JP2021148151A - Fixing structure of adjustment screw mechanism, valve device and refrigeration cycle system - Google Patents

Fixing structure of adjustment screw mechanism, valve device and refrigeration cycle system Download PDF

Info

Publication number
JP2021148151A
JP2021148151A JP2020046191A JP2020046191A JP2021148151A JP 2021148151 A JP2021148151 A JP 2021148151A JP 2020046191 A JP2020046191 A JP 2020046191A JP 2020046191 A JP2020046191 A JP 2020046191A JP 2021148151 A JP2021148151 A JP 2021148151A
Authority
JP
Japan
Prior art keywords
valve
female
male
adjusting screw
screw mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020046191A
Other languages
Japanese (ja)
Other versions
JP7249301B2 (en
Inventor
祐一 佐藤
Yuichi Sato
祐一 佐藤
雄一郎 當山
Yuichiro Toyama
雄一郎 當山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2020046191A priority Critical patent/JP7249301B2/en
Priority to CN202110240212.7A priority patent/CN113404879B/en
Publication of JP2021148151A publication Critical patent/JP2021148151A/en
Application granted granted Critical
Publication of JP7249301B2 publication Critical patent/JP7249301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • F16K1/38Valve members of conical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0254Construction of housing; Use of materials therefor of lift valves with conical shaped valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Temperature-Responsive Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

To reduce weight and to shorten a processing time, in a temperature-type expansion valve using a fixing structure of an adjustment screw mechanism for adjusting a compression amount of an adjustment spring by a screw mechanism which is composed of a male screw part and a female screw part.SOLUTION: In a temperature-type expansion valve 10, there is employed an adjustment screw mechanism 1 which can adjust a compression amount of an adjustment spring 14 (elastic body). The adjustment screw mechanism 1 is constituted of a male screw part 12 and a female screw part 11 of an adjustment screw 13, and the adjustment spring 14. The male screw part 12 and the female screw part 11 of the adjustment screw mechanism 1 are constituted of resin members. The male screw part 12 and the female screw part 11 are fixed to each other by ultrasonic welding in an interface of screwing portions of the screw parts.SELECTED DRAWING: Figure 1

Description

本発明は、弾性体の圧縮量を、当該弾性体の変形方向に相互に調整可能な雄ねじ部と雌ねじ部とからなるねじ機構により調整する調整ねじ機構の固定構造、及び弁装置並びに冷凍サイクルシステムに関する。 The present invention has a fixed structure of an adjusting screw mechanism that adjusts the amount of compression of an elastic body by a screw mechanism consisting of a male screw portion and a female screw portion that are mutually adjustable in the deformation direction of the elastic body, a valve device, and a refrigeration cycle system. Regarding.

従来、弁装置において、弁内部に組み込まれた弾性体の圧縮量を調整する調整ねじ機構により、弁体(弁部材)の作動特性を調整する技術が、例えば特開2014−5906号広報(特許文献1)に開示されている。なお、この特許文献1ではコイルばね(圧縮ばね)が弾性体である。 Conventionally, in a valve device, a technique for adjusting the operating characteristics of a valve body (valve member) by an adjusting screw mechanism for adjusting the amount of compression of an elastic body incorporated inside the valve is described in, for example, Japanese Patent Application Laid-Open No. 2014-5906 (Patent). It is disclosed in Document 1). In Patent Document 1, the coil spring (compression spring) is an elastic body.

特開2014−5906号広報Japanese Patent Application Laid-Open No. 2014-5906 Public Relations

特許文献1における調整ねじ機構の固定構造としては、金属同士のかしめによる固定構造や、ねじ部への接着剤の塗布等による固定構造が用いられている。 As the fixing structure of the adjusting screw mechanism in Patent Document 1, a fixing structure by caulking metal to metal, a fixing structure by applying an adhesive to a screw portion, or the like is used.

しかし、かしめによる固定構造では、ねじ機構に樹脂部材を用いるのは困難であり、金属部材で構成する必要があり、弁装置の軽量化に制約がある。また、接着剤による固定構造では、接着剤が乾燥するまでに時間がかかり、加工時間が長くなるという問題がある。 However, in the fixed structure by caulking, it is difficult to use a resin member for the screw mechanism, and it is necessary to use a metal member, which limits the weight reduction of the valve device. Further, in the fixed structure using an adhesive, there is a problem that it takes time for the adhesive to dry and the processing time becomes long.

