JP2021150446A - Nitride semiconductor substrate - Google Patents

Nitride semiconductor substrate Download PDF

Info

Publication number
JP2021150446A
JP2021150446A JP2020047703A JP2020047703A JP2021150446A JP 2021150446 A JP2021150446 A JP 2021150446A JP 2020047703 A JP2020047703 A JP 2020047703A JP 2020047703 A JP2020047703 A JP 2020047703A JP 2021150446 A JP2021150446 A JP 2021150446A
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
semiconductor substrate
high resistance
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020047703A
Other languages
Japanese (ja)
Inventor
圭太郎 池尻
Keitaro Ikejiri
圭太郎 池尻
光浩 田中
Mitsuhiro Tanaka
光浩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2020047703A priority Critical patent/JP2021150446A/en
Publication of JP2021150446A publication Critical patent/JP2021150446A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To provide a technique for improving a breakdown voltage of a nitride semiconductor substrate using a silicon substrate.SOLUTION: In a nitride semiconductor substrate, a nitride semiconductor layer is laminated on a silicon substrate. The nitride semiconductor layer comprises a first layer formed by laminating a plurality of nitride semiconductor crystal layers having different compositions, and a second layer formed on the first layer and containing carbon. The average oxygen concentration of the second layer is less than 1×1016 cm-3.SELECTED DRAWING: Figure 2

Description

本発明は、窒化物半導体基板に関する。 The present invention relates to a nitride semiconductor substrate.

半導体基板として、下地基板上に窒化物半導体をエピタキシャル成長させた窒化物半導体基板がある。窒化物半導体は、ワイドバンドギャップ半導体であり、優れた絶縁破壊強度を有している。そのため、窒化物半導体を、高い耐圧が要求される半導体デバイスへ適用することが検討されている。例えば、特許文献1には、下地基板としてシリコン基板を用い、シリコン基板上に窒化物半導体をエピタキシャル成長させた窒化物半導体基板が提案されている。 As a semiconductor substrate, there is a nitride semiconductor substrate in which a nitride semiconductor is epitaxially grown on a base substrate. The nitride semiconductor is a wide bandgap semiconductor and has excellent dielectric breakdown strength. Therefore, application of nitride semiconductors to semiconductor devices that require high withstand voltage is being studied. For example, Patent Document 1 proposes a nitride semiconductor substrate in which a silicon substrate is used as a base substrate and a nitride semiconductor is epitaxially grown on the silicon substrate.

特開2018−88501号公報JP-A-2018-88501

本発明の目的は、シリコン基板を用いた窒化物半導体基板における耐圧を向上させる技術を提供することである。 An object of the present invention is to provide a technique for improving the withstand voltage of a nitride semiconductor substrate using a silicon substrate.

本発明の一態様によれば、
シリコン基板上に窒化物半導体層が積層された窒化物半導体基板であって、
前記窒化物半導体層は、
組成の異なる複数の窒化物半導体結晶層が積層されて形成される第1層と、
前記第1層上に形成され、炭素を含む第2層と、を備え、
前記第2層の平均酸素濃度は1×1016cm−3未満である、窒化物半導体基板が提供される。
According to one aspect of the invention
A nitride semiconductor substrate in which a nitride semiconductor layer is laminated on a silicon substrate.
The nitride semiconductor layer is
A first layer formed by laminating a plurality of nitride semiconductor crystal layers having different compositions, and
A second layer formed on the first layer and containing carbon is provided.
A nitride semiconductor substrate is provided in which the average oxygen concentration of the second layer is less than 1 × 10 16 cm -3.

本発明によれば、シリコン基板を用いた窒化物半導体基板における耐圧を向上させることができる。 According to the present invention, the withstand voltage of a nitride semiconductor substrate using a silicon substrate can be improved.

図1は、本発明の第1実施形態に係る窒化物半導体基板100の概略断面図である。FIG. 1 is a schematic cross-sectional view of the nitride semiconductor substrate 100 according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係る窒化物半導体基板100の不純物濃度プロファイルと、アルミニウム(Al)組成プロファイルとの一例である。FIG. 2 is an example of an impurity concentration profile of the nitride semiconductor substrate 100 according to the first embodiment of the present invention and an aluminum (Al) composition profile. 図3は、本発明の第1実施形態に係る窒化物半導体基板100の製造方法に用いられる結晶成長装置300の概略構成図である。FIG. 3 is a schematic configuration diagram of a crystal growth apparatus 300 used in the method for manufacturing a nitride semiconductor substrate 100 according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係る窒化物半導体基板100の製造方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of a method for manufacturing the nitride semiconductor substrate 100 according to the first embodiment of the present invention. 図5は、本発明の第1実施形態に係る応力発生層形成工程S104、表面改質工程S105および高抵抗層形成工程S106における成長条件の制御の一例を概念的に示すタイミングチャートである。FIG. 5 is a timing chart conceptually showing an example of control of growth conditions in the stress generation layer forming step S104, the surface modification step S105, and the high resistance layer forming step S106 according to the first embodiment of the present invention.

<発明者の得た知見>
まず、発明者が得た知見について説明する。
<Findings obtained by the inventor>
First, the findings obtained by the inventor will be described.

パワーデバイス等に用いられる窒化物半導体基板としては、高耐圧であることが求められる。シリコン基板上に窒化物半導体を、例えば、有機金属気相成長(Metal Organic Chemical Vapor Deposition、MOCVD)法によってエピタキシャル成長させる場合、有機金属原料中の炭素を取り込んでアクセプタとすることで、高耐圧化を実現している。 Nitride semiconductor substrates used in power devices and the like are required to have high withstand voltage. When a nitride semiconductor is epitaxially grown on a silicon substrate by, for example, the Metalorganic Chemical Vapor Deposition (MOCVD) method, carbon in the organic metal raw material is taken in and used as an acceptor to increase the pressure resistance. It has been realized.

しかしながら、窒化物半導体結晶中の炭素濃度が高くなると、結晶性が悪化する可能性がある。結晶性の悪化は、半導体デバイスの性能や寿命を低下させるため、耐圧を確保しつつ、結晶性を向上させる技術が望まれている。 However, if the carbon concentration in the nitride semiconductor crystal is high, the crystallinity may deteriorate. Since the deterioration of crystallinity lowers the performance and life of the semiconductor device, a technique for improving crystallinity while ensuring withstand voltage is desired.

また、窒化物半導体結晶中の酸素は、ドナーとして働くため、耐圧を向上させる観点からは、炭素濃度を高くしつつ、酸素濃度を低くすることが好ましい。 Further, since oxygen in the nitride semiconductor crystal acts as a donor, it is preferable to lower the oxygen concentration while increasing the carbon concentration from the viewpoint of improving the withstand voltage.

本願発明者は、上述のような事象に対して鋭意研究を行った。その結果、耐圧を確保するための高抵抗層を形成する前に、窒化物半導体結晶の表面を改質する工程を行うことで、耐圧を確保しつつ、結晶性を向上できることを見出した。また、窒化物半導体結晶の表面モフォロジーの制御によって、炭素濃度を高くしつつ、酸素濃度を低くできることを見出した。 The inventor of the present application has conducted diligent research on the above-mentioned events. As a result, it has been found that the crystallinity can be improved while ensuring the withstand voltage by performing the step of modifying the surface of the nitride semiconductor crystal before forming the high resistance layer for ensuring the withstand voltage. It was also found that the oxygen concentration can be lowered while increasing the carbon concentration by controlling the surface morphology of the nitride semiconductor crystal.

[本発明の実施形態の詳細]
次に、本発明の一実施形態を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of Embodiments of the present invention]
Next, an embodiment of the present invention will be described below with reference to the drawings. It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

<本発明の第1実施形態>
(1)窒化物半導体基板100の構成
まず、本実施形態の窒化物半導体基板100の構成について説明する。
<First Embodiment of the present invention>
(1) Configuration of Nitride Semiconductor Substrate 100 First, the configuration of the nitride semiconductor substrate 100 of the present embodiment will be described.

図1は、本実施形態の窒化物半導体基板100の概略断面図である。図1に示すように、本実施形態の窒化物半導体基板100は、例えば、シリコン基板110と、シリコン基板110上に積層された窒化物半導体層120と、を有している。 FIG. 1 is a schematic cross-sectional view of the nitride semiconductor substrate 100 of the present embodiment. As shown in FIG. 1, the nitride semiconductor substrate 100 of the present embodiment includes, for example, a silicon substrate 110 and a nitride semiconductor layer 120 laminated on the silicon substrate 110.

シリコン基板110は、窒化物半導体層120をヘテロエピタキシャル成長させるための下地基板である。シリコン基板110としては、例えば、直径が150mm以上の大口径のものを使用することができる。また、シリコン基板110としては、例えば、ホウ素がドープされたp型のものを用いることが好ましい。これにより、窒化物半導体基板100の反りを制御しやすくなる。なお、シリコン基板110の厚さは、窒化物半導体基板100の用途に応じて任意に設計することができる。また、シリコン基板110の比抵抗は、例えば、0.02Ω・cm以上200Ω・cm以下である。 The silicon substrate 110 is a base substrate for heteroepitaxially growing the nitride semiconductor layer 120. As the silicon substrate 110, for example, a silicon substrate 110 having a large diameter of 150 mm or more can be used. Further, as the silicon substrate 110, for example, it is preferable to use a p-type silicon substrate doped with boron. This makes it easier to control the warp of the nitride semiconductor substrate 100. The thickness of the silicon substrate 110 can be arbitrarily designed according to the application of the nitride semiconductor substrate 100. Further, the specific resistance of the silicon substrate 110 is, for example, 0.02 Ω · cm or more and 200 Ω · cm or less.

窒化物半導体層120は、例えば、図1に示すように、シリコン基板110側から順に、反応抑制層130と、中間層140と、第1層としての応力発生層150と、第2層としての高抵抗層160と、第3層としての低抵抗層170と、バリア層180と、を備えている。 As shown in FIG. 1, for example, the nitride semiconductor layer 120 has a reaction suppressing layer 130, an intermediate layer 140, a stress generating layer 150 as the first layer, and a second layer in this order from the silicon substrate 110 side. A high resistance layer 160, a low resistance layer 170 as a third layer, and a barrier layer 180 are provided.

反応抑制層130は、例えば、シリコン基板110上に形成され、AlN(窒化アルミニウム)を含む層(好ましくはAlNで構成される層)である。反応抑制層130は、シリコン基板110と中間層140との間に介在することで、シリコン基板110に含まれるシリコン(Si)と中間層140に含まれるガリウム(Ga)との反応(合金化)を抑制する。なお、反応抑制層130を構成する材料として、AlGa1−xN(0.9≦x≦1)を用いてもよい。また、反応抑制層130とシリコン基板110との間にSiN(1≦y≦2)からなる層を挟んでもよい。反応抑制層130は、反応抑制層130よりも上方に成長される窒化物半導体層120の初期核を形成する働きも有する。反応抑制層130の厚さは、例えば、30nm以上300nm以下である。 The reaction suppression layer 130 is, for example, a layer formed on the silicon substrate 110 and containing AlN (aluminum nitride) (preferably a layer composed of AlN). The reaction suppression layer 130 is interposed between the silicon substrate 110 and the intermediate layer 140 to react (alloy) the silicon (Si) contained in the silicon substrate 110 and the gallium (Ga) contained in the intermediate layer 140. Suppress. As a material constituting the reaction suppression layer 130, Al x Ga 1-x N (0.9 ≦ x ≦ 1) may be used. Further, a layer made of SiN y (1 ≦ y ≦ 2) may be sandwiched between the reaction suppressing layer 130 and the silicon substrate 110. The reaction suppression layer 130 also has a function of forming an initial nucleus of the nitride semiconductor layer 120 grown above the reaction suppression layer 130. The thickness of the reaction suppression layer 130 is, for example, 30 nm or more and 300 nm or less.

中間層140は、例えば、反応抑制層130上に形成され、AlGaN(窒化アルミニウムガリウム)を含む層(III族元素としてAlおよびGaを含むAlGaNで構成された層)である。中間層140は、反応抑制層130に形成された初期核を拡大し、反応抑制層130の上面よりも平坦な上面を有することで、中間層140の上方に成長される応力発生層150の下地面を構成する。中間層140のAl組成は、反応抑制層130のAl組成よりも小さい値に選択される。中間層140の厚さは、例えば、40nm以上1000nm以下である。中間層140は、反応抑制層130に対しコヒーレントに成長していることが好ましいが、反応抑制層130に対し完全にコヒーレント成長していることが必須ではなく、格子緩和が生じていてもよい。 The intermediate layer 140 is, for example, a layer formed on the reaction suppression layer 130 and containing AlGaN (aluminum gallium nitride) (a layer composed of AlGaN containing Al and Ga as group III elements). The intermediate layer 140 expands the initial nuclei formed in the reaction suppressing layer 130 and has a flat upper surface than the upper surface of the reaction suppressing layer 130, so that the intermediate layer 140 is under the stress generating layer 150 grown above the intermediate layer 140. Make up the ground. The Al composition of the intermediate layer 140 is selected to be smaller than the Al composition of the reaction suppression layer 130. The thickness of the intermediate layer 140 is, for example, 40 nm or more and 1000 nm or less. The intermediate layer 140 preferably grows coherently with respect to the reaction suppression layer 130, but it is not essential that the intermediate layer 140 grows completely coherently with respect to the reaction suppression layer 130, and lattice relaxation may occur.

応力発生層150は、組成の異なる複数の窒化物半導体結晶層が積層されて形成される。応力発生層150は、例えば、中間層140上に形成され、窒化物半導体基板100全体の反りを低減するための圧縮応力を発生させる層である。AlGaN組成の異なる窒化物半導体結晶層が繰り返し積層されることにより、応力発生層150において上方に形成される層に圧縮応力を発生させることができ、窒化物半導体基板100全体での反りを低減させることができる。 The stress generating layer 150 is formed by laminating a plurality of nitride semiconductor crystal layers having different compositions. The stress generating layer 150 is, for example, a layer formed on the intermediate layer 140 and generating compressive stress for reducing the warp of the entire nitride semiconductor substrate 100. By repeatedly laminating nitride semiconductor crystal layers having different AlGaN compositions, compressive stress can be generated in the layer formed above the stress generating layer 150, and the warpage of the entire nitride semiconductor substrate 100 is reduced. be able to.

