JP2021149669A - Water treatment facility operation management method and management system - Google Patents

Water treatment facility operation management method and management system Download PDF

Info

Publication number
JP2021149669A
JP2021149669A JP2020050058A JP2020050058A JP2021149669A JP 2021149669 A JP2021149669 A JP 2021149669A JP 2020050058 A JP2020050058 A JP 2020050058A JP 2020050058 A JP2020050058 A JP 2020050058A JP 2021149669 A JP2021149669 A JP 2021149669A
Authority
JP
Japan
Prior art keywords
treatment facility
water treatment
operation management
dimensional image
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020050058A
Other languages
Japanese (ja)
Other versions
JP7422573B2 (en
Inventor
遼介 五枚橋
Ryosuke Gomaibashi
遼介 五枚橋
真衣 中溝
Mai Nakamizo
真衣 中溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2020050058A priority Critical patent/JP7422573B2/en
Publication of JP2021149669A publication Critical patent/JP2021149669A/en
Application granted granted Critical
Publication of JP7422573B2 publication Critical patent/JP7422573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

To provide a water treatment facility operation management method and management system that are able to safely manage the operation over a wide range without waste.SOLUTION: For a three-dimensional image of a water treatment facility formed using at least one of 3DCAD, MR (Mixed Reality), and VR (Virtual Reality), simulation software and current information acquired using an unmanned aircraft 50 are used to generate a three-dimensional image for operation management (an image generation step). Next, an instruction to perform an inspection or operation adjustment of the water treatment facility according to information or guidance displayed on the generated three-dimensional image for the operation management is output to a portable terminal 30 of a worker (an output step for an operation instruction). Next, an instruction to confirm a state after the inspection or the operation adjustment is output by the unmanned aircraft 50 (an output step for instruction by a self-traveling means). An operator who has received an output for an operation instruction moves to a site together with the unmanned aircraft 50 and performs the inspection or operation adjustment of the water treatment facility according to the operation instruction.SELECTED DRAWING: Figure 1

Description

本発明は、下水処理施設や上水処理施設などの水処理施設の運転管理方法及び運転管理システムに関するものである。 The present invention relates to an operation management method and an operation management system of a water treatment facility such as a sewage treatment facility and a sewage treatment facility.

従来、水処理施設には、運転状態を把握するための計測器、センサなどが設置され、運転監視・制御などに利用されているが、これら機器の作動状態の確認や保守のための点検は、作業員によって行われていた。 Conventionally, measuring instruments, sensors, etc. for grasping the operating status have been installed in water treatment facilities and used for operation monitoring and control, but inspections for checking the operating status of these devices and for maintenance are performed. , Was done by workers.

特開2015−127669号公報Japanese Unexamined Patent Publication No. 2015-127669 特開2019−164751号公報Japanese Unexamined Patent Publication No. 2019-164751

しかし、水処理施設の運転管理方法には、以下のような課題があった。
(1)水処理施設は、配管などが複雑に入り組んだ構造のため、作業員が巡回・点検できる場所が限られており、人の目が行き届かない部分も多かった。
However, the operation management method of the water treatment facility has the following problems.
(1) Since the water treatment facility has a complicated structure such as piping, the places where workers can patrol and inspect are limited, and there are many parts that people cannot see.

(2)大規模な水処理施設では、作業員の移動だけでも時間がかかり、細かく点検する時間が取れなかった。 (2) In a large-scale water treatment facility, it took time just to move the workers, and it was not possible to take time for detailed inspection.

(3)特に下水処理施設などでは、硫化水素などの有害ガスが発生したり、水槽へ転落したり、機械へ巻き込まれたりするなどの危険がある場所も多く、作業員の安全確保が課題となっていた。 (3) Especially in sewage treatment facilities, there are many places where there is a danger that harmful gases such as hydrogen sulfide may be generated, fall into a water tank, or get caught in a machine, so ensuring the safety of workers is an issue. It was.

(4)作業員の高齢化が進んでおり、作業員の確保が難しいといった社会状況から、この先、人手によって巡回作業を行うことに限界が見えている。 (4) Due to the aging of workers and the social situation that it is difficult to secure workers, there is a limit to the manual patrol work in the future.

(5)上記各課題は、洪水やその他の災害時に、さらに大きくなる。 (5) Each of the above issues becomes even greater in the event of a flood or other disaster.

(6)一方で、シミュレーション、3DCAD、MR、VR、無人走行装置などの技術の進歩は目覚ましく、様々な産業や生活基盤への適用が進んでいる。しかし、信頼性の担保が必要な水処理施設の維持管理では、人の経験と五感に頼らざるを得ない部分が多く、これらの手段を適切に運転管理に適用して成功した例はなかった。 (6) On the other hand, technological advances such as simulation, 3DCAD, MR, VR, and unmanned traveling devices are remarkable, and their application to various industries and living infrastructures is progressing. However, in the maintenance of water treatment facilities that require assurance of reliability, there are many parts that must rely on human experience and the five senses, and there have been no successful cases of applying these measures appropriately to operation management. ..

(7)特許文献1には、サーモカメラを搭載した飛行体を用いて水流を観測する方法が開示されているが、水処理施設のように、配管などが複雑に入り組んだ構造の施設の観測には不向きであり、細かい点検などの作業に用いることはできない。 (7) Patent Document 1 discloses a method of observing a water flow using an air vehicle equipped with a thermo camera, but observing a facility having a complicated structure such as piping, such as a water treatment facility. It is not suitable for work such as detailed inspection.

(8)特許文献2には、画像データ、音声データ、ガス検知データなどのデータを取得する無人移動ユニットが、水処理現場内の機器を巡回点検することが開示されてはいるが、さらに効果的な巡回点検ができる運転管理方法が求められていた。 (8) Patent Document 2 discloses that an unmanned mobile unit that acquires data such as image data, voice data, and gas detection data patrols and inspects equipment in a water treatment site, but it is more effective. There was a need for an operation management method that would allow for a typical patrol inspection.

本発明は上述の点に鑑みてなされたものでありその目的は、無駄なく広範囲に安全に運転管理することができる水処理施設の運転管理方法及び運転管理システムを提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide an operation management method and an operation management system of a water treatment facility capable of safely operating and managing a wide range without waste.

