vnd of the negative electrode 212 described above, and is stored in the storage device 112 of the control unit 11.

この処理P5において、制御部11は、制御回路10を第2モードから第1モードに切り替え、負電極212を電圧計102に接続して、電圧計102から第3負極間電圧Vtnを取得する。この処理P5において、制御部11は、第3負極間電圧Vtnが閾値Vtn2以上ではない(NO)と判定すると、制御回路10の制御モードMを、第1モードから第2モードに切り替える。 In this process P5, the control unit 11 switches the control circuit 10 from the second mode to the first mode, connects the negative electrode 212 to the voltmeter 102, and acquires the voltage Vtn between the third negative electrodes from the voltmeter 102. In this process P5, when the control unit 11 determines that the third negative electrode voltage Vtn is not equal to or higher than the threshold value Vtn2 (NO), the control mode M of the control circuit 10 is switched from the first mode to the second mode.

次に、制御部11は、第3電極213の容量Qtを算出して推定する処理P6を実行する。処理P6において、制御部11は、たとえば、電流計106から出力された電流値Itと、タイマ113によって計測した経過時間とに基づいて第3電極213の容量Qtの積算値を算出する。 Next, the control unit 11 executes the process P6 for calculating and estimating the capacitance Qt of the third electrode 213. In the process P6, the control unit 11 calculates the integrated value of the capacitance Qt of the third electrode 213 based on, for example, the current value It output from the ammeter 106 and the elapsed time measured by the timer 113.

次に、制御部11は、第3電極213の容量Qtが閾値Qt1より多いか否かを判定する処理P7を実行する。この閾値Qt1は、たとえば、第3電極213がリチウムイオンを供給可能で、かつ正電極211および負電極212の電位を測定する電極としての機能を維持可能な範囲の容量を、事前に実験などによって求め、その容量に基づいて設定することができる。また、閾値Qt1は、あらかじめ制御部11の記憶装置112に記憶させておくことができる。 Next, the control unit 11 executes the process P7 for determining whether or not the capacitance Qt of the third electrode 213 is greater than the threshold value Qt1. The threshold value Qt1 is determined in advance by experiments or the like with a capacitance within a range in which the third electrode 213 can supply lithium ions and can maintain the function as an electrode for measuring the potentials of the positive electrode 211 and the negative electrode 212. It can be calculated and set based on the capacity. Further, the threshold value Qt1 can be stored in advance in the storage device 112 of the control unit 11.

処理P7において、制御部11は、第3電極213の容量Qtが閾値Qt1よりも多くない(NO)と判定すると、制御回路10の制御モードMを第2モードから第1モードに切り替えて、前述の処理P5を実行する。このように、制御部11が処理P5から処理P7までを繰り返している間に、負電極212から第3電極213へ電流が流れ、第3電極213から負電極212へリチウムイオンが移動し、負電極212の表面で失活したリチウムイオンが補われる。 In the process P7, when the control unit 11 determines that the capacitance Qt of the third electrode 213 is not greater than the threshold value Qt1 (NO), the control mode M of the control circuit 10 is switched from the second mode to the first mode, and the above-mentioned Process P5 is executed. In this way, while the control unit 11 repeats the process from the process P5 to the process P7, a current flows from the negative electrode 212 to the third electrode 213, lithium ions move from the third electrode 213 to the negative electrode 212, and the negative electrode is negative. The deactivated lithium ion is supplemented on the surface of the electrode 212.

その結果、負電極212の放電特性は、図5Bに示す状態から右側へシフトして、たとえば、図5Aに示す状態になる。これにより、単電池21の容量維持率を回復させることができる。すると、前述の処理P5において、制御部11は、第3負極間電圧Vtnが閾値Vtn2以上である(YES)と判定し、図4に示す処理を終了する。その後、制御部11は、図4に示す処理を再び開始する。 As a result, the discharge characteristic of the negative electrode 212 shifts from the state shown in FIG. 5B to the right side, and becomes, for example, the state shown in FIG. 5A. As a result, the capacity retention rate of the cell 21 can be restored. Then, in the above-mentioned process P5, the control unit 11 determines that the third negative electrode voltage Vtn is equal to or higher than the threshold value Vtn2 (YES), and ends the process shown in FIG. After that, the control unit 11 restarts the process shown in FIG.

また、第3電極213から負電極212へ移動させるリチウムイオンが過剰になると、正電極211および負電極212の電位を測定する基準電極としての第3電極213の機能が失われるおそれがある。そのため、制御部11は、前述の処理P7において、第3電極213の容量Qtが閾値Qt1よりも多い(YES)と判定すると、制御回路10の制御モードMを、第3電極213から正電極211または負電極212へ電流を流す第4モードに切り替える処理P8を実行する。 Further, if the amount of lithium ions transferred from the third electrode 213 to the negative electrode 212 becomes excessive, the function of the third electrode 213 as a reference electrode for measuring the potentials of the positive electrode 211 and the negative electrode 212 may be lost. Therefore, when the control unit 11 determines in the above-mentioned process P7 that the capacitance Qt of the third electrode 213 is larger than the threshold value Qt1 (YES), the control mode M of the control circuit 10 is changed from the third electrode 213 to the positive electrode 211. Alternatively, the process P8 for switching to the fourth mode in which a current is passed through the negative electrode 212 is executed.