応力発生層150は、例えば、図1に示すように、AlGaN組成の異なる第1の窒化物半導体結晶層151および第2の窒化物半導体結晶層152が交互に積層された多重結晶層153が繰り返し積層された歪超格子(Strained−Layer Superlattice、SLS)構造を有する。第1の窒化物半導体結晶層151は、例えば、バルク結晶における格子定数がa1であるIII族窒化物結晶から形成される。第2の窒化物半導体結晶層152は、例えば、バルク結晶における格子定数が第1の窒化物半導体結晶層151の格子定数a1よりも大きなa2(a1<a2)であるIII族窒化物結晶から形成される。第1の窒化物半導体結晶層151および第2の窒化物半導体結晶層152のそれぞれのAlGaN組成は、格子定数の関係がa1<a2となれば特に限定されない。例えば、第1の窒化物半導体結晶層151のAlGaN組成は、AlGa1−pN(0.9≦p≦1)であることが好ましい。また、第2の窒化物半導体結晶層152は、格子定数a2を第1の窒化物半導体結晶層151の格子定数a1よりも大きくする観点からは第1の窒化物半導体結晶層151よりもGaの比率が高いことが好ましく、例えば、そのAlGaN組成は、AlGa1−qN(0≦q≦0.3)であることが好ましい。 As shown in FIG. 1, for example, the stress generating layer 150 is a repeating multi-crystal layer 153 in which a first nitride semiconductor crystal layer 151 and a second nitride semiconductor crystal layer 152 having different AlGaN compositions are alternately laminated. It has a laminated-Layer Superlattice (SLS) structure. The first nitride semiconductor crystal layer 151 is formed from, for example, a group III nitride crystal having a lattice constant of a1 in a bulk crystal. The second nitride semiconductor crystal layer 152 is formed from, for example, a group III nitride crystal in which the lattice constant in the bulk crystal is a2 (a1 <a2) larger than the lattice constant a1 of the first nitride semiconductor crystal layer 151. Will be done. The AlGaN compositions of the first nitride semiconductor crystal layer 151 and the second nitride semiconductor crystal layer 152 are not particularly limited as long as the relationship of the lattice constants is a1 <a2. For example, the AlGaN composition of the first nitride semiconductor crystal layer 151 is preferably Al p Ga 1-p N (0.9 ≦ p ≦ 1). Further, the second nitride semiconductor crystal layer 152 has a higher ga than the first nitride semiconductor crystal layer 151 from the viewpoint of making the lattice constant a2 larger than the lattice constant a1 of the first nitride semiconductor crystal layer 151. The ratio is preferably high, and for example, the AlGaN composition thereof is preferably Al q Ga 1-q N (0 ≦ q ≦ 0.3).

応力発生層150において、第1の窒化物半導体結晶層151および第2の窒化物半導体結晶層152の各厚さと、多重結晶層153の繰り返し数とは、特に限定されず、窒化物半導体基板100の用途に応じて適宜変更するとよい。例えば、第1の窒化物半導体結晶層151の厚さは、1nm以上20nm以下とすることが好ましく、5nm以上20nm以下とすることがより好ましい。第2の窒化物半導体結晶層152の厚さは、5nm以上300nm以下とすることが好ましく、10nm以上300nm以下とすることがより好ましい。多重結晶層153の積層数は、例えば、2以上500以下である。なお、応力発生層150の最上層は、第1の窒化物半導体結晶層151であることが好ましい。これにより、応力発生層150の最上層の表面荒れを抑制することができる。 In the stress generating layer 150, the thicknesses of the first nitride semiconductor crystal layer 151 and the second nitride semiconductor crystal layer 152 and the number of repetitions of the multiple crystal layer 153 are not particularly limited, and the nitride semiconductor substrate 100 It may be changed as appropriate according to the intended use. For example, the thickness of the first nitride semiconductor crystal layer 151 is preferably 1 nm or more and 20 nm or less, and more preferably 5 nm or more and 20 nm or less. The thickness of the second nitride semiconductor crystal layer 152 is preferably 5 nm or more and 300 nm or less, and more preferably 10 nm or more and 300 nm or less. The number of layers of the multilayer crystal layer 153 is, for example, 2 or more and 500 or less. The uppermost layer of the stress generating layer 150 is preferably the first nitride semiconductor crystal layer 151. Thereby, the surface roughness of the uppermost layer of the stress generating layer 150 can be suppressed.

また例えば、応力発生層150は、第1の窒化物半導体結晶層151および第2の窒化物半導体結晶層152に加え、バルク結晶における格子定数がa3(a2<a3)である第3の窒化物半導体結晶層との3層の積層構造としてもよい。また例えば、応力発生層150は、バルク結晶における格子定数が、シリコン基板110から遠ざかるに従い(上方に行くに従い)連続的またはステップ的に大きくなるグレーディッド結晶層で構成されてもよい。 Further, for example, the stress generating layer 150 is a third nitride having a lattice constant of a3 (a2 <a3) in the bulk crystal in addition to the first nitride semiconductor crystal layer 151 and the second nitride semiconductor crystal layer 152. It may be a three-layer laminated structure with a semiconductor crystal layer. Further, for example, the stress generating layer 150 may be composed of a graded crystal layer in which the lattice constant in the bulk crystal increases continuously or stepwise as the distance from the silicon substrate 110 increases (as it goes upward).

高抵抗層160は、例えば、応力発生層150上に形成され、炭素を含むことで主に耐圧を確保するための層であり、その比抵抗は低抵抗層170の比抵抗より高い。高抵抗層160は、例えば、AlGa1−aN(0≦a<1)層であり、好ましくはGaN層である。その厚さは、例えば、100nm以上2000nm以下(好ましくは、300nm以上1000nm以下)である。なお、本明細書において、耐圧とは、特に断りのない限りは窒化物半導体基板100の厚さ方向の耐圧を意味する。 The high resistivity layer 160 is, for example, a layer formed on the stress generating layer 150 and mainly for ensuring a withstand voltage by containing carbon, and its resistivity is higher than that of the low resistivity layer 170. The high resistance layer 160 is, for example, an Al a Ga 1-a N (0 ≦ a <1) layer, preferably a GaN layer. The thickness is, for example, 100 nm or more and 2000 nm or less (preferably 300 nm or more and 1000 nm or less). In the present specification, the withstand voltage means the withstand voltage of the nitride semiconductor substrate 100 in the thickness direction unless otherwise specified.

低抵抗層170は、例えば、高抵抗層160上に形成され、電子が走行するためのキャリア層であり、その比抵抗は高抵抗層160の比抵抗より低い。低抵抗層170は、例えば、AlGa1−bN(0≦b<1)層であり、好ましくはGaN層である。その厚さは、例えば、100nm以上1000nm以下(好ましくは、500nm以下)である。 The low resistivity layer 170 is, for example, a carrier layer formed on the high resistivity layer 160 for electrons to travel, and its specific resistance is lower than that of the high resistivity layer 160. The low resistance layer 170 is, for example, an Al b Ga 1-b N (0 ≦ b <1) layer, preferably a GaN layer. Its thickness is, for example, 100 nm or more and 1000 nm or less (preferably 500 nm or less).

バリア層180は、例えば、低抵抗層170上に形成され、低抵抗層170に電子を供給するための層である。バリア層180は、例えば、AlGa1−cN(0<c≦1、b<c)層であり、好ましくはAlGa1−cN(0.1<c≦0.3)層である。その厚さは、例えば10nm以上100nm以下である。 The barrier layer 180 is formed on, for example, the low resistance layer 170 and is a layer for supplying electrons to the low resistance layer 170. The barrier layer 180 is, for example, an Al c Ga 1-c N (0 <c ≦ 1, b <c) layer, preferably an Al c Ga 1-c N (0.1 <c ≦ 0.3) layer. Is. Its thickness is, for example, 10 nm or more and 100 nm or less.

(不純物濃度プロファイル)
図2は、本実施形態の窒化物半導体基板100の炭素(C)、水素(H)および酸素(O)の不純物濃度プロファイルと、アルミニウム(Al)組成プロファイルとの一例である。具体的には、図2は、応力発生層150の一部と、高抵抗層160と、低抵抗層170の一部とにおける、深さ方向のC、HおよびOの不純物濃度プロファイルと、Al組成プロファイルとの一例である。本実施形態の不純物濃度プロファイルおよびAl組成プロファイルは、2次イオン質量分析(SIMS)により測定した。図2において、C、HおよびOの不純物濃度については、左側の軸(Concentration(Atoms/cm))の表示により、各不純物濃度を示す。Al組成については、右側の軸(Secondary ion intensity(counts/sec))の表示により、Al組成を、Al組成に対応するSIMSのカウント数として示す。なお、図2は、ノイズ的な細かい凹凸を均したプロファイルを示す。SIMSの測定条件は、以下の通りである。
イオン源:セシウムイオン(Cs
イオンエネルギ:14.5keV
深さ方向分解能:10〜20nm
測定部面積:30μmφ
(Impurity concentration profile)
FIG. 2 is an example of an impurity concentration profile of carbon (C), hydrogen (H) and oxygen (O) of the nitride semiconductor substrate 100 of the present embodiment and an aluminum (Al) composition profile. Specifically, FIG. 2 shows the impurity concentration profiles of C, H, and O in the depth direction in a part of the stress generating layer 150, the high resistance layer 160, and a part of the low resistance layer 170, and Al. It is an example with a composition profile. The impurity concentration profile and Al composition profile of this embodiment were measured by secondary ion mass spectrometry (SIMS). In FIG. 2, the impurity concentrations of C, H, and O are indicated by the display on the left axis (Concentration (Atoms / cm 3)). Regarding the Al composition, the Al composition is indicated as the count number of SIMS corresponding to the Al composition by the display of the right axis (Chemical ion integrity (counts / sec)). Note that FIG. 2 shows a profile in which fine irregularities such as noise are leveled. The SIMS measurement conditions are as follows.
Ion source: Cesium ion (Cs + )
Ion energy: 14.5 keV
Depth resolution: 10 to 20 nm
Measuring part area: 30 μmφ

本明細書において、応力発生層150と高抵抗層160との界面200と、高抵抗層160と低抵抗層170との界面210は、SIMSの測定値を用いて、それぞれ以下のように定義される。界面200は、応力発生層150の上部201における、厚さ方向の平均Al組成に対して、Al組成が50%に減少する位置(すなわち、SIMSのカウント数が50%に減少する位置)とする。界面210は、高抵抗層160から低抵抗層170にかけて、炭素濃度が1×1018cm−3に減少する位置とする。なお、応力発生層150の上部201とは、界面200から応力発生層150側に、高抵抗層160の厚さの10%から50%までの範囲を示す。また、本明細書において、界面200から上下それぞれに、高抵抗層160の厚さの10%分の厚さ以内の領域を、界面近傍202と定義する。 In the present specification, the interface 200 between the stress generating layer 150 and the high resistance layer 160 and the interface 210 between the high resistance layer 160 and the low resistance layer 170 are defined as follows using the measured values of SIMS. NS. The interface 200 is a position in the upper portion 201 of the stress generating layer 150 where the Al composition decreases to 50% with respect to the average Al composition in the thickness direction (that is, the position where the SIMS count number decreases to 50%). .. The interface 210 is located at a position where the carbon concentration decreases to 1 × 10 18 cm -3 from the high resistance layer 160 to the low resistance layer 170. The upper portion 201 of the stress generating layer 150 indicates a range from 10% to 50% of the thickness of the high resistance layer 160 from the interface 200 to the stress generating layer 150 side. Further, in the present specification, a region within 10% of the thickness of the high resistance layer 160 is defined as the interface vicinity 202 above and below the interface 200.

図2は、高抵抗層160および低抵抗層170がGaN層である場合について、不純物濃度プロファイルおよびAl組成プロファイルを示している。なお、高抵抗層160および低抵抗層170がGaN層であるとは、これらの各層160、170におけるAl組成が0.001未満であることを意味する。 FIG. 2 shows an impurity concentration profile and an Al composition profile when the high resistance layer 160 and the low resistance layer 170 are GaN layers. The fact that the high resistance layer 160 and the low resistance layer 170 are GaN layers means that the Al composition of each of these layers 160 and 170 is less than 0.001.

高抵抗層160中の炭素濃度プロファイルを制御しやすくするために、高抵抗層160中のAl組成は一定とすることが好ましい。高抵抗層160中のAl組成が一定であるとは、例えば、高抵抗層160の厚さ方向の中心に位置し、高抵抗層160の厚さの50%分の厚さを有する部分(中心から上下それぞれに25%分の厚さの部分、以下、高抵抗層160の中央部ともいう)において、Al組成の変動量が0.001未満であることを意味する。 In order to make it easier to control the carbon concentration profile in the high resistance layer 160, it is preferable that the Al composition in the high resistance layer 160 is constant. The constant Al composition in the high resistance layer 160 means, for example, a portion (center) located at the center of the high resistance layer 160 in the thickness direction and having a thickness of 50% of the thickness of the high resistance layer 160. It means that the fluctuation amount of the Al composition is less than 0.001 in the portion having a thickness of 25% above and below each, hereinafter also referred to as the central portion of the high resistance layer 160).

(炭素濃度)
図2からわかるように、本実施形態の炭素濃度プロファイルにおいて、界面近傍202に特徴的な凹みが観察される。本実施形態の窒化物半導体基板100は、このような炭素濃度プロファイルを有するため、耐圧を確保しつつ、その結晶性を向上させることができる。以下、本実施形態の炭素濃度プロファイルの詳細について説明する。
(Carbon concentration)
As can be seen from FIG. 2, in the carbon concentration profile of the present embodiment, a characteristic dent is observed in the vicinity of the interface 202. Since the nitride semiconductor substrate 100 of the present embodiment has such a carbon concentration profile, its crystallinity can be improved while ensuring the withstand voltage. The details of the carbon concentration profile of this embodiment will be described below.

応力発生層150の平均炭素濃度は、例えば、2×1019cm−3以上8×1019cm−3以下であることが好ましい。これにより、窒化物半導体基板100の耐圧を向上させることができる。なお、応力発生層150の平均炭素濃度は、応力発生層150の上部201における、厚さ方向に平均された炭素濃度で規定される。つまり、応力発生層150の平均炭素濃度は、応力発生層150の上部201における平均炭素濃度と言い換えることもできる。 The average carbon concentration of the stress generating layer 150 is preferably, for example, 2 × 10 19 cm -3 or more and 8 × 10 19 cm -3 or less. Thereby, the withstand voltage of the nitride semiconductor substrate 100 can be improved. The average carbon concentration of the stress generating layer 150 is defined by the carbon concentration averaged in the thickness direction in the upper portion 201 of the stress generating layer 150. That is, the average carbon concentration of the stress generating layer 150 can be rephrased as the average carbon concentration in the upper portion 201 of the stress generating layer 150.

高抵抗層160の平均炭素濃度は、例えば、1×1018cm−3以上1×1020cm−3以下であることが好ましい。これにより、窒化物半導体基板100の耐圧を向上させることができる。なお、高抵抗層160の平均炭素濃度は、高抵抗層160の中央部における、厚さ方向に平均された炭素濃度で規定される。 The average carbon concentration of the high resistance layer 160 is preferably 1 × 10 18 cm -3 or more and 1 × 10 20 cm -3 or less, for example. Thereby, the withstand voltage of the nitride semiconductor substrate 100 can be improved. The average carbon concentration of the high resistance layer 160 is defined by the carbon concentration averaged in the thickness direction in the central portion of the high resistance layer 160.

