JP2021148182A - Motor-operated valve and refrigeration cycle system - Google Patents

Motor-operated valve and refrigeration cycle system Download PDF

Info

Publication number
JP2021148182A
JP2021148182A JP2020047604A JP2020047604A JP2021148182A JP 2021148182 A JP2021148182 A JP 2021148182A JP 2020047604 A JP2020047604 A JP 2020047604A JP 2020047604 A JP2020047604 A JP 2020047604A JP 2021148182 A JP2021148182 A JP 2021148182A
Authority
JP
Japan
Prior art keywords
valve
holder
shaft
valve body
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020047604A
Other languages
Japanese (ja)
Other versions
JP7499587B2 (en
Inventor
剛 竹田
Takeshi Takeda
剛 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2020047604A priority Critical patent/JP7499587B2/en
Publication of JP2021148182A publication Critical patent/JP2021148182A/en
Application granted granted Critical
Publication of JP7499587B2 publication Critical patent/JP7499587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Abstract

To provide a motor-operated valve and a refrigeration cycle system capable of suppressing valve leakage while improving efficiency.SOLUTION: A motor-operated valve 10 includes: a valve body 1 constituting a valve chest 1C and a valve seat portion 13; a valve element 2 changing an opening of a valve port 14 by being kept into contact with and separated from the valve seat portion 13 in an axial direction L; a stepping motor 3 as a driving portion for driving a rotor shaft 32 as a rotating shaft forward and backward; a valve holder 6 disposed over the valve element 2 and the rotor shaft 32; and a valve spring 9 for energizing the valve element 2 in a valve closing direction. The motor-operated valve 10 includes a rolling bearing 8 between the valve element 2 as a shaft portion and the valve holder 6, a radial clearance C1 is formed between the rolling bearing 8 and the valve element 2, and the valve element 2 and the valve holder 6 are connected in a manner of being relatively displaceable in a radial direction.SELECTED DRAWING: Figure 2

Description

本発明は、冷凍サイクルシステムなどに使用する電動弁及び冷凍サイクルシステムに関する。 The present invention relates to an electric valve and a refrigeration cycle system used in a refrigeration cycle system or the like.

従来、ステッピングモータなどの回転駆動部によってロータ軸などの回転軸を回転駆動し、この回転軸の回転運動をねじ送り機構によって直線運動に変換し、弁を開閉する電動弁が利用されている(例えば、特許文献1,2等を参照)。この種の電動弁では、弁体の供回りと、弁体の弁座部への過度の押付けと、を抑制して、弁の着座による耐久性を向上させるために、弁体とねじ送り機構との間に、軸受と、弁ばねと、が内蔵された弁ホルダが設けられている。このような弁ホルダに内蔵される軸受には、転がり軸受と、滑り軸受の2種類があるが、転がり軸受の方が、回転負荷が小さく、回転駆動部の必要な出力が小さくて済む高効率な電動弁となる。 Conventionally, an electric valve that opens and closes a valve by rotationally driving a rotary shaft such as a rotor shaft by a rotary drive unit such as a stepping motor and converting the rotary motion of the rotary shaft into a linear motion by a screw feed mechanism has been used. For example, see Patent Documents 1, 2, etc.). In this type of electric valve, the valve body and the screw feed mechanism are used to suppress the rotation of the valve body and excessive pressing of the valve body against the valve seat to improve the durability due to the seating of the valve. A valve holder containing a bearing and a valve spring is provided between the two. There are two types of bearings built into such valve holders: rolling bearings and sliding bearings. Rolling bearings have a smaller rotational load and require less output from the rotational drive unit. It becomes an electric valve.

特許第6472637号公報Japanese Patent No. 6472637 中国実用新案登録第208519284号公報China Utility Model Registration No. 208519284

しかしながら、特許文献1,2に開示されたような従来の電動弁にあっては、弁漏れを低減させるために、弁体と弁座とが同軸上に位置した状態で着座させる必要があるが、部品製造時における部品の寸法公差、組立時における組立公差などに起因する寸法誤差のばらつきにより、図11に示すように、弁体95と弁座96(弁ポート97)の芯ずれが生じて弁漏れの可能性を排除することが困難であるという問題があった。すなわち、特許文献1の構造では、図11に示すように、弁軸91の先端とバネ受け92とは、弁ばね93の荷重を受けて互いに当接しており、さらに弁ばね93の下端は、弁ガイド94に固着された弁体95と直接当接しているので、弁体95が着座した時に弁体95の軸心L´と弁座部96の弁ポート97の軸心Lとのずれを補正しにくく、弁漏れが生じやすい。また、特許文献2の構造では、転がり軸受がねじ軸と弁体の収容溝との間に、径方向のわずかな隙間で収容され、径方向の自由度が殆ど無いため、弁体の軸心を弁座の軸心に合わせるように補正することができないため、弁漏れが生じやすい。 However, in the conventional electric valve as disclosed in Patent Documents 1 and 2, it is necessary to seat the valve body and the valve seat in a state of being coaxially positioned in order to reduce valve leakage. As shown in FIG. 11, the valve body 95 and the valve seat 96 (valve port 97) are misaligned due to variations in dimensional errors due to component dimensional tolerances during component manufacturing, assembly tolerances during assembly, and the like. There was a problem that it was difficult to eliminate the possibility of valve leakage. That is, in the structure of Patent Document 1, as shown in FIG. 11, the tip of the valve shaft 91 and the spring receiver 92 are in contact with each other under the load of the valve spring 93, and the lower end of the valve spring 93 is further positioned. Since it is in direct contact with the valve body 95 fixed to the valve guide 94, the deviation between the axis L'of the valve body 95 and the axis L of the valve port 97 of the valve seat portion 96 when the valve body 95 is seated It is difficult to correct and valve leakage is likely to occur. Further, in the structure of Patent Document 2, the rolling bearing is accommodated in a slight radial gap between the screw shaft and the accommodating groove of the valve body, and there is almost no degree of freedom in the radial direction. Cannot be corrected to match the axis of the valve seat, so valve leakage is likely to occur.

本発明の目的は、高効率化を図りつつ、弁漏れを抑制することができる電動弁及び冷凍サイクルシステムを提供することである。 An object of the present invention is to provide an electric valve and a refrigeration cycle system capable of suppressing valve leakage while improving efficiency.

本発明の電動弁は、弁室及び弁座部を構成する弁本体と、前記弁座部と軸線方向で接離して弁ポートの開度を変更する弁体と、回転軸を進退駆動させる駆動部と、前記弁体と前記回転軸とに亘る弁ホルダと、弁閉方向に弁体を付勢する弁ばねと、を備えた電動弁であって、前記弁体及び前記回転軸の少なくとも一方は、前記弁ホルダに回転自在に挿通される軸部を有し、前記軸部と前記弁ホルダとの間に転がり軸受を備え、前記転がり軸受と、前記軸部及び前記弁ホルダの少なくとも一方と、の間には、径方向の隙間が設けられており、前記軸部と前記弁ホルダとは、前記径方向に相対変位可能に接続されていることを特徴とする。 The electric valve of the present invention includes a valve body that constitutes a valve chamber and a valve seat portion, a valve body that changes the opening degree of the valve port by being brought into contact with the valve seat portion in the axial direction, and a drive that drives the rotation shaft forward and backward. An electric valve including a portion, a valve holder extending over the valve body and the rotating shaft, and a valve spring for urging the valve body in the valve closing direction, and at least one of the valve body and the rotating shaft. Has a shaft portion rotatably inserted into the valve holder, includes a rolling bearing between the shaft portion and the valve holder, and the rolling bearing and at least one of the shaft portion and the valve holder. A radial gap is provided between the, and the shaft portion and the valve holder are connected so as to be relatively displaceable in the radial direction.