本発明にかかる水処理施設の運転管理方法は、3DCAD(Computer Aided Design)、MR(Mixed Reality/複合現実)、VR(Virtual Reality/仮想現実)の少なくとも何れかを用いて作成した水処理施設の3次元画像に、当該水処理施設用のシミュレーションソフトウェアと、自走可能手段を使って取得した現在情報とを用いることで、運転管理用の情報又は案内を表示した運転管理用3次元画像を生成する画像生成工程と、前記運転管理用3次元画像に表示される情報又は案内に従って水処理施設の点検又は運転調整を行わせる指示を出力する作業指示用出力工程と、前記自走可能手段によって点検又は運転調整後の状態確認を行わせる指示を出力する自走可能手段指示用出力工程と、を具備することを特徴としている。
シミュレーションソフトウェアとしては、例えば、下記するASM(活性汚泥モデル)、河川流量モデル、地点別浸水シミュレーションなどがある。自走可能手段としては、無人航空機(ドローン)、水中ドローン、ラジコンカー、自動運転可能な車両、歩行型ロボットなどがある。
作業指示用工程における作業指示の出力は、例えば、実際に水処理施設を点検などする作業員の所持する携帯端末に対して行う。作業員や携帯端末は複数であっても良い。また自走可能手段も複数であっても良い。自走可能手段は作業員が操作しても良いし、自動運転を行っても良い。複数の作業員や自走可能手段を用いれば、水処理施設を手分けして点検などできる。
本発明によれば、水処理施設のシミュレーションソフトウェアと、自走可能手段を使って取得した現在情報とを3次元画像に用いて運転管理用3次元画像を生成するので、生成された運転管理用3次元画像に表示される情報、案内が、視覚的に直感的に把握し易く、従って施設の点検、運転調整を容易且つ確実に行うことが可能になる。また当該点検・運転調整の現場教育に活用することもできる。さらに、自走可能手段によって、点検又は運転調整後の状態確認を行うので、従来人の経験に頼って行っていた運転管理を安全に実施することが可能になる。
また、運転管理用3次元画像に、過去に得た情報、リアルタイム情報、将来予測情報を表示することで、作業員の点検作業を過去から将来予測情報に向けて誘導し、点検作業の効率化を図ることもできる。また、危険を予知して誘導することで作業員の安全を確保することもできる。
特に、洪水や津波などの災害があった際には、作業員による安全確認ができない場合もあり、自走可能手段で現在情報を把握すること、その情報を3次元画像に反映して活用することで、事態に対して安全且つ迅速に対応していくことが可能になる。
The operation management method of the water treatment facility according to the present invention is a water treatment facility created by using at least one of 3D CAD (Computer Aided Design), MR (Mixed Reality), and VR (Virtual Reality). By using the simulation software for the water treatment facility and the current information acquired by using self-propelled means for the 3D image, a 3D image for operation management displaying information or guidance for operation management is generated. An image generation process to be performed, a work instruction output process for outputting an instruction to inspect or adjust the operation of the water treatment facility according to the information or guidance displayed on the operation management three-dimensional image, and an inspection by the self-propelled means. Alternatively, it is characterized by including an output process for instructing a self-propelled means that outputs an instruction for confirming the state after the operation adjustment.
Examples of the simulation software include the following ASM (activated sludge model), river flow rate model, and point-specific inundation simulation. Self-driving means include unmanned aerial vehicles (drones), underwater drones, radio-controlled cars, self-driving vehicles, and walking robots.
The output of the work instruction in the work instruction process is performed to, for example, a mobile terminal owned by a worker who actually inspects the water treatment facility. There may be a plurality of workers and mobile terminals. In addition, there may be a plurality of self-propelled means. The self-propelled means may be operated by an operator or may be automatically operated. By using multiple workers and self-propelled means, water treatment facilities can be manually inspected.
According to the present invention, since the simulation software of the water treatment facility and the current information acquired by using the self-propelled means are used as the three-dimensional image to generate the three-dimensional image for operation management, the generated three-dimensional image for operation management is generated. The information and guidance displayed on the three-dimensional image are easy to grasp visually and intuitively, and therefore it is possible to easily and surely perform facility inspections and operation adjustments. It can also be used for on-site training of the inspection and operation adjustment. Further, since the state is confirmed after the inspection or the operation adjustment by the self-propellable means, it becomes possible to safely carry out the operation management which has been performed by relying on the experience of the conventional person.
In addition, by displaying information obtained in the past, real-time information, and future prediction information on the 3D image for operation management, the inspection work of the worker can be guided from the past to the future prediction information, and the efficiency of the inspection work can be improved. Can also be planned. In addition, the safety of workers can be ensured by predicting and guiding danger.
In particular, in the event of a disaster such as a flood or tsunami, it may not be possible for workers to confirm safety, so grasp the current information by self-propelled means and reflect that information in 3D images. This makes it possible to respond safely and promptly to the situation.

また本発明は、上記特徴に加え、前記作業指示用出力工程で指示した点検又は運転調整内容を新たな現在情報として、前記画像生成工程に用いることで、新たな運転管理用3次元画像を生成することを特徴としている。
本発明によれば、更新されていく運転管理用3次元画像を用いることで、最新の情報に基づく指示が行え、運転管理の精度が増す。
Further, in addition to the above features, the present invention generates a new three-dimensional image for operation management by using the inspection or operation adjustment content instructed in the output process for work instruction as new current information in the image generation process. It is characterized by doing.
According to the present invention, by using the updated three-dimensional image for operation management, instructions based on the latest information can be given, and the accuracy of operation management is increased.

また本発明は、上記特徴に加え、前記自走可能手段は、データ取得部と、試料採取部と、データ通信部と、を備えていることを特徴としている。
データ取得部は、例えば映像データを取得する撮像部、音データを取得する音検知部、ガスデータを取得するガス検知部などがある。また試料取得部としては、例えば、水槽内の水を採取する水採取部などがある。採取した試料は、例えば作業員や管理棟に待機する技術者などが検査する。
本発明によれば、自走可能手段によって有用な現在情報を入手することができる。
Further, in addition to the above features, the present invention is characterized in that the self-propellable means includes a data acquisition unit, a sampling unit, and a data communication unit.
The data acquisition unit includes, for example, an imaging unit that acquires video data, a sound detection unit that acquires sound data, a gas detection unit that acquires gas data, and the like. Further, as the sample acquisition unit, for example, there is a water sampling unit that collects water in the aquarium. The collected sample is inspected by, for example, a worker or a technician waiting in the management building.
According to the present invention, useful current information can be obtained by self-propelled means.

また本発明は、上記特徴に加え、前記自走可能手段は、危険度が高くて人が入れないと予測された箇所や、人の目が届かないと予測された箇所の現在情報を取得することを特徴としている。
本発明によれば、人が行動できない場所の現在情報も取得できるため、より運転管理の精度を上げることができ、対応の幅を広げることができる。
さらに、人の目が届かないと予測された箇所として、作業員自身では気付き難い作業員自身の行動や作業員の周囲の情報を取得することで、速やかに異常を予知、検知、そして周知することができ、安全性の向上がはかれる。
Further, in addition to the above-mentioned features, the self-propelled means acquires the current information of a place where a person is predicted to be out of reach due to a high degree of risk and a place where a person is predicted to be out of sight. It is characterized by that.
According to the present invention, since the current information of the place where a person cannot act can be acquired, the accuracy of operation management can be further improved and the range of correspondence can be expanded.
Furthermore, by acquiring information on the worker's own behavior and the surroundings of the worker, which is difficult for the worker to notice, as a part that is predicted to be out of the reach of human eyes, the abnormality is promptly predicted, detected, and made known. It is possible to improve safety.

また本発明は、上記特徴に加え、ハザードマップと、GIS(Geographic Information System/地理情報システム)のデータを用いて、施設が浸水した際の影響や被害範囲を、予め前記3次元画像に反映させておくことを特徴としている。
本発明によれば、事前に浸水被害の状態を予測しておくことで、災害時、さらには災害後の対応を迅速に行うことが可能になる。
Further, in addition to the above features, the present invention uses a hazard map and GIS (Geographic Information System) data to reflect in advance the influence and damage range when the facility is flooded on the three-dimensional image. It is characterized by keeping it.
According to the present invention, by predicting the state of flood damage in advance, it is possible to quickly respond to a disaster and even after a disaster.

また本発明は、上記特徴に加え、前記MRを用いて作成した運転管理用3次元画像を、作業員同士または遠隔地にいる者同士で、共有するように通信を行うことを特徴としている。
本発明によれば、限られた人員でも、人員同士が運転管理用3次元画像を共有して各種作業や点検などを協力して行うことができ、誤診断や誤操作なく、広範な施設をくまなく、安全に運転管理することができる。
Further, in addition to the above-mentioned features, the present invention is characterized in that a three-dimensional image for operation management created by using the MR is communicated so as to be shared between workers or persons in a remote place.
According to the present invention, even with a limited number of personnel, the personnel can share a three-dimensional image for operation management and perform various tasks and inspections in cooperation with each other, and can cover a wide range of facilities without erroneous diagnosis or erroneous operation. It is possible to manage the operation safely.

また本発明は、上記特徴に加え、前記水処理施設が下水処理施設であることを特徴としている。
危険な場所が多く、限られた人員で幅広い運転管理を要求される下水処理施設では、特に作業の効率化、安全性の確保の面で効果が高い。
Further, in addition to the above features, the present invention is characterized in that the water treatment facility is a sewage treatment facility.
In sewage treatment facilities where there are many dangerous places and a wide range of operation management is required with a limited number of personnel, it is particularly effective in terms of improving work efficiency and ensuring safety.