より具体的には、処理P8において、制御部11は、たとえば、電力供給部103へ制御信号を出力して、第3電極213から負電極212へ電流を流す。または、処理P8において、制御部11は、たとえば、スイッチ105へ制御信号を出力して、負電極212と電力供給部103との間の接続を切断し、正電極211と電力供給部103とを接続するようにスイッチ105を切り替えるとともに、電力供給部103へ制御信号を出力して、第3電極213から正電極211へ電流を流す。 More specifically, in the process P8, the control unit 11 outputs a control signal to, for example, the power supply unit 103, and causes a current to flow from the third electrode 213 to the negative electrode 212. Alternatively, in the process P8, the control unit 11 outputs a control signal to the switch 105, for example, disconnects the connection between the negative electrode 212 and the power supply unit 103, and connects the positive electrode 211 and the power supply unit 103. The switch 105 is switched so as to be connected, and a control signal is output to the power supply unit 103 to allow a current to flow from the third electrode 213 to the positive electrode 211.

その結果、負電極212または正電極211から第3電極213へリチウムイオンが移動し、正電極211および負電極212の電位を測定する基準電極としての第3電極213の機能を維持することが可能になる。処理P8の終了後、制御部11は、図4に示す処理を終了する。その後、制御部11は、図4に示す処理を再び開始する。 As a result, lithium ions move from the negative electrode 212 or the positive electrode 211 to the third electrode 213, and the function of the third electrode 213 as a reference electrode for measuring the potentials of the positive electrode 211 and the negative electrode 212 can be maintained. become. After the end of the process P8, the control unit 11 ends the process shown in FIG. After that, the control unit 11 restarts the process shown in FIG.

また、前述の処理P3において、制御部11は、第3正極間電圧Vtpが閾値Vtp1よりも低下している(YES)と判定すると、制御部11は、制御回路10の制御モードMを、正電極211から第3電極213へ電流を流す第3モードへ切り替える処理P9を実行する。 Further, in the above-described process P3, when the control unit 11 determines that the voltage Vtp between the third positive electrodes is lower than the threshold value Vtp1 (YES), the control unit 11 sets the control mode M of the control circuit 10 to positive. The process P9 for switching to the third mode in which a current flows from the electrode 211 to the third electrode 213 is executed.

処理P9において、制御部11は、たとえば、制御回路10のスイッチ104へ制御信号を出力して、第3電極213と電力供給部103とを接続して、第3電極213と電圧計102との接続を切断するようにスイッチ104を切り替える。また、制御部11は、たとえば、制御回路10のスイッチ105へ制御信号を出力して、正電極211と電力供給部103とを接続するように、スイッチ105を切り替える。また、制御部11は、電力供給部103に制御信号を出力して、電力供給部103によって正電極211から第3電極213へ電流を流す。 In process P9, the control unit 11 outputs a control signal to, for example, the switch 104 of the control circuit 10, connects the third electrode 213 and the power supply unit 103, and connects the third electrode 213 and the voltmeter 102. Toggle switch 104 to disconnect. Further, the control unit 11 outputs a control signal to the switch 105 of the control circuit 10, for example, and switches the switch 105 so as to connect the positive electrode 211 and the power supply unit 103. Further, the control unit 11 outputs a control signal to the power supply unit 103, and the power supply unit 103 causes a current to flow from the positive electrode 211 to the third electrode 213.

この処理P9により、第3電極213から正電極211へリチウムイオンが移動し、正電極211にリチウムイオンが補充される。次に、制御部11は、たとえば、第3正極間電圧Vtpが閾値Vtp2以上になったか否かを判定する処理P10を実行する。閾値Vtp2は、たとえば、前述の正電極211の放電終止電圧Vpdに基づいてあらかじめ設定され、制御部11の記憶装置112に記憶されている。 By this process P9, lithium ions move from the third electrode 213 to the positive electrode 211, and the positive electrode 211 is replenished with lithium ions. Next, the control unit 11 executes, for example, a process P10 for determining whether or not the third positive electrode voltage Vtp is equal to or higher than the threshold value Vtp2. The threshold value Vtp2 is set in advance based on, for example, the discharge end voltage Vpd of the positive electrode 211 described above, and is stored in the storage device 112 of the control unit 11.

この処理P10において、制御部11は、制御回路10を第3モードから第1モードに切り替え、正電極211を電圧計102に接続して、電圧計102から第3正極間電圧Vtpを取得する。この処理P10において、制御部11は、第3正極間電圧Vtpが閾値Vtn2以上ではない(NO)と判定すると、制御回路10の制御モードMを、第1モードから第3モードに切り替える。 In this process P10, the control unit 11 switches the control circuit 10 from the third mode to the first mode, connects the positive electrode 211 to the voltmeter 102, and acquires the voltage Vtp between the third positive electrodes from the voltmeter 102. In this process P10, when the control unit 11 determines that the third positive electrode voltage Vtp is not equal to or higher than the threshold value Vtn2 (NO), the control mode M of the control circuit 10 is switched from the first mode to the third mode.