このような本発明によれば、弁体又は回転軸の軸部と弁ホルダとを相対回転可能に接続する軸受に転がり軸受を用いるので、高効率とすることができる。さらに、転がり軸受と、軸部及び弁ホルダの少なくとも一方と、の間には、径方向の隙間が設けられており、軸部と弁ホルダとは、径方向に相対変位可能に接続されているので、弁体が弁座部に着座する際、軸部と弁ホルダとは隙間の範囲内だけ径方向に相対変位し、弁座部に対して同軸上に弁体を着座させることができ、弁漏れを低減させることができる。 According to the present invention, since a rolling bearing is used as a bearing for connecting the valve body or the shaft portion of the rotating shaft and the valve holder so as to be relatively rotatable, high efficiency can be achieved. Further, a radial gap is provided between the rolling bearing and at least one of the shaft portion and the valve holder, and the shaft portion and the valve holder are connected so as to be relatively displaceable in the radial direction. Therefore, when the valve body is seated on the valve seat portion, the shaft portion and the valve holder are displaced relative to each other in the radial direction only within the range of the gap, and the valve body can be seated coaxially with the valve seat portion. Valve leakage can be reduced.

この際、前記転がり軸受と、前記軸部及び前記弁ホルダの少なくとも一方と、の間には、軸線方向の隙間が設けられており、前記軸部と前記弁ホルダとは、前記軸線方向に相対変位可能に接続されていることが好ましい。 At this time, a gap in the axial direction is provided between the rolling bearing and at least one of the shaft portion and the valve holder, and the shaft portion and the valve holder are relative to each other in the axial direction. It is preferably connected in a displaceable manner.

以上のような構成では、弁閉時に、弁ばねの収縮により弁体へ適切な押し付け荷重を与えるため、回転軸は弁体を着座位置よりもさらに下降させようとするが、弁体が弁座部に着座する際、軸部と弁ホルダとが、軸線方向に相対変位することによって、軸部と弁ホルダが軸線方向の隙間分自由となるため、弁体に力が加わらない。これにより、回転軸の軸線と弁座(弁口)の軸線とがずれていても、軸部と弁ホルダとが、大きな摺動抵抗なしに径方向及び軸線方向に相対変位することが可能になるため、弁座部に対して同軸上に弁体を着座させることができ、弁漏れを低減させることができる。 In the above configuration, when the valve is closed, the valve body contracts to give an appropriate pressing load to the valve body, so that the rotating shaft tries to lower the valve body further than the seating position, but the valve body is the valve seat. When seated on the portion, the shaft portion and the valve holder are displaced relative to each other in the axial direction, so that the shaft portion and the valve holder are freed by the gap in the axial direction, so that no force is applied to the valve body. As a result, even if the axis of the rotating shaft and the axis of the valve seat (valve port) are misaligned, the shaft and the valve holder can be displaced relative to each other in the radial and axial directions without a large sliding resistance. Therefore, the valve body can be seated coaxially with the valve seat portion, and valve leakage can be reduced.

また、前記軸部は、前記弁体のロッド軸であることが好ましい。また、前記軸部は、前記回転軸の先端部であることが好ましい。 Further, the shaft portion is preferably a rod shaft of the valve body. Further, the shaft portion is preferably the tip end portion of the rotating shaft.

本発明の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、前記いずれかの電動弁が、前記膨張弁として用いられていることを特徴とする。 The refrigeration cycle system of the present invention is a refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, and any of the above electric valves is used as the expansion valve. It is characterized by.

このような本発明によれば、上記したように、本発明の電動弁は、高効率化を図りつつ、弁漏れを抑制することができるので、運転時に、省エネであり、且つ、不具合が生じ難い冷凍サイクルシステムとすることができる。 According to the present invention as described above, since the electric valve of the present invention can suppress valve leakage while improving efficiency, it saves energy during operation and causes a problem. It can be a difficult refrigeration cycle system.

本発明の電動弁および冷凍サイクルシステムによれば、高効率化を図りつつ、弁漏れを抑制することができる。 According to the electric valve and the refrigeration cycle system of the present invention, valve leakage can be suppressed while improving efficiency.

本発明の第1実施形態に係る電動弁を示す縦断面図である。It is a vertical sectional view which shows the electric valve which concerns on 1st Embodiment of this invention. 前記電動弁の弁開時における要部を示す縦断面図である。It is a vertical cross-sectional view which shows the main part at the time of opening the valve of the electric valve. 前記電動弁の弁体と弁座との当接時における要部を示す縦断面図である。It is a vertical cross-sectional view which shows the main part at the time of contact with the valve body of the electric valve, and a valve seat. 前記電動弁の着座時における要部を示す縦断面図である。It is a vertical cross-sectional view which shows the main part at the time of seating of the electric valve. 本発明の第2実施形態に係る電動弁の要部を示す縦断面図である。It is a vertical sectional view which shows the main part of the electric valve which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る電動弁の弁開時における要部を示す縦断面図である。It is a vertical cross-sectional view which shows the main part at the time of valve opening of the electric valve which concerns on 3rd Embodiment of this invention. 前記第3実施形態の電動弁の弁体と弁座との当接時における要部を示す縦断面図である。It is a vertical cross-sectional view which shows the main part at the time of contact with the valve body and the valve seat of the electric valve of the 3rd Embodiment. 前記第3実施形態の前記電動弁の着座時における要部を示す縦断面図である。It is a vertical cross-sectional view which shows the main part at the time of seating of the electric valve of the 3rd Embodiment. 本発明の第4実施形態に係る電動弁の要部を示す縦断面図である。It is a vertical sectional view which shows the main part of the electric valve which concerns on 4th Embodiment of this invention. 本発明の冷凍サイクルシステムの一例を示す図である。It is a figure which shows an example of the refrigeration cycle system of this invention. 従来の電動弁の要部を示す縦断面図である。It is a vertical cross-sectional view which shows the main part of the conventional electric valve.

本発明の第1実施形態に係る電動弁を図1〜図4に基づいて説明する。図1に示すように、本実施形態の電動弁10は、弁本体1と、弁体2と、弁ホルダ6と、駆動部としてのステッピングモータ3と、を備えている。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。 The electric valve according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, the electric valve 10 of the present embodiment includes a valve body 1, a valve body 2, a valve holder 6, and a stepping motor 3 as a drive unit. The concept of "upper and lower" in the following description corresponds to the upper and lower parts in the drawing of FIG.

弁本体1は、筒状の弁ハウジング部材1Aと、弁ハウジング部材1Aの上端開口部に固定される支持部材5と、を有している。 The valve body 1 has a cylindrical valve housing member 1A and a support member 5 fixed to the upper end opening of the valve housing member 1A.

弁ハウジング部材1Aは、その内部に略円筒状の弁室1Cが形成され、側面側から弁室1Cに連通する第1の継手管11が取り付けられている。また、弁ハウジング部材1Aには、底面側から略円筒状の弁座部材15が挿入され、ろう付けにより固定される弁座部材15によって弁座部13が構成されている。弁座部13には、弁口である弁ポート14が形成されている。さらに、弁ハウジング部材1Aの底面側には、弁座部材15の内側面の下端部となだらかに連続するように、第2の継手管12が、弁ハウジング部材1Aの底部にろう付けにより固定されている。第1の継手管11から流体としての冷媒が流入した場合には、弁室1Cを介して弁ポート14を通過した冷媒が第2の継手管12から流出される。また、第2の継手管12から冷媒が流入した場合には、弁ポート14を介して弁室1Cを通過した冷媒が第1の継手管11から流出される。 A substantially cylindrical valve chamber 1C is formed inside the valve housing member 1A, and a first joint pipe 11 communicating with the valve chamber 1C from the side surface side is attached. Further, a substantially cylindrical valve seat member 15 is inserted into the valve housing member 1A from the bottom surface side, and the valve seat portion 13 is configured by the valve seat member 15 fixed by brazing. A valve port 14, which is a valve opening, is formed in the valve seat portion 13. Further, on the bottom surface side of the valve housing member 1A, a second joint pipe 12 is fixed to the bottom portion of the valve housing member 1A by brazing so as to be gently continuous with the lower end portion of the inner surface of the valve seat member 15. ing. When the refrigerant as a fluid flows in from the first joint pipe 11, the refrigerant that has passed through the valve port 14 via the valve chamber 1C flows out from the second joint pipe 12. Further, when the refrigerant flows in from the second joint pipe 12, the refrigerant that has passed through the valve chamber 1C through the valve port 14 flows out from the first joint pipe 11.