また本発明にかかる水処理施設の運転管理システムは、3DCAD(Computer Aided Design)、MR(Mixed Reality/複合現実)、VR(Virtual Reality/仮想現実)の少なくとも何れかを用いて作成した水処理施設の3次元画像に、当該水処理施設用のシミュレーションソフトウェアと、自走可能手段を使って取得した現在情報とを用いることで、運転管理用の情報又は案内を表示した運転管理用3次元画像を生成する画像生成手段と、前記運転管理用3次元画像に表示される情報又は案内に従って水処理施設の点検又は運転調整を行わせる指示を出力する作業指示用出力手段と、前記自走可能手段によって点検又は運転調整後の状態確認を行わせる指示を出力する自走可能手段指示用出力手段と、を具備することを特徴としている。 Further, the operation management system of the water treatment facility according to the present invention is a water treatment facility created by using at least one of 3D CAD (Computer Aided Design), MR (Mixed Reality), and VR (Virtual Reality). By using the simulation software for the water treatment facility and the current information acquired by using self-propelled means for the 3D image of the above, the 3D image for operation management displaying the information or guidance for operation management can be obtained. By the image generation means to be generated, the work instruction output means for outputting the instruction to inspect or adjust the operation of the water treatment facility according to the information or guidance displayed on the operation management three-dimensional image, and the self-propellable means. It is characterized in that it is provided with a self-propellable means instruction output means for outputting an instruction for confirming the state after inspection or operation adjustment.

本発明によれば、水処理施設を、効率的に無駄なく広範囲に安全に運転管理することができる。 According to the present invention, a water treatment facility can be efficiently and safely operated over a wide area without waste.

水処理施設用運転管理システム1の概略構成図である。It is a schematic block diagram of the operation management system 1 for a water treatment facility. 下水処理施設100を示す概略平面図である。It is a schematic plan view which shows the sewage treatment facility 100. 運転管理システム1の管理装置10の1動作例を示す動作フロー図である。It is an operation flow diagram which shows 1 operation example of the management apparatus 10 of an operation management system 1. 運転管理用3次元画像の一例を示す図である。It is a figure which shows an example of the 3D image for operation management.

以下、本発明の実施形態を、図面を参照して詳細に説明する。
図1は本発明の一実施形態にかかる水処理施設用運転管理システム1の概略構成図である。同図に示すように、当該運転管理システム1は、例えば下記する管理棟230に設置される管理装置10と、下記する水処理施設100の点検や運転調整を行う作業員が所持する携帯端末30と、管理装置10又は携帯端末30によって操作される自走可能手段(以下「無人航空機」又は「ドローン」という)50とを具備して構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an operation management system 1 for a water treatment facility according to an embodiment of the present invention. As shown in the figure, the operation management system 1 is, for example, a management device 10 installed in the management building 230 described below and a mobile terminal 30 possessed by a worker who inspects and adjusts the operation of the water treatment facility 100 described below. And a self-propelled means (hereinafter referred to as "unmanned aerial vehicle" or "drone") 50 operated by the management device 10 or the mobile terminal 30.

管理装置10は、例えば卓上型のコンピュータによって構成され、制御部11と、各種プログラムやデータなどを記憶する記憶部13と、各種情報を表示する表示部15と、各種操作を行う操作部17と、通信部19とを具備している。制御部11は、記憶部13が記憶しているプログラムやデータなどを用いて、管理装置10の動作を制御する。記憶部13は、当該管理装置10を動作させる各種プログラムやデータの他に、各種3次元画像生成用のプログラムやデータ、シミュレーション用のプログラムやデータ、前記携帯端末30や無人航空機50から入手される現在情報データなどを記憶する。表示部15は、前記各種3次元画像やその他の各種水処理施設用の管理画面を表示する。表示部15としてタッチパネルを用いた場合は、表示部15が操作部17を兼用する。操作部17は、当該管理装置10に各種の指示などを入力する入力手段であり、例えばキーボードや上記タッチパネルやその他の機器(マウスなど)によって構成される。通信部19は、携帯端末30や無人航空機50とデータの送受信を行う。 The management device 10 is composed of, for example, a desktop computer, and includes a control unit 11, a storage unit 13 for storing various programs and data, a display unit 15 for displaying various information, and an operation unit 17 for performing various operations. , The communication unit 19 is provided. The control unit 11 controls the operation of the management device 10 by using the programs and data stored in the storage unit 13. The storage unit 13 is obtained from various programs and data for operating the management device 10, various programs and data for generating three-dimensional images, programs and data for simulation, the mobile terminal 30 and the unmanned aircraft 50. Currently stores information data and so on. The display unit 15 displays the management screens for the various three-dimensional images and other various water treatment facilities. When a touch panel is used as the display unit 15, the display unit 15 also serves as the operation unit 17. The operation unit 17 is an input means for inputting various instructions to the management device 10, and is composed of, for example, a keyboard, the touch panel, or other device (mouse or the like). The communication unit 19 transmits / receives data to / from the mobile terminal 30 and the unmanned aerial vehicle 50.

携帯端末30は、例えば携帯型のコンピュータによって構成され、制御部31と、各種プログラムやデータなどを記憶する記憶部33と、各種情報を表示する表示部35と、各種操作を行う操作部37と、通信部39とを具備している。制御部31は、記憶部33が記憶しているプログラムやデータなどを用いて、携帯端末30の動作を制御する。記憶部33は、当該携帯端末30を動作させる各種プログラムやデータの他に、前記管理装置10から送られてきた運転管理用3次元画像データや、施設の点検や運転調整を行う指示データなどを記憶する。表示部35は、前記運転管理用3次元画像や指示内容などを表示する。表示部35としてタッチパネルを用いた場合は、表示部35が操作部37を兼用する。操作部37は、当該携帯端末30に各種の指示などを入力する入力手段であり、例えばキーボードや上記タッチパネルやその他の機器(マウスなど)によって構成される。通信部39は、管理装置10や無人航空機50とデータの送受信を行う。 The mobile terminal 30 is composed of, for example, a portable computer, and includes a control unit 31, a storage unit 33 for storing various programs and data, a display unit 35 for displaying various information, and an operation unit 37 for performing various operations. , The communication unit 39 is provided. The control unit 31 controls the operation of the mobile terminal 30 by using the programs and data stored in the storage unit 33. In addition to various programs and data for operating the mobile terminal 30, the storage unit 33 stores three-dimensional image data for operation management sent from the management device 10, instruction data for facility inspection and operation adjustment, and the like. Remember. The display unit 35 displays the three-dimensional image for operation management, instruction contents, and the like. When a touch panel is used as the display unit 35, the display unit 35 also serves as the operation unit 37. The operation unit 37 is an input means for inputting various instructions to the mobile terminal 30, and is composed of, for example, a keyboard, the touch panel, or other device (mouse or the like). The communication unit 39 transmits / receives data to / from the management device 10 and the unmanned aerial vehicle 50.

無人航空機50は、無人で遠隔操縦や自動制御によって飛行できる航空機であり、制御部51と、記憶部53と、運転部55と、通信部57と、カメラによって撮影を行う撮像部59と、ガス検知部61と、音検知部63と、試料採取部65とを具備している。制御部51は、記憶部53が記憶しているプログラムやデータなどを用いて、無人航空機50の動作を制御する。記憶部53は、当該無人航空機50を動作させる各種プログラムやデータの他に、前記管理装置10や携帯端末30から送られてきた施設の点検や運転調整後の状態確認を行う指示データなどを記憶する。運転部55は、無人航空機50の有する複数のプロペラなどを自動制御し、またGPS機能を有して自己の位置を検知することで、所望のルートで所望の位置に所望の速度で自動飛行可能に運転制御する。通信部57は、管理装置10や携帯端末30とデータの送受信を行う。撮像部59は、カメラによって撮影を行う。カメラは、各種方向に向きを変えることができ、これによって必要な個所の撮影を行うことができる。ガス検知部61は、有害ガスなどのガスを検知するセンサである。音検知部63は、機械の発する異常音などの音(音声を含む)を検知するものである。試料採取部65は、例えば、コップ状の容器を具備し、これによって例えば各種水槽内の試料(水など)の採取を行うものである。無人航空機50は、危険度が高くて人が入れないと予測された箇所や、人の目が届かないと予測された場所の現在情報を取得するのに用いて好適である。 The unmanned aerial vehicle 50 is an aircraft that can fly unmanned by remote control or automatic control, and includes a control unit 51, a storage unit 53, a driving unit 55, a communication unit 57, an imaging unit 59 that photographs with a camera, and gas. It includes a detection unit 61, a sound detection unit 63, and a sampling unit 65. The control unit 51 controls the operation of the unmanned aerial vehicle 50 by using the programs and data stored in the storage unit 53. The storage unit 53 stores, in addition to various programs and data for operating the unmanned aerial vehicle 50, instruction data and the like sent from the management device 10 and the mobile terminal 30 for checking the facilities and checking the state after operation adjustment. do. The driving unit 55 can automatically fly to a desired position at a desired speed on a desired route by automatically controlling a plurality of propellers of the unmanned aerial vehicle 50 and detecting its own position with a GPS function. Operation control. The communication unit 57 transmits / receives data to / from the management device 10 and the mobile terminal 30. The image pickup unit 59 takes a picture with a camera. The camera can be turned in various directions, which allows it to shoot where it is needed. The gas detection unit 61 is a sensor that detects a gas such as a harmful gas. The sound detection unit 63 detects sounds (including voices) such as abnormal sounds emitted by the machine. The sampling unit 65 is provided with, for example, a cup-shaped container for collecting samples (water, etc.) in various water tanks, for example. The unmanned aerial vehicle 50 is suitable for use for acquiring the current information of a place where a person is predicted to be out of sight or a place where a person is predicted to be out of sight due to a high degree of danger.