低抵抗層170は、炭素を実質的に含まないことが好ましく、その平均炭素濃度は、高抵抗層160の平均炭素濃度より低い。具体的には、低抵抗層170の平均炭素濃度は、例えば、1×1018cm−3未満(より好ましくは、1×1017cm−3未満、さらに好ましくは2×1016cm−3未満)であることが好ましい。これにより、窒化物半導体基板100の電気特性を向上させることができる。なお、低抵抗層170の平均炭素濃度は、低抵抗層170の厚さ方向の中心に位置し、低抵抗層170の厚さの50%分の厚さを有する部分(中心から上下それぞれに25%分の厚さの部分、以下、低抵抗層170の中央部ともいう)における、厚さ方向に平均された炭素濃度で規定される。 The low resistance layer 170 preferably contains substantially no carbon, and its average carbon concentration is lower than the average carbon concentration of the high resistance layer 160. Specifically, the average carbon concentration of the low resistance layer 170 is, for example, less than 1 × 10 18 cm -3 (more preferably less than 1 × 10 17 cm -3 , still more preferably less than 2 × 10 16 cm -3. ) Is preferable. Thereby, the electrical characteristics of the nitride semiconductor substrate 100 can be improved. The average carbon concentration of the low resistance layer 170 is located at the center of the low resistance layer 170 in the thickness direction, and has a thickness of 50% of the thickness of the low resistance layer 170 (25 from the center to the top and bottom respectively). It is defined by the carbon concentration averaged in the thickness direction in the portion having a thickness of%, hereinafter also referred to as the central portion of the low resistance layer 170).

高抵抗層160の下層部分220の平均炭素濃度は、高抵抗層160の上層部分230の平均炭素濃度より低い。これにより、例えば、高抵抗層160の上層部分230と、低抵抗層170と、バリア層180との結晶性を向上させることができる。なお、高抵抗層160の下層部分220は、例えば、高抵抗層160をその半分の厚さで上下に2分割した際の下側であり、高抵抗層160の上層部分230は、その上側である。また、下層部分220の平均炭素濃度および上層部分230の平均炭素濃度は、それぞれの部分の厚さ方向の中心に位置し、それぞれの部分の厚さの50%分の厚さを有する部分(中心から上下それぞれに25%分の厚さの部分)における、厚さ方向に平均された炭素濃度で規定される。 The average carbon concentration of the lower portion 220 of the high resistance layer 160 is lower than the average carbon concentration of the upper portion 230 of the high resistance layer 160. Thereby, for example, the crystallinity of the upper layer portion 230 of the high resistance layer 160, the low resistance layer 170, and the barrier layer 180 can be improved. The lower layer portion 220 of the high resistance layer 160 is, for example, the lower side when the high resistance layer 160 is divided into upper and lower halves with half the thickness thereof, and the upper layer portion 230 of the high resistance layer 160 is on the upper side thereof. be. Further, the average carbon concentration of the lower layer portion 220 and the average carbon concentration of the upper layer portion 230 are located at the center in the thickness direction of each portion, and have a thickness of 50% of the thickness of each portion (center). It is defined by the carbon concentration averaged in the thickness direction in the portion having a thickness of 25% above and below each.

高抵抗層160の下層部分220の平均炭素濃度は、応力発生層150の平均炭素濃度より低い。これにより、例えば、高抵抗層160の上層部分230と、低抵抗層170と、バリア層180との結晶性を向上させることができる。 The average carbon concentration of the lower portion 220 of the high resistance layer 160 is lower than the average carbon concentration of the stress generating layer 150. Thereby, for example, the crystallinity of the upper layer portion 230 of the high resistance layer 160, the low resistance layer 170, and the barrier layer 180 can be improved.

本実施形態の窒化物半導体基板100において、炭素濃度が応力発生層150の平均炭素濃度の70%以下(好ましくは60%以下、より好ましくは50%以下)となる低炭素領域240が、界面近傍202に存在する。これにより、窒化物半導体基板100の結晶性を向上させることができる。なお、図2のA−A線は、応力発生層150の平均炭素濃度の70%を示す線である。 In the nitride semiconductor substrate 100 of the present embodiment, the low carbon region 240 having a carbon concentration of 70% or less (preferably 60% or less, more preferably 50% or less) of the average carbon concentration of the stress generating layer 150 is located near the interface. It exists in 202. Thereby, the crystallinity of the nitride semiconductor substrate 100 can be improved. The line AA in FIG. 2 is a line showing 70% of the average carbon concentration of the stress generating layer 150.

低炭素領域240における炭素濃度の極小値は、例えば、3×1018cm−3以上(より好ましくは5×1018cm−3以上、さらに好ましくは1×1019cm−3以上)3×1019cm−3以下であることが好ましい。低炭素領域240における炭素濃度の極小値が3×1018cm−3未満では、例えば、高抵抗層160の上層部分230において充分に炭素濃度を高くすることが困難となり、窒化物半導体基板100の耐圧が低下する可能性がある。これに対し、低炭素領域240における炭素濃度の極小値を3×1018cm−3以上(より好ましくは5×1018cm−3以上、さらに好ましくは1×1019cm−3以上)とすることで、例えば、高抵抗層160の上層部分230において充分に炭素濃度を高くすることが可能となり、窒化物半導体基板100の耐圧の低下を抑制することができる。一方、低炭素領域240における炭素濃度の極小値が3×1019cm−3を超えると、結晶性を向上させる効果が得られ難い。これに対し、低炭素領域240における炭素濃度の極小値を3×1019cm−3以下とすることで、例えば、高抵抗層160の上層部分230と、低抵抗層170と、バリア層180との結晶性を向上させることができる。 The minimum value of the carbon concentration in the low carbon region 240 is, for example, 3 × 10 18 cm -3 or more (more preferably 5 × 10 18 cm -3 or more, still more preferably 1 × 10 19 cm -3 or more) 3 × 10 It is preferably 19 cm -3 or less. If the minimum value of the carbon concentration in the low carbon region 240 is less than 3 × 10 18 cm -3 , it becomes difficult to sufficiently increase the carbon concentration in the upper portion 230 of the high resistance layer 160, for example, and the nitride semiconductor substrate 100 The pressure resistance may decrease. On the other hand, the minimum value of the carbon concentration in the low carbon region 240 is set to 3 × 10 18 cm -3 or more (more preferably 5 × 10 18 cm -3 or more, still more preferably 1 × 10 19 cm -3 or more). As a result, for example, it is possible to sufficiently increase the carbon concentration in the upper layer portion 230 of the high resistance layer 160, and it is possible to suppress a decrease in the withstand voltage of the nitride semiconductor substrate 100. On the other hand, if the minimum value of the carbon concentration in the low carbon region 240 exceeds 3 × 10 19 cm -3 , it is difficult to obtain the effect of improving the crystallinity. On the other hand, by setting the minimum value of the carbon concentration in the low carbon region 240 to 3 × 10 19 cm -3 or less, for example, the upper layer 230 of the high resistance layer 160, the low resistance layer 170, and the barrier layer 180 Crystallinity can be improved.

低炭素領域240の厚さは、例えば、高抵抗層160の厚さの2%以上50%以下であることが好ましい。低炭素領域240の厚さが高抵抗層160の厚さの2%未満では、結晶性を向上させる効果が得られ難い。これに対し、低炭素領域240の厚さを高抵抗層160の厚さの2%以上とすることで、例えば、高抵抗層160の上層部分230と、低抵抗層170と、バリア層180との結晶性を向上させることができる。一方、低炭素領域240の厚さが高抵抗層160の厚さの50%を超えると、例えば、高抵抗層160の上層部分230において充分に炭素濃度を高くすることが困難となり、窒化物半導体基板100の耐圧が低下する可能性がある。これに対し、低炭素領域240の厚さを高抵抗層160の厚さの50%以下とすることで、例えば、高抵抗層160の上層部分230において充分に炭素濃度を高くすることが可能となり、窒化物半導体基板100の耐圧の低下を抑制することができる。 The thickness of the low carbon region 240 is preferably 2% or more and 50% or less of the thickness of the high resistance layer 160, for example. If the thickness of the low carbon region 240 is less than 2% of the thickness of the high resistance layer 160, it is difficult to obtain the effect of improving crystallinity. On the other hand, by setting the thickness of the low carbon region 240 to 2% or more of the thickness of the high resistance layer 160, for example, the upper portion 230 of the high resistance layer 160, the low resistance layer 170, and the barrier layer 180 can be formed. Crystallinity can be improved. On the other hand, if the thickness of the low carbon region 240 exceeds 50% of the thickness of the high resistance layer 160, for example, it becomes difficult to sufficiently increase the carbon concentration in the upper portion 230 of the high resistance layer 160, and the nitride semiconductor The withstand voltage of the substrate 100 may decrease. On the other hand, by setting the thickness of the low carbon region 240 to 50% or less of the thickness of the high resistance layer 160, for example, the carbon concentration in the upper portion 230 of the high resistance layer 160 can be sufficiently increased. , It is possible to suppress a decrease in the withstand voltage of the nitride semiconductor substrate 100.

低炭素領域240は、応力発生層150と高抵抗層160との界面200にまたがって存在することが好ましい。すなわち、界面200が低炭素領域240内に存在することが好ましい。これにより、高抵抗層160の成長開始時から、結晶性の良好な窒化物半導体結晶を成長させることができる。 The low carbon region 240 preferably exists across the interface 200 between the stress generating layer 150 and the high resistance layer 160. That is, it is preferable that the interface 200 exists in the low carbon region 240. As a result, a nitride semiconductor crystal having good crystallinity can be grown from the start of growth of the high resistance layer 160.

本実施形態の窒化物半導体基板100において、炭素濃度が応力発生層150の平均炭素濃度の70%以上(好ましくは80%以上、より好ましくは90%以上)となる高炭素領域250が、高抵抗層160の上層部分230に存在する。これにより、窒化物半導体基板100の耐圧を向上させることができる。 In the nitride semiconductor substrate 100 of the present embodiment, the high carbon region 250 having a carbon concentration of 70% or more (preferably 80% or more, more preferably 90% or more) of the average carbon concentration of the stress generating layer 150 has a high resistance. It is present in the upper portion 230 of the layer 160. Thereby, the withstand voltage of the nitride semiconductor substrate 100 can be improved.

高炭素領域250における炭素濃度の極大値は、応力発生層150の平均炭素濃度と同程度であることが好ましい。具体的には、高炭素領域250における炭素濃度の極大値は、例えば、応力発生層150の平均炭素濃度の95%以上120%以下であることが好ましい。高炭素領域250における炭素濃度の極大値が応力発生層150の平均炭素濃度の95%未満では、窒化物半導体基板100の耐圧を向上させる効果が得られ難い。これに対し、高炭素領域250における炭素濃度の極大値を応力発生層150の平均炭素濃度の95%以上とすることで、窒化物半導体基板100の耐圧をさらに向上させることができる。一方、高炭素領域250における炭素濃度の極大値が応力発生層150の平均炭素濃度の120%を超えると、高抵抗層160と応力発生層150とのキャリア密度差が大きくなるため、窒化物半導体基板100の電気特性が低下する可能性がある。これに対し、高炭素領域250における炭素濃度の極大値を応力発生層150の平均炭素濃度の120%以下とすることで、高抵抗層160と応力発生層150とのキャリア密度差が小さくなるため、窒化物半導体基板100の電気特性を安定化することができる。 The maximum value of the carbon concentration in the high carbon region 250 is preferably about the same as the average carbon concentration of the stress generating layer 150. Specifically, the maximum value of the carbon concentration in the high carbon region 250 is preferably, for example, 95% or more and 120% or less of the average carbon concentration of the stress generating layer 150. If the maximum carbon concentration in the high carbon region 250 is less than 95% of the average carbon concentration of the stress generating layer 150, it is difficult to obtain the effect of improving the withstand voltage of the nitride semiconductor substrate 100. On the other hand, by setting the maximum value of the carbon concentration in the high carbon region 250 to 95% or more of the average carbon concentration of the stress generating layer 150, the withstand voltage of the nitride semiconductor substrate 100 can be further improved. On the other hand, when the maximum value of the carbon concentration in the high carbon region 250 exceeds 120% of the average carbon concentration of the stress generating layer 150, the carrier density difference between the high resistance layer 160 and the stress generating layer 150 becomes large, so that the nitride semiconductor The electrical characteristics of the substrate 100 may deteriorate. On the other hand, by setting the maximum carbon concentration in the high carbon region 250 to 120% or less of the average carbon concentration of the stress generating layer 150, the carrier density difference between the high resistance layer 160 and the stress generating layer 150 becomes small. , The electrical characteristics of the nitride semiconductor substrate 100 can be stabilized.

(水素濃度)
図2からわかるように、本実施形態の高抵抗層160の不純物濃度プロファイルにおいて、炭素濃度はその値が大きく変化しているのに対して、水素濃度はその変動量が小さい。本実施形態の窒化物半導体基板100は、このような水素濃度プロファイルを有するため、トラップとして働く欠陥の密度変動を抑制することができる。以下、本実施形態の水素濃度プロファイルの詳細について説明する。
(Hydrogen concentration)
As can be seen from FIG. 2, in the impurity concentration profile of the high resistance layer 160 of the present embodiment, the value of the carbon concentration changes significantly, whereas the value of the hydrogen concentration changes little. Since the nitride semiconductor substrate 100 of the present embodiment has such a hydrogen concentration profile, it is possible to suppress fluctuations in the density of defects that act as traps. The details of the hydrogen concentration profile of this embodiment will be described below.