本発明は、弾性体の圧縮量を雄ねじ部と雌ねじ部とからなるねじ機構により調整する調整ねじ機構の固定構造を用いた弁装置において、軽量化を図るとともに加工時間を短縮することを課題とする。 An object of the present invention is to reduce the weight and shorten the machining time in a valve device using a fixed structure of an adjusting screw mechanism that adjusts the amount of compression of an elastic body by a screw mechanism consisting of a male threaded portion and a female threaded portion. do.

本発明の調整ねじ機構の固定構造は、弾性体の圧縮量を当該弾性体の変形方向に相互に調整可能な雄ねじ部と雌ねじ部とからなるねじ機構により調整する調整ねじ機構の固定構造であって、前記調整ねじ機構の前記雄ねじ部と前記雌ねじ部とが樹脂部材で構成され、当該雄ねじ部と雌ねじ部とが、互いに螺合部分の界面にて溶着により固定されていることを特徴とする。 The fixing structure of the adjusting screw mechanism of the present invention is a fixing structure of the adjusting screw mechanism that adjusts the amount of compression of the elastic body by a screw mechanism consisting of a male screw portion and a female screw portion that are mutually adjustable in the deformation direction of the elastic body. The male-threaded portion and the female-threaded portion of the adjusting screw mechanism are made of a resin member, and the male-threaded portion and the female-threaded portion are fixed to each other by welding at the interface of the screwed portion. ..

この際に、前記雄ねじ部と雌ねじ部とが、互いに螺合部分の界面の一部のみにて溶着により固定されていることを特徴とする調整ねじ機構の固定構造が好ましい。 At this time, a fixing structure of the adjusting screw mechanism is preferable, wherein the male screw portion and the female screw portion are fixed to each other by welding only at a part of the interface of the screwed portion.

また、前記雄ねじ部と前記雌ねじ部との螺合状態において、雌ねじ谷底の径方向隙間と雄ねじ谷底の径方向隙間の合計が、雌ねじ谷底径と雄ねじ谷底径の差の20%以上であることを特徴とする調整ねじ機構の固定構造が好ましい。 Further, in the screwed state between the male screw portion and the female screw portion, the total of the radial gap of the female screw root bottom and the radial gap of the male screw valley bottom is 20% or more of the difference between the female screw valley bottom diameter and the male screw valley bottom diameter. A fixed structure of the characteristic adjusting screw mechanism is preferable.

また、前記調整ねじ機構は、駆動アクチュエータが発生する荷重方向と対向する方向に荷重を発生させる前記弾性体の圧縮量を調整するよう構成されていることを特徴とする調整ねじ機構の固定構造が好ましい。 Further, the adjusting screw mechanism has a fixed structure of the adjusting screw mechanism, which is configured to adjust the amount of compression of the elastic body that generates a load in a direction opposite to the load direction generated by the drive actuator. preferable.

本発明の弁装置は、流体が流れる弁ポートの開度を弁体により制御するよう構成されるとともに、前記調整ねじ機構の固定構造を備えた弁装置であって、前記駆動アクチュエータの駆動力を前記弁体に伝達するよう構成されたことを特徴とする。 The valve device of the present invention is a valve device having a structure for controlling the opening degree of a valve port through which a fluid flows by a valve body and having a fixed structure of the adjusting screw mechanism, and controls the driving force of the drive actuator. It is characterized in that it is configured to transmit to the valve body.

この際に、前記弁体と前記弁ポートは、流入通路から流入する冷媒を絞って流出通路から該冷媒を膨張させて流出させる膨張弁として構成されたことを特徴とする弁装置が好ましい。 At this time, a valve device characterized in that the valve body and the valve port are configured as an expansion valve that squeezes the refrigerant flowing in from the inflow passage to expand the refrigerant from the outflow passage and causes the refrigerant to flow out is preferable.

本発明の冷凍サイクルシステムは、圧縮機と、凝縮器と、蒸発器と、絞り装置とを含む冷凍サイクルシステムであって、前記弁装置が、前記絞り装置として用いられていることを特徴とする。 The refrigeration cycle system of the present invention is a refrigeration cycle system including a compressor, a condenser, an evaporator, and a throttle device, and the valve device is used as the throttle device. ..