図2は、上記運転管理システム1を適用できる水処理施設の内の下水処理施設100を示す概略平面図である。同図に示すように、下水処理施設100は、大きなゴミを取り除き、土砂類を沈殿させる沈砂池110と、沈砂池110の水を移送するポンプ棟15と、下水に含まれる沈み易い汚れを沈殿させる最初沈殿池130と、下水と微生物の入った汚泥に空気を送り込んで下水中の汚れを微生物によって分解する反応槽150と、反応槽150で生成された汚泥(活性汚泥)の塊を沈殿させて上澄み(処理水)と汚泥に分離する最終沈殿池170と、処理水を塩素消毒して河川や海に放流する消毒施設190と、汚泥濃縮棟や消化槽や脱硫塔やガスタンクや汚泥脱水機室などを有して汚泥濃縮後に当該汚泥から消化ガスを取り出して固形化処理する汚泥処理施設210と、を具備して構成されている。 FIG. 2 is a schematic plan view showing a sewage treatment facility 100 among the water treatment facilities to which the operation management system 1 can be applied. As shown in the figure, the sewage treatment facility 100 removes large debris and setstles the sediment pond 110, the pump building 15 that transfers the water of the sand set pond 110, and the easily sinking dirt contained in the sewage. First settling pond 130, reaction tank 150 that blows air into sewage and sludge containing microorganisms to decompose the dirt in the sewage by microorganisms, and sludge (active sludge) lumps generated in the reaction tank 150 are settled. A final settling pond 170 that separates the supernatant (treated water) and sludge, a disinfection facility 190 that disinfects the treated water with chlorine and discharges it into rivers and the sea, a sludge concentration building, a digestion tank, a desulfurization tower, a gas tank, and a sludge dehydrator. It is configured to include a sludge treatment facility 210 having a chamber or the like to extract digestion gas from the sludge and solidify the sludge after the sludge is concentrated.

また下水処理施設100には、下水処理施設の管理を行う管理棟230が設置されている。なお、下水処理施設によっては、さらに消毒施設190の下流側に、水質改善施設として、砂ろ過設備、オゾン発生設備、オゾン酸化設備などを設ける場合もある。 Further, in the sewage treatment facility 100, a management building 230 that manages the sewage treatment facility is installed. Depending on the sewage treatment facility, a sand filtration facility, an ozone generation facility, an ozone oxidation facility, etc. may be provided as water quality improvement facilities on the downstream side of the disinfection facility 190.

そして例えば前記管理装置10は、前記管理棟230内に設置される。また前記携帯端末30と無人航空機50を携帯した作業員は、管理棟230から出発し、携帯端末30に表示される指示案内に従って前記下水処理施設100内を移動していく。このとき無人航空機50もこれを飛行させて、所望の点検などを行う。無人航空機50は、作業員が操縦しても良いし、管理装置10や携帯端末30からの無線による指示で自動運転を行わせても良い。 Then, for example, the management device 10 is installed in the management building 230. Further, the worker carrying the mobile terminal 30 and the unmanned aerial vehicle 50 departs from the management building 230 and moves in the sewage treatment facility 100 according to the instruction guide displayed on the mobile terminal 30. At this time, the unmanned aerial vehicle 50 also flies it to perform desired inspections and the like. The unmanned aerial vehicle 50 may be operated by a worker, or may be automatically operated by a wireless instruction from the management device 10 or the mobile terminal 30.

図3は、上記運転管理システム1の管理装置10の1動作例を示す動作フロー図である。同図に示すように、管理装置10の制御部11は、予め、3DCAD(Computer Aided Design)、MR(Mixed Reality/複合現実)、VR(Virtual Reality/仮想現実)の内の少なくとも何れかを用いて下水処理施設(水処理施設)100の3次元画像のデータを作成する(ステップ1−1)。 FIG. 3 is an operation flow diagram showing one operation example of the management device 10 of the operation management system 1. As shown in the figure, the control unit 11 of the management device 10 uses at least one of 3DCAD (Computer Aided Design), MR (Mixed Reality), and VR (Virtual Reality) in advance. The data of the three-dimensional image of the sewage treatment facility (water treatment facility) 100 is created (step 1-1).

次に、上記3次元画像に、シミュレーションソフトウェアと現在情報を用いてシミュレーションを行うことで、運転管理用3次元画像のデータを生成する(ステップ1−2)。なお上記ステップ1−1とステップ1−2が画像生成工程となる。なお、現在情報とは、現実に作業員や無人航空機50によって行われた設備の点検・運転調整内容であり、点検開始当初は、まだ作業員による点検などが始まっていないので、作業員からの現在情報がない場合もある(なお、作業員の点検などが始まっていなくても、管理装置10に直接入力される情報を現在情報として用いる)。 Next, the data of the three-dimensional image for operation management is generated by performing a simulation on the three-dimensional image using the simulation software and the current information (step 1-2). The above steps 1-1 and 1-2 are image generation steps. The current information is the contents of equipment inspections and operation adjustments actually performed by workers and the unmanned aerial vehicle 50. At the beginning of the inspection, the inspections by the workers have not started yet, so the workers There may be no information at present (note that the information directly input to the management device 10 is used as the current information even if the inspection of the worker has not started).

下水処理施設100を運転管理するには、広範な立地環境、複雑な構造物の状態を正確に把握することが重要であり、そのために上記3次元画像が必要になる。さらに当該3次元画像を元に、気象条件、処理対象水の流入条件を合わせて水の動きを正確に算出するシミュレーションを行うことで、的確な運転管理の指標とすることが可能になる。 In order to operate and manage the sewage treatment facility 100, it is important to accurately grasp the state of a wide range of location environments and complex structures, and for that purpose, the above three-dimensional image is required. Furthermore, by performing a simulation that accurately calculates the movement of water by combining the weather conditions and the inflow conditions of the water to be treated based on the three-dimensional image, it becomes possible to use it as an index of accurate operation management.

シミュレーションに用いる技術(シミュレーションソフトウエア)としては、各種のものが考えられるが、ここでは、ASM(Activated Sludge Model/活性汚泥モデル)、河川流量モデル、地点別浸水シミュレーションなどのソフトウエアを用いる場合について説明する。 Various technologies (simulation software) can be considered for simulation, but here, when using software such as ASM (Activated Sludge Model), river flow rate model, and point-by-point inundation simulation. explain.

ASMでは、流入水質(TS、BODなど)から、最適な曝気風量や汚泥循環量などを得ることができ、リアルタイムで最適運転法案と現在の運転状態を3次元画像内で表示することで、現場にいながら、最適運転状態を確認することができ、運転調整に活用することができる。 With ASM, it is possible to obtain the optimum aeration air volume and sludge circulation volume from the inflow water quality (TS, BOD, etc.), and by displaying the optimum operation bill and current operation status in real time in a three-dimensional image, the site You can check the optimum operating condition while you are there, and you can use it for operation adjustment.

河川流量モデルでは、雨量などから、下水処理施設100への流入量やその流入量に合わせた最適運転法案を予測することができる。その運転法案などを、3次元画像内に表示させることで、効率的な運転管理を現場で把握することができる。 In the river flow rate model, it is possible to predict the amount of inflow to the sewage treatment facility 100 and the optimum operation bill according to the amount of inflow from the amount of rainfall and the like. By displaying the driving bill and the like in a three-dimensional image, efficient driving management can be grasped at the site.