高抵抗層160の平均水素濃度は、例えば、応力発生層150の平均水素濃度の15%以上100%以下である。なお、高抵抗層160の平均水素濃度は、高抵抗層160の中央部における、厚さ方向に平均された水素濃度で規定される。また、応力発生層150の平均水素濃度は、応力発生層150の上部201における、厚さ方向に平均された水素濃度で規定される。高抵抗層160の平均水素濃度が、応力発生層150の平均水素濃度の15%未満では、応力発生層150と高抵抗層160との間における、トラップとして働く欠陥の密度変動が大きくなり、窒化物半導体基板100の電気特性が低下する可能性がある。これに対し、高抵抗層160の平均水素濃度を、応力発生層150の平均水素濃度の15%以上とすることで、応力発生層150と高抵抗層160との間における、トラップとして働く欠陥の密度変動を抑制することができる。一方、高抵抗層160の平均水素濃度が、応力発生層150の平均水素濃度の100%を超えると、例えば、高抵抗層160より水素濃度が低い低抵抗層170に水素が拡散することで、窒化物半導体基板100の電気特性が低下する可能性がある。これに対し、高抵抗層160の平均水素濃度を、応力発生層150の平均水素濃度の100%以下とすることで、水素の拡散を低減し、窒化物半導体基板100の電気特性を安定化することができる。 The average hydrogen concentration of the high resistance layer 160 is, for example, 15% or more and 100% or less of the average hydrogen concentration of the stress generating layer 150. The average hydrogen concentration of the high resistance layer 160 is defined by the hydrogen concentration averaged in the thickness direction in the central portion of the high resistance layer 160. Further, the average hydrogen concentration of the stress generating layer 150 is defined by the hydrogen concentration averaged in the thickness direction in the upper portion 201 of the stress generating layer 150. When the average hydrogen concentration of the high resistance layer 160 is less than 15% of the average hydrogen concentration of the stress generation layer 150, the density variation of defects acting as traps between the stress generation layer 150 and the high resistance layer 160 becomes large, and nitrided. The electrical characteristics of the physical semiconductor substrate 100 may deteriorate. On the other hand, by setting the average hydrogen concentration of the high resistance layer 160 to 15% or more of the average hydrogen concentration of the stress generation layer 150, defects that act as traps between the stress generation layer 150 and the high resistance layer 160 Density fluctuation can be suppressed. On the other hand, when the average hydrogen concentration of the high resistance layer 160 exceeds 100% of the average hydrogen concentration of the stress generating layer 150, for example, hydrogen diffuses into the low resistance layer 170 having a lower hydrogen concentration than the high resistance layer 160. The electrical characteristics of the nitride semiconductor substrate 100 may deteriorate. On the other hand, by setting the average hydrogen concentration of the high resistance layer 160 to 100% or less of the average hydrogen concentration of the stress generating layer 150, the diffusion of hydrogen is reduced and the electrical characteristics of the nitride semiconductor substrate 100 are stabilized. be able to.

応力発生層150の平均水素濃度は、例えば、1×1018cm−3以上6×1018cm−3であり、高抵抗層160の平均水素濃度を上述の範囲(応力発生層150の平均水素濃度の15%以上100%以下)とする観点からは、高抵抗層160の平均水素濃度は、例えば、4×1017cm−3以上1×1018cm−3以下であることが好ましい。 The average hydrogen concentration of the stress generating layer 150 is, for example, 1 × 10 18 cm -3 or more and 6 × 10 18 cm -3 , and the average hydrogen concentration of the high resistance layer 160 is within the above range (average hydrogen of the stress generating layer 150). From the viewpoint of 15% or more and 100% or less of the concentration), the average hydrogen concentration of the high resistance layer 160 is preferably, for example, 4 × 10 17 cm -3 or more and 1 × 10 18 cm -3 or less.

本実施形態の窒化物半導体基板100は、高抵抗層160の水素濃度がほぼ一定の値となっている。具体的には、高抵抗層160の水素濃度の変動量は、例えば、±20%以下である。本明細書において、高抵抗層160の水素濃度の変動量とは、高抵抗層160の中央部における、高抵抗層160の平均水素濃度に対する水素濃度の変動の割合を意味する。高抵抗層160中の厚さ方向における水素濃度の変動量を小さくすることで、トラップとして働く欠陥の厚さ方向における密度変動を抑制することができる。このような窒化物半導体基板100を用いて半導体デバイスを製造した場合、その寿命および性能を向上させることができる。 In the nitride semiconductor substrate 100 of the present embodiment, the hydrogen concentration of the high resistance layer 160 is a substantially constant value. Specifically, the fluctuation amount of the hydrogen concentration in the high resistance layer 160 is, for example, ± 20% or less. In the present specification, the fluctuation amount of the hydrogen concentration of the high resistance layer 160 means the ratio of the fluctuation of the hydrogen concentration to the average hydrogen concentration of the high resistance layer 160 in the central portion of the high resistance layer 160. By reducing the fluctuation amount of the hydrogen concentration in the thickness direction in the high resistance layer 160, the density fluctuation in the thickness direction of the defect acting as a trap can be suppressed. When a semiconductor device is manufactured using such a nitride semiconductor substrate 100, its life and performance can be improved.

(酸素濃度)
図2からわかるように、本実施形態の高抵抗層160の不純物濃度プロファイルにおいて、炭素濃度はその値が大きく変化しているのに対して、酸素濃度はその変動量が小さい。本実施形態の窒化物半導体基板100は、このような酸素濃度プロファイルを有するため、電気特性を安定化することができる。以下、本実施形態の水素濃度プロファイルの詳細について説明する。
(Oxygen concentration)
As can be seen from FIG. 2, in the impurity concentration profile of the high resistance layer 160 of the present embodiment, the carbon concentration has a large change in its value, while the oxygen concentration has a small fluctuation amount. Since the nitride semiconductor substrate 100 of the present embodiment has such an oxygen concentration profile, the electrical characteristics can be stabilized. The details of the hydrogen concentration profile of this embodiment will be described below.

高抵抗層160の平均酸素濃度は、例えば、1×1016cm−3未満である。なお、高抵抗層160の平均酸素濃度は、例えば、高抵抗層160の中央部における、厚さ方向に平均された酸素濃度で規定される。高抵抗層160中で酸素はドナーとして働くため、高抵抗層160の平均酸素濃度が1×1016cm−3以上では、窒化物半導体基板100の耐圧が低下する可能性がある。これに対し、高抵抗層160の平均酸素濃度を1×1016cm−3未満とすることで、窒化物半導体基板100の耐圧を向上させることができる。なお、高抵抗層160の平均酸素濃度の下限は、特に限定されないが、1×1015cm−3以上であることが例示される。 The average oxygen concentration of the high resistance layer 160 is, for example, less than 1 × 10 16 cm -3. The average oxygen concentration of the high resistance layer 160 is defined by, for example, the oxygen concentration averaged in the thickness direction in the central portion of the high resistance layer 160. Since oxygen acts as a donor in the high resistance layer 160, if the average oxygen concentration of the high resistance layer 160 is 1 × 10 16 cm -3 or more, the withstand voltage of the nitride semiconductor substrate 100 may decrease. On the other hand, by setting the average oxygen concentration of the high resistance layer 160 to less than 1 × 10 16 cm -3 , the withstand voltage of the nitride semiconductor substrate 100 can be improved. The lower limit of the average oxygen concentration of the high resistance layer 160 is not particularly limited, but is exemplified by 1 × 10 15 cm -3 or more.

本実施形態の窒化物半導体基板100は、高抵抗層160の酸素濃度がほぼ一定の値となっている。具体的には、高抵抗層160の酸素濃度の変動量は、例えば、±50%以下である。本明細書において、高抵抗層160の酸素濃度の変動量とは、高抵抗層160の中央部における、高抵抗層160の平均酸素濃度に対する酸素濃度の変動の割合を意味する。高抵抗層160中の厚さ方向における酸素濃度の変動量を小さくすることで、窒化物半導体基板100の電気特性を安定化することができる。 In the nitride semiconductor substrate 100 of the present embodiment, the oxygen concentration of the high resistance layer 160 is a substantially constant value. Specifically, the fluctuation amount of the oxygen concentration of the high resistance layer 160 is, for example, ± 50% or less. In the present specification, the fluctuation amount of the oxygen concentration of the high resistance layer 160 means the ratio of the fluctuation of the oxygen concentration to the average oxygen concentration of the high resistance layer 160 in the central portion of the high resistance layer 160. By reducing the fluctuation amount of the oxygen concentration in the high resistance layer 160 in the thickness direction, the electrical characteristics of the nitride semiconductor substrate 100 can be stabilized.

(2)窒化物半導体基板100の製造方法
次に、本実施形態の窒化物半導体基板100の製造方法について説明する。
(2) Manufacturing Method of Nitride Semiconductor Substrate 100 Next, a manufacturing method of the nitride semiconductor substrate 100 of the present embodiment will be described.

(結晶成長装置300)
図3は、窒化物半導体基板100の製造方法に用いられる結晶成長装置300の概略構成図である。図3に示すように、結晶成長装置300は、反応炉310と、制御部370とを備えている。反応炉310内には、シリコン基板110を載置するためのサセプタ320が配置されている。サセプタ320の上方には、サセプタ320の上面と相互に間隔をあけて対向するように、石英(酸化シリコン)からなる天板342が支持固定されている。
(Crystal Growth Device 300)
FIG. 3 is a schematic configuration diagram of the crystal growth apparatus 300 used in the method for manufacturing the nitride semiconductor substrate 100. As shown in FIG. 3, the crystal growth apparatus 300 includes a reactor 310 and a control unit 370. A susceptor 320 for mounting the silicon substrate 110 is arranged in the reaction furnace 310. Above the susceptor 320, a top plate 342 made of quartz (silicon oxide) is supported and fixed so as to face the upper surface of the susceptor 320 at a distance from each other.

サセプタ320と天板342との間に区画形成される空間350は、III族原料ガスGa1、V族原料ガスGa2およびキャリアガスGb1が供給される流路となる。III族原料ガスGa1とともに供給されるキャリアガスと、V族原料ガスGa2とともに供給されるキャリアガスと、をまとめて、キャリアガスGb1と表す。天板342のサセプタ320と反対側に配置される、天板342と反応炉310の内壁との間の空間351は、天板342を冷却する冷却ガスGb2が供給される流路となる。ガスGa1、Ga2、Gb1およびGb2のそれぞれの流量および組成は、制御部370に制御される流量調整機構(図示せず)により調整される。図3では、紙面の左から右へガスGa1、Ga2、Gb1およびGb2が流れる。 The space 350 partitioned between the susceptor 320 and the top plate 342 serves as a flow path for supplying the group III raw material gas Ga1, the group V raw material gas Ga2, and the carrier gas Gb1. The carrier gas supplied together with the group III raw material gas Ga1 and the carrier gas supplied together with the group V raw material gas Ga2 are collectively referred to as a carrier gas Gb1. The space 351 between the top plate 342 and the inner wall of the reactor 310, which is arranged on the opposite side of the top plate 342 from the susceptor 320, serves as a flow path to which the cooling gas Gb2 for cooling the top plate 342 is supplied. The flow rates and compositions of the gases Ga1, Ga2, Gb1 and Gb2 are adjusted by a flow rate adjusting mechanism (not shown) controlled by the control unit 370. In FIG. 3, gas Ga1, Ga2, Gb1 and Gb2 flow from the left to the right of the paper surface.

サセプタ320上に石英からなるサセプタカバー341が載置される。サセプタカバー341は、サセプタ320が原料ガスにより汚染されないようにサセプタ320を被覆保護する機能等を有する。サセプタカバー341には、開口部331が設けられており、開口部331内に、シリコン基板110が載置される。図3は、シリコン基板110が、回転機構330を介して載置される態様を例示する。回転機構330により、シリコン基板110を回転させながら、シリコン基板110上に、窒化物半導体層120を構成する各層を成長させることができる。 A susceptor cover 341 made of quartz is placed on the susceptor 320. The susceptor cover 341 has a function of covering and protecting the susceptor 320 so that the susceptor 320 is not contaminated by the raw material gas. The susceptor cover 341 is provided with an opening 331, and the silicon substrate 110 is placed in the opening 331. FIG. 3 illustrates a mode in which the silicon substrate 110 is placed via the rotation mechanism 330. The rotation mechanism 330 allows each layer constituting the nitride semiconductor layer 120 to grow on the silicon substrate 110 while rotating the silicon substrate 110.

サセプタ320には、外周側ヒータ361と内周側ヒータ362とが設けられている。外周側ヒータ361により、サセプタ320上に載置されたサセプタカバー341を加熱することができる。内周側ヒータ362により、サセプタ320上に回転機構330を介して載置されたシリコン基板110を加熱することができる。外周側ヒータ361および内周側ヒータ362のそれぞれは、所定のタイミングで所定の成長温度となるように、制御部370により制御される。 The susceptor 320 is provided with an outer peripheral side heater 361 and an inner peripheral side heater 362. The outer peripheral side heater 361 can heat the susceptor cover 341 mounted on the susceptor 320. The inner peripheral side heater 362 can heat the silicon substrate 110 mounted on the susceptor 320 via the rotation mechanism 330. Each of the outer peripheral side heater 361 and the inner peripheral side heater 362 is controlled by the control unit 370 so as to reach a predetermined growth temperature at a predetermined timing.

図4は、本実施形態の窒化物半導体基板100の製造方法の一例を示すフローチャートである。本実施形態の窒化物半導体基板100の製造方法は、例えば、基板準備工程S101と、反応抑制層形成工程S102と、中間層形成工程S103と、応力発生層形成工程S104と、表面改質工程S105と、高抵抗層形成工程S106と、低抵抗層形成工程S107と、バリア層形成工程S108と、を有する。 FIG. 4 is a flowchart showing an example of a method for manufacturing the nitride semiconductor substrate 100 of the present embodiment. The method for manufacturing the nitride semiconductor substrate 100 of the present embodiment is, for example, a substrate preparation step S101, a reaction suppression layer forming step S102, an intermediate layer forming step S103, a stress generating layer forming step S104, and a surface modification step S105. A high resistance layer forming step S106, a low resistance layer forming step S107, and a barrier layer forming step S108.

(基板準備工程S101)
まず、基板準備工程S101では、シリコン基板110を準備する。シリコン基板110は、反応炉310内(開口部331内)に載置する。
(Substrate preparation step S101)
First, in the substrate preparation step S101, the silicon substrate 110 is prepared. The silicon substrate 110 is placed in the reactor 310 (inside the opening 331).

(反応抑制層形成工程S102)
シリコン基板110を反応炉310内に載置したら、シリコン基板110上に、例えば、MOCVD法によりAlGaN(好ましくはAlN)を成長させることで反応抑制層130を形成する。III族原料ガスGa1のうちGa原料ガスとしては、例えば、トリメチルガリウム(Ga(CH、TMG)ガスおよびトリエチルガリウム(Ga(C、TEG)ガスの少なくとも一方を用いることができる。III族原料ガスGa1のうちAl原料ガスとしては、例えば、トリメチルアルミニウム(Al(CH、TMA)ガスを用いることができる。V族原料ガスGa2である窒素(N)原料ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。キャリアガスGb1としては、例えば、窒素(N)ガスおよび水素(H)ガスの少なくとも一方を用いることができる。冷却ガスGb2としては、例えば、NガスおよびHガスの少なくとも一方を用いることができる。なお、以降の工程においても、ガスGa1、Ga2、Gb1およびGb2としては、上述した各種ガスを用いることができる。
(Reaction suppression layer forming step S102)
After the silicon substrate 110 is placed in the reaction furnace 310, the reaction suppression layer 130 is formed on the silicon substrate 110 by growing AlGaN (preferably AlN) on the silicon substrate 110, for example, by the MOCVD method. Of the group III raw material gas Ga1, at least one of trimethylgallium (Ga (CH 3 ) 3 , TMG) gas and triethyl gallium (Ga (C 2 H 5 ) 3 , TEG) gas is used as the Ga raw material gas. Can be done. As the Al raw material gas among the group III raw material gas Ga1, for example, trimethylaluminum (Al (CH 3 ) 3 , TMA) gas can be used. As the nitrogen (N) raw material gas which is the group V raw material gas Ga2, for example, ammonia (NH 3 ) gas can be used. As the carrier gas Gb1, for example, at least one of nitrogen (N 2 ) gas and hydrogen (H 2 ) gas can be used. As the cooling gas Gb2, for example, at least one of N 2 gas and H 2 gas can be used. In the subsequent steps as well, the above-mentioned various gases can be used as the gases Ga1, Ga2, Gb1 and Gb2.