本発明の調整ねじ機構の固定構造及び弁装置並びに冷凍サイクルシステムによれば、調整ねじ機構の雄ねじ部と雌ねじ部とが樹脂部材で構成されるとともに、この雄ねじ部と雌ねじ部とが超音波溶着により固定されているので、軽量化が図れるとともに加工時間を短縮することができる。 According to the fixing structure of the adjusting screw mechanism, the valve device, and the refrigeration cycle system of the present invention, the male and female threads of the adjusting screw mechanism are composed of a resin member, and the male and female threads are ultrasonically welded. Since it is fixed by, the weight can be reduced and the processing time can be shortened.

本発明の実施形態の弁装置としての温度式膨張弁を備えた冷却装置の一部断面図である。It is a partial sectional view of the cooling device provided with the temperature type expansion valve as the valve device of embodiment of this invention. 実施形態の温度式膨張弁における調整ねじ機構の要部拡大断面図である。It is an enlarged sectional view of the main part of the adjustment screw mechanism in the temperature type expansion valve of an embodiment. 実施形態における調整ねじの変形例1の要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part of a modified example 1 of an adjusting screw according to an embodiment. 実施形態における超音波溶着の工程を示す概略図である。It is the schematic which shows the process of ultrasonic welding in an embodiment. 実施形態における調整ねじの変形例2を示す図である。It is a figure which shows the modification 2 of the adjustment screw in embodiment. 本発明の実施形態の冷凍サイクルシステムを示す図である。It is a figure which shows the refrigeration cycle system of embodiment of this invention.

次に、本発明の調整ねじの固定構造及び弁装置並びに冷凍サイクルシステムの実施形態について図面を参照して説明する。 Next, the fixing structure of the adjusting screw, the valve device, and the embodiment of the refrigeration cycle system of the present invention will be described with reference to the drawings.

図6は実施形態の温度式膨張弁を用いた冷却装置の冷凍サイクルシステムの要部を示す図であり、先ず、実施形態の冷凍サイクルシステムについて説明する。図6において、10は実施形態の温度式膨張弁、100は圧縮機、200は凝縮器、300は蒸発器、400はアキュムレータであり、これらは配管で環状に接続することにより冷凍サイクルシステムを構成している。温度式膨張弁10は、後述のように、ハウジング20内に装着され、ダイヤフラム式の駆動アクチュエータ3と例えば従来の感温筒と同様な感温筒5、及びキャピラリチューブ6を有している。ハウジング20の流入通路20Bは凝縮器200の出口側配管200aに接続され、ハウジング20の流出通路20Cは蒸発器300の入口側配管300aに接続されている。そして、蒸発器300は冷却対象である図示しない発熱体に接触して併設されたり、空調、冷蔵用として冷やす室内雰囲気中等に配置され、この蒸発器300の出口側配管300bに感温筒5が取り付けられている。 FIG. 6 is a diagram showing a main part of the refrigeration cycle system of the cooling device using the temperature type expansion valve of the embodiment, and first, the refrigeration cycle system of the embodiment will be described. In FIG. 6, 10 is a temperature expansion valve of the embodiment, 100 is a compressor, 200 is a condenser, 300 is an evaporator, and 400 is an accumulator, which are connected in a ring shape by piping to form a refrigeration cycle system. doing. As will be described later, the temperature expansion valve 10 is mounted in the housing 20 and has a diaphragm type drive actuator 3, a temperature sensing cylinder 5 similar to a conventional temperature sensing cylinder, and a capillary tube 6. The inflow passage 20B of the housing 20 is connected to the outlet side pipe 200a of the condenser 200, and the outflow passage 20C of the housing 20 is connected to the inlet side pipe 300a of the evaporator 300. The evaporator 300 is placed in contact with a heating element (not shown) to be cooled, or is arranged in an indoor atmosphere for cooling for air conditioning and refrigeration. It is installed.