支持部材5は、弁ハウジング部材1Aの上端開口部に固定金具41を介して溶接固定されている。この支持部材5の上側の中心には、弁ポート14等の軸線Lと同軸に形成された雌ねじ部5aが設けられており、下方に雌ねじ部5aの外周よりも径の大きな円筒状のガイド孔5cが形成されている。 The support member 5 is welded and fixed to the upper end opening of the valve housing member 1A via a fixing bracket 41. A female threaded portion 5a formed coaxially with the axis L of the valve port 14 or the like is provided at the center of the upper side of the support member 5, and a cylindrical guide hole having a diameter larger than the outer circumference of the female threaded portion 5a is provided below. 5c is formed.

弁体2は、下側先端にニードル部21が設けられた軸部としてのロッド軸22を有している。ロッド軸22は、上部の縮径部22aと下部の拡径部22bとから成り、その上端部には、フランジ部23が形成されている。ロッド軸22の外周面側には、転がり軸受8(後述)が配設され、ロッド軸22の上端部が拡大されたフランジ部23によって転がり軸受8が抜け止めされている。 The valve body 2 has a rod shaft 22 as a shaft portion provided with a needle portion 21 at the lower tip. The rod shaft 22 is composed of an upper diameter reducing portion 22a and a lower diameter expanding portion 22b, and a flange portion 23 is formed at the upper end portion thereof. A rolling bearing 8 (described later) is arranged on the outer peripheral surface side of the rod shaft 22, and the rolling bearing 8 is prevented from coming off by a flange portion 23 having an enlarged upper end portion of the rod shaft 22.

ステッピングモータ3は、キャン4と、キャン4内に設けられたマグネットロータ31と、ロータ軸32と、不図示のステータコイルと、ステッピングモータ3の回転ストッパ機構7と、を有している。 The stepping motor 3 includes a can 4, a magnet rotor 31 provided in the can 4, a rotor shaft 32, a stator coil (not shown), and a rotation stopper mechanism 7 of the stepping motor 3.

キャン4は、弁ハウジング1Aの上端に溶接などによって気密に固定され、支持部材5、後述するマグネットロータ31及び回転ストッパ機構7を収納している。マグネットロータ31は、その外周部が多極に着磁されており、その中心にロータ軸32が固定されている。ロータ軸32は、その下端部が、弁ホルダ6及び転がり軸受8を介して、弁体2のロッド軸22と連結されている。また、ロータ軸32は、その中間部の上側表面に雄ねじ部32aが形成されている。この雄ねじ部32aは、支持部材5の雌ねじ部5aに螺合され、これらの雄ねじ部32a及び雌ねじ部5aによって、駆動部のねじ送り機構16が構成されている。ねじ送り機構16は、ステッピングモータ3の回転運動をロータ軸32直線運動に変換し、これにより弁体2が軸線L方向に進退駆動されるようになっている。ステータコイルは、キャン4の外周に配設されており、このステータコイルにパルス信号が与えられることにより、そのパルス数に応じてマグネットロータ31が回転されてロータ軸32が回転するようになっている。 The can 4 is airtightly fixed to the upper end of the valve housing 1A by welding or the like, and houses a support member 5, a magnet rotor 31, which will be described later, and a rotation stopper mechanism 7. The outer peripheral portion of the magnet rotor 31 is magnetized in multiple poles, and the rotor shaft 32 is fixed at the center thereof. The lower end of the rotor shaft 32 is connected to the rod shaft 22 of the valve body 2 via the valve holder 6 and the rolling bearing 8. Further, the rotor shaft 32 has a male screw portion 32a formed on the upper surface of the intermediate portion thereof. The male screw portion 32a is screwed into the female screw portion 5a of the support member 5, and the male screw portion 32a and the female screw portion 5a constitute a screw feed mechanism 16 of the drive portion. The screw feed mechanism 16 converts the rotary motion of the stepping motor 3 into a linear motion of the rotor shaft 32, whereby the valve body 2 is driven forward and backward in the axis L direction. The stator coil is arranged on the outer circumference of the can 4, and when a pulse signal is given to the stator coil, the magnet rotor 31 is rotated according to the number of pulses, and the rotor shaft 32 is rotated. There is.

ステッピングモータ3の回転ストッパ機構7は、キャン4の天井部にガイド支持体7Aが固定され、ガイド支持体7Aには、キャン4の天井部の中心から軸心に沿って垂下された円筒状のガイド76と、ガイド76の外周に固定された螺旋ガイド77と、螺旋ガイド77にガイドされて回転かつ上下動可能な可動スライダ78と、を備えている。可動スライダ78には、径方向外側に突出した爪部78aが設けられ、マグネットロータ31には、上方に延びて爪部78aと当接する延長部31aが設けられ、マグネットロータ31が回転すると、延長部31aが爪部78aを押すことで、可動スライダ78が螺旋ガイド77に倣って回転かつ上下するようになっている。また、円筒状のガイド76内部にはロータ軸32の上部をガイドする筒部材7Bが嵌合されている。 In the rotation stopper mechanism 7 of the stepping motor 3, the guide support 7A is fixed to the ceiling of the can 4, and the guide support 7A has a cylindrical shape that hangs down from the center of the ceiling of the can 4 along the axis. It includes a guide 76, a spiral guide 77 fixed to the outer periphery of the guide 76, and a movable slider 78 that is guided by the spiral guide 77 and can rotate and move up and down. The movable slider 78 is provided with a claw portion 78a protruding outward in the radial direction, and the magnet rotor 31 is provided with an extension portion 31a extending upward and in contact with the claw portion 78a. When the portion 31a pushes the claw portion 78a, the movable slider 78 rotates and moves up and down following the spiral guide 77. Further, a cylindrical member 7B that guides the upper part of the rotor shaft 32 is fitted inside the cylindrical guide 76.

螺旋ガイド77には、マグネットロータ31の最上端位置を規定する上端ストッパ77aと、マグネットロータ31の最下端位置を規定する下端ストッパ77bと、が形成されている。マグネットロータ31の正回転に伴って下降した可動スライダ78が下端ストッパ77bに当接すると、この当接した位置で可動スライダ78が回転不能となり、これによりマグネットロータ31の回転が規制され、弁体2の下降も停止される。一方、マグネットロータ31の逆回転に伴って上昇した可動スライダ78が上端ストッパ77aに当接すると、この当接した位置で可動スライダ78が回転不能となり、これによりマグネットロータ31の回転が規制され、弁体2の上昇も停止される。 The spiral guide 77 is formed with an upper end stopper 77a that defines the uppermost end position of the magnet rotor 31 and a lower end stopper 77b that defines the lowermost end position of the magnet rotor 31. When the movable slider 78 lowered with the forward rotation of the magnet rotor 31 comes into contact with the lower end stopper 77b, the movable slider 78 cannot rotate at this contacted position, which restricts the rotation of the magnet rotor 31 and the valve body. The descent of 2 is also stopped. On the other hand, when the movable slider 78 that has risen due to the reverse rotation of the magnet rotor 31 comes into contact with the upper end stopper 77a, the movable slider 78 cannot rotate at this contacted position, which restricts the rotation of the magnet rotor 31. The rise of the valve body 2 is also stopped.