次に、制御部11は、第3電極213の容量Qtを算出して推定する処理P11を実行する。処理P11において、制御部11は、たとえば、電流計106から出力された電流値Itと、タイマ113によって計測した経過時間とに基づいて第3電極213の容量Qtの積算値を算出する。 Next, the control unit 11 executes the process P11 for calculating and estimating the capacitance Qt of the third electrode 213. In the process P11, the control unit 11 calculates the integrated value of the capacitance Qt of the third electrode 213 based on, for example, the current value It output from the ammeter 106 and the elapsed time measured by the timer 113.

次に、制御部11は、第3電極213の容量Qtが閾値Qt1より多いか否かを判定する処理P12を実行する。この閾値Qt1は、たとえば、前述の処理P7における閾値Qt1と同一である。 Next, the control unit 11 executes the process P12 for determining whether or not the capacitance Qt of the third electrode 213 is larger than the threshold value Qt1. This threshold value Qt1 is, for example, the same as the threshold value Qt1 in the above-mentioned processing P7.

処理P12において、制御部11は、第3電極213の容量Qtが閾値Qt1よりも多くない(NO)と判定すると、前述の処理P10を実行する。このように、制御部11が処理P10から処理P12までを繰り返している間に、正電極211から第3電極213へ電流が流れ、第3電極213から正電極211へリチウムイオンが移動し、正電極211にリチウムイオンが補充される。 In the process P12, when the control unit 11 determines that the capacitance Qt of the third electrode 213 is not greater than the threshold value Qt1 (NO), the control unit 11 executes the above-described process P10. In this way, while the control unit 11 repeats the process from the process P10 to the process P12, a current flows from the positive electrode 211 to the third electrode 213, lithium ions move from the third electrode 213 to the positive electrode 211, and the positive electrode is positive. The electrode 211 is replenished with lithium ions.

また、第3電極213から正電極211へ移動させるリチウムイオンが過剰になると、正電極211および負電極212の電位を測定する基準電極としての第3電極213の機能が失われるおそれがある。そのため、制御部11は、前述の処理P12において、第3電極213の容量Qtが閾値Qt1よりも多い(YES)と判定すると、制御回路10の制御モードMを、第3電極213から正電極211または負電極212へ電流を流す第4モードに切り替える処理P13を実行する。 Further, if the amount of lithium ions transferred from the third electrode 213 to the positive electrode 211 becomes excessive, the function of the third electrode 213 as a reference electrode for measuring the potentials of the positive electrode 211 and the negative electrode 212 may be lost. Therefore, when the control unit 11 determines in the above-mentioned process P12 that the capacitance Qt of the third electrode 213 is larger than the threshold value Qt1 (YES), the control mode M of the control circuit 10 is changed from the third electrode 213 to the positive electrode 211. Alternatively, the process P13 for switching to the fourth mode in which a current is passed through the negative electrode 212 is executed.

より具体的には、処理P13において、制御部11は、たとえば、電力供給部103へ制御信号を出力して、第3電極213から正電極211へ電流を流す。または、処理P13において、制御部11は、たとえば、スイッチ105へ制御信号を出力して、正電極211と電力供給部103との間の接続を切断し、負電極212と電力供給部103とを接続するようにスイッチ105を切り替えるとともに、電力供給部103へ制御信号を出力して、第3電極213から負電極212へ電流を流す。 More specifically, in the process P13, the control unit 11 outputs a control signal to, for example, the power supply unit 103, and causes a current to flow from the third electrode 213 to the positive electrode 211. Alternatively, in the process P13, the control unit 11 outputs a control signal to the switch 105, for example, disconnects the connection between the positive electrode 211 and the power supply unit 103, and connects the negative electrode 212 and the power supply unit 103. The switch 105 is switched so as to be connected, and a control signal is output to the power supply unit 103 to allow a current to flow from the third electrode 213 to the negative electrode 212.

その結果、正電極211または負電極212から第3電極213へリチウムイオンが移動し、正電極211および負電極212の電位を測定する基準電極としての第3電極213の機能を維持することが可能になる。処理P13の終了後、制御部11は、図4に示す処理を終了する。その後、制御部11は、図4に示す処理を再び開始する。 As a result, lithium ions move from the positive electrode 211 or the negative electrode 212 to the third electrode 213, and the function of the third electrode 213 as a reference electrode for measuring the potentials of the positive electrode 211 and the negative electrode 212 can be maintained. become. After the end of the process P13, the control unit 11 ends the process shown in FIG. After that, the control unit 11 restarts the process shown in FIG.

以上のように、本実施形態の二次電池装置1は、正電極211、負電極212、および第3電極213を有する二次電池である単電池21と、その単電池21に接続された制御回路10と、その制御回路10を制御する制御部11と、を備えている。制御部11は、正電極211と負電極212との間の正負極間電圧Vpn、第3電極213と正電極211との間の第3正極間電圧Vtp、第3電極213と負電極212との間の第3負極間電圧Vtnの少なくとも一つに基づいて、制御回路10において、第1モードと第2モードと第3モードと第4モードとを切り替える。第1モードは、正電極211と負電極212と第3電極との間に電流を流さないモードである。第2モードは、負電極212から第3電極213へ電流を流すモードである。第3モードは、正電極211から第3電極213へ電流を流すモードである。第4モードは、第3電極213から正電極211または負電極212へ電流を流すモードである。 As described above, the secondary battery device 1 of the present embodiment includes a cell 21 which is a secondary battery having a positive electrode 211, a negative electrode 212, and a third electrode 213, and a control connected to the cell 21. It includes a circuit 10 and a control unit 11 that controls the control circuit 10. The control unit 11 includes a voltage Vpn between the positive and negative electrodes between the positive electrode 211 and the negative electrode 212, a voltage Vtp between the third positive electrode between the third electrode 213 and the positive electrode 211, and the third electrode 213 and the negative electrode 212. The control circuit 10 switches between the first mode, the second mode, the third mode, and the fourth mode based on at least one of the third negative electrode voltage Vtn between the two. The first mode is a mode in which no current flows between the positive electrode 211, the negative electrode 212, and the third electrode. The second mode is a mode in which a current flows from the negative electrode 212 to the third electrode 213. The third mode is a mode in which a current flows from the positive electrode 211 to the third electrode 213. The fourth mode is a mode in which a current is passed from the third electrode 213 to the positive electrode 211 or the negative electrode 212.