圧縮機100は冷凍サイクルシステムを流れる冷媒を圧縮し、圧縮された冷媒は凝縮器200で凝縮液化され、流入通路20Bを通して温度式膨張弁10に流入される。温度式膨張弁10は流入される冷媒を減圧(膨張)して流出通路20Cから蒸発器300に流入させる。蒸発器300は冷媒の一部を蒸発気化し、気液混合状態の冷媒がアキュムレータ400に流入し、このアキュムレータ400から気相冷媒が圧縮機100に循環される。そして、蒸発器300は、冷媒の一部を蒸発気化することで、発熱体や空気等から熱を吸収する。これにより発熱体、または空気等が冷却される。また、感温筒5には、吸着チャージ等によりガスが封入されており、この感温筒5はキャピラリチューブ6により駆動アクチュエータ3に連結されている。 The compressor 100 compresses the refrigerant flowing through the refrigeration cycle system, and the compressed refrigerant is condensed and liquefied by the condenser 200 and flows into the temperature expansion valve 10 through the inflow passage 20B. The temperature type expansion valve 10 decompresses (expands) the inflowing refrigerant and causes it to flow into the evaporator 300 from the outflow passage 20C. The evaporator 300 evaporates and vaporizes a part of the refrigerant, the refrigerant in the gas-liquid mixed state flows into the accumulator 400, and the vapor phase refrigerant is circulated from the accumulator 400 to the compressor 100. Then, the evaporator 300 absorbs heat from a heating element, air, or the like by evaporating and vaporizing a part of the refrigerant. As a result, the heating element, air, etc. are cooled. Further, the temperature sensitive cylinder 5 is filled with gas by adsorption charge or the like, and the temperature sensitive cylinder 5 is connected to the drive actuator 3 by a capillary tube 6.

図1は実施形態の弁装置としての温度式膨張弁を備えた冷却装置の一部断面図、図2は同温度式膨張弁における調整ねじ機構の要部拡大断面図である。なお、以下の説明における「上下」の概念は図1の図面における上下に対応しており、一点鎖線で示す軸線Xは後述の弁ポート33の中心線であるとともに、作動軸38及び弁体4の移動方向に対応している。 FIG. 1 is a partial cross-sectional view of a cooling device provided with a temperature-type expansion valve as a valve device of the embodiment, and FIG. 2 is an enlarged cross-sectional view of a main part of an adjusting screw mechanism in the same temperature-type expansion valve. The concept of "upper and lower" in the following description corresponds to the upper and lower parts in the drawing of FIG. 1, and the axis X indicated by the alternate long and short dash line is the center line of the valve port 33 described later, and the operating shaft 38 and the valve body 4 Corresponds to the moving direction of.

この実施形態の冷却装置は、ハウジング20に実施形態の温度式膨張弁10を搭載したものである。弁ハウジング20は全体が金属部材によって構成され、このハウジング20には、弁ユニット装着孔20A、流入通路20B及び流出通路20Cが形成されている。弁ユニット装着孔20Aは、軸線X方向下方で軸線Xを中心とする円柱状の小径室20A1と、この小径室20A1の上方で軸線Xを中心とする円柱状の大径室20A2と、大径室20A2の上方で軸線Xを中心とする薄型円柱状の駆動アクチュエータ室20A3とを有している。そして、弁ユニット装着孔20A内に温度式膨張弁10が嵌合されている。 In the cooling device of this embodiment, the temperature type expansion valve 10 of the embodiment is mounted on the housing 20. The valve housing 20 is entirely made of a metal member, and the valve unit mounting hole 20A, the inflow passage 20B, and the outflow passage 20C are formed in the housing 20. The valve unit mounting hole 20A has a large diameter of a columnar small diameter chamber 20A1 centered on the axis X below the axis X direction and a columnar large diameter chamber 20A2 centered on the axis X above the small diameter chamber 20A1. Above the chamber 20A2, there is a thin cylindrical drive actuator chamber 20A3 centered on the axis X. Then, the temperature type expansion valve 10 is fitted in the valve unit mounting hole 20A.

温度式膨張弁10は、弁本体2と、駆動アクチュエータ3と、弁体4と、感温筒5(図6参照)と、によって構成される。なお、弁本体2とハウジング20との間には、小径室20A1の大径室20A2側の端部と、大径室20A2の駆動アクチュエータ室20A3側の端部とには、OリングP,Qが設けられており、OリングPにより流入通路20Bと流出通路20Cとの間の気密性が保たれている。また、OリングQにより弁本体2とハウジング20との外部空間に対する気密性が保たれている。 The temperature type expansion valve 10 is composed of a valve body 2, a drive actuator 3, a valve body 4, and a temperature sensitive cylinder 5 (see FIG. 6). Between the valve body 2 and the housing 20, O-rings P and Q are provided between the end of the small diameter chamber 20A1 on the large diameter chamber 20A2 side and the end of the large diameter chamber 20A2 on the drive actuator chamber 20A3 side. Is provided, and the airtightness between the inflow passage 20B and the outflow passage 20C is maintained by the O-ring P. Further, the O-ring Q keeps the valve body 2 and the housing 20 airtight with respect to the external space.