地点別浸水シミュレーションでは、越水状況や、洪水などでの浸水被害をシミュレーションし、3次元画像に表示させることで、危険地帯を予め把握することができ、作業員の安全確保をより容易に図ることが可能になる。 In the inundation simulation for each point, the danger zone can be grasped in advance by simulating the inundation situation and the inundation damage caused by floods and displaying it on a three-dimensional image, making it easier to ensure the safety of workers. Will be possible.

図4は、以上のようにして作成された運転管理用3次元画像G1の一例を示す図である。同図に示すように、運転管理用3次元画像G1は下水処理施設100の何れかの建屋内の一部を正確に表示している。そして当該運転管理用3次元画像G1の中には、前記シミュレーションの結果、例えば作業員の侵入を禁止する危険地帯A1を表示したり、作業員が点検すべき箇所とその内容(図示せず)を示したり、作業員が侵入できない前記危険地帯A1内において無人航空機50が点検すべき箇所とその内容(図示せず)を示したりする。 FIG. 4 is a diagram showing an example of the three-dimensional image G1 for operation management created as described above. As shown in the figure, the three-dimensional image G1 for operation management accurately displays a part of the inside of any one of the sewage treatment facilities 100. Then, in the three-dimensional image G1 for operation management, as a result of the simulation, for example, a danger zone A1 for prohibiting the invasion of workers is displayed, and a place to be inspected by the worker and its contents (not shown). Or, the location to be inspected by the unmanned aerial vehicle 50 in the danger zone A1 where workers cannot enter and its contents (not shown) are indicated.

上記運転管理用3次元画像G1が3DCADの場合、当該運転管理用3次元画像G1は、管理装置10の表示部15や、携帯端末30の表示部35上に表示され、視点を360度変えた各方向から立体的に見ることができる。本発明における3DCADの役割は、現在情報を3DCAD上に載せ、逐次更新していくことにより(更新については下記ステップ1−6において説明する)、遠隔で下水処理施設情報を容易に把握したり、異常個所を立体的に把握できたりすることである。さらに下水処理施設100内の高低差を把握することで、浸水箇所と被害状況の予測や危険性が高く人が入れない箇所の予測が容易となる。下水処理施設100の危険度などを3DCAD上で表示させることで、注意喚起などが行い易くなり、安全性が高まる。 When the operation management three-dimensional image G1 is 3D CAD, the operation management three-dimensional image G1 is displayed on the display unit 15 of the management device 10 and the display unit 35 of the mobile terminal 30, and the viewpoint is changed by 360 degrees. It can be seen three-dimensionally from each direction. The role of the 3D CAD in the present invention is to easily grasp the sewage treatment facility information remotely by placing the current information on the 3D CAD and updating it sequentially (the update will be described in steps 1-6 below). It is possible to grasp the abnormal part in three dimensions. Further, by grasping the height difference in the sewage treatment facility 100, it becomes easy to predict the inundation point and the damage situation and the place where people are highly dangerous and cannot enter. By displaying the degree of danger of the sewage treatment facility 100 on the 3D CAD, it becomes easier to call attention and the safety is enhanced.

また上記運転管理用3次元画像G1がMRの場合、当該運転管理用3次元画像G1は、人が装着したHMD(頭部装着ディスプレイ)によって、現実の水処理施設100の中に仮想の画像を組み合わせて立体的に見ることができる。本発明におけるMRの役割は、実際の現場で、下水処理施設100内の機器情報や案内をホログラム的な形で表示させることである。機器の運転データや日常点検で通るルートなどを表示する場合にMRを用いる。さらに、過去の運転調整内容と運転調整結果を常時映し出すことで、異常などを感知し易くなる。また、無人航空機50によって取得したデータ(日常点検では、騒音や温度など、災害時などでは、硫化水素やpHなど)も記憶し、MR上に常時映し出すことで、より効率的に安全に作業を行うことができる。特に災害時では、3DCADやシミュレーション、事前の無人航空機50などでの確認で、危険と予測または危険だと確認された箇所に立ち入らないようにMRで表示することで、安全に作業を行うことができるようになる。またMRを用いて作成した運転管理用3次元画像G1を、作業員同士または遠隔地にいる者同士で、共有するように通信を行うこともできる。このように構成することで、例えば、遠隔地にいる技術者の意見をもとに作業や点検を行うことができ、即ち限られた人員でも、人員同士が運転管理用3次元画像G1を共有して各種作業や点検などを協力して行うことができ、誤診断や誤操作なく、広範な下水処理施設100をくまなく、安全に運転管理することができる。 When the operation management three-dimensional image G1 is MR, the operation management three-dimensional image G1 displays a virtual image in the actual water treatment facility 100 by an HMD (head-mounted display) worn by a person. It can be combined and viewed three-dimensionally. The role of the MR in the present invention is to display the device information and guidance in the sewage treatment facility 100 in a hologram-like form at the actual site. MR is used to display equipment operation data and routes taken in daily inspections. Further, by constantly displaying the past operation adjustment contents and the operation adjustment result, it becomes easy to detect an abnormality or the like. In addition, data acquired by the unmanned aerial vehicle 50 (noise, temperature, etc. in daily inspections, hydrogen sulfide, pH, etc. in the event of a disaster, etc.) are also stored and constantly displayed on the MR for more efficient and safe work. It can be carried out. Especially in the event of a disaster, it is possible to work safely by displaying with MR so as not to enter the place where it is predicted to be dangerous or confirmed to be dangerous by 3D CAD, simulation, confirmation with unmanned aerial vehicle 50 in advance, etc. become able to. Further, it is also possible to communicate so that the three-dimensional image G1 for operation management created by using MR can be shared by workers or persons in remote areas. With this configuration, for example, work and inspection can be performed based on the opinions of engineers in remote areas, that is, even with a limited number of personnel, the personnel can share the 3D image G1 for operation management. Therefore, various operations and inspections can be carried out in cooperation with each other, and the operation and management of a wide range of sewage treatment facilities 100 can be safely performed without erroneous diagnosis or erroneous operation.

また上記3次元画像がVRの場合、当該運転管理用3次元画像G1は、人が装着したHMDによって、仮想世界として上記下水処理施設100やその危険地帯などを立体的に見ることができる。本発明におけるVRの役割は、実際の下水処理施設100に立ち入らずに現地情報を確認できることである。下水処理施設100内に入る前の教育や、下水処理施設100の点検前に危険個所を各人で共有する場合などにVRを用いる。さらに、将来の点検内容や運転調整結果を3DCADと合わせて逐次反映させていくことで、3DCADとVRによって下水処理施設100の機器などの点検・異常検知ができるようになる。特に、災害時には、浸水シミュレーションなどで危険個所を把握し、3DCADやVRに反映することで、下水処理施設100に入ることなく、危険個所などを予め学習することができる。その後、下水処理施設100内の点検などを行うことで、安全に作業を行うことができる。 When the three-dimensional image is VR, the operation management three-dimensional image G1 can three-dimensionally view the sewage treatment facility 100 and its danger zone as a virtual world by the HMD worn by a person. The role of VR in the present invention is to be able to confirm local information without entering the actual sewage treatment facility 100. VR is used for education before entering the sewage treatment facility 100 and for sharing dangerous points with each person before inspection of the sewage treatment facility 100. Further, by sequentially reflecting the future inspection contents and the operation adjustment result together with the 3D CAD, it becomes possible to inspect and detect the abnormality of the equipment of the sewage treatment facility 100 by the 3D CAD and VR. In particular, in the event of a disaster, by grasping the dangerous place by inundation simulation or the like and reflecting it in 3D CAD or VR, it is possible to learn the dangerous place in advance without entering the sewage treatment facility 100. After that, the work can be carried out safely by inspecting the inside of the sewage treatment facility 100.