反応抑制層形成工程S102における成長温度は、例えば、900℃以上1260℃以下の範囲で選択可能であり、III族原料ガスGa1に対するV族原料ガスGa2の流量比であるV/III比は、例えば、10以上10000以下の範囲で選択可能である。 The growth temperature in the reaction suppression layer forming step S102 can be selected, for example, in the range of 900 ° C. or higher and 1260 ° C. or lower, and the V / III ratio, which is the flow rate ratio of the group V raw material gas Ga2 to the group III raw material gas Ga1, is, for example. It can be selected in the range of 10 or more and 10000 or less.

(中間層形成工程S103)
反応抑制層130を形成したら、反応抑制層130上に、例えば、MOCVD法によりAlGaNを成長させることで中間層140を形成する。
(Intermediate layer forming step S103)
After the reaction suppression layer 130 is formed, the intermediate layer 140 is formed on the reaction suppression layer 130 by, for example, growing AlGaN by the MOCVD method.

中間層形成工程S103における成長温度は、例えば、900℃以上1260℃以下の範囲で選択可能であり、V/III比は、例えば、10以上10000以下の範囲で選択可能である。 The growth temperature in the intermediate layer forming step S103 can be selected, for example, in the range of 900 ° C. or higher and 1260 ° C. or lower, and the V / III ratio can be selected in the range of 10 or more and 10000 ° C. or lower, for example.

(応力発生層形成工程S104)
中間層140を形成したら、中間層140上に、例えば、MOCVD法により、第1の窒化物半導体結晶層151としてのAlNと、第2の窒化物半導体結晶層152としてのAlGaNを交互に積層させることで応力発生層150を形成する。第1の窒化物半導体結晶層151を形成する際は、例えば、III族原料ガスGa1としてTMAガスを空間350に供給し、第2の窒化物半導体結晶層152を形成する際は、例えば、III族原料ガスGa1としてTMAガスおよびTMGガスを空間350に供給する。
(Stress generation layer forming step S104)
After the intermediate layer 140 is formed, AlN as the first nitride semiconductor crystal layer 151 and AlGaN as the second nitride semiconductor crystal layer 152 are alternately laminated on the intermediate layer 140, for example, by the MOCVD method. This forms the stress generating layer 150. When forming the first nitride semiconductor crystal layer 151, for example, TMA gas is supplied to the space 350 as the group III raw material gas Ga1, and when forming the second nitride semiconductor crystal layer 152, for example, III. TMA gas and TMG gas are supplied to the space 350 as the group raw material gas Ga1.

応力発生層形成工程S104における成長温度は、例えば、900℃以上1260℃以下の範囲で選択可能であり、V/III比は、例えば、10以上10000以下の範囲で選択可能である。 The growth temperature in the stress generation layer forming step S104 can be selected, for example, in the range of 900 ° C. or higher and 1260 ° C. or lower, and the V / III ratio can be selected in the range of 10 or more and 10000 ° C. or lower, for example.

図5は、応力発生層形成工程S104、表面改質工程S105および高抵抗層形成工程S106における成長条件の制御の一例を概念的に示すタイミングチャートである。図5の上のタイミングチャートは、各工程におけるIII族原料ガスGa1(TMAガス、TMGガス、TEGガス)、V族原料ガスGa2(NHガス)およびキャリアガスGb1(Hガス、Nガス)の供給量の増減を示す。図5の下のタイミングチャートは、各工程における外周側ヒータ361および内周側ヒータ362の制御温度を示す。なお、外周側ヒータ361および内周側ヒータ362の制御温度は、応力発生層形成工程S104および高抵抗層形成工程S106においては、成長温度と言い換えることもできる。 FIG. 5 is a timing chart conceptually showing an example of control of growth conditions in the stress generation layer forming step S104, the surface modification step S105, and the high resistance layer forming step S106. Timing charts of the top of FIG. 5, III group material gas Ga1 in each step (TMA gas, TMG gas, TEG gas), V group material gas Ga2 (NH 3 gas) and the carrier gas Gb1 (H 2 gas, N 2 gas ) Indicates an increase or decrease in the supply amount. The timing chart at the bottom of FIG. 5 shows the control temperatures of the outer peripheral side heater 361 and the inner peripheral side heater 362 in each step. The control temperature of the outer peripheral side heater 361 and the inner peripheral side heater 362 can be rephrased as the growth temperature in the stress generation layer forming step S104 and the high resistance layer forming step S106.

図5に示すように、応力発生層形成工程S104では、例えば、TMGガスの供給量を増加させるタイミング、すなわち、第2の窒化物半導体結晶層152を形成するタイミングで、V族原料ガスGa2(NHガス)の供給量を増加させることが好ましい。これにより、第2の窒化物半導体結晶層152の結晶性を向上させることができる。第2の窒化物半導体結晶層152の結晶性を向上させることで、トラップとして働く欠陥が低減されるため、応力発生層150の水素濃度を低くすることができる。その結果、応力発生層150と高抵抗層160との水素濃度差が小さくなり、トラップとして働く欠陥の層間における密度変動を抑制することができる。 As shown in FIG. 5, in the stress generation layer forming step S104, for example, at the timing of increasing the supply amount of TMG gas, that is, at the timing of forming the second nitride semiconductor crystal layer 152, the group V raw material gas Ga2 ( it is preferable to increase the supply amount of the NH 3 gas). Thereby, the crystallinity of the second nitride semiconductor crystal layer 152 can be improved. By improving the crystallinity of the second nitride semiconductor crystal layer 152, defects acting as traps are reduced, so that the hydrogen concentration of the stress generating layer 150 can be lowered. As a result, the difference in hydrogen concentration between the stress generating layer 150 and the high resistance layer 160 becomes small, and the density fluctuation between the layers of the defects acting as traps can be suppressed.

図5に示すように、応力発生層形成工程S104では、応力発生層150の最上層(例えば、第1の窒化物半導体結晶層151)を形成するタイミングで、V族原料ガスGa2(NHガス)の供給量を増加させることが好ましい。これにより、界面近傍202(特に、応力発生層150側)の炭素濃度を低くすることができる。また、低炭素領域240を、界面200にまたがって存在させることができる。その結果、高抵抗層160の成長開始時から、結晶性の良好な窒化物半導体結晶を成長させることができる。 As shown in FIG. 5, the stress generation layer forming step S104, the top layer of stress-creating layers 150 (e.g., the first nitride semiconductor crystal layer 151) at a timing of forming a, V group material gas Ga2 (NH 3 gas ) Is preferably increased. As a result, the carbon concentration in the vicinity of the interface 202 (particularly on the stress generating layer 150 side) can be lowered. Further, the low carbon region 240 can be present across the interface 200. As a result, a nitride semiconductor crystal having good crystallinity can be grown from the start of growth of the high resistance layer 160.

(表面改質工程S105)
応力発生層150を形成したら、シリコン基板110と、表面改質工程S105を行う前(応力発生層形成工程S104を行った後)までに形成された窒化物半導体層120とを、NHガス雰囲気中で一定時間保持することで応力発生層150の表面を改質する。これにより、応力発生層150の表面が再配置され、表面を平坦化することができる。また、応力発生層150の表面から炭素を脱離させ、界面近傍202の炭素濃度を低くすることができる。すなわち、低炭素領域240を界面近傍202に存在させることが可能となる。その結果、後述する高抵抗層形成工程S106において、結晶性の良好な窒化物半導体結晶を成長させることができる。
(Surface modification step S105)
After forming the stress generation layer 150, the silicon substrate 110, and a nitride semiconductor layer 120 formed before (after stress generation layer forming step S104) to perform the surface modification step S105, NH 3 gas atmosphere The surface of the stress generating layer 150 is modified by holding it inside for a certain period of time. As a result, the surface of the stress generating layer 150 can be rearranged and the surface can be flattened. Further, carbon can be desorbed from the surface of the stress generating layer 150 to reduce the carbon concentration in the vicinity of the interface 202. That is, the low carbon region 240 can be present in the vicinity of the interface 202. As a result, a nitride semiconductor crystal having good crystallinity can be grown in the high resistance layer forming step S106 described later.

図5に示すように、表面改質工程S105では、応力発生層形成工程S104において、応力発生層150の最上層を形成した際のV族原料ガスGa2(NHガス)の供給量を保つことが好ましい。すなわち、NHガスの供給量を増加させたまま表面改質工程S105を行うことが好ましい。これにより、応力発生層150の表面の改質を速やかに行うことができる。なお、表面改質工程S105では、NHガスの供給量をさらに増加させてもよい。 As shown in FIG. 5, the surface modification step S105, the stress generation layer forming step S104, to keep the supply amount of the group V material gas when forming the uppermost layer of stress-creating layers 150 Ga2 (NH 3 gas) Is preferable. That is, it is preferable to perform the surface modification step S105 while increasing the supply amount of NH 3 gas. As a result, the surface of the stress generating layer 150 can be quickly modified. In the surface modification step S105, it may further increase the supply amount of the NH 3 gas.

図5に示すように、表面改質工程S105では、外周側ヒータ361および内周側ヒータ362の制御温度を、応力発生層形成工程S104における成長温度より高くすることが好ましい。具体的には、外周側ヒータ361および内周側ヒータ362の制御温度は、例えば、1000℃以上1300℃以下とすることが好ましい。外周側ヒータ361および内周側ヒータ362の制御温度が1000℃未満では、応力発生層150の表面の改質が進み難い可能性がある。これに対し、外周側ヒータ361および内周側ヒータ362の制御温度を1000℃以上とすることで、応力発生層150の表面の改質を速やかに行うことができる。一方、外周側ヒータ361および内周側ヒータ362の制御温度が1300℃を超えると、応力発生層150の表面のエッチングが進行し、応力発生層150が分解されてしまう可能性がある。これに対し、外周側ヒータ361および内周側ヒータ362の制御温度を1300℃以下とすることで、応力発生層150の分解を抑制することができる。 As shown in FIG. 5, in the surface modification step S105, it is preferable that the control temperature of the outer peripheral side heater 361 and the inner peripheral side heater 362 is higher than the growth temperature in the stress generation layer forming step S104. Specifically, the control temperature of the outer peripheral side heater 361 and the inner peripheral side heater 362 is preferably, for example, 1000 ° C. or higher and 1300 ° C. or lower. If the control temperature of the outer peripheral side heater 361 and the inner peripheral side heater 362 is less than 1000 ° C., it may be difficult to proceed with the modification of the surface of the stress generating layer 150. On the other hand, by setting the control temperature of the outer peripheral side heater 361 and the inner peripheral side heater 362 to 1000 ° C. or higher, the surface of the stress generating layer 150 can be quickly modified. On the other hand, if the control temperatures of the outer peripheral side heater 361 and the inner peripheral side heater 362 exceed 1300 ° C., etching of the surface of the stress generating layer 150 may proceed and the stress generating layer 150 may be decomposed. On the other hand, by setting the control temperature of the outer peripheral side heater 361 and the inner peripheral side heater 362 to 1300 ° C. or lower, the decomposition of the stress generating layer 150 can be suppressed.

表面改質工程S105を行う時間は、例えば、1分以上10分以下とすることが好ましい。表面改質工程S105を行う時間が1分未満では、応力発生層150の表面の改質が充分に行われない可能性がある。これに対し、表面改質工程S105を行う時間を1分以上とすることで、応力発生層150の表面の改質を充分に行うことができる。一方、表面改質工程S105を行う時間が10分を超えると、応力発生層150の表面のエッチングが進行し、応力発生層150が分解されてしまう可能性がある。これに対し、表面改質工程S105を行う時間を10分以下とすることで、応力発生層150の分解を抑制することができる。また、シリコン基板110へのダメージを抑制することができる。 The time for performing the surface modification step S105 is preferably, for example, 1 minute or more and 10 minutes or less. If the time for performing the surface modification step S105 is less than 1 minute, the surface of the stress generating layer 150 may not be sufficiently modified. On the other hand, by setting the time for performing the surface modification step S105 to 1 minute or more, the surface of the stress generating layer 150 can be sufficiently modified. On the other hand, if the time for performing the surface modification step S105 exceeds 10 minutes, the etching of the surface of the stress generating layer 150 proceeds, and the stress generating layer 150 may be decomposed. On the other hand, by setting the time for performing the surface modification step S105 to 10 minutes or less, the decomposition of the stress generating layer 150 can be suppressed. In addition, damage to the silicon substrate 110 can be suppressed.

(高抵抗層形成工程S106)
応力発生層150の表面を改質したら、応力発生層150上に、例えば、MOCVD法によりAlGaN(好ましくはGaN)を成長させることで高抵抗層160を形成する。表面改質工程S105にて応力発生層150の表面を改質しているため、高抵抗層形成工程S106では、結晶性の良好な窒化物半導体結晶を成長させることができる。
(High resistance layer forming step S106)
After modifying the surface of the stress generating layer 150, the high resistance layer 160 is formed by growing AlGaN (preferably GaN) on the stress generating layer 150, for example, by the MOCVD method. Since the surface of the stress generating layer 150 is modified in the surface modification step S105, a nitride semiconductor crystal having good crystallinity can be grown in the high resistance layer forming step S106.

高抵抗層形成工程S106における成長温度は、例えば、900℃以上1260℃以下の範囲で選択可能であり、V/III比は、例えば、10以上10000以下の範囲で選択可能である。 The growth temperature in the high resistance layer forming step S106 can be selected, for example, in the range of 900 ° C. or higher and 1260 ° C. or lower, and the V / III ratio can be selected in the range of 10 or more and 10000 ° C. or lower, for example.