図2に示すように、弁ホルダ6は、筒状のホルダ本体61の上面部中央に、ロータ軸32の下側先端部を挿通させる挿通孔61aを有し、ロータ軸32の下側先端部と相対回転可能に係合されている。また、ロータ軸32の下側先端部には、鍔部32bが設けられており、ホルダ本体61内から抜けないようになっている。ロータ軸32の鍔部32bの下面には弁ばね9の上端が当接されている。転がり軸受8は、弁体2のロッド軸22の縮径部22aの外周面側に配設されるリング状の第1部材81と、複数個の転動部材としての鋼球8aを介して接続されるリング状の第2部材82と、を有したベアリングによって構成されている。この転がり軸受8は、第2部材82が弁ばね9で付勢され、第2部材82の下端部がホルダ本体61の下端部(圧入部材63)に当接するようになっている。弁ホルダ6は、ホルダ本体61の下面中央に挿通孔61bを有し、弁体2のロッド軸22の拡径部22bが挿通孔61bに挿通されている。また、挿通孔61bには、図1に示すように、リング状の圧入部材63が圧入され、この圧入部材63によって弁ホルダ6からの弁体2及び転がり軸受8の抜け止めがされている。なお、ここでは、ホルダ本体61の下端部を圧入部材63を圧入したものを例示したが、これに代わりホルダ本体61の下端部にリング状の部材(止め輪等)を溶接や、かしめ等で固定してもよく、転がり軸受8の抜け止めが可能な構造であればこれらに限らない。 As shown in FIG. 2, the valve holder 6 has an insertion hole 61a through which the lower tip portion of the rotor shaft 32 is inserted in the center of the upper surface portion of the cylindrical holder body 61, and the lower tip portion of the rotor shaft 32. Is rotatably engaged with. Further, a flange portion 32b is provided at the lower tip portion of the rotor shaft 32 so as not to come off from the inside of the holder main body 61. The upper end of the valve spring 9 is in contact with the lower surface of the flange portion 32b of the rotor shaft 32. The rolling bearing 8 is connected to a ring-shaped first member 81 arranged on the outer peripheral surface side of the reduced diameter portion 22a of the rod shaft 22 of the valve body 2 via steel balls 8a as a plurality of rolling members. It is composed of a ring-shaped second member 82 and a bearing having the ring-shaped second member 82. In the rolling bearing 8, the second member 82 is urged by a valve spring 9, and the lower end of the second member 82 comes into contact with the lower end (press-fit member 63) of the holder body 61. The valve holder 6 has an insertion hole 61b in the center of the lower surface of the holder body 61, and the enlarged diameter portion 22b of the rod shaft 22 of the valve body 2 is inserted into the insertion hole 61b. Further, as shown in FIG. 1, a ring-shaped press-fitting member 63 is press-fitted into the insertion hole 61b, and the press-fitting member 63 prevents the valve body 2 and the rolling bearing 8 from coming off from the valve holder 6. Here, the lower end of the holder body 61 is press-fitted with the press-fitting member 63, but instead, a ring-shaped member (retaining ring or the like) is welded or crimped to the lower end of the holder body 61. It may be fixed, and is not limited to these as long as it has a structure capable of preventing the rolling bearing 8 from coming off.

さらに、転がり軸受8内側の第1部材81と、弁体2におけるロッド軸22の縮径部22aとの間には、ロッド軸22の径方向の隙間C1が設けられている。また、転がり軸受8の下側面と、弁体2におけるロッド軸22の拡径部22bとの間には、軸線方向Lの隙間C2が設けられている。 Further, a radial gap C1 of the rod shaft 22 is provided between the first member 81 inside the rolling bearing 8 and the reduced diameter portion 22a of the rod shaft 22 in the valve body 2. Further, a gap C2 in the axial direction L is provided between the lower side surface of the rolling bearing 8 and the enlarged diameter portion 22b of the rod shaft 22 in the valve body 2.

図2に示すように、弁開時においては、弁体2の軸線L´の位置は、例えば、弁座部13の軸線Lの位置よりも左側にずれている。着座状態にするために、ステッピングモータ3の駆動によって弁体2が下降し、図3に示すように、ニードル部21が弁座部13に当接したときは、まだ弁体2の軸線L´は弁座部13(弁ポート14)の軸線Lの位置よりも左側にずれた状態で、ニードル部21の左側が弁座部13の左側に片当たりしている。この時、弁体2の弁座13との当接部には矢印のような力(径方向には右方向の力、軸線L方向には上方向の力)が働く。さらにロータ軸32が下降すると、弁体2は弁ホルダ6に対し相対的に軸線L方向で隙間C2を縮めるように上側に変位しながら、径方向のずれを正すように、径方向の隙間C1がある右側に変位し、回転ストッパ機構7が働いた着座時においては、図4に示すように、弁体2は、弁開時と比較して弁ホルダ6に対して相対的に右上に移動し、弁体2と弁ポート14とが同軸上に位置することで、ニードル部21は弁ポート14の上端開口部(弁座部13)の全周に着座する。 As shown in FIG. 2, when the valve is opened, the position of the axis L'of the valve body 2 is shifted to the left side from the position of the axis L of the valve seat portion 13, for example. In order to bring the seated state, the valve body 2 is lowered by the drive of the stepping motor 3, and as shown in FIG. 3, when the needle portion 21 comes into contact with the valve seat portion 13, the axis L'of the valve body 2 is still present. Is offset to the left side of the position of the axis L of the valve seat portion 13 (valve port 14), and the left side of the needle portion 21 is in contact with the left side of the valve seat portion 13. At this time, a force as shown by an arrow (a force in the right direction in the radial direction and an upward force in the axis L direction) acts on the contact portion of the valve body 2 with the valve seat 13. When the rotor shaft 32 is further lowered, the valve body 2 is displaced upward so as to shrink the gap C2 in the axis L direction relative to the valve holder 6, and the radial gap C1 is corrected so as to correct the radial deviation. When seated with the rotary stopper mechanism 7 working, the valve body 2 moves to the upper right relative to the valve holder 6 as compared with when the valve is opened. Then, since the valve body 2 and the valve port 14 are positioned coaxially, the needle portion 21 is seated on the entire circumference of the upper end opening (valve seat portion 13) of the valve port 14.

以上の本実施形態によれば、弁体2のロッド軸22と弁ホルダ6とを相対回転可能に接続する軸受に転がり軸受8を用いるので、弁閉時における弁体2の供回りを抑制でき、弁体2と弁座13との間の摺動抵抗による回転負荷が小さくなるため、高効率な作動とすることができる。さらに、転がり軸受8と、弁体2のロッド軸22と、の間には、径方向の隙間C1が設けられており、ロッド軸22と弁ホルダ6とは、径方向に相対変位可能に接続されているので、弁体2が弁座部13に着座する際、ロッド軸22と弁ホルダ6のホルダ本体61とは隙間C1の範囲内だけ径方向に相対変位し、弁座部13に対して同軸上に弁体2を着座させることができ、弁漏れを低減させることができる。 According to the above embodiment, since the rolling bearing 8 is used as the bearing that connects the rod shaft 22 of the valve body 2 and the valve holder 6 so as to be relatively rotatable, it is possible to suppress the rotation of the valve body 2 when the valve is closed. Since the rotational load due to the sliding resistance between the valve body 2 and the valve seat 13 is reduced, highly efficient operation can be achieved. Further, a radial gap C1 is provided between the rolling bearing 8 and the rod shaft 22 of the valve body 2, and the rod shaft 22 and the valve holder 6 are connected so as to be relatively displaceable in the radial direction. Therefore, when the valve body 2 is seated on the valve seat portion 13, the rod shaft 22 and the holder body 61 of the valve holder 6 are displaced relative to each other in the radial direction only within the range of the gap C1 with respect to the valve seat portion 13. The valve body 2 can be seated coaxially, and valve leakage can be reduced.