なお、上記シミュレーションソフトに加え、ハザードマップと、GIS(Geographic Information System/地理情報システム)のデータを用いて、下水処理施設100が浸水した際の影響や被害範囲を、予め前記運転管理用3次元画像G1に反映させておくことが好ましい。ハザードマップは、自然災害による被害の軽減や防災対策に使用する目的で、被災想定区域や避難場所・避難経路などの防災関係施設の位置などを表示した地図であり、その地域の土地の成り立ちや災害の素因となる地形・地盤の特徴、過去の災害履歴、避難場所・避難経路などの防災地理情報を用いて作成されているので、これを運転管理用3次元画像G1に加えておけば、事前に浸水被害などをより正確に予測しておくことができ、災害時、さらには災害後の対応を適切且つ迅速に行うことが可能になる。 In addition to the above simulation software, hazard maps and GIS (Geographic Information System) data are used to determine the impact and damage range when the sewage treatment facility 100 is flooded in advance in the above-mentioned three-dimensional operation management. It is preferable to reflect it in the image G1. Hazard maps are maps that display the locations of disaster prevention-related facilities such as disaster-predicted areas, evacuation sites, and evacuation routes for the purpose of reducing damage caused by natural disasters and for disaster prevention measures. It is created using disaster prevention geographic information such as topographical and ground features that are the predisposing factors for disasters, past disaster history, evacuation sites and evacuation routes, so if you add this to the 3D image G1 for operation management, Inundation damage can be predicted more accurately in advance, and it becomes possible to respond appropriately and promptly in the event of a disaster and even after a disaster.

図3に戻って、管理装置10は、次に、前記運転管理用3次元画像G1に表示される危険地帯A1や、作業員が点検すべき箇所と内容や、無人航空機50が点検すべき箇所と内容などの情報と、当該情報に基づく作業案内に従って、下水処理施設100の点検又は運転調整を行わせる指示を、作業員の携帯端末30に出力(送信)する(ステップ1−3)。このステップ1−3は、作業指示用出力工程となる。当該作業指示には、前記運転管理用3次元画像G1に作業の順番や作業箇所や作業内容を表示したり、作業案内を音声で指示したりすることで行う。 Returning to FIG. 3, the management device 10 next has the danger zone A1 displayed on the three-dimensional image G1 for operation management, the parts and contents to be inspected by the worker, and the parts to be inspected by the unmanned aerial vehicle 50. An instruction to inspect or adjust the operation of the sewage treatment facility 100 is output (transmitted) to the worker's mobile terminal 30 according to the information such as the contents and the work guidance based on the information (step 1-3). This step 1-3 is a work instruction output step. The work instruction is given by displaying the order of work, the work location, and the work content on the three-dimensional image G1 for operation management, and instructing the work guidance by voice.

次に、管理装置10は、無人航空機50によって行う下水処理施設100の点検(点検箇所と点検内容を含む)や、作業員などによる運転調整後の状態確認を行わせる指示を、携帯端末30又は無人航空機50に送信する(ステップ1−4)。このステップ1−4は、自走可能手段指示用出力工程となる。携帯端末30に送信するのは、携帯端末30を所持する作業者が無人航空機50を操作しているような場合であり、無人航空機50に直接送信するのは、無人航空機50を自動運転制御しているような場合である。 Next, the management device 10 gives an instruction to inspect the sewage treatment facility 100 (including the inspection points and inspection contents) performed by the unmanned aerial vehicle 50 and to confirm the state after the operation adjustment by a worker or the like. It is transmitted to the unmanned aerial vehicle 50 (step 1-4). This step 1-4 is an output step for instructing the self-propellable means. Transmission to the mobile terminal 30 is when the worker who owns the mobile terminal 30 is operating the unmanned aerial vehicle 50, and transmission directly to the unmanned aerial vehicle 50 is automatic operation control of the unmanned aerial vehicle 50. It is a case like that.

次に、携帯端末30を所持する作業者と無人航空機50は、上記指示に従った処置を行い(具体的な内容は下記する)、管理装置10は、当該携帯端末30や無人航空機50から、指示に従って実際に行われた点検内容や運転調整後の状態確認のデータを新たな現在情報として取得する(ステップ1−5)。このステップ1−5は、現在情報取得工程となる。 Next, the worker possessing the mobile terminal 30 and the unmanned aerial vehicle 50 take measures according to the above instructions (specific details are described below), and the management device 10 is transferred from the mobile terminal 30 and the unmanned aerial vehicle 50. Acquire the data of the inspection contents actually performed according to the instruction and the state confirmation after the operation adjustment as new current information (step 1-5). This step 1-5 is currently an information acquisition process.

そしてこの新たな現在情報を、現在情報として更新を行い(ステップ1−6)、ステップ1−2に戻り、3次元画像に新たな現在情報を用いて、新たな運転管理用3次元画像を生成し、点検が終了するまで(ステップ1−7で「Y」となるまで)、ステップ1−2〜ステップ1−6を繰り返し行う。このステップ1−7は、現在情報更新工程となる。 Then, this new current information is updated as the current information (steps 1-6), the process returns to step 1-2, and the new current information is used for the 3D image to generate a new 3D image for operation management. Then, steps 1-2 to 1-6 are repeated until the inspection is completed (until it becomes "Y" in step 1-7). This step 1-7 is currently an information update process.

次に、上記動作フローの具体例を、下水処理施設100の定常時の工程例と、異常時の工程例とに分けて説明する。 Next, a specific example of the operation flow will be described separately for a process example in the steady state of the sewage treatment facility 100 and a process example in the abnormal state.

<定常時の工程例>
3Dスキャナにより、下水処理施設100の立地データ、設備データを詳細に形成する。次に上記で取得した3Dスキャナデータをもとに3DCADを作成する。その際、3DCADに現在の運転状況が反映されるようにする。次に、3DCADをVRデータに加工する。次に、3DCADデータをもとにMRデータに加工する。次に、ASMなどのシミュレーションを導入し、3DCAD、MR、VRに連携させる。
<Process example at steady time>
The location data and equipment data of the sewage treatment facility 100 are formed in detail by the 3D scanner. Next, 3DCAD is created based on the 3D scanner data acquired above. At that time, the current operating condition is reflected in 3D CAD. Next, 3D CAD is processed into VR data. Next, it is processed into MR data based on the 3D CAD data. Next, a simulation such as ASM is introduced and linked with 3D CAD, MR, and VR.

次に、作業員が下水処理施設100に向かい、MRが示した案内(点検・処置手順・立ち入り禁止箇所など)を参考にして点検や運転調整を行う。実際の作業時には、無人航空機50を同行させ、騒音の大きさや、温度データ、作業員やその周囲の画像データなどを自動で取得させる。無人航空機50で取得したデータ(現在情報)も、作業員が取得したデータ(現在情報)とともに、MRにリアルタイムで反映させ表示させる。以上の工程を繰り返し行うことで、下水処理施設100の点検作業を順次進めていく。 Next, the worker heads to the sewage treatment facility 100 and performs inspections and operation adjustments with reference to the guidance (inspection / treatment procedure / exclusion zone, etc.) indicated by the MR. At the time of actual work, the unmanned aerial vehicle 50 is accompanied to automatically acquire the noise level, temperature data, image data of the worker and its surroundings, and the like. The data (current information) acquired by the unmanned aerial vehicle 50 is also reflected in the MR in real time and displayed together with the data (current information) acquired by the worker. By repeating the above steps, the inspection work of the sewage treatment facility 100 will be carried out in sequence.

<異常時の工程例>
上記定常時の場合と同様に、3DCAD、VR,MRを作成しておく。そして、例えば洪水が発生し、下水処理施設100が浸水したとする。このとき、3DCADの施設内高低差などをもとに浸水状況を予測する(浸水シミュレーション)。次に、無人航空機50を用いて危険と想定された箇所の現在情報を取得する。次に、確認された危険箇所を3DCAD、MR、VRに反映する。3DCADとVRを用いて、下水処理施設100の点検に実際に入る前に、危険箇所を確認する。次に、作業員が実際に下水処理施設100の点検に赴き、MRが示した案内(点検・処置手順・立ち入り禁止箇所など)を参考にして処置を行う。このとき無人航空機50を作業員に同行させ、前記危険と想定された箇所などを、当該無人航空機50によって、現在情報を取得させる。作業員が取得した現在情報と、無人航空機50が取得した現在情報を3DCAD、VR,MRなどに反映させ表示させる。必要に応じて、MRの通信機能を用いて、遠隔地の技術者の助言を乞うこともできる。
<Process example at the time of abnormality>
Create 3D CAD, VR, and MR in the same manner as in the above steady state. Then, for example, it is assumed that a flood occurs and the sewage treatment facility 100 is flooded. At this time, the inundation situation is predicted based on the height difference in the facility of 3D CAD (inundation simulation). Next, the unmanned aerial vehicle 50 is used to acquire the current information of the portion assumed to be dangerous. Next, the confirmed dangerous points are reflected in 3D CAD, MR, and VR. Using 3D CAD and VR, check the dangerous spots before actually entering the inspection of the sewage treatment facility 100. Next, the worker actually goes to the inspection of the sewage treatment facility 100 and takes measures with reference to the guidance (inspection / treatment procedure / exclusion zone, etc.) indicated by the MR. At this time, the unmanned aerial vehicle 50 is accompanied by a worker, and the unmanned aerial vehicle 50 is made to acquire the current information on the location assumed to be dangerous. The current information acquired by the worker and the current information acquired by the unmanned aerial vehicle 50 are reflected in 3D CAD, VR, MR, etc. and displayed. If necessary, the communication function of MR can be used to seek the advice of a technician in a remote location.