このような構成により、本実施形態の二次電池装置1は、正電極211および負電極212の電位を測定するための第3電極213が正電極211および負電極212へのリチウムイオンの供給源を兼ねる単電池21において、第3電極213による電位測定機能の喪失を防止することが可能になる。すなわち、本実施形態の二次電池装置1は、制御回路10によって制御回路10を第2モードまたは第3モードに切り替えることで、第3電極213から負電極212または正電極211へリチウムイオンを供給することができる。また、第3電極213から負電極212または正電極211へのリチウムイオンの供給が想定よりも多くなった場合に、制御部11によって制御回路10を第4モードへ切り替えることで、負電極212または正電極211から第3電極213へリチウムイオンを戻すことができる。 With such a configuration, in the secondary battery device 1 of the present embodiment, the third electrode 213 for measuring the potentials of the positive electrode 211 and the negative electrode 212 is a source of lithium ions to the positive electrode 211 and the negative electrode 212. In the cell 21 which also serves as the above, it is possible to prevent the loss of the potential measurement function by the third electrode 213. That is, the secondary battery device 1 of the present embodiment supplies lithium ions from the third electrode 213 to the negative electrode 212 or the positive electrode 211 by switching the control circuit 10 to the second mode or the third mode by the control circuit 10. can do. Further, when the supply of lithium ions from the third electrode 213 to the negative electrode 212 or the positive electrode 211 becomes larger than expected, the control unit 11 switches the control circuit 10 to the fourth mode, so that the negative electrode 212 or Lithium ions can be returned from the positive electrode 211 to the third electrode 213.

すなわち、本実施形態の二次電池の制御方法は、正電極211、負電極212、および第3電極213を有する二次電池としての単電池21の制御方法である。本実施形態の二次電池の制御方法は、正電極211と負電極212との間の正負極間電圧Vpn、第3電極213と正電極211との間の第3正極間電圧Vtp、第3電極213と負電極212との間の第3負極間電圧Vtnの少なくとも一つに基づいて、第1モードと第2モードと第3モードと第4モードとを切り替える。第1モードは、正電極211と負電極212と第3電極との間に電流を流さないモードである。第2モードは、負電極212から第3電極213へ電流を流すモードである。第3モードは、正電極211から第3電極213へ電流を流すモードである。第4モードは、第3電極213から正電極211または負電極212へ電流を流すモードである。 That is, the method for controlling the secondary battery of the present embodiment is a method for controlling the cell 21 as a secondary battery having a positive electrode 211, a negative electrode 212, and a third electrode 213. The secondary battery control method of the present embodiment includes a positive and negative electrode voltage Vpn between the positive electrode 211 and the negative electrode 212, a third positive electrode voltage Vtp between the third electrode 213 and the positive electrode 211, and a third. The first mode, the second mode, the third mode, and the fourth mode are switched based on at least one of the third negative electrode voltage Vtn between the electrode 213 and the negative electrode 212. The first mode is a mode in which no current flows between the positive electrode 211, the negative electrode 212, and the third electrode. The second mode is a mode in which a current flows from the negative electrode 212 to the third electrode 213. The third mode is a mode in which a current flows from the positive electrode 211 to the third electrode 213. The fourth mode is a mode in which a current is passed from the third electrode 213 to the positive electrode 211 or the negative electrode 212.

このような構成により、本実施形態の二次電池の制御方法は、前述の二次電池装置1と同様の効果を奏することができる。したがって、本実施形態によれば、第3電極213が正電極211および負電極212へのリチウムイオンの供給源を兼ねる単電池21において、第3電極213による電位測定機能の喪失を防止することが可能な二次電池装置1および二次電池の制御方法を提供することができる。 With such a configuration, the method for controlling the secondary battery of the present embodiment can achieve the same effect as that of the above-mentioned secondary battery device 1. Therefore, according to the present embodiment, in the cell battery 21 in which the third electrode 213 also serves as a supply source of lithium ions to the positive electrode 211 and the negative electrode 212, it is possible to prevent the loss of the potential measurement function by the third electrode 213. It is possible to provide a possible secondary battery device 1 and a method for controlling the secondary battery.

また、本実施形態の二次電池装置1において、制御部11は、二次電池である単電池21の放電時に制御回路10の第1モードで第3負極間電圧Vtnが閾値Vtn1より低下した場合に、制御回路10を第1モードから第2モードへ切り替える。 Further, in the secondary battery device 1 of the present embodiment, when the control unit 11 lowers the third negative electrode voltage Vtun from the threshold value Vtn1 in the first mode of the control circuit 10 when the cell 21 which is the secondary battery is discharged. In addition, the control circuit 10 is switched from the first mode to the second mode.