また、転がり軸受8と、弁体2のロッド軸22と、の間には、軸線L方向に隙間C2が設けられているので、弁体2が弁座と当接後にロータ軸32がさらに下降するとき、弁体2が着座部13に着座する際、ロッド軸22と弁ホルダ6とが、軸線L方向に相対変位することによって、ロッド軸22のフランジ部23の下面と転がり軸受8の第1部材81の上面が離れて、弁体2が軸線L方向の隙間分だけ自由となるため、ロータ軸32の軸線L´と弁ポート14の軸線Lとがずれていても、ロッド軸22と弁ホルダ6とが、径方向及び軸線L方向に相対変位することによって、弁座部13に対して同軸上に弁体2を着座させることができ、弁漏れを低減させることができる。 なお、軸線L´が、軸線Lに対して図示とは逆の右側に傾斜している場合は、弁体2は、弁体2が着座部13に着座する際、隙間C1,C2がある左上の位置に変位する。 Further, since a gap C2 is provided between the rolling bearing 8 and the rod shaft 22 of the valve body 2 in the axis L direction, the rotor shaft 32 further lowers after the valve body 2 comes into contact with the valve seat. When the valve body 2 is seated on the seating portion 13, the rod shaft 22 and the valve holder 6 are displaced relative to each other in the axis L direction, so that the lower surface of the flange portion 23 of the rod shaft 22 and the rolling bearing 8 are the first. Since the upper surface of the member 81 is separated and the valve body 2 is freed by the gap in the axis L direction, even if the axis L'of the rotor shaft 32 and the axis L of the valve port 14 are deviated from each other, the rod shaft 22 and the rod shaft 22 When the valve holder 6 is displaced relative to the radial direction and the axis L direction, the valve body 2 can be seated coaxially with the valve seat portion 13, and valve leakage can be reduced. When the axis L'is inclined to the right side opposite to the drawing with respect to the axis L, the valve body 2 has a gap C1 and C2 on the upper left when the valve body 2 is seated on the seating portion 13. Displace to the position of.

次に、図5に基づき、本発明の第2実施形態に係る電動弁について説明する。本実施形態の電動弁は、第1実施形態の電動弁10と同様に、弁本体1と、弁体2と、弁ホルダ6と、駆動部としてのステッピングモータ3と、を備えている。本実施形態の電動弁では、弁ホルダ6の一部構成が第1実施形態の電動弁10と相違している。以下、相違点について詳しく説明する。 Next, the electric valve according to the second embodiment of the present invention will be described with reference to FIG. The electric valve of the present embodiment includes a valve main body 1, a valve body 2, a valve holder 6, and a stepping motor 3 as a driving unit, similarly to the electric valve 10 of the first embodiment. In the electric valve of the present embodiment, a part of the valve holder 6 is different from the electric valve 10 of the first embodiment. The differences will be described in detail below.

本実施形態の電動弁では、ロータ軸32の下端部に鍔部32bがなく、弁ホルダ6のホルダ本体61の上側の挿通孔61aもなく、ロータ軸32の下端部と、ホルダ本体61の上面の中心部とが一体的に連結され、ホルダ本体61の円筒内部の天井面に弁ばね9の上端 が当接している点が第1実施形態の電動弁10と相違している。なお、ロータ軸32とホルダ本体61とは、一体的に連結されたものに限らず、別体で形成されて適宜な取り付け手段によって取り付けられていてもよい。 In the electric valve of the present embodiment, there is no flange 32b at the lower end of the rotor shaft 32, there is no insertion hole 61a above the holder body 61 of the valve holder 6, and there is no lower end of the rotor shaft 32 and the upper surface of the holder body 61. The electric valve 10 of the first embodiment is different from the electric valve 10 of the first embodiment in that the central portion of the valve spring 9 is integrally connected to the ceiling surface inside the cylinder of the holder body 61 and the upper end of the valve spring 9 is in contact with the ceiling surface. The rotor shaft 32 and the holder body 61 are not limited to those integrally connected, but may be formed separately and attached by an appropriate attachment means.

以上の本実施形態の電動弁においても、弁体2の軸心と弁座部13の軸線とのずれに対する補正については第1実施形態と同様な効果が得られる。これに加え、弁ホルダ6においては、ロータ軸32の下端部と弁ホルダ6のホルダ本体61とが一体的に形成されているので、第1実施形態の電動弁10よりも、構成の簡易化を図ることができる。 In the electric valve of the present embodiment as described above, the same effect as that of the first embodiment can be obtained with respect to the correction for the deviation between the axis of the valve body 2 and the axis of the valve seat portion 13. In addition to this, in the valve holder 6, since the lower end portion of the rotor shaft 32 and the holder body 61 of the valve holder 6 are integrally formed, the configuration is simplified as compared with the electric valve 10 of the first embodiment. Can be planned.

次に、図6〜図8に基づき、本発明の第3実施形態に係る電動弁について説明する。本実施形態の電動弁は、第1実施形態の電動弁10と同様に、弁本体1と、弁体2と、弁ホルダ6と、駆動部としてのステッピングモータ3と、を備えている。本実施形態の電動弁では、弁体2、弁ホルダ6、ロータ軸32の構成が第1実施形態の電動弁10と相違している。以下、相違点について詳しく説明する。 Next, the electric valve according to the third embodiment of the present invention will be described with reference to FIGS. 6 to 8. The electric valve of the present embodiment includes a valve main body 1, a valve body 2, a valve holder 6, and a stepping motor 3 as a driving unit, similarly to the electric valve 10 of the first embodiment. In the electric valve of the present embodiment, the configurations of the valve body 2, the valve holder 6, and the rotor shaft 32 are different from those of the electric valve 10 of the first embodiment. The differences will be described in detail below.

本実施形態の電動弁において、図6に示すように、転がり軸受8は、ホルダ本体61内において、軸部としてのロータ軸32の下側先端部における下側鍔部32bと上側鍔部32dとの間の縮径部32cの外周部に、第1部材81が取り付けられている。また、転がり軸受8の第2部材82とホルダ本体61の内側面との間に、ロータ軸32の径方向の隙間C1が設けられている。さらに、ホルダ本体61の内側面中間部には、リング状の突出部64が設けられており、この突出部64と転がり軸受8の下面との間には、軸線L方向の隙間C2が設けられている。また、突出部64の下面には弁ばね9の上端が当接している。 In the electric valve of the present embodiment, as shown in FIG. 6, the rolling bearing 8 has a lower flange portion 32b and an upper flange portion 32d at the lower tip portion of the rotor shaft 32 as a shaft portion in the holder body 61. The first member 81 is attached to the outer peripheral portion of the reduced diameter portion 32c between the two. Further, a radial gap C1 of the rotor shaft 32 is provided between the second member 82 of the rolling bearing 8 and the inner surface of the holder body 61. Further, a ring-shaped protrusion 64 is provided in the middle portion of the inner surface of the holder body 61, and a gap C2 in the axis L direction is provided between the protrusion 64 and the lower surface of the rolling bearing 8. ing. Further, the upper end of the valve spring 9 is in contact with the lower surface of the protruding portion 64.