弁本体2は、樹脂部材によって構成され、ハウジング20の小径室20A1と大径室20A2とに収容されている。弁本体2のうち小径室20A1に収容される下側部分2Aは、軸線X方向を軸方向とする円筒状に形成され、その側面に側部開口21を有するとともに下端に下端開口22を有している。また、この下側部分2Aの上部内周には弁ガイド孔23が形成され、この弁ガイド孔23内に弁体4が収容されている。そして、この下側部分2Aの下端開口22の軸線X方向内側において、雌ねじ部11が形成されるとともに、その内側に樹脂部材で構成された調整ねじ13が配設されている。調整ねじ13の外周には雄ねじ部12が形成されており、この雄ねじ部12は雌ねじ部11に螺合されるとともに、調整ねじ13と弁体4との間に「弾性体」としての調整ばね14が配設されている。この雌ねじ部11と調整ねじ13及び調整ばね14は調整ねじ機構1を構成している。なお、調整ねじ13の中心には貫通孔13aとレンチ孔13bとが形成されている。 The valve body 2 is made of a resin member and is housed in a small diameter chamber 20A1 and a large diameter chamber 20A2 of the housing 20. The lower portion 2A of the valve body 2 housed in the small diameter chamber 20A1 is formed in a cylindrical shape with the axis X direction as the axial direction, and has a side opening 21 on the side surface thereof and a lower end opening 22 on the lower end. ing. A valve guide hole 23 is formed in the upper inner circumference of the lower portion 2A, and the valve body 4 is housed in the valve guide hole 23. A female screw portion 11 is formed inside the lower end opening 22 of the lower portion 2A in the axis X direction, and an adjusting screw 13 made of a resin member is arranged inside the female screw portion 11. A male screw portion 12 is formed on the outer circumference of the adjusting screw 13, and the male screw portion 12 is screwed into the female screw portion 11 and an adjusting spring as an “elastic body” is formed between the adjusting screw 13 and the valve body 4. 14 is arranged. The female screw portion 11, the adjusting screw 13, and the adjusting spring 14 constitute the adjusting screw mechanism 1. A through hole 13a and a wrench hole 13b are formed at the center of the adjusting screw 13.

また、弁本体2のうち大径室20A2に収容される上側部分2Bは、後述する弁座部32aの上方において軸線X方向に沿って延びる筒状の作動軸ガイド孔24と、作動軸ガイド孔24に直交するように延びる冷媒通過部25と、駆動アクチュエータ室20A3側から作動軸ガイド孔24の回りにリング状の深溝として形成されたばね室26と、ばね室26と冷媒通過部25とを連通する均圧孔27と、を有している。 Further, the upper portion 2B of the valve body 2 accommodated in the large diameter chamber 20A2 has a cylindrical operating shaft guide hole 24 extending along the axis X direction above the valve seat portion 32a, which will be described later, and an operating shaft guide hole. The refrigerant passage portion 25 extending orthogonal to the 24, the spring chamber 26 formed as a ring-shaped deep groove around the operating shaft guide hole 24 from the drive actuator chamber 20A3 side, and the spring chamber 26 and the refrigerant passage portion 25 are communicated with each other. It has a pressure equalizing hole 27 and a pressure equalizing hole 27.