このような構成により、本実施形態の二次電池装置1は、図5Bに示すように、負電極212の放電特性を示す第3負極間電圧Vtnの曲線が左側へシフトした場合に、第3電極213から負電極212へリチウムイオンを移動させ、負電極212の表面で失活したリチウムイオンを補うことができる。その結果、図5Bに示すように左側へシフトした負電極212の放電特性を右側へシフトさせ、図5Aに示す状態またはそれに近い状態に回復させることができる。 With such a configuration, as shown in FIG. 5B, the secondary battery device 1 of the present embodiment has a third negative electrode when the curve of the third negative electrode voltage Vtun showing the discharge characteristic of the negative electrode 212 is shifted to the left side. Lithium ions can be transferred from the electrode 213 to the negative electrode 212 to supplement the lithium ions deactivated on the surface of the negative electrode 212. As a result, the discharge characteristic of the negative electrode 212 shifted to the left as shown in FIG. 5B can be shifted to the right and restored to the state shown in FIG. 5A or a state close to it.

また、本実施形態の二次電池装置1は、図1に示すように、二次電池である単電池21の放電時の電流値を測定する電流計としての電流センサ4をさらに備えている。この場合、制御部11は、前述の処理P2に代えて、次のような処理を実行してもよい。制御部11は、制御回路10の第1モードで単電池21の放電時の電流値に基づいて負電極212の容量を推定する。そして、制御部11は、負電極212の容量に対する第3負極間電圧Vtnの変化の割合が閾値を超えた場合に、制御回路10を第1モードから第2モードへ切り替える処理P4を実行する。 Further, as shown in FIG. 1, the secondary battery device 1 of the present embodiment further includes a current sensor 4 as an ammeter for measuring the current value at the time of discharging the cell 21 which is a secondary battery. In this case, the control unit 11 may execute the following processing instead of the above-mentioned processing P2. The control unit 11 estimates the capacity of the negative electrode 212 based on the current value at the time of discharging the cell 21 in the first mode of the control circuit 10. Then, the control unit 11 executes the process P4 of switching the control circuit 10 from the first mode to the second mode when the ratio of the change in the voltage Vtn between the third negative electrodes to the capacitance of the negative electrode 212 exceeds the threshold value.

このような構成により、二次電池装置1は、図5Aおよび図5Bに示す第3負極間電圧Vtnの傾きが、所定の閾値を超えた場合に、制御回路10を第1モードから第2モードへ切り替える処理P4を実行することができる。これにより、前述の実施形態における二次電池装置1と同様の効果を奏することができるだけでなく、負電極212の状態をより正確に把握することが可能になる。 With such a configuration, the secondary battery device 1 sets the control circuit 10 from the first mode to the second mode when the slope of the voltage Vtn between the third negative electrodes shown in FIGS. 5A and 5B exceeds a predetermined threshold value. The process P4 for switching to can be executed. As a result, not only can the same effect as that of the secondary battery device 1 in the above-described embodiment be obtained, but also the state of the negative electrode 212 can be grasped more accurately.

また、本実施形態の二次電池装置1において、制御部11は、二次電池である単電池21の放電時に制御回路10の第1モードで第3正極間電圧Vtpが閾値より低下した場合に、制御回路10を第1モードから第3モードへ切り替える。 Further, in the secondary battery device 1 of the present embodiment, the control unit 11 determines that the voltage Vtp between the third positive electrodes drops below the threshold value in the first mode of the control circuit 10 when the cell 21 which is the secondary battery is discharged. , The control circuit 10 is switched from the first mode to the third mode.

このような構成により、本実施形態の二次電池装置1は、図5Aおよび図5Bに示すように、正電極211の放電特性を示す第3正極間電圧Vtpの曲線が左側へシフトした場合に、第3電極213から正電極211へリチウムイオンを移動させ、正電極211にリチウムイオンを補充することができる。その結果、左側へシフトした正電極211の放電特性を右側へシフトさせ、図5Aに示す状態またはそれに近い状態に回復させることができる。 With such a configuration, in the secondary battery device 1 of the present embodiment, as shown in FIGS. 5A and 5B, when the curve of the third positive electrode voltage Vtp showing the discharge characteristics of the positive electrode 211 is shifted to the left side. , Lithium ions can be moved from the third electrode 213 to the positive electrode 211, and the positive electrode 211 can be replenished with lithium ions. As a result, the discharge characteristic of the positive electrode 211 shifted to the left side can be shifted to the right side and restored to the state shown in FIG. 5A or a state close to it.