図5に示すように、高抵抗層形成工程S106では、V族原料ガスGa2(NHガス)の供給量を、表面改質工程S105におけるNHガスの供給量よりも減少させる。好ましくは、高抵抗層形成工程S106では、NHガスの供給量を、応力発生層形成工程S104におけるNHガスの供給量よりも減少させる。NHガスの供給量を減少させることで、結晶の表面が次第に荒れて炭素の取り込み量が増加するため、表面改質工程S105にて一度低くした炭素濃度を、結晶成長に伴って再び高くすることができる。つまり、本実施形態では、表面モフォロジーの制御によって、炭素の取り込み量を増加させ、炭素濃度を高くすることができる。これにより、窒化物半導体基板100の耐圧を確保しつつ、その結晶性を向上させることができる。 As shown in FIG. 5, the high-resistance layer formation step S106, the supply amount of group V material gas Ga2 (NH 3 gas), is smaller than the supply amount of the NH 3 gas in the surface modification step S105. Preferably, the high-resistance layer formation step S106, the supply amount of the NH 3 gas, reducing than the supply amount of the NH 3 gas in the stress generating layer forming step S104. By reducing the supply amount of the NH 3 gas, since the uptake of carbon surface of the crystal rough gradually increases, the carbon concentration was once lowered by surface modification step S105, increasing again with the crystal growth be able to. That is, in the present embodiment, the amount of carbon uptake can be increased and the carbon concentration can be increased by controlling the surface morphology. As a result, the crystallinity of the nitride semiconductor substrate 100 can be improved while ensuring the withstand voltage.

図5に示すように、高抵抗層形成工程S106では、成長温度を、表面改質工程S105における外周側ヒータ361および内周側ヒータ362の制御温度より低くすることが好ましく、応力発生層形成工程S104における成長温度と同程度にすることがより好ましい。これにより、結晶成長に伴って炭素濃度を高くすることができる。その結果、高炭素領域250を高抵抗層160の上層部分230に存在させることが可能となる。なお、本明細書において、成長温度が同程度とは、例えば、温度差が±20℃以下(好ましくは±10℃以下、より好ましくは±5℃以下)であることを意味する。 As shown in FIG. 5, in the high resistance layer forming step S106, the growth temperature is preferably lower than the control temperatures of the outer peripheral side heater 361 and the inner peripheral side heater 362 in the surface modification step S105, and the stress generating layer forming step. It is more preferable that the temperature is about the same as the growth temperature in S104. As a result, the carbon concentration can be increased as the crystal grows. As a result, the high carbon region 250 can be present in the upper portion 230 of the high resistance layer 160. In the present specification, the same degree of growth temperature means, for example, that the temperature difference is ± 20 ° C. or less (preferably ± 10 ° C. or less, more preferably ± 5 ° C. or less).

図5に示すように、高抵抗層形成工程S106の開始時(高抵抗層160の成長開始時)では、Ga原料ガスとしてTEGガスを用い、結晶成長に伴ってTEGガスの供給量を次第に減少させ、TMGガスの供給量を次第に増加させることが好ましい。なお、III族原料ガスGa1の供給量全体としては、一定とすることができる。温度、圧力等の成長条件にもよるが、多くの場合TEGガスは、TMGガスに比べて原料ガス中の炭素が結晶中に取り込まれ難い。したがって、高抵抗層160の成長開始時にTEGガスを用いることで、界面近傍202の炭素濃度を低くすることができる。また、その後にTEGガスの供給量を減少させ、TMGガスの供給量を増加させることで、結晶成長に伴って炭素濃度を高くすることができる。その結果、高炭素領域250の炭素濃度の極大値を、応力発生層150の平均炭素濃度と同程度にすることが可能となる。 As shown in FIG. 5, at the start of the high resistance layer forming step S106 (at the start of growth of the high resistance layer 160), TEG gas is used as the Ga raw material gas, and the supply amount of TEG gas is gradually reduced as the crystal grows. It is preferable to gradually increase the supply amount of TMG gas. The total supply amount of the group III raw material gas Ga1 can be kept constant. Although it depends on the growth conditions such as temperature and pressure, in many cases, in TEG gas, carbon in the raw material gas is less likely to be incorporated into the crystal than in TMG gas. Therefore, by using TEG gas at the start of growth of the high resistance layer 160, the carbon concentration in the vicinity of the interface 202 can be lowered. Further, by subsequently reducing the supply amount of TEG gas and increasing the supply amount of TMG gas, the carbon concentration can be increased as the crystal grows. As a result, the maximum value of the carbon concentration in the high carbon region 250 can be made to be about the same as the average carbon concentration of the stress generating layer 150.

高抵抗層形成工程S106では、キャリアガスGb1としてのHガスの供給量を制御することで、高抵抗層160の水素濃度を選択的に制御してもよい。具体的には、図5に示すように、高抵抗層形成工程S106では、キャリアガスGb1として、Hガスの供給量を増加させ、Nガスの供給量を減少させることが好ましい。これにより、結晶成長装置300内の全圧を保ちつつ、高抵抗層160の水素濃度を選択的に高くすることができる。通常、高抵抗層160は、応力発生層150に比べて水素濃度が低くなりやすいため、高抵抗層160の水素濃度を選択的に高くすることで、応力発生層150と高抵抗層160との水素濃度差が小さくなり、トラップとして働く欠陥の層間における密度変動を抑制することができる。 In the high resistance layer forming step S106, the hydrogen concentration of the high resistance layer 160 may be selectively controlled by controlling the supply amount of the H 2 gas as the carrier gas Gb1. Specifically, as shown in FIG. 5, in the high resistance layer forming step S106, it is preferable to increase the supply amount of H 2 gas and decrease the supply amount of N 2 gas as the carrier gas Gb1. Thereby, the hydrogen concentration of the high resistance layer 160 can be selectively increased while maintaining the total pressure in the crystal growth apparatus 300. Normally, the high resistance layer 160 tends to have a lower hydrogen concentration than the stress generation layer 150. Therefore, by selectively increasing the hydrogen concentration of the high resistance layer 160, the stress generation layer 150 and the high resistance layer 160 can be combined. The difference in hydrogen concentration becomes small, and the density fluctuation between the layers of defects that act as traps can be suppressed.

高抵抗層形成工程S106では、III族原料ガスGa1の供給量全体を増加させてもよい。これにより、結晶成長レートが大きくなるため、水素濃度および酸素濃度をそれぞれ低くすることができる。また、本実施形態では、上述のように表面モフォロジーの制御によって炭素濃度を高くしているため、炭素濃度を高くしつつ、水素濃度および酸素濃度をそれぞれ低くすることができる。 In the high resistance layer forming step S106, the total supply amount of the group III raw material gas Ga1 may be increased. As a result, the crystal growth rate increases, so that the hydrogen concentration and the oxygen concentration can be lowered, respectively. Further, in the present embodiment, since the carbon concentration is increased by controlling the surface morphology as described above, the hydrogen concentration and the oxygen concentration can be decreased while increasing the carbon concentration.

高抵抗層形成工程S106では、高抵抗層160の成長中は、V/III比を一定とすることが好ましい。すなわち、本工程では、III族原料ガスGa1の供給量全体を一定とし、かつ、V族原料ガスGa2の供給量を一定とすることが好ましい。これにより、高抵抗層形成工程S106における結晶成長レートが一定となるため、高抵抗層160中の水素濃度および酸素濃度をほぼ一定に保つことができる。 In the high resistance layer forming step S106, it is preferable that the V / III ratio is constant during the growth of the high resistance layer 160. That is, in this step, it is preferable that the entire supply amount of the group III raw material gas Ga1 is constant and the supply amount of the group V raw material gas Ga2 is constant. As a result, the crystal growth rate in the high resistance layer forming step S106 becomes constant, so that the hydrogen concentration and the oxygen concentration in the high resistance layer 160 can be kept substantially constant.

(低抵抗層形成工程S107)
高抵抗層160を形成したら、高抵抗層160上に、例えば、MOCVD法によりAlGaN(好ましくはGaN)を成長させることで低抵抗層170を形成する。低抵抗層形成工程S107では、低抵抗層170の炭素濃度が、高抵抗層160の炭素濃度より低くなるような成長条件に制御する。これにより、窒化物半導体基板100の電気特性を向上させることができる。
(Low resistance layer forming step S107)
After the high resistance layer 160 is formed, the low resistance layer 170 is formed by growing AlGaN (preferably GaN) on the high resistance layer 160, for example, by the MOCVD method. In the low resistance layer forming step S107, the growth conditions are controlled so that the carbon concentration of the low resistance layer 170 is lower than the carbon concentration of the high resistance layer 160. Thereby, the electrical characteristics of the nitride semiconductor substrate 100 can be improved.

低抵抗層形成工程S107における成長温度は、例えば、900℃以上1260℃以下の範囲で選択可能であり、V/III比は、例えば、10以上10000以下の範囲で選択可能である。 The growth temperature in the low resistance layer forming step S107 can be selected, for example, in the range of 900 ° C. or higher and 1260 ° C. or lower, and the V / III ratio can be selected in the range of 10 or more and 10000 ° C. or lower, for example.

(バリア層形成工程S108)
低抵抗層170を形成したら、低抵抗層170上に、例えば、MOCVD法によりAlGaNを成長させることでバリア層180を形成する。
(Barrier layer forming step S108)
After the low resistance layer 170 is formed, the barrier layer 180 is formed on the low resistance layer 170 by, for example, growing AlGaN by the MOCVD method.

バリア層形成工程S108における成長温度は、例えば、900℃以上1260℃以下の範囲で選択可能であり、V/III比は、例えば、10以上20000以下の範囲で選択可能である。 The growth temperature in the barrier layer forming step S108 can be selected, for example, in the range of 900 ° C. or higher and 1260 ° C. or lower, and the V / III ratio can be selected in the range of 10 or more and 20000 ° C. or lower, for example.

以上の工程により、図2に示したような不純物プロファイルを有する窒化物半導体基板100が得られる。 Through the above steps, a nitride semiconductor substrate 100 having an impurity profile as shown in FIG. 2 can be obtained.

(3)本実施形態に係る効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(3) Effects of the present embodiment According to the present embodiment, one or more of the following effects are exhibited.

(a)本実施形態の窒化物半導体基板100において、高抵抗層160の平均酸素濃度は、例えば、1×1016cm−3未満である。高抵抗層160中で酸素はドナーとして働くため、高抵抗層160の平均酸素濃度が1×1016cm−3以上では、窒化物半導体基板100の耐圧が低下する可能性がある。これに対し、高抵抗層160の平均酸素濃度を1×1016cm−3未満とすることで、窒化物半導体基板100の耐圧を向上させることができる。 (A) In the nitride semiconductor substrate 100 of the present embodiment, the average oxygen concentration of the high resistance layer 160 is, for example, less than 1 × 10 16 cm -3. Since oxygen acts as a donor in the high resistance layer 160, if the average oxygen concentration of the high resistance layer 160 is 1 × 10 16 cm -3 or more, the withstand voltage of the nitride semiconductor substrate 100 may decrease. On the other hand, by setting the average oxygen concentration of the high resistance layer 160 to less than 1 × 10 16 cm -3 , the withstand voltage of the nitride semiconductor substrate 100 can be improved.

(b)本実施形態の窒化物半導体基板100において、高抵抗層160の酸素濃度の変動量は、例えば、±50%以下である。高抵抗層160中の厚さ方向における酸素濃度の変動量を小さくすることで、窒化物半導体基板100の電気特性を安定化することができる。 (B) In the nitride semiconductor substrate 100 of the present embodiment, the fluctuation amount of the oxygen concentration of the high resistance layer 160 is, for example, ± 50% or less. By reducing the fluctuation amount of the oxygen concentration in the high resistance layer 160 in the thickness direction, the electrical characteristics of the nitride semiconductor substrate 100 can be stabilized.

(c)本実施形態の窒化物半導体基板100において、炭素濃度が応力発生層150の平均炭素濃度の70%以下(好ましくは60%以下、より好ましくは50%以下)となる低炭素領域240が、界面近傍202に存在する。これにより、例えば、高抵抗層160の上層部分230と、低抵抗層170と、バリア層180との結晶性を向上させることができる。 (C) In the nitride semiconductor substrate 100 of the present embodiment, the low carbon region 240 having a carbon concentration of 70% or less (preferably 60% or less, more preferably 50% or less) of the average carbon concentration of the stress generating layer 150 is provided. , Located near the interface 202. Thereby, for example, the crystallinity of the upper layer portion 230 of the high resistance layer 160, the low resistance layer 170, and the barrier layer 180 can be improved.

(d)本実施形態の窒化物半導体基板100において、低炭素領域240における炭素濃度の極小値は、例えば、3×1018cm−3以上(より好ましくは5×1018cm−3以上、さらに好ましくは1×1019cm−3以上)3×1019cm−3以下であることが好ましい。これにより、窒化物半導体基板100の耐圧の低下を抑制することができる。また、例えば、高抵抗層160の上層部分230と、低抵抗層170と、バリア層180との結晶性を向上させることができる。 (D) In the nitride semiconductor substrate 100 of the present embodiment, the minimum value of the carbon concentration in the low carbon region 240 is, for example, 3 × 10 18 cm -3 or more (more preferably 5 × 10 18 cm -3 or more, and more preferably 5 × 10 18 cm -3 or more. It is preferably 1 × 10 19 cm -3 or more) 3 × 10 19 cm -3 or less. As a result, it is possible to suppress a decrease in the withstand voltage of the nitride semiconductor substrate 100. Further, for example, the crystallinity of the upper layer portion 230 of the high resistance layer 160, the low resistance layer 170, and the barrier layer 180 can be improved.

(e)本実施形態の窒化物半導体基板100において、低炭素領域240の厚さは、例えば、高抵抗層160の厚さの2%以上50%以下であることが好ましい。これにより、例えば、高抵抗層160の上層部分230と、低抵抗層170と、バリア層180との結晶性を向上させることができる。また、窒化物半導体基板100の耐圧の低下を抑制することができる。 (E) In the nitride semiconductor substrate 100 of the present embodiment, the thickness of the low carbon region 240 is preferably 2% or more and 50% or less of the thickness of the high resistance layer 160, for example. Thereby, for example, the crystallinity of the upper layer portion 230 of the high resistance layer 160, the low resistance layer 170, and the barrier layer 180 can be improved. Further, it is possible to suppress a decrease in the withstand voltage of the nitride semiconductor substrate 100.

(f)本実施形態の窒化物半導体基板100において、低炭素領域240は、応力発生層150と高抵抗層160との界面200にまたがって存在することが好ましい。これにより、高抵抗層160の成長開始時から、結晶性の良好な窒化物半導体結晶を成長させることができる。 (F) In the nitride semiconductor substrate 100 of the present embodiment, the low carbon region 240 preferably exists across the interface 200 between the stress generating layer 150 and the high resistance layer 160. As a result, a nitride semiconductor crystal having good crystallinity can be grown from the start of growth of the high resistance layer 160.