弁本体2の上部に構成された駆動アクチュエータ3は、薄型円盤状の上蓋3Aと下蓋3Bとによりケース体を構成している。下蓋3Bは上蓋3Aと対向するフランジ部31と、このフランジ部31に連結され軸線Xを中心とする有底円筒状の形状となる円筒部32とを有している。また、下蓋3Bは、円筒部32を弁本体2内にして弁本体2をインサート成形することにより弁本体2と一体に構成され、この円筒部32の底部をなす弁座部32aが弁本体2の上側部分2Bの作動軸ガイド孔24の下端側に配置されている。そして、この弁座部32aの中央には軸線Xを中心とする弁ポート33が形成されている。 The drive actuator 3 configured on the upper part of the valve body 2 constitutes a case body by a thin disk-shaped upper lid 3A and a lower lid 3B. The lower lid 3B has a flange portion 31 facing the upper lid 3A, and a cylindrical portion 32 connected to the flange portion 31 and having a bottomed cylindrical shape centered on the axis X. Further, the lower lid 3B is integrally formed with the valve body 2 by inserting the valve body 2 with the cylindrical portion 32 inside the valve body 2, and the valve seat portion 32a forming the bottom of the cylindrical portion 32 is the valve body. It is arranged on the lower end side of the operating shaft guide hole 24 of the upper portion 2B of 2. A valve port 33 centered on the axis X is formed in the center of the valve seat portion 32a.

なお、ハウジング20の駆動アクチュエータ室20A3には抜け止め部材3Cが取り付けられており、駆動アクチュエータ3の上蓋3Aの外縁部の上面が抜け止め部材3Cによって係止されることにより、駆動アクチュエータ3および弁本体2が弁ユニット装着孔20Aから脱落しないようになっている。 A retaining member 3C is attached to the drive actuator chamber 20A3 of the housing 20, and the upper surface of the outer edge portion of the upper lid 3A of the drive actuator 3 is locked by the retaining member 3C to lock the drive actuator 3 and the valve. The main body 2 is prevented from falling out of the valve unit mounting hole 20A.

また、上蓋3Aと下蓋3Bの間にはダイヤフラム34を備えており、このダイヤフラム34によってダイヤフラム室35と均圧室36が区画されている。下蓋3B内には当金37が配設されており、この当金37に作動軸38が接続されている。なお、ばね室26内において、ばね室26の底部と当金37との間にはコイルばね39が圧縮した状態で配設されている。これにより、コイルばね39は作動軸38をダイヤフラム34側に付勢している。 Further, a diaphragm 34 is provided between the upper lid 3A and the lower lid 3B, and the diaphragm chamber 35 and the pressure equalizing chamber 36 are partitioned by the diaphragm 34. A deposit 37 is arranged in the lower lid 3B, and an operating shaft 38 is connected to the deposit 37. In the spring chamber 26, a coil spring 39 is arranged in a compressed state between the bottom of the spring chamber 26 and the metal fitting 37. As a result, the coil spring 39 urges the operating shaft 38 toward the diaphragm 34.

作動軸38は作動軸ガイド孔24内に摺動可能に挿通されている。また、作動軸38の下端部38aは、弁ポート33を通過可能な外径を有するようにピン状になっており、この作動軸38の下端部38aは弁ポート33を貫通している。そして、この作動軸38の下端部38aはダイヤフラム34の動作を弁体4に伝達する。 The operating shaft 38 is slidably inserted into the operating shaft guide hole 24. Further, the lower end portion 38a of the operating shaft 38 has a pin shape so as to have an outer diameter that allows the valve port 33 to pass through, and the lower end portion 38a of the operating shaft 38 penetrates the valve port 33. Then, the lower end portion 38a of the operating shaft 38 transmits the operation of the diaphragm 34 to the valve body 4.

弁体4は、上面が閉塞されて下面が開口した有底筒状に形成され、その内側に内空間41を有している。また、上面の一部に弁ポート33と内空間41を連通する貫通孔42が形成されるとともに、上面の中央にニードル部43を有している。そして、このニードル部43が弁座部32aに対して接近または離隔することで弁ポート33の開度が制御される。また、このニードル部43の上端には作動軸38の下端部38aが当接されている。 The valve body 4 is formed in a bottomed tubular shape with the upper surface closed and the lower surface open, and has an inner space 41 inside. Further, a through hole 42 for communicating the valve port 33 and the inner space 41 is formed in a part of the upper surface, and a needle portion 43 is provided in the center of the upper surface. Then, the opening degree of the valve port 33 is controlled by the needle portion 43 approaching or separating from the valve seat portion 32a. Further, the lower end portion 38a of the operating shaft 38 is in contact with the upper end portion of the needle portion 43.