また、本実施形態の二次電池装置1は、前述のように、二次電池である単電池21の放電時の電流値を測定する電流計としての電流センサ4をさらに備えている。この場合、制御部11は、前述の処理P3に代えて次のような処理を実行してもよい。制御部11は、制御回路10の第1モードで単電池21の放電時の電流値に基づいて正電極211の容量を推定する。そして、制御部11は、正電極211の容量に対する第3正極間電圧Vtpの変化の割合が閾値を超えた場合に、制御回路10を第1モードから第3モードへ切り替える処理P9を実行する。 Further, as described above, the secondary battery device 1 of the present embodiment further includes a current sensor 4 as an ammeter for measuring the current value at the time of discharging the cell 21 which is a secondary battery. In this case, the control unit 11 may execute the following process instead of the above-mentioned process P3. The control unit 11 estimates the capacity of the positive electrode 211 based on the current value at the time of discharging the cell 21 in the first mode of the control circuit 10. Then, the control unit 11 executes a process P9 for switching the control circuit 10 from the first mode to the third mode when the ratio of the change in the voltage Vtp between the third positive electrodes to the capacitance of the positive electrode 211 exceeds the threshold value.

このような構成により、本実施形態の二次電池装置1は、図5Aおよび図5Bに示す第3正極間電圧Vtpの傾きが、所定の閾値を超えた場合に、制御回路10を第1モードから第3モードへ切り替える処理P9を実行することができる。これにより、前述の実施形態における二次電池装置1と同様の効果を奏することができるだけでなく、正電極211の状態をより正確に把握することが可能になる。 With such a configuration, the secondary battery device 1 of the present embodiment sets the control circuit 10 in the first mode when the slope of the voltage Vtp between the third positive electrodes shown in FIGS. 5A and 5B exceeds a predetermined threshold value. The process P9 for switching to the third mode can be executed. As a result, not only can the same effect as that of the secondary battery device 1 in the above-described embodiment be obtained, but also the state of the positive electrode 211 can be grasped more accurately.

また、本実施形態の二次電池装置1において、制御回路10は、第3電極213に流れる電流の電流値Itの測定結果を制御部11へ出力する。制御部11は、制御回路10の第2モードまたは第3モードで電流値Itに基づいて第3電極213の容量Qtを算出し、容量Qtが閾値Qt1を超えた場合に、制御回路10を第4モードへ切り替える。 Further, in the secondary battery device 1 of the present embodiment, the control circuit 10 outputs the measurement result of the current value It of the current flowing through the third electrode 213 to the control unit 11. The control unit 11 calculates the capacitance Qt of the third electrode 213 based on the current value It in the second mode or the third mode of the control circuit 10, and when the capacitance Qt exceeds the threshold value Qt1, the control circuit 10 is set to the third. Switch to 4 mode.

このような構成により、本実施形態の二次電池装置1は、第3電極213から正電極211または負電極212へリチウムイオンが過剰に移動することが防止される。したがって、第3電極213による正電極211および負電極212の電位測定機能の喪失を防止することができる。 With such a configuration, the secondary battery device 1 of the present embodiment prevents excessive movement of lithium ions from the third electrode 213 to the positive electrode 211 or the negative electrode 212. Therefore, it is possible to prevent the third electrode 213 from losing the potential measurement function of the positive electrode 211 and the negative electrode 212.

また、本実施形態の二次電池装置1において、二次電池としての単電池21は、リチウムイオン二次電池である。また、第3電極213は、集電体と、その集電体に形成された合剤層とを備えている。第3電極213の合剤層は、Ni、Co、Mnを含む遷移金属をMとして、組成式:LiMOで表される正極材料を含む。 Further, in the secondary battery device 1 of the present embodiment, the cell 21 as the secondary battery is a lithium ion secondary battery. Further, the third electrode 213 includes a current collector and a mixture layer formed on the current collector. The mixture layer of the third electrode 213 contains a positive electrode material represented by the composition formula: LiMO 2 , with the transition metal containing Ni, Co, and Mn as M.

このような構成により、本実施形態の二次電池装置1は、第3電極213から正電極211および負電極212へリチウムイオンを供給することができるだけでなく、正電極211および負電極212から第3電極213へリチウムイオンを戻すことが可能になる。 With such a configuration, the secondary battery device 1 of the present embodiment can not only supply lithium ions from the third electrode 213 to the positive electrode 211 and the negative electrode 212, but also supply lithium ions from the positive electrode 211 and the negative electrode 212. It becomes possible to return lithium ions to the three electrodes 213.

また、本実施形態の二次電池装置1において、第3電極213の合剤層に含まれる正極材料は、Niを80%以上含むことができる。 Further, in the secondary battery device 1 of the present embodiment, the positive electrode material contained in the mixture layer of the third electrode 213 can contain 80% or more of Ni.

このような構成により、本実施形態の二次電池装置1は、第3電極213の正極材料に含まれるNiが80%未満である場合と比較して、第3電極213から正電極211または負電極212へ供給可能なリチウムイオンを増加させることができる。 With such a configuration, in the secondary battery device 1 of the present embodiment, the positive electrode 211 or the negative electrode 211 or the negative electrode 213 is compared with the case where the Ni contained in the positive electrode material of the third electrode 213 is less than 80%. The lithium ions that can be supplied to the electrode 212 can be increased.

以上、図面を用いて本開示に係る二次電池装置および二次電池の制御方法の実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 Although the embodiments of the secondary battery device and the control method for the secondary battery according to the present disclosure have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and the present disclosure is not limited to this embodiment. Any design changes, etc. that do not deviate from the gist are included in this disclosure.