図6に示すように、弁開時においては、ロータ軸32の軸線L´の位置は、例えば、弁座部13の軸線Lの位置よりも左側にずれている。着座状態にするために、ステッピングモータ3の駆動によって弁体2が下降し、図7に示すように、ニードル部21が弁座部13に当接したときは、まだ弁体2の軸線L´は弁座部13(弁ポート14)の軸線Lの位置よりも左側にずれた状態で、ニードル部21の左側が弁座部13の左側に片当たりしている。この時、弁体2の弁座13との当接部には矢印のような力(径方向には右方向の力、軸線L方向には上方向の力)が働くとともに、弁ホルダ6には矢印のような径方向に右側の力が働く。さらにロータ軸32が下降すると、弁体2と弁ばね9によって軸線L方向に支持されたホルダ本体61の天井面と転がり軸受8の第2部材82の上端面とが離れ、ロータ軸32及び転がり軸受8に対し相対的に弁体2及び弁ホルダ6が径方向の右方向に、軸線L方向の上方向に移動することで、ホルダ本体61が、軸線L方向で隙間C2を縮めるように上側に変位しながら、弁体2の軸線L´と弁座13の軸線Lの径方向のずれが無くなるように、径方向の隙間C2がある右側に変位し、回転ストッパ機構7が働いた着座時においては、図8に示すように、ロータ軸32の下端部は、弁開時と比較して弁ホルダ6に対して相対的に左下に移動し、弁体2と弁ポート14とが同軸上に位置している。 As shown in FIG. 6, when the valve is opened, the position of the axis L'of the rotor shaft 32 is shifted to the left side from the position of the axis L of the valve seat portion 13, for example. In order to bring the seated state, the valve body 2 is lowered by the drive of the stepping motor 3, and as shown in FIG. 7, when the needle portion 21 comes into contact with the valve seat portion 13, the axis L'of the valve body 2 is still present. Is offset to the left side of the position of the axis L of the valve seat portion 13 (valve port 14), and the left side of the needle portion 21 is in contact with the left side of the valve seat portion 13. At this time, a force as shown by an arrow (a force in the right direction in the radial direction and an upward force in the axis L direction) acts on the contact portion of the valve body 2 with the valve seat 13, and also acts on the valve holder 6. The force on the right side acts in the radial direction as shown by the arrow. When the rotor shaft 32 is further lowered, the ceiling surface of the holder body 61 supported by the valve body 2 and the valve spring 9 in the axis L direction and the upper end surface of the second member 82 of the rolling bearing 8 are separated from each other, and the rotor shaft 32 and the rolling bearing 8 are rolled. By moving the valve body 2 and the valve holder 6 to the right in the radial direction and upward in the axis L direction relative to the bearing 8, the holder body 61 is moved upward so as to reduce the gap C2 in the axis L direction. When seated, the axis L'of the valve body 2 and the axis L of the valve seat 13 are displaced to the right side where there is a radial gap C2 so that there is no radial deviation, and the rotation stopper mechanism 7 works. In, as shown in FIG. 8, the lower end portion of the rotor shaft 32 moves to the lower left relative to the valve holder 6 as compared with when the valve is opened, and the valve body 2 and the valve port 14 are coaxially above each other. Is located in.

以上の本実施形態によれば、ロータ軸32と弁ホルダ6とを相対回転可能に接続する軸受に転がり軸受8を用いるので、弁閉時における弁体2の供回りを抑制でき、弁体2と弁座13との間の摺動抵抗による回転負荷が小さくなるため、高効率な作動とすることができる。さらに、転がり軸受8と、ロータ軸32の縮径部32cと、の間には、径方向の隙間C1が設けられており、ロータ軸32と弁ホルダ6とは、径方向に相対変位可能に接続されているので、弁体2が着座部13に着座する際、ロータ軸32と弁ホルダ6のホルダ本体61とは隙間C1の範囲内だけ径方向に相対変位し、弁座部13に対して同軸上に弁体2を着座させることができ、弁漏れを低減させることができる。 According to the above embodiment, since the rolling bearing 8 is used as the bearing that connects the rotor shaft 32 and the valve holder 6 so as to be relatively rotatable, it is possible to suppress the rotation of the valve body 2 when the valve is closed, and the valve body 2 can be suppressed. Since the rotational load due to the sliding resistance between the valve seat 13 and the valve seat 13 is reduced, highly efficient operation can be achieved. Further, a radial gap C1 is provided between the rolling bearing 8 and the reduced diameter portion 32c of the rotor shaft 32, so that the rotor shaft 32 and the valve holder 6 can be displaced relative to each other in the radial direction. Since they are connected, when the valve body 2 is seated on the seating portion 13, the rotor shaft 32 and the holder body 61 of the valve holder 6 are displaced relative to each other in the radial direction only within the range of the gap C1 with respect to the valve seat portion 13. The valve body 2 can be seated coaxially, and valve leakage can be reduced.

また、弁体2と弁座部13との当接後、さらにロータ軸32が下降して、弁体2が弁座部13に着座する際、ロータ軸32の軸線L´と弁ポート14の軸線Lとがずれていても、ロータ軸32と弁ホルダ6とが、径方向及び軸線L方向に相対変位することによって、弁座部13に対して同軸上に弁体2を着座させることができ、ニードル部21が弁ポート14の上部開口端(弁座部13)の全周に当接して弁漏れを低減させることができる。なお、軸線L´が、軸線Lに対して図示とは逆の右側にずれている場合は、ロータ軸32は、弁体2が着座部13に着座する際、隙間C1,C2がある右下の位置に変位する。なお、図6〜図8の実施形態では、転がり軸受8の第1部材81とロータ軸32との取付状態として、第1部材81とロータ軸32の下側鍔部32b及び上側鍔部32dとの間において、ロータ軸32の軸線L´方向に隙間を設けたものを例示したが、転がり軸受8の第1部材81とロータ軸32の下側鍔部32b及び上側鍔部32dとの間に軸線L´方向に隙間が無くとも、ホルダ本体61の突出部64と転がり軸受8の下面との間には、軸線L方向の隙間が設けられていることから、上述の効果が得られることは自明である。 Further, after the valve body 2 and the valve seat portion 13 come into contact with each other, the rotor shaft 32 further lowers, and when the valve body 2 is seated on the valve seat portion 13, the axis L'of the rotor shaft 32 and the valve port 14 Even if the axis L is deviated, the rotor shaft 32 and the valve holder 6 are displaced relative to each other in the radial direction and the axis L direction so that the valve body 2 can be seated coaxially with the valve seat portion 13. The needle portion 21 can come into contact with the entire circumference of the upper open end (valve seat portion 13) of the valve port 14 to reduce valve leakage. When the axis L'is displaced to the right side opposite to the drawing with respect to the axis L, the rotor shaft 32 has a gap C1 and C2 at the lower right when the valve body 2 is seated on the seating portion 13. Displace to the position of. In the embodiment of FIGS. 6 to 8, the first member 81 of the rolling bearing 8 and the rotor shaft 32 are attached to the lower flange portion 32b and the upper flange portion 32d of the first member 81 and the rotor shaft 32. In the example, a gap is provided in the direction of the axis L'of the rotor shaft 32, but between the first member 81 of the rolling bearing 8 and the lower flange portion 32b and the upper flange portion 32d of the rotor shaft 32. Even if there is no gap in the axis L'direction, the above effect can be obtained because the gap in the axis L direction is provided between the protruding portion 64 of the holder body 61 and the lower surface of the rolling bearing 8. It is self-evident.

次に、図9に基づき、本発明の第3実施形態に係る電動弁について説明する。本実施形態の電動弁は、第1実施形態の電動弁10と同様に、弁本体1と、弁体2と、弁ホルダ6と、駆動部としてのステッピングモータ3と、を備えている。本実施形態の電動弁では、弁ホルダ6の一部構成が第1実施形態の電動弁10と相違している。以下、相違点について詳しく説明する。 Next, the electric valve according to the third embodiment of the present invention will be described with reference to FIG. The electric valve of the present embodiment includes a valve main body 1, a valve body 2, a valve holder 6, and a stepping motor 3 as a driving unit, similarly to the electric valve 10 of the first embodiment. In the electric valve of the present embodiment, a part of the valve holder 6 is different from the electric valve 10 of the first embodiment. The differences will be described in detail below.