以上の構成により、流入通路20Bは凝縮器200から冷媒を受け入れ、この冷媒は、20Aに導入された後、下側部分2Aの側部開口21及び調整ねじ13のレンチ孔13b及び貫通孔13a、弁体4の内空間41及び貫通孔42、弁ポート33および冷媒通過部25をこの順で通過し、流出通路20Cから蒸発器300に送り出される。また、感温筒5の感知温度に応じてダイヤフラム室35の内圧が上昇または低下すると、ダイヤフラム室35が膨張または収縮するようにダイヤフラム34が変形する。そして、このダイヤフラム34の変形に伴い、作動軸38が軸線X方向に移動し、弁ポート33と弁体4のニードル部43との隙間すなわち弁開度が変化する。 With the above configuration, the inflow passage 20B receives the refrigerant from the condenser 200, and after the refrigerant is introduced into the 20A, the side opening 21 of the lower portion 2A and the wrench hole 13b and the through hole 13a of the adjusting screw 13 It passes through the inner space 41 of the valve body 4, the through hole 42, the valve port 33, and the refrigerant passing portion 25 in this order, and is sent out from the outflow passage 20C to the evaporator 300. Further, when the internal pressure of the diaphragm chamber 35 rises or falls according to the sensed temperature of the temperature sensing cylinder 5, the diaphragm 34 is deformed so that the diaphragm chamber 35 expands or contracts. Then, with the deformation of the diaphragm 34, the operating shaft 38 moves in the axis X direction, and the gap between the valve port 33 and the needle portion 43 of the valve body 4, that is, the valve opening degree changes.

そして、温度式膨張弁10の調整ねじ機構1において、調整ばね14は、弁体4に対して下方に設けられて上方への付勢力を付与するよう構成されるとともに、雌ねじ部11に対する調整ねじ13のねじ込み量によって、この弁体4に対する付勢力が調整可能となっている。すなわち、調整ねじ13のねじ込み量を調整することで、弁体4が作動軸38を押圧する力を調整することができるので、ダイヤフラム室35の導入圧力に応じて弁ポート33が開き始める圧力、すなわち設定圧力を調整することができる。なお、調整ねじ13のねじ込み(回転)を行うときは、調整ねじ13のレンチ孔13bにレンチ等を嵌合して回転させる。 Then, in the adjusting screw mechanism 1 of the temperature type expansion valve 10, the adjusting spring 14 is provided downward with respect to the valve body 4 to apply an upward urging force, and the adjusting screw with respect to the female screw portion 11 is provided. The urging force with respect to the valve body 4 can be adjusted by the screwing amount of 13. That is, by adjusting the screwing amount of the adjusting screw 13, the force with which the valve body 4 presses the operating shaft 38 can be adjusted, so that the pressure at which the valve port 33 starts to open according to the introduction pressure of the diaphragm chamber 35, That is, the set pressure can be adjusted. When screwing (rotating) the adjusting screw 13, a wrench or the like is fitted into the wrench hole 13b of the adjusting screw 13 and rotated.

温度式膨張弁10は、上記のように設定圧力を調整したあと、弁本体2の下側部分2Aの雌ねじ部11において、調整ねじ13が固着されている。弁本体2と調整ねじ13とは、それぞれ樹脂部材(樹脂製の部品)であり、図2のようにして超音波溶着されている。なお、超音波溶着とは、超音波振動により雄ねじ部と雌ねじ部との界面が溶融して接着されることである。 In the temperature type expansion valve 10, after adjusting the set pressure as described above, the adjusting screw 13 is fixed to the female thread portion 11 of the lower portion 2A of the valve body 2. The valve body 2 and the adjusting screw 13 are resin members (resin parts), respectively, and are ultrasonically welded as shown in FIG. In addition, ultrasonic welding means that the interface between the male threaded portion and the female threaded portion is melted and adhered by ultrasonic vibration.