なお、上記例では、本発明を下水処理施設100に用いた例を示したが、本発明はそれ以外の各種水処理施設にも適用可能であり、特に、上水処理施設、下水処理施設、浸出水処理施設など、規模が大きく、かつ、処理施設の機器類が複雑に入り組んだ施設で効果が大きい。 In the above example, the present invention is used for the sewage treatment facility 100, but the present invention can be applied to various other water treatment facilities, and in particular, the water treatment facility, the sewage treatment facility, and the like. The effect is great in facilities such as leachate treatment facilities that are large in scale and in which the equipment of the treatment facility is complicated.

また上記例では、自走可能手段として無人航空機50を用いた例を説明したが、本発明はこれに限られず、例えば水中ドローン、ラジコン船、ラジコンカー、自動運転可能な車両、歩行型ロボットなど、他の種々の自走可能手段、または、これらの移動機能を組み合わせた水陸両用、水空両用、空陸両用、水陸空両用自走可能手段の利用が可能である。本発明における自走可能手段の役割は、人の手の届かない箇所や危険性が判断できない箇所、危険性が高く人が入れないと判断された箇所、作業員の動作の現在情報の取得及び発信である。この自走可能手段を用いる、特に、付かず離れず帯同させて用いることで、人では確認できなかった箇所はもちろんのこと、作業員の動作から作業員本人の体調、健康状態などを確認することが可能となる。屋内や施設内は、配管が錯綜していたり、階段が多くあったりするため、また、速達性から無人航空機50が好ましい。自走可能手段には、上述のように、カメラなどの視覚的情報を取得できる機器や、人体に有害な物質(硫化水素やメタンガス、化学薬品など)を検知できる器具を装備させることが好ましい。 Further, in the above example, an example in which the unmanned aerial vehicle 50 is used as the self-driving means has been described, but the present invention is not limited to this, and for example, an underwater drone, a radio-controlled ship, a radio-controlled car, an automatically driving vehicle, a walking robot, etc. , Various other self-propelled means, or amphibious, amphibious, air-land, amphibious-air self-propelled means that combine these movement functions can be used. The role of the self-propelled means in the present invention is to obtain current information on the movements of workers, places that are out of reach of humans, places where danger cannot be determined, places where it is judged that there is high risk and people cannot enter. It is an outgoing call. By using this self-propelled means, especially by using it together with it without leaving it, it is possible to check not only the parts that could not be confirmed by humans, but also the physical condition and health condition of the workers themselves from the movements of the workers. It becomes possible. The unmanned aerial vehicle 50 is preferable because the piping is complicated and there are many stairs indoors and in the facility, and also because of express delivery. As described above, it is preferable to equip the self-propelled means with a device capable of acquiring visual information such as a camera and a device capable of detecting substances harmful to the human body (hydrogen sulfide, methane gas, chemicals, etc.).

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの構成であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。また、上記記載及び各図で示した実施形態は、その目的及び構成等に矛盾がない限り、互いの記載内容を組み合わせることが可能である。また、上記記載及び各図の記載内容は、その一部であっても、それぞれ独立した実施形態になり得るものであり、本発明の実施形態は上記記載及び各図を組み合わせた一つの実施形態に限定されるものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of claims and the technical ideas described in the specification and drawings. It is possible. It should be noted that any configuration not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the action and effect of the present invention are exhibited. In addition, the above description and the embodiments shown in each figure can be combined with each other as long as there is no contradiction in the purpose, configuration, and the like. Further, the above description and the description contents of each figure can be independent embodiments even if they are a part thereof, and the embodiment of the present invention is one embodiment in which the above description and each figure are combined. It is not limited to.

1 水処理施設用運転管理システム
10 管理装置
30 携帯端末
39 通信部(データ通信部)
50 無人航空機(自走可能手段、ドローン)
57 通信部(データ通信部)
59 撮像部(データ取得部)
61 ガス検知部(データ取得部)
63 音検知部(データ取得部)
65 試料採取部
100 下水処理施設(水処理施設)
110 沈砂池
130 最初沈殿池
150 反応槽
170 最終沈殿池
190 消毒施設
210 汚泥処理施設
230 管理棟
1 Operation management system for water treatment facilities 10 Management device 30 Mobile terminal 39 Communication unit (data communication unit)
50 Unmanned aerial vehicle (self-propelled means, drone)
57 Communication section (Data communication section)
59 Imaging unit (data acquisition unit)
61 Gas detection unit (data acquisition unit)
63 Sound detection unit (data acquisition unit)
65 Sampling section 100 Sewage treatment facility (water treatment facility)
110 Settling basin 130 First settling basin 150 Reaction tank 170 Final settling basin 190 Disinfection facility 210 Sludge treatment facility 230 Administration building

Claims (8)