本実施形態の電動弁では、ロータ軸32の下端部に鍔部32bがなく、弁ホルダ6のホルダ本体61の上側の挿通孔61aもなく、ロータ軸32の下端部と、ホルダ本体61の上面の中心部とが一体的に形成されており、さらに、弁体2のロッド軸22の下側の大部分が、ホルダ本体61の外部に位置して設けられている。転がり軸受8は、その第2部材82がホルダ本体61の内側に固定されている。弁ばね9は、弁体2のニードル部21とロッド軸22の途中に挿通したリング状のばね受部材2aとの間に圧縮状態で設けられ、ばね受2aに対して弁体2が下向きに付勢されている。弁体2のロッド軸22は、転がり軸受8の第1部材81に挿通され、弁体2は軸線方向Lに沿って変位可能に支持されている。さらに、ロッド軸22の径方向の隙間C1は、ロッド軸22と転がり軸受8の第1部材81との間に設けられている。また、ロッド軸22の軸線L方向の隙間C2は、転がり軸受8の下面とばね受2aの上面との間に設けられている。なお、ばね受部材2aは、弁体2と別部材とせずに、一体的に形成してもよい。 In the electric valve of the present embodiment, there is no flange 32b at the lower end of the rotor shaft 32, there is no insertion hole 61a above the holder body 61 of the valve holder 6, and there is no lower end of the rotor shaft 32 and the upper surface of the holder body 61. The central portion of the valve body 2 is integrally formed, and most of the lower side of the rod shaft 22 of the valve body 2 is provided so as to be located outside the holder body 61. The second member 82 of the rolling bearing 8 is fixed to the inside of the holder body 61. The valve spring 9 is provided in a compressed state between the needle portion 21 of the valve body 2 and the ring-shaped spring receiving member 2a inserted in the middle of the rod shaft 22, and the valve body 2 faces downward with respect to the spring receiving member 2a. Being urged. The rod shaft 22 of the valve body 2 is inserted into the first member 81 of the rolling bearing 8, and the valve body 2 is supported so as to be displaceable along the axial direction L. Further, a radial gap C1 of the rod shaft 22 is provided between the rod shaft 22 and the first member 81 of the rolling bearing 8. Further, a gap C2 in the axis L direction of the rod shaft 22 is provided between the lower surface of the rolling bearing 8 and the upper surface of the spring receiver 2a. The spring receiving member 2a may be integrally formed with the valve body 2 without being a separate member.

以上の本実施形態の電動弁においても、弁体2の軸心と弁座部13の軸線のずれに対する補正については第1実施形態と同様な効果が得られる。これに加え、弁ホルダ6においては、第2実施形態の電動弁と同様、ロータ軸32の下端部と弁ホルダ6のホルダ本体61とが一体的に形成されていることで、第1実施形態の電動弁10よりも、この部分の構成の簡易化を図ることができる。 In the electric valve of the present embodiment as described above, the same effect as that of the first embodiment can be obtained with respect to the correction for the deviation between the axial center of the valve body 2 and the axial line of the valve seat portion 13. In addition to this, in the valve holder 6, as in the electric valve of the second embodiment, the lower end portion of the rotor shaft 32 and the holder body 61 of the valve holder 6 are integrally formed, so that the first embodiment It is possible to simplify the configuration of this portion as compared with the electric valve 10 of the above.

次に、本発明の冷凍サイクルシステムを図8に基づいて説明する。図8は、本発明の冷凍サイクルシステムの一例を示す図である。図8において、符号100は前記各実施形態の電動弁10を用いた膨張弁であり、200は室外ユニットに搭載された室外熱交換器、300は室内ユニットに搭載された室内熱交換器、400は四方弁を構成する流路切換弁、500は圧縮機である。電動弁100、室外熱交換器200、室内熱交換器300、流路切換弁400、および圧縮機500は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクルを構成している。なお、アキュムレータ、圧力センサ、温度センサ等は図示を省略してある。 Next, the refrigeration cycle system of the present invention will be described with reference to FIG. FIG. 8 is a diagram showing an example of the refrigeration cycle system of the present invention. In FIG. 8, reference numeral 100 is an expansion valve using the electric valve 10 of each of the above embodiments, 200 is an outdoor heat exchanger mounted on the outdoor unit, 300 is an indoor heat exchanger mounted on the indoor unit, 400. Is a flow path switching valve constituting a four-way valve, and 500 is a compressor. The electric valve 100, the outdoor heat exchanger 200, the indoor heat exchanger 300, the flow path switching valve 400, and the compressor 500 are each connected as shown by a conduit to form a heat pump type refrigeration cycle. The accumulator, pressure sensor, temperature sensor, etc. are not shown.

冷凍サイクルの流路は、流路切換弁400により冷房運転時の流路と暖房運転時の流路の2通りに切換えられる。冷房運転時には、図8に実線の矢印で示したように、圧縮機500で圧縮された冷媒は流路切換弁400から室外熱交換器200に流入され、この室外熱交換器200は凝縮器として機能し、室外熱交換器200から流出された液冷媒は膨張弁100を介して室内熱交換器300に流入され、この室内熱交換器300は蒸発器として機能する。 The flow path of the refrigeration cycle is switched between the flow path during the cooling operation and the flow path during the heating operation by the flow path switching valve 400. During the cooling operation, as shown by the solid line arrow in FIG. 8, the refrigerant compressed by the compressor 500 flows into the outdoor heat exchanger 200 from the flow path switching valve 400, and the outdoor heat exchanger 200 serves as a condenser. The liquid refrigerant that functions and flows out of the outdoor heat exchanger 200 flows into the indoor heat exchanger 300 via the expansion valve 100, and the indoor heat exchanger 300 functions as an evaporator.

一方、暖房運転時には、図8に破線の矢印で示したように、圧縮機500で圧縮された冷媒は流路切換弁400から室内熱交換器300、膨張弁100、室外熱交換器200、流路切換弁400、そして、圧縮機500の順に循環され、室内熱交換器300が凝縮器として機能し、室外熱交換器200が蒸発器として機能する。膨張弁100は、冷房運転時に室外熱交換器200から流入する液冷媒、または暖房運転時に室内熱交換器300から流入する液冷媒を、それぞれ減圧膨張し、さらにその冷媒の流量を制御する。なお、図7においては、冷房運転時に室外熱交換器200から液冷媒が膨張弁100の第1の継手管101に流入し、暖房運転時には、室内熱交換器300からの液冷媒が膨張弁100の第2の継手管102に流入するように冷凍サイクルに膨張弁100を設けているが、これに限らず、冷房運転時に室外熱交換器200からの液冷媒が膨張弁100の第2の継手管102に流入し、暖房運転時には室内熱交換器300からの液冷媒が膨張弁100の第1の継手管101に流入するように膨張弁100を冷凍サイクルに設けてもよい。 On the other hand, during the heating operation, as shown by the broken arrow in FIG. 8, the refrigerant compressed by the compressor 500 flows from the flow path switching valve 400 to the indoor heat exchanger 300, the expansion valve 100, the outdoor heat exchanger 200, and the flow. The path switching valve 400 and the compressor 500 are circulated in this order, the indoor heat exchanger 300 functions as a condenser, and the outdoor heat exchanger 200 functions as an evaporator. The expansion valve 100 decompresses and expands the liquid refrigerant flowing from the outdoor heat exchanger 200 during the cooling operation and the liquid refrigerant flowing from the indoor heat exchanger 300 during the heating operation, and further controls the flow rate of the refrigerant. In FIG. 7, the liquid refrigerant flows from the outdoor heat exchanger 200 into the first joint pipe 101 of the expansion valve 100 during the cooling operation, and the liquid refrigerant from the indoor heat exchanger 300 flows into the expansion valve 100 during the heating operation. The expansion valve 100 is provided in the refrigeration cycle so as to flow into the second joint pipe 102 of the above, but the present invention is not limited to this, and the liquid refrigerant from the outdoor heat exchanger 200 during the cooling operation is the second joint of the expansion valve 100. The expansion valve 100 may be provided in the refrigeration cycle so that the liquid refrigerant flows into the pipe 102 and the liquid refrigerant from the indoor heat exchanger 300 flows into the first joint pipe 101 of the expansion valve 100 during the heating operation.

以上の本発明の冷凍サイクルシステムによれば、上記したように、本実施形態の電動弁10は、高効率化を図りつつ、弁漏れを抑制することができるので、運転時に、省エネであり、且つ、不具合が生じ難い冷凍サイクルシステムとすることができる。 According to the above-mentioned refrigeration cycle system of the present invention, as described above, the electric valve 10 of the present embodiment can suppress valve leakage while improving efficiency, so that it saves energy during operation. Moreover, it is possible to provide a refrigeration cycle system in which defects are unlikely to occur.