1 二次電池装置
4 電流センサ(電流計)
10 制御回路
11 制御部
21 単電池(二次電池)
211 正電極
212 負電極
213 第3電極
It 電流値
Qt 容量
Qt1 閾値
Vpn 正負極間電圧
Vtn 第3負極間電圧
Vtn1 閾値
Vtp 第3正極間電圧
Vtp1 閾値
1 Secondary battery device 4 Current sensor (ammeter)
10 Control circuit 11 Control unit 21 Single battery (secondary battery)
211 Positive electrode 212 Negative electrode 213 Third electrode It Current value Qt Capacity Qt1 Threshold Vpn Positive / negative electrode voltage Vtn Third negative electrode voltage Vtn1 Threshold Vtp Third positive electrode voltage Vtp1 Threshold

Claims (9)

正電極、負電極、および第3電極を有する二次電池と、該二次電池に接続された制御回路と、該制御回路を制御する制御部と、を備えた二次電池装置であって、
前記制御部は、前記正電極と前記負電極との間の正負極間電圧、前記第3電極と前記正電極との間の第3正極間電圧、前記第3電極と前記負電極との間の第3負極間電圧の少なくとも一つに基づいて、前記制御回路において、前記正電極と前記負電極と前記第3電極との間に電流を流さない第1モードと、前記負電極から前記第3電極へ電流を流す第2モードと、前記正電極から前記第3電極へ電流を流す第3モードと、前記第3電極から前記正電極または前記負電極へ電流を流す第4モードとを切り替えることを特徴とする二次電池装置。
A secondary battery device including a secondary battery having a positive electrode, a negative electrode, and a third electrode, a control circuit connected to the secondary battery, and a control unit for controlling the control circuit.
The control unit includes a voltage between the positive and negative electrodes between the positive electrode and the negative electrode, a voltage between the third positive electrode between the third electrode and the positive electrode, and a voltage between the third electrode and the negative electrode. In the control circuit, a first mode in which no current flows between the positive electrode, the negative electrode, and the third electrode, and the first mode from the negative electrode to the third electrode, based on at least one of the third negative electrode voltages of the above. The second mode in which a current is passed through the three electrodes, the third mode in which a current is passed from the positive electrode to the third electrode, and the fourth mode in which a current is passed from the third electrode to the positive electrode or the negative electrode are switched. A secondary battery device characterized by the fact that.
前記制御部は、前記二次電池の放電時に前記制御回路の前記第1モードで前記第3負極間電圧が閾値より低下した場合に、前記制御回路を前記第1モードから前記第2モードへ切り替えることを特徴とする請求項1に記載の二次電池装置。 The control unit switches the control circuit from the first mode to the second mode when the voltage between the third negative electrodes drops below the threshold value in the first mode of the control circuit when the secondary battery is discharged. The secondary battery device according to claim 1, wherein the secondary battery device is characterized by the above. 前記二次電池の放電時の電流値を測定する電流計をさらに備え、
前記制御部は、前記第1モードで前記電流値に基づいて前記負電極の容量を推定し、前記容量に対する前記第3負極間電圧の変化の割合が閾値を超えた場合に、前記制御回路を前記第1モードから前記第2モードへ切り替えることを特徴とする請求項1に記載の二次電池装置。
An ammeter for measuring the current value at the time of discharging the secondary battery is further provided.
The control unit estimates the capacitance of the negative electrode based on the current value in the first mode, and when the ratio of the change in the voltage between the third negative electrodes to the capacitance exceeds the threshold value, the control circuit is used. The secondary battery device according to claim 1, wherein the mode is switched from the first mode to the second mode.
前記制御部は、前記二次電池の放電時に前記制御回路の前記第1モードで前記第3正極間電圧が閾値より低下した場合に、前記制御回路を前記第1モードから前記第3モードへ切り替えることを特徴とする請求項1に記載の二次電池装置。 The control unit switches the control circuit from the first mode to the third mode when the voltage between the third positive electrodes drops below the threshold value in the first mode of the control circuit when the secondary battery is discharged. The secondary battery device according to claim 1, wherein the secondary battery device is characterized by the above. 前記二次電池の放電時の電流値を測定する電流計をさらに備え、
前記制御部は、前記第1モードで前記電流値に基づいて前記正電極の容量を推定し、前記容量に対する前記第3正極間電圧の変化の割合が閾値を超えた場合に、前記制御回路を前記第1モードから前記第3モードへ切り替えることを特徴とする請求項1に記載の二次電池装置。
An ammeter for measuring the current value at the time of discharging the secondary battery is further provided.
The control unit estimates the capacitance of the positive electrode based on the current value in the first mode, and when the ratio of the change in the voltage between the third positive electrodes to the capacitance exceeds the threshold value, the control circuit is used. The secondary battery device according to claim 1, wherein the mode is switched from the first mode to the third mode.
前記制御回路は、前記第3電極に流れる電流の電流値の測定結果を前記制御部へ出力し、
前記制御部は、前記制御回路の前記第2モードまたは前記第3モードで前記電流値に基づいて前記第3電極の容量を算出し、前記容量が閾値を超えた場合に、前記制御回路を前記第4モードへ切り替えることを特徴とする請求項1に記載の二次電池装置。
The control circuit outputs the measurement result of the current value of the current flowing through the third electrode to the control unit.
The control unit calculates the capacitance of the third electrode based on the current value in the second mode or the third mode of the control circuit, and when the capacitance exceeds the threshold value, the control circuit is used. The secondary battery device according to claim 1, wherein the secondary battery device is switched to the fourth mode.
前記二次電池は、リチウムイオン二次電池であり、
前記第3電極は、集電体と、該集電体に形成された合剤層とを備え、
前記合剤層は、Ni、Co、Mnを含む遷移金属をMとして、組成式:LiMOで表される正極材料を含むことを特徴とする請求項1に記載の二次電池装置。
The secondary battery is a lithium ion secondary battery.
The third electrode includes a current collector and a mixture layer formed on the current collector.
The secondary battery device according to claim 1, wherein the mixture layer contains a positive electrode material represented by a composition formula: LiMO 2 , with a transition metal containing Ni, Co, and Mn as M.
前記正極材料は、前記Niを80%以上含むことを特徴とする請求項7に記載の二次電池装置。 The secondary battery device according to claim 7, wherein the positive electrode material contains 80% or more of the Ni. 正電極、負電極、および第3電極を有する二次電池の制御方法であって、
前記正電極と前記負電極との間の正負極間電圧、前記第3電極と前記正電極との間の第3正極間電圧、前記第3電極と前記負電極との間の第3負極間電圧の少なくとも一つに基づいて、前記正電極と前記負電極と前記第3電極との間に電流を流さない第1モードと、前記負電極から前記第3電極へ電流を流す第2モードと、前記正電極から前記第3電極へ電流を流す第3モードと、前記第3電極から前記正電極または前記負電極へ電流を流す第4モードとを切り替えることを特徴とする二次電池の制御方法。
A method for controlling a secondary battery having a positive electrode, a negative electrode, and a third electrode.
The voltage between the positive and negative electrodes between the positive electrode and the negative electrode, the voltage between the third positive electrode between the third electrode and the positive electrode, and the third negative electrode between the third electrode and the negative electrode. A first mode in which no current flows between the positive electrode, the negative electrode, and the third electrode based on at least one of the voltages, and a second mode in which a current flows from the negative electrode to the third electrode. Control of the secondary battery, which comprises switching between a third mode in which a current flows from the positive electrode to the third electrode and a fourth mode in which a current flows from the third electrode to the positive electrode or the negative electrode. Method.
JP2020051854A 2020-03-23 2020-03-23 Secondary battery device and control method for secondary battery Ceased JP2021151169A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020051854A JP2021151169A (en) 2020-03-23 2020-03-23 Secondary battery device and control method for secondary battery
PCT/JP2020/041684 WO2021192394A1 (en) 2020-03-23 2020-11-09 Secondary battery device, and control method for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020051854A JP2021151169A (en) 2020-03-23 2020-03-23 Secondary battery device and control method for secondary battery