(g)本実施形態の窒化物半導体基板100において、炭素濃度が応力発生層150の平均炭素濃度の70%以上(好ましくは80%以上、より好ましくは90%以上)となる高炭素領域250が、高抵抗層160の上層部分230に存在する。これにより、窒化物半導体基板100の耐圧を向上させることができる。 (G) In the nitride semiconductor substrate 100 of the present embodiment, the high carbon region 250 having a carbon concentration of 70% or more (preferably 80% or more, more preferably 90% or more) of the average carbon concentration of the stress generating layer 150 is provided. , Exists in the upper portion 230 of the high resistance layer 160. Thereby, the withstand voltage of the nitride semiconductor substrate 100 can be improved.

(h)本実施形態の窒化物半導体基板100において、高炭素領域250における炭素濃度の極大値は、例えば、応力発生層150の平均炭素濃度の95%以上120%以下であることが好ましい。これにより、窒化物半導体基板100の耐圧をさらに向上させることができる。また、高抵抗層160と応力発生層150とのキャリア密度差が小さくなるため、窒化物半導体基板100の電気特性を安定化することができる。 (H) In the nitride semiconductor substrate 100 of the present embodiment, the maximum value of the carbon concentration in the high carbon region 250 is preferably, for example, 95% or more and 120% or less of the average carbon concentration of the stress generating layer 150. Thereby, the withstand voltage of the nitride semiconductor substrate 100 can be further improved. Further, since the carrier density difference between the high resistance layer 160 and the stress generating layer 150 becomes small, the electrical characteristics of the nitride semiconductor substrate 100 can be stabilized.

<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist thereof.

上述の実施形態では、窒化物半導体層120は、シリコン基板110側から順に、反応抑制層130と、中間層140と、第1層としての応力発生層150と、第2層としての高抵抗層160と、第3層としての低抵抗層170と、バリア層180と、を備えている場合について説明したが、本発明はこの実施形態に限定されるものではない。例えば、窒化物半導体層120を構成する各層の間に本発明の効果に悪影響を及ぼさない程度の遷移層等を挿入してもよい。 In the above-described embodiment, the nitride semiconductor layer 120 is composed of the reaction suppressing layer 130, the intermediate layer 140, the stress generating layer 150 as the first layer, and the high resistance layer as the second layer in this order from the silicon substrate 110 side. Although the case where the 160, the low resistance layer 170 as the third layer, and the barrier layer 180 are provided has been described, the present invention is not limited to this embodiment. For example, a transition layer or the like that does not adversely affect the effects of the present invention may be inserted between the layers constituting the nitride semiconductor layer 120.

また、バリア層180の上に、例えば、GaNからなるキャップ層を設けることもできる。キャップ層には、p型電気伝導を得るためにマグネシウムを添加してもよい。このようなキャップ層を設けることで、閾値電圧を正側にでき、ノーマリオフ動作が容易となる。 Further, for example, a cap layer made of GaN can be provided on the barrier layer 180. Magnesium may be added to the cap layer to obtain p-type electrical conductivity. By providing such a cap layer, the threshold voltage can be set to the positive side, and the normalization off operation becomes easy.

また、本発明は、窒化物半導体基板100を材料として形成された半導体装置の態様であってもよい。より具体的には、例えば、窒化物半導体層120上に、ソース電極、ゲート電極およびドレイン電極等が設けられた高電子移動度トランジスタ(High Electron Mobility Transistor、HEMT)の態様であってもよい。 Further, the present invention may be an embodiment of a semiconductor device formed of a nitride semiconductor substrate 100 as a material. More specifically, for example, it may be an embodiment of a high electron mobility transistor (HEMT) in which a source electrode, a gate electrode, a drain electrode and the like are provided on the nitride semiconductor layer 120.

<本発明の好ましい態様>
以下、本発明の好ましい態様を付記する。
<Preferable Aspect of the Present Invention>
Hereinafter, preferred embodiments of the present invention will be added.

(付記1)
本発明の一態様によれば、
シリコン基板上に窒化物半導体層が積層された窒化物半導体基板であって、
前記窒化物半導体層は、
組成の異なる複数の窒化物半導体結晶層が積層されて形成される第1層と、
前記第1層上に形成され、炭素を含む第2層と、を備え、
前記第2層の下層部分の平均炭素濃度は、前記第2層の上層部分の平均炭素濃度より低い、窒化物半導体基板が提供される。
好ましくは、前記第1層は、第1の窒化物半導体結晶層と、前記第1の窒化物半導体結晶層より格子定数が大きい第2の窒化物半導体結晶層とが交互に積層された歪超格子構造を有する。
好ましくは、前記窒化物半導体層は、前記第2層上に形成され、平均炭素濃度が前記第2層の平均炭素濃度より低い第3層をさらに備える。
(Appendix 1)
According to one aspect of the invention
A nitride semiconductor substrate in which a nitride semiconductor layer is laminated on a silicon substrate.
The nitride semiconductor layer is
A first layer formed by laminating a plurality of nitride semiconductor crystal layers having different compositions, and
A second layer formed on the first layer and containing carbon is provided.
Provided is a nitride semiconductor substrate in which the average carbon concentration of the lower portion of the second layer is lower than the average carbon concentration of the upper portion of the second layer.
Preferably, the first layer is a strain superlattice in which a first nitride semiconductor crystal layer and a second nitride semiconductor crystal layer having a larger lattice constant than the first nitride semiconductor crystal layer are alternately laminated. It has a lattice structure.
Preferably, the nitride semiconductor layer further includes a third layer formed on the second layer and having an average carbon concentration lower than the average carbon concentration of the second layer.

(付記2)
付記1に記載の窒化物半導体基板であって、
前記第2層の前記下層部分の平均炭素濃度は、前記第1層の平均炭素濃度より低い。
好ましくは、前記第1層の平均炭素濃度は、2×1019cm−3以上8×1019cm−3以下である。
(Appendix 2)
The nitride semiconductor substrate according to Appendix 1, wherein the nitride semiconductor substrate is used.
The average carbon concentration of the lower portion of the second layer is lower than the average carbon concentration of the first layer.
Preferably, the average carbon concentration of the first layer is 2 × 10 19 cm -3 or more and 8 × 10 19 cm -3 or less.

(付記3)
付記1または付記2に記載の窒化物半導体基板であって、
炭素濃度が前記第1層の平均炭素濃度の70%以下(好ましくは60%以下、より好ましくは50%以下)となる低炭素領域が、前記第1層と前記第2層との界面近傍に存在する。
(Appendix 3)
The nitride semiconductor substrate according to Appendix 1 or Appendix 2, wherein the nitride semiconductor substrate is used.
A low carbon region having a carbon concentration of 70% or less (preferably 60% or less, more preferably 50% or less) of the average carbon concentration of the first layer is located near the interface between the first layer and the second layer. exist.

(付記4)
付記3に記載の窒化物半導体基板であって、
前記低炭素領域における炭素濃度の極小値は、3×1018cm−3以上(好ましくは5×1018cm−3以上、より好ましくは1×1019cm−3以上)3×1019cm−3以下である。
(Appendix 4)
The nitride semiconductor substrate according to Appendix 3, wherein the nitride semiconductor substrate is used.
The minimum value of carbon concentration in the low carbon region is 3 × 10 18 cm -3 or more (preferably 5 × 10 18 cm -3 or more, more preferably 1 × 10 19 cm -3 or more) 3 × 10 19 cm −. It is 3 or less.

(付記5)
付記3または付記4に記載の窒化物半導体基板であって、
前記低炭素領域の厚さが、前記第2層の厚さの2%以上50%以下である。
(Appendix 5)
The nitride semiconductor substrate according to Appendix 3 or Appendix 4, wherein the nitride semiconductor substrate is used.
The thickness of the low carbon region is 2% or more and 50% or less of the thickness of the second layer.

(付記6)
付記3から付記5のいずれか1つに記載の窒化物半導体基板であって、
前記低炭素領域が、前記第1層と前記第2層との界面にまたがって存在する。
(Appendix 6)
The nitride semiconductor substrate according to any one of Supplementary note 3 to Supplementary note 5.
The low carbon region exists across the interface between the first layer and the second layer.

(付記7)
付記1から付記6のいずれか1つに記載の窒化物半導体基板であって、
炭素濃度が前記第1層の平均炭素濃度の70%以上(好ましくは80%以上、より好ましくは90%以上)となる高炭素領域が、前記第2層の前記上層部分に存在する。
(Appendix 7)
The nitride semiconductor substrate according to any one of Supplementary note 1 to Supplementary note 6.
A high carbon region having a carbon concentration of 70% or more (preferably 80% or more, more preferably 90% or more) of the average carbon concentration of the first layer exists in the upper layer portion of the second layer.

(付記8)
付記7に記載の窒化物半導体基板であって、
前記高炭素領域における炭素濃度の極大値は、前記第1層の平均炭素濃度の95%以上120%以下である。
(Appendix 8)
The nitride semiconductor substrate according to Appendix 7, wherein the nitride semiconductor substrate is used.
The maximum value of the carbon concentration in the high carbon region is 95% or more and 120% or less of the average carbon concentration of the first layer.

(付記9)
本発明の他の態様によれば、
シリコン基板上に窒化物半導体層が積層された窒化物半導体基板であって、
前記窒化物半導体層は、
組成の異なる複数の窒化物半導体結晶層が積層されて形成される第1層と、
前記第1層上に形成され、炭素を含む第2層と、を備え、
前記第2層の平均水素濃度は、前記第1層の平均水素濃度の15%以上100%以下である、窒化物半導体基板が提供される。
好ましくは、前記第1層は、第1の窒化物半導体結晶層と、前記第1の窒化物半導体結晶層より格子定数が大きい第2の窒化物半導体結晶層とが交互に積層された歪超格子構造を有する。
好ましくは、前記窒化物半導体層は、前記第2層上に形成され、平均炭素濃度が前記第2層の平均炭素濃度より低い第3層をさらに備える。
好ましくは、前記第2層の平均水素濃度は、4×1017cm−3以上1×1018cm−3以下である。
(Appendix 9)
According to another aspect of the invention
A nitride semiconductor substrate in which a nitride semiconductor layer is laminated on a silicon substrate.
The nitride semiconductor layer is
A first layer formed by laminating a plurality of nitride semiconductor crystal layers having different compositions, and
A second layer formed on the first layer and containing carbon is provided.
Provided is a nitride semiconductor substrate in which the average hydrogen concentration of the second layer is 15% or more and 100% or less of the average hydrogen concentration of the first layer.
Preferably, the first layer is a strain superlattice in which a first nitride semiconductor crystal layer and a second nitride semiconductor crystal layer having a larger lattice constant than the first nitride semiconductor crystal layer are alternately laminated. It has a lattice structure.
Preferably, the nitride semiconductor layer further includes a third layer formed on the second layer and having an average carbon concentration lower than the average carbon concentration of the second layer.
Preferably, the average hydrogen concentration of the second layer is 4 × 10 17 cm -3 or more and 1 × 10 18 cm -3 or less.

(付記10)
付記9に記載の窒化物半導体基板であって、
前記第2層の水素濃度の変動量は、±20%以下である。
(Appendix 10)
The nitride semiconductor substrate according to Appendix 9, wherein the nitride semiconductor substrate is used.
The fluctuation amount of the hydrogen concentration in the second layer is ± 20% or less.

(付記11)
付記9または付記10に記載の窒化物半導体基板であって、
前記第2層の下層部分の平均炭素濃度は、前記第2層の上層部分の平均炭素濃度より低い。
(Appendix 11)
The nitride semiconductor substrate according to Appendix 9 or Appendix 10, wherein the nitride semiconductor substrate is used.
The average carbon concentration of the lower portion of the second layer is lower than the average carbon concentration of the upper portion of the second layer.

(付記12)
付記9から付記11のいずれか1つに記載の窒化物半導体基板であって、
前記第2層の下層部分の平均炭素濃度は、前記第1層の平均炭素濃度より低い。
好ましくは、前記第1層の平均炭素濃度は、2×1019cm−3以上8×1019cm−3以下である。
(Appendix 12)
The nitride semiconductor substrate according to any one of Supplementary note 9 to Supplementary note 11.
The average carbon concentration of the lower portion of the second layer is lower than the average carbon concentration of the first layer.
Preferably, the average carbon concentration of the first layer is 2 × 10 19 cm -3 or more and 8 × 10 19 cm -3 or less.

(付記13)
付記9から付記12のいずれか1つに記載の窒化物半導体基板であって、
炭素濃度が前記第1層の平均炭素濃度の70%以下(好ましくは60%以下、より好ましくは50%以下)となる低炭素領域が、前記第1層と前記第2層との界面近傍に存在する。
(Appendix 13)
The nitride semiconductor substrate according to any one of Supplementary note 9 to Supplementary note 12.
A low carbon region having a carbon concentration of 70% or less (preferably 60% or less, more preferably 50% or less) of the average carbon concentration of the first layer is located near the interface between the first layer and the second layer. exist.

(付記14)
付記13に記載の窒化物半導体基板であって、
前記低炭素領域における炭素濃度の極小値は、3×1018cm−3以上(好ましくは5×1018cm−3以上、より好ましくは1×1019cm−3以上)3×1019cm−3以下である。
(Appendix 14)
The nitride semiconductor substrate according to Appendix 13, wherein the nitride semiconductor substrate is used.
The minimum value of carbon concentration in the low carbon region is 3 × 10 18 cm -3 or more (preferably 5 × 10 18 cm -3 or more, more preferably 1 × 10 19 cm -3 or more) 3 × 10 19 cm −. It is 3 or less.

(付記15)
付記13または付記14に記載の窒化物半導体基板であって、
前記低炭素領域の厚さが、前記第2層の厚さの2%以上50%以下である。
(Appendix 15)
The nitride semiconductor substrate according to Appendix 13 or Appendix 14, wherein the nitride semiconductor substrate is used.
The thickness of the low carbon region is 2% or more and 50% or less of the thickness of the second layer.

(付記16)
付記13から付記15のいずれか1つに記載の窒化物半導体基板であって、
前記低炭素領域が、前記第1層と前記第2層との界面にまたがって存在する。
(Appendix 16)
The nitride semiconductor substrate according to any one of Supplementary note 13 to Supplementary note 15.
The low carbon region exists across the interface between the first layer and the second layer.

(付記17)
付記9から付記16のいずれか1つに記載の窒化物半導体基板であって、
炭素濃度が前記第1層の平均炭素濃度の70%以上(好ましくは80%以上、より好ましくは90%以上)となる高炭素領域が、前記第2層の上層部分に存在する。
(Appendix 17)
The nitride semiconductor substrate according to any one of Supplementary note 9 to Supplementary note 16.
A high carbon region having a carbon concentration of 70% or more (preferably 80% or more, more preferably 90% or more) of the average carbon concentration of the first layer exists in the upper layer portion of the second layer.