以上、図面を参照して、本発明を実施するための形態を第1〜3実施形態に基づいて詳述してきたが、具体的な構成は、これらの実施形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。 As described above, the embodiments for carrying out the present invention have been described in detail with reference to the drawings based on the first to third embodiments, but the specific configuration is not limited to these embodiments and the gist of the present invention. Design changes that do not deviate from the above are included in the present invention.

例えば、上記した第1〜3実施形態では、電動弁10を、冷凍サイクルシステムの膨張弁として使用したが、これに限定されず、例えば、ビル用のマルチエアコン等の室内機側の絞り装置等、他のシステムにも適用することができる。 For example, in the first to third embodiments described above, the electric valve 10 is used as an expansion valve of a refrigeration cycle system, but the present invention is not limited to this, and for example, a throttle device on the indoor unit side such as a multi air conditioner for a building or the like. , Can be applied to other systems.

10 電動弁
C1,C2 隙間
1 弁本体
1A 弁ハウジング部材
1C 弁室
2 弁体
2a ばね受部材
21 ニードル部
22 ロッド軸(軸部)
3 ステッピングモータ(駆動部)
6 弁ホルダ
61 ホルダ本体
62 ばね受
8 転がり軸受
81 第1部材
82 第2部材
8a 鋼球(転動部材)
9 弁ばね
13 弁座部
14 弁ポート
32 ロータ軸(回転軸、軸部)
100 膨張弁
200 室外熱交換器(凝縮器、蒸発器)
300 室内熱交換器(凝縮器、蒸発器)
400 流路切換弁
500 圧縮機
10 Electric valve C1, C2 Gap 1 Valve body 1A Valve housing member 1C Valve chamber 2 Valve body 2a Spring receiving member 21 Needle part 22 Rod shaft (shaft part)
3 Stepping motor (drive unit)
6 Valve holder 61 Holder body 62 Spring receiver 8 Rolling bearing 81 1st member 82 2nd member 8a Steel ball (rolling member)
9 Valve spring 13 Valve seat 14 Valve port 32 Rotor shaft (rotary shaft, shaft)
100 Expansion valve 200 Outdoor heat exchanger (condenser, evaporator)
300 Indoor heat exchanger (condenser, evaporator)
400 Flow switching valve 500 Compressor

Claims (5)

弁室及び弁座部を構成する弁本体と、前記弁座部と軸線方向で接離して弁ポートの開度を変更する弁体と、回転軸を進退駆動させる駆動部と、前記弁体と前記回転軸とに亘る弁ホルダと、弁閉方向に弁体を付勢する弁ばねと、を備えた電動弁であって、
前記弁体及び前記回転軸の少なくとも一方は、前記弁ホルダに回転自在に挿通される軸部を有し、前記軸部と前記弁ホルダとの間に転がり軸受を備え、
前記転がり軸受と、前記軸部及び前記弁ホルダの少なくとも一方と、の間には、径方向の隙間が設けられており、前記軸部と前記弁ホルダとは、前記径方向に相対変位可能に接続されていることを特徴とする電動弁。
The valve body constituting the valve chamber and the valve seat, the valve body that changes the opening degree of the valve port by contacting and separating from the valve seat in the axial direction, the drive unit that drives the rotating shaft to move forward and backward, and the valve body. An electric valve including a valve holder extending over the rotating shaft and a valve spring for urging the valve body in the valve closing direction.
At least one of the valve body and the rotating shaft has a shaft portion rotatably inserted into the valve holder, and a rolling bearing is provided between the shaft portion and the valve holder.
A radial gap is provided between the rolling bearing and at least one of the shaft portion and the valve holder, and the shaft portion and the valve holder can be displaced relative to each other in the radial direction. An electric valve characterized by being connected.
前記転がり軸受と、前記軸部及び前記弁ホルダの少なくとも一方と、の間には、軸線方向の隙間が設けられており、前記軸部と前記弁ホルダとは、前記軸線方向に相対変位可能に接続されていることを特徴とする請求項1に記載の電動弁。 A gap in the axial direction is provided between the rolling bearing and at least one of the shaft portion and the valve holder, and the shaft portion and the valve holder can be displaced relative to each other in the axial direction. The electric valve according to claim 1, wherein the electric valve is connected. 前記軸部は、前記弁体のロッド軸であることを特徴とする請求項1又は2に記載の電動弁。 The electric valve according to claim 1 or 2, wherein the shaft portion is a rod shaft of the valve body. 前記軸部は、前記回転軸の先端部であることを特徴とする請求項1又は2に記載の電動弁。 The electric valve according to claim 1 or 2, wherein the shaft portion is a tip end portion of the rotating shaft. 圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1乃至4のいずれか1項に記載の電動弁が、前記膨張弁として用いられていることを特徴とする冷凍サイクルシステム。 A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the electric valve according to any one of claims 1 to 4 is used as the expansion valve. A refrigeration cycle system characterized by that.
JP2020047604A 2020-03-18 2020-03-18 Motor-operated valve and refrigeration cycle system Active JP7499587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020047604A JP7499587B2 (en) 2020-03-18 2020-03-18 Motor-operated valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020047604A JP7499587B2 (en) 2020-03-18 2020-03-18 Motor-operated valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2021148182A true JP2021148182A (en) 2021-09-27
JP7499587B2 JP7499587B2 (en) 2024-06-14

Family

ID=77848143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047604A Active JP7499587B2 (en) 2020-03-18 2020-03-18 Motor-operated valve and refrigeration cycle system

Country Status (1)

Country Link
JP (1) JP7499587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039399A (en) * 2018-12-20 2021-06-25 丹佛斯有限公司 Electric expansion valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943549B2 (en) 2011-02-24 2016-07-05 株式会社不二工機 Motorized valve
JP2013224708A (en) 2012-04-23 2013-10-31 Saginomiya Seisakusho Inc Motor-operated valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039399A (en) * 2018-12-20 2021-06-25 丹佛斯有限公司 Electric expansion valve
CN113039399B (en) * 2018-12-20 2022-08-12 丹佛斯有限公司 Electric expansion valve

Also Published As

Publication number Publication date
JP7499587B2 (en) 2024-06-14

Similar Documents

Publication Publication Date Title
JP2019132347A (en) Motor-operated valve and refrigeration cycle system
JP3145048U (en) Electric expansion valve and refrigeration cycle
JP6209231B2 (en) Motorized valve
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP7481562B2 (en) Motor-operated valve and refrigeration cycle system
JP2021148182A (en) Motor-operated valve and refrigeration cycle system
JP2018159447A (en) Motor valve and refrigeration cycle system using the same
CN111810653B (en) Electric valve and refrigeration cycle system
JP2018115743A (en) Motor-operated valve and refrigeration cycle system
JP2021148183A (en) Motor-operated valve and refrigeration cycle system
JP7254678B2 (en) Electric valve and refrigeration cycle system
JP2022055626A (en) Motor-operated valve and refrigeration cycle system
JP7453091B2 (en) Electric valve and refrigeration cycle system
JP7362569B2 (en) Electric valve and refrigeration cycle system
JP7491734B2 (en) Motor-operated valve and refrigeration cycle system
JP7271486B2 (en) Electric valve and refrigeration cycle system
JP2022069831A (en) Electric valve and refrigeration cycle system
JP7284054B2 (en) Electric valve and refrigeration cycle system
JP2023094136A (en) Motor valve and refrigeration cycle system
JP7478881B2 (en) Motor-operated valve and refrigeration cycle system
JP7011547B2 (en) Solenoid valve and refrigeration cycle system
JP7465845B2 (en) Motor-operated valve and refrigeration cycle system
CN114076208A (en) Flow control valve and refrigeration cycle system
JP2023084804A (en) Motor-operated valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240604

R150 Certificate of patent or registration of utility model

Ref document number: 7499587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150