Publications (1)

Publication Number Publication Date
JP2021151169A true JP2021151169A (en) 2021-09-27

Family

ID=77849743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020051854A Ceased JP2021151169A (en) 2020-03-23 2020-03-23 Secondary battery device and control method for secondary battery

Country Status (2)

Country Link
JP (1) JP2021151169A (en)
WO (1) WO2021192394A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037068A1 (en) * 2013-09-11 2015-03-19 株式会社日立製作所 Electricity storage system
JP2016091613A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Battery system and soc recovery method
US10620274B2 (en) * 2014-12-10 2020-04-14 Datang NXP Semiconductor Co., Ltd. Method and apparatus for contact detection in battery packs
JP2016119249A (en) * 2014-12-22 2016-06-30 株式会社日立製作所 Lithium ion secondary battery system
JP2017069011A (en) * 2015-09-30 2017-04-06 株式会社日立製作所 Lifetime controlled secondary battery system

Also Published As

Publication number Publication date
WO2021192394A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US7038426B2 (en) Method for prolonging the life of lithium ion batteries
JP5660003B2 (en) A secondary battery deterioration state determination system and a deterioration state determination method.
CN110679056B (en) Battery charge management apparatus and method
EP3051305A1 (en) Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
US20180041054A1 (en) Energy storage apparatus for engine start-up, method for controlling the same, and vehicle
KR20090029739A (en) Lithium reservoir system and method for rechargeable lithium ion batteries
CN102308453A (en) Battery pack, discharge system, charge/discharge system, and discharge control method for lithium ion rechargeable battery
KR20100033509A (en) Power system and assembled battery controlling method
JP6409208B1 (en) Storage amount estimation device, storage module, storage amount estimation method, and computer program
CN110462413B (en) Storage battery amount estimation device, storage battery module, storage battery amount estimation method, and recording medium
JP7043944B2 (en) Power storage device
WO2014148018A1 (en) Secondary-battery charging system and method and battery pack
CN111175664B (en) Method for determining aging state of battery, controller and vehicle
CN107750408B (en) Method and apparatus for controlling regeneration process of lithium ion battery pack
US20210399558A1 (en) Battery control unit and battery system
CN114096433A (en) Apparatus for managing battery and method for managing battery
US11217832B2 (en) Power supply system
US11316352B2 (en) Battery management
JP2013012374A (en) Power supply system
JP7087110B2 (en) Cell controller, battery management system and battery system
WO2021192394A1 (en) Secondary battery device, and control method for secondary battery
US11515561B2 (en) Secondary battery system and secondary battery control method
JP6708120B2 (en) Power storage system
JP6647986B2 (en) Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device
JP2016164851A (en) Lithium ion secondary battery charging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20240326