(付記18)
付記17に記載の窒化物半導体基板であって、
前記高炭素領域における炭素濃度の極大値は、前記第1層の平均炭素濃度の95%以上120%以下である。
(Appendix 18)
The nitride semiconductor substrate according to Appendix 17, wherein the nitride semiconductor substrate is used.
The maximum value of the carbon concentration in the high carbon region is 95% or more and 120% or less of the average carbon concentration of the first layer.

(付記19)
本発明の他の態様によれば、
シリコン基板上に窒化物半導体層が積層された窒化物半導体基板であって、
前記窒化物半導体層は、
組成の異なる複数の窒化物半導体結晶層が積層されて形成される第1層と、
前記第1層上に形成され、炭素を含む第2層と、を備え、
前記第2層の平均酸素濃度は1×1016cm−3未満である、窒化物半導体基板が提供される。
好ましくは、前記第1層は、第1の窒化物半導体結晶層と、前記第1の窒化物半導体結晶層より格子定数が大きい第2の窒化物半導体結晶層とが交互に積層された歪超格子構造を有する。
好ましくは、前記窒化物半導体層は、前記第2層上に形成され、平均炭素濃度が前記第2層の平均炭素濃度より低い第3層をさらに備える。
好ましくは、前記第2層の平均酸素濃度は、1×1015cm−3以上である。
(Appendix 19)
According to another aspect of the invention
A nitride semiconductor substrate in which a nitride semiconductor layer is laminated on a silicon substrate.
The nitride semiconductor layer is
A first layer formed by laminating a plurality of nitride semiconductor crystal layers having different compositions, and
A second layer formed on the first layer and containing carbon is provided.
A nitride semiconductor substrate is provided in which the average oxygen concentration of the second layer is less than 1 × 10 16 cm -3.
Preferably, the first layer is a strain superlattice in which a first nitride semiconductor crystal layer and a second nitride semiconductor crystal layer having a larger lattice constant than the first nitride semiconductor crystal layer are alternately laminated. It has a lattice structure.
Preferably, the nitride semiconductor layer further includes a third layer formed on the second layer and having an average carbon concentration lower than the average carbon concentration of the second layer.
Preferably, the average oxygen concentration of the second layer is 1 × 10 15 cm -3 or more.

(付記20)
付記19に記載の窒化物半導体基板であって、
前記第2層の酸素濃度の変動量は、±50%以下である。
(Appendix 20)
The nitride semiconductor substrate according to Appendix 19, wherein the nitride semiconductor substrate is used.
The amount of fluctuation in the oxygen concentration of the second layer is ± 50% or less.

(付記21)
付記19または付記20に記載の窒化物半導体基板であって、
前記第2層の下層部分の平均炭素濃度は、前記第2層の上層部分の平均炭素濃度より低い。
好ましくは、前記第2層の平均炭素濃度は、1×1018cm−3以上1×1020cm−3以下である。
(Appendix 21)
The nitride semiconductor substrate according to Appendix 19 or Appendix 20.
The average carbon concentration of the lower portion of the second layer is lower than the average carbon concentration of the upper portion of the second layer.
Preferably, the average carbon concentration of the second layer is 1 × 10 18 cm -3 or more and 1 × 10 20 cm -3 or less.

(付記22)
付記19から付記21のいずれか1つに記載の窒化物半導体基板であって、
前記第2層の下層部分の平均炭素濃度は、前記第1層の平均炭素濃度より低い。
好ましくは、前記第1層の平均炭素濃度は、2×1019cm−3以上8×1019cm−3以下である。
(Appendix 22)
The nitride semiconductor substrate according to any one of Supplementary note 19 to Supplementary note 21.
The average carbon concentration of the lower portion of the second layer is lower than the average carbon concentration of the first layer.
Preferably, the average carbon concentration of the first layer is 2 × 10 19 cm -3 or more and 8 × 10 19 cm -3 or less.

(付記23)
付記19から付記22のいずれか1つに記載の窒化物半導体基板であって、
炭素濃度が前記第1層の平均炭素濃度の70%以下(好ましくは60%以下、より好ましくは50%以下)となる低炭素領域が、前記第1層と前記第2層との界面近傍に存在する。
(Appendix 23)
The nitride semiconductor substrate according to any one of Supplementary note 19 to Supplementary note 22.
A low carbon region having a carbon concentration of 70% or less (preferably 60% or less, more preferably 50% or less) of the average carbon concentration of the first layer is located near the interface between the first layer and the second layer. exist.

(付記24)
付記23に記載の窒化物半導体基板であって、
前記低炭素領域における炭素濃度の極小値は、3×1018cm−3以上(好ましくは5×1018cm−3以上、より好ましくは1×1019cm−3以上)3×1019cm−3以下である。
(Appendix 24)
The nitride semiconductor substrate according to Appendix 23.
The minimum value of carbon concentration in the low carbon region is 3 × 10 18 cm -3 or more (preferably 5 × 10 18 cm -3 or more, more preferably 1 × 10 19 cm -3 or more) 3 × 10 19 cm −. It is 3 or less.

(付記25)
付記23または付記24に記載の窒化物半導体基板であって、
前記低炭素領域の厚さが、前記第2層の厚さの2%以上50%以下である。
(Appendix 25)
The nitride semiconductor substrate according to Appendix 23 or Appendix 24, wherein the nitride semiconductor substrate is used.
The thickness of the low carbon region is 2% or more and 50% or less of the thickness of the second layer.

(付記26)
付記23から付記25のいずれか1つに記載の窒化物半導体基板であって、
前記低炭素領域が、前記第1層と前記第2層との界面にまたがって存在する。
(Appendix 26)
The nitride semiconductor substrate according to any one of Supplementary note 23 to Supplementary note 25.
The low carbon region exists across the interface between the first layer and the second layer.

(付記27)
付記19から付記26のいずれか1つに記載の窒化物半導体基板であって、
炭素濃度が前記第1層の平均炭素濃度の70%以上(好ましくは80%以上、より好ましくは90%以上)となる高炭素領域が、前記第2層の上層部分に存在する。
(Appendix 27)
The nitride semiconductor substrate according to any one of Supplementary note 19 to Supplementary note 26.
A high carbon region having a carbon concentration of 70% or more (preferably 80% or more, more preferably 90% or more) of the average carbon concentration of the first layer exists in the upper layer portion of the second layer.

(付記28)
付記27に記載の窒化物半導体基板であって、
前記高炭素領域における炭素濃度の極大値は、前記第1層の平均炭素濃度の95%以上120%以下である。
(Appendix 28)
The nitride semiconductor substrate according to Appendix 27.
The maximum value of the carbon concentration in the high carbon region is 95% or more and 120% or less of the average carbon concentration of the first layer.

100 窒化物半導体基板
110 シリコン基板
120 窒化物半導体層
130 反応抑制層
140 中間層
150 応力発生層
151 第1の窒化物半導体結晶層
152 第2の窒化物半導体結晶層
153 多重結晶層
160 高抵抗層
170 低抵抗層
180 バリア層
200 界面
201 上部
202 界面近傍
210 界面
220 下層部分
230 上層部分
240 低炭素領域
250 高炭素領域
300 結晶成長装置
310 反応炉
320 サセプタ
330 回転機構
331 開口部
341 サセプタカバー
342 天板
350 空間
351 空間
361 外周側ヒータ
362 内周側ヒータ
370 制御部
S101 基板準備工程
S102 反応抑制層形成工程
S103 中間層形成工程
S104 応力発生層形成工程
S105 表面改質工程
S106 高抵抗層形成工程
S107 低抵抗層形成工程
S108 バリア層形成工程
100 Nitride semiconductor substrate 110 Silicon substrate 120 Nitride semiconductor layer 130 Reaction suppression layer 140 Intermediate layer 150 Stress generation layer 151 First nitride semiconductor crystal layer 152 Second nitride semiconductor crystal layer 153 Multilayer crystal layer 160 High resistance layer 170 Low resistance layer 180 Barrier layer 200 Interface 201 Upper 202 Interface Near 210 Interface 220 Lower layer 230 Upper layer 240 Low carbon region 250 High carbon region 300 Crystal growth device 310 Reactor 320 Suceptor 330 Rotating mechanism 331 Opening 341 Suceptor cover 342 Heaven Plate 350 Space 351 Space 361 Outer peripheral side heater 362 Inner peripheral side heater 370 Control unit S101 Substrate preparation step S102 Reaction suppression layer forming step S103 Intermediate layer forming step S104 Stress generating layer forming step S105 Surface modification step S106 High resistance layer forming step S107 Low resistance layer forming step S108 Barrier layer forming step

Claims (10)

シリコン基板上に窒化物半導体層が積層された窒化物半導体基板であって、
前記窒化物半導体層は、
組成の異なる複数の窒化物半導体結晶層が積層されて形成される第1層と、
前記第1層上に形成され、炭素を含む第2層と、を備え、
前記第2層の平均酸素濃度は1×1016cm−3未満である、窒化物半導体基板。
A nitride semiconductor substrate in which a nitride semiconductor layer is laminated on a silicon substrate.
The nitride semiconductor layer is
A first layer formed by laminating a plurality of nitride semiconductor crystal layers having different compositions, and
A second layer formed on the first layer and containing carbon is provided.
A nitride semiconductor substrate having an average oxygen concentration of less than 1 × 10 16 cm -3 in the second layer.
前記第2層の酸素濃度の変動量は、±50%以下である請求項1に記載の窒化物半導体基板。 The nitride semiconductor substrate according to claim 1, wherein the fluctuation amount of the oxygen concentration in the second layer is ± 50% or less. 前記第2層の下層部分の平均炭素濃度は、前記第2層の上層部分の平均炭素濃度より低い請求項1または請求項2に記載の窒化物半導体基板。 The nitride semiconductor substrate according to claim 1 or 2, wherein the average carbon concentration of the lower layer portion of the second layer is lower than the average carbon concentration of the upper layer portion of the second layer. 前記第2層の下層部分の平均炭素濃度は、前記第1層の平均炭素濃度より低い請求項1から請求項3のいずれか1項に記載の窒化物半導体基板。 The nitride semiconductor substrate according to any one of claims 1 to 3, wherein the average carbon concentration of the lower portion of the second layer is lower than the average carbon concentration of the first layer. 炭素濃度が前記第1層の平均炭素濃度の70%以下となる低炭素領域が、前記第1層と前記第2層との界面近傍に存在する請求項1から請求項4のいずれか1項に記載の窒化物半導体基板。 Any one of claims 1 to 4, wherein a low carbon region having a carbon concentration of 70% or less of the average carbon concentration of the first layer exists in the vicinity of the interface between the first layer and the second layer. The nitride semiconductor substrate according to the above. 前記低炭素領域における炭素濃度の極小値は、3×1018cm−3以上3×1019cm−3以下である請求項5に記載の窒化物半導体基板。 The nitride semiconductor substrate according to claim 5, wherein the minimum value of the carbon concentration in the low carbon region is 3 × 10 18 cm -3 or more and 3 × 10 19 cm -3 or less. 前記低炭素領域の厚さが、前記第2層の厚さの2%以上50%以下である請求項5または請求項6に記載の窒化物半導体基板。 The nitride semiconductor substrate according to claim 5 or 6, wherein the thickness of the low carbon region is 2% or more and 50% or less of the thickness of the second layer. 前記低炭素領域が、前記第1層と前記第2層との界面にまたがって存在する請求項5から請求項7のいずれか1項に記載の窒化物半導体基板。 The nitride semiconductor substrate according to any one of claims 5 to 7, wherein the low carbon region is present across the interface between the first layer and the second layer. 炭素濃度が前記第1層の平均炭素濃度の70%以上となる高炭素領域が、前記第2層の前記上層部分に存在する請求項1から請求項8のいずれか1項に記載の窒化物半導体基板。 The nitride according to any one of claims 1 to 8, wherein a high carbon region having a carbon concentration of 70% or more of the average carbon concentration of the first layer exists in the upper layer portion of the second layer. Semiconductor substrate. 前記高炭素領域における炭素濃度の極大値は、前記第1層の平均炭素濃度の95%以上120%以下である請求項9に記載の窒化物半導体基板。 The nitride semiconductor substrate according to claim 9, wherein the maximum value of the carbon concentration in the high carbon region is 95% or more and 120% or less of the average carbon concentration of the first layer.
JP2020047703A 2020-03-18 2020-03-18 Nitride semiconductor substrate Pending JP2021150446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020047703A JP2021150446A (en) 2020-03-18 2020-03-18 Nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020047703A JP2021150446A (en) 2020-03-18 2020-03-18 Nitride semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2021150446A true JP2021150446A (en) 2021-09-27

Family

ID=77849371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047703A Pending JP2021150446A (en) 2020-03-18 2020-03-18 Nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2021150446A (en)

Similar Documents

Publication Publication Date Title
KR101430217B1 (en) Epitaxial silicon carbide single-crystal substrate and method for producing the same
JP5818853B2 (en) Vertical nitride semiconductor device using n-type aluminum nitride single crystal substrate
US8847203B2 (en) Group III nitride epitaxial laminate substrate
US8212288B2 (en) Compound semiconductor substrate comprising a multilayer buffer layer
US10763332B2 (en) Semiconductor wafer and method of inspecting semiconductor wafer
US20100084742A1 (en) Method for manufacturing semiconductor epitaxial crystal substrate
WO2009084241A1 (en) Semiconductor substrate, method for producing semiconductor substrate, and electronic device
US20150214049A1 (en) Silicon carbide semiconductor device manufacturing method
US20120211763A1 (en) Nitride semiconductor substrate and method of manufacturing the same
JP6784861B1 (en) Nitride semiconductor substrate
US8238391B2 (en) P-type group III nitride semiconductor and group III nitride semiconductor element
EP2296169A1 (en) Method for manufacturing nitrogen compound semiconductor substrate, nitrogen compound semiconductor substrate, method for manufacturing single crystal sic substrate, and single crystal sic substrate
JP7009147B2 (en) Silicon Carbide Semiconductor Substrate, Silicon Carbide Semiconductor Substrate Manufacturing Method and Silicon Carbide Semiconductor Equipment
WO2012020565A1 (en) Semiconductor substrate, semiconductor device and method for producing semiconductor substrate
US9520286B2 (en) Semiconductor substrate, semiconductor device and method of manufacturing the semiconductor device
JP2021150446A (en) Nitride semiconductor substrate
JP2021150445A (en) Nitride semiconductor substrate
KR101153862B1 (en) GaN wafer for electronic devices and method of fabricating the same
JP2022056654A (en) Nitride semiconductor substrate
US20200194580A1 (en) Nitride semiconductor substrate and nitride semiconductor device
EP2797108A1 (en) Nitride semiconductor substrate
KR102311927B1 (en) Semiconductor Structures Containing III-N Materials
JP2016219590A (en) Semiconductor substrate manufacturing method and semiconductor device manufacturing method
WO2021024670A1 (en) Nitride semiconductor substrate
TWI728498B (en) Nitride semiconductor substrate