3DCAD(Computer Aided Design)、MR(Mixed Reality/複合現実)、VR(Virtual Reality/仮想現実)の少なくとも何れかを用いて作成した水処理施設の3次元画像に、当該水処理施設用のシミュレーションソフトウェアと、自走可能手段を使って取得した現在情報とを用いることで、運転管理用の情報又は案内を表示した運転管理用3次元画像を生成する画像生成工程と、
前記運転管理用3次元画像に表示される情報又は案内に従って水処理施設の点検又は運転調整を行わせる指示を出力する作業指示用出力工程と、
前記自走可能手段によって点検又は運転調整後の状態確認を行わせる指示を出力する自走可能手段指示用出力工程と、
を具備することを特徴とする水処理施設の運転管理方法。
Simulation software for the water treatment facility on a three-dimensional image of the water treatment facility created using at least one of 3DCAD (Computer Aided Design), MR (Mixed Reality), and VR (Virtual Reality). And an image generation process that generates a three-dimensional image for operation management that displays information or guidance for operation management by using the current information acquired by using self-propelled means.
A work instruction output process that outputs an instruction to inspect or adjust the operation of the water treatment facility according to the information or guidance displayed on the three-dimensional image for operation management.
An output process for instructing self-propellable means, which outputs an instruction to confirm the state after inspection or operation adjustment by the self-propellable means.
A method of operating and managing a water treatment facility, which is characterized by being equipped with.
請求項1に記載の水処理施設の運転管理方法であって、
前記作業指示用出力工程で指示した点検又は運転調整内容を新たな現在情報として、前記画像生成工程に用いることで、新たな運転管理用3次元画像を生成することを特徴とする水処理施設の運転管理方法。
The operation management method of the water treatment facility according to claim 1.
A water treatment facility characterized in that a new three-dimensional image for operation management is generated by using the inspection or operation adjustment content instructed in the output process for work instructions as new current information in the image generation process. Operation management method.
請求項1又は2に記載の水処理施設の運転管理方法であって、
前記自走可能手段は、データ取得部と、試料採取部と、データ通信部と、を備えていることを特徴とする水処理施設の運転管理方法。
The operation management method for a water treatment facility according to claim 1 or 2.
The self-propellable means is an operation management method of a water treatment facility, characterized in that it includes a data acquisition unit, a sampling unit, and a data communication unit.
請求項1又は2又は3に記載の水処理施設の運転管理方法であって、
前記自走可能手段は、危険度が高くて人が入れないと予測された箇所や、人の目が届かないと予測された箇所の現在情報を取得することを特徴とする水処理施設の運転管理方法。
The operation management method for a water treatment facility according to claim 1, 2 or 3.
The self-propelled means is for operating a water treatment facility, which is characterized by acquiring the current information of a place where a person is predicted to be out of sight or a place where a person is predicted to be out of sight due to a high degree of risk. Management method.
請求項1乃至4の内の何れかに記載の水処理施設の運転管理方法であって、
ハザードマップと、GIS(Geographic Information System/地理情報システム)のデータを用いて、施設が浸水した際の影響や被害範囲を、予め前記3次元画像に反映させておくことを特徴とする水処理施設の運転管理方法。
The operation management method for a water treatment facility according to any one of claims 1 to 4.
A water treatment facility characterized by using hazard maps and GIS (Geographic Information System) data to reflect in advance the impact and damage range of the facility when it is flooded on the three-dimensional image. Operation management method.
請求項1乃至5の内の何れかに記載の水処理施設の運転管理方法であって、
前記MRを用いて作成した運転管理用3次元画像を、作業員同士または遠隔地にいる者同士で、共有するように通信を行うことを特徴とする水処理施設の運転管理方法。
The operation management method for a water treatment facility according to any one of claims 1 to 5.
An operation management method for a water treatment facility, characterized in that a three-dimensional image for operation management created by using the MR is communicated so as to be shared between workers or persons in remote areas.
請求項1乃至6の内の何れかに記載の水処理施設の運転管理方法であって、
前記水処理施設が下水処理施設であることを特徴とする水処理施設の運転管理方法。
The operation management method for a water treatment facility according to any one of claims 1 to 6.
A method for operating and managing a water treatment facility, wherein the water treatment facility is a sewage treatment facility.
3DCAD(Computer Aided Design)、MR(Mixed Reality/複合現実)、VR(Virtual Reality/仮想現実)の少なくとも何れかを用いて作成した水処理施設の3次元画像に、当該水処理施設用のシミュレーションソフトウェアと、自走可能手段を使って取得した現在情報とを用いることで、運転管理用の情報又は案内を表示した運転管理用3次元画像を生成する画像生成手段と、
前記運転管理用3次元画像に表示される情報又は案内に従って水処理施設の点検又は運転調整を行わせる指示を出力する作業指示用出力手段と、
前記自走可能手段によって点検又は運転調整後の状態確認を行わせる指示を出力する自走可能手段指示用出力手段と、
を具備することを特徴とする水処理施設の運転管理システム。
Simulation software for the water treatment facility on a three-dimensional image of the water treatment facility created using at least one of 3DCAD (Computer Aided Design), MR (Mixed Reality), and VR (Virtual Reality). And an image generation means that generates a three-dimensional image for operation management that displays information or guidance for operation management by using the current information acquired by using the self-propelled means.
A work instruction output means that outputs an instruction to inspect or adjust the operation of the water treatment facility according to the information or guidance displayed on the three-dimensional image for operation management.
An output means for instructing the self-propellable means that outputs an instruction for checking the state after inspection or operation adjustment by the self-propellable means, and an output means for instructing the self-propellable means.
An operation management system for a water treatment facility, which is characterized by being equipped with.
JP2020050058A 2020-03-19 2020-03-19 Operation management method and operation management system for water treatment facilities in the event of a disaster Active JP7422573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020050058A JP7422573B2 (en) 2020-03-19 2020-03-19 Operation management method and operation management system for water treatment facilities in the event of a disaster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020050058A JP7422573B2 (en) 2020-03-19 2020-03-19 Operation management method and operation management system for water treatment facilities in the event of a disaster

Publications (2)

Publication Number Publication Date
JP2021149669A true JP2021149669A (en) 2021-09-27
JP7422573B2 JP7422573B2 (en) 2024-01-26

Family

ID=77849034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020050058A Active JP7422573B2 (en) 2020-03-19 2020-03-19 Operation management method and operation management system for water treatment facilities in the event of a disaster

Country Status (1)

Country Link
JP (1) JP7422573B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114237255A (en) * 2021-12-09 2022-03-25 复旦大学 Air-ground collaborative desert control robot system
WO2023112871A1 (en) * 2021-12-13 2023-06-22 三機工業株式会社 Water treatment plant operation management support system and operation management support method
WO2023136029A1 (en) * 2022-01-11 2023-07-20 ダイキン工業株式会社 Equipment maintenance method, device, and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203964A (en) * 2009-03-04 2010-09-16 Toshiba Corp Monitoring control system of sewerage facility
JP2013114329A (en) * 2011-11-25 2013-06-10 Chiba Inst Of Technology Environment information obtaining system using unattended traveling body
JP2013149042A (en) * 2012-01-18 2013-08-01 Hitachi Plant Technologies Ltd Facility maintenance management system
JP2018185570A (en) * 2017-04-24 2018-11-22 トーヨーカネツソリューションズ株式会社 Remote support system
JP2019164751A (en) * 2018-03-14 2019-09-26 栗田工業株式会社 Unmanned mobile unit and patrol checking system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049338A (en) 2016-09-20 2018-03-29 日本アンテナ株式会社 Hazard map and hazard map system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203964A (en) * 2009-03-04 2010-09-16 Toshiba Corp Monitoring control system of sewerage facility
JP2013114329A (en) * 2011-11-25 2013-06-10 Chiba Inst Of Technology Environment information obtaining system using unattended traveling body
JP2013149042A (en) * 2012-01-18 2013-08-01 Hitachi Plant Technologies Ltd Facility maintenance management system
JP2018185570A (en) * 2017-04-24 2018-11-22 トーヨーカネツソリューションズ株式会社 Remote support system
JP2019164751A (en) * 2018-03-14 2019-09-26 栗田工業株式会社 Unmanned mobile unit and patrol checking system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114237255A (en) * 2021-12-09 2022-03-25 复旦大学 Air-ground collaborative desert control robot system
CN114237255B (en) * 2021-12-09 2024-04-30 复旦大学 Air-ground cooperative desert control robot system
WO2023112871A1 (en) * 2021-12-13 2023-06-22 三機工業株式会社 Water treatment plant operation management support system and operation management support method
WO2023136029A1 (en) * 2022-01-11 2023-07-20 ダイキン工業株式会社 Equipment maintenance method, device, and system

Also Published As

Publication number Publication date
JP7422573B2 (en) 2024-01-26

Similar Documents

Publication Publication Date Title
JP2021149669A (en) Water treatment facility operation management method and management system
Murphy et al. Disaster robotics
Lin et al. Virtual tele-operation of underwater robots
Murphy Disaster robotics
KR102443718B1 (en) System for producing 3-dimensional diffusion prediction map based on cyber physical for monitoring air pollution gas diffusion of environmental facilities, and method for the same
CN108847081A (en) A kind of fire-fighting simulated training method based on virtual reality technology
JP2013134663A (en) System and method for supporting disaster relief activities
JP2019164751A (en) Unmanned mobile unit and patrol checking system
JP2016218813A (en) Inspection system of sewer line facility
Günther et al. Increased safety in deep mining with iot and autonomous robots
JP2023502937A (en) Systems for shop floor verification
Miura et al. Plant inspection by using a ground vehicle and an aerial robot: lessons learned from plant disaster prevention challenge in world robot summit 2018
JP2024061773A (en) How to inspect water treatment facilities
KR20240035425A (en) AI, VR, IoT, cloud works, construction, management, robot, drone, equipment, facility, system
CN111552382A (en) VR compressed natural gas tank car accident handling teaching decision method, device and equipment
Grehl et al. Research perspective-mobile robots in underground mining
Steimle et al. Unmanned marine vehicle use at Hurricanes Wilma and Ike
WO2019176710A1 (en) Unmanned mobile unit and patrolling check system
Pandey et al. Review on Smart Sewage Cleaning UAV Assistance for Sustainable Development
CN113808450B (en) External floating roof oil tank model accident handling training method, device and equipment
JP6475191B2 (en) Patrol work robot and alarm system using patrol work robot
Andryushechkin et al. Navigation system for unmanned vessels using a navigation buoy
Hegde Tools and methods to manage risk in autonomous subsea inspection, maintenance and repair operations
CN116739870B (en) Emergency system management system and method
Murphy Proposals for new ugv, umv, uav, and hri standards for rescue robots

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240116

R150 Certificate of patent or registration of utility model

Ref document number: 7422573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150