すなわち、図2において下側部分2Aの雌ねじ部11と調整ねじ13の雄ねじ部12との境界部分に溶融固化層D(楕円の細かいハッチングの部分)が形成されている。図4は超音波溶着の工程を示す概略図であり、ロッド軸40aを設けた固定治具40に対して温度式膨張弁10を装着する。具体的には、ロッド軸40aを調整ねじ13のレンチ孔13bと貫通孔13aに挿通するとともに、駆動アクチュエータ3の上蓋3Aと下蓋3Bの外周縁を固定治具40の水平台40bから浮かせた状態で載置する。そして、弁本体20の下側部分2Aにホーン50を押しつけて、超音波溶着する。 That is, in FIG. 2, a melt-solidified layer D (an elliptical fine hatched portion) is formed at a boundary portion between the female screw portion 11 of the lower portion 2A and the male screw portion 12 of the adjusting screw 13. FIG. 4 is a schematic view showing the process of ultrasonic welding, in which the temperature expansion valve 10 is attached to the fixing jig 40 provided with the rod shaft 40a. Specifically, the rod shaft 40a was inserted into the wrench hole 13b and the through hole 13a of the adjusting screw 13, and the outer peripheral edges of the upper lid 3A and the lower lid 3B of the drive actuator 3 were lifted from the horizontal base 40b of the fixing jig 40. Place in the state. Then, the horn 50 is pressed against the lower portion 2A of the valve body 20 to be ultrasonically welded.

弁本体2の下側部分2Aの外周に軸線X(中心軸)と直角方向からホーン50を押し付ける為、下側部分2Aの押し付けられた側は超音波振動により雄ねじ部と雌ねじ部との界面が溶融して接着されるが、ホーン50を押し付けていない反対側は、ねじガタ分、雄ねじ部と雌ねじ部との界面に隙間があり非接触の為、溶着されない部分がある。また、図4の様に水平台40bから浮かせた状態で載置しているので、ホーン50を押し付けられた側は溶融にて、軸線X(中心軸)と直角方向に溶けた分、弁本体2が下に移動するので、ホーン50を押し付けていない反対側はねじ間に隙間が更に開き、溶着されにくい。従って、雄ねじ部と雌ねじ部とが、互いに螺合部分の界面の全周に対して一部のみにて溶着により固定されている。螺合部分の一部が溶融されずに残ることで、溶融時の軸線X方向のズレが抑制される為、前記弾性体の圧縮量を精度よく調整する場合には、好ましい。一部のみにて溶着により固定されているが、一部でも、溶融条件により、固定強度は十分にある。 Since the horn 50 is pressed against the outer periphery of the lower portion 2A of the valve body 2 from a direction perpendicular to the axis X (central axis), the interface between the male and female threads on the pressed side of the lower portion 2A is due to ultrasonic vibration. Although it is melted and bonded, on the opposite side where the horn 50 is not pressed, there is a gap between the male threaded portion and the female threaded portion due to the backlash of the screw and there is a non-contact portion, so that there is a portion that is not welded. Further, since the horn 50 is placed in a state of being floated from the horizontal base 40b as shown in FIG. 4, the side on which the horn 50 is pressed is melted by melting in the direction perpendicular to the axis X (central axis), and the valve main body. Since 2 moves downward, a gap is further opened between the screws on the opposite side where the horn 50 is not pressed, and welding is difficult. Therefore, the male-threaded portion and the female-threaded portion are fixed to each other by welding only partially with respect to the entire circumference of the interface of the screwed portions. Since a part of the screwed portion remains without being melted, the deviation in the axis X direction at the time of melting is suppressed, which is preferable when adjusting the compression amount of the elastic body with high accuracy. Only a part of it is fixed by welding, but even a part of it has sufficient fixing strength depending on the melting conditions.

また、この実施形態では、図2に示すように、調整ねじ13の雄ねじ部12の外周部分(螺旋の稜線相当部分)の一部に欠損部分が形成されている。すなわち、雄ねじ部12と雌ねじ部11との一方(雄ねじ部12)のねじ山の高さが他方(雌ねじ部11)のねじ溝の深さより小さくなっている。こにれより、雄ねじ部12の山と雌ねじ部11の谷との間に「溶融溜まり」としての空隙S1が形成されている。これにより、超音波溶着時の溶融樹脂が流路等にはみ出すことがない為、はみ出し部が外れ、冷凍サイクルシステムの流路内に異物として流出し不具合となる事を防止することができる。 Further, in this embodiment, as shown in FIG. 2, a defective portion is formed in a part of the outer peripheral portion (the portion corresponding to the ridgeline of the spiral) of the male screw portion 12 of the adjusting screw 13. That is, the height of the thread of one of the male threaded portion 12 and the female threaded portion 11 (male threaded portion 12) is smaller than the depth of the thread groove of the other (female threaded portion 11). From this, a gap S1 as a "melt pool" is formed between the ridge of the male screw portion 12 and the valley of the female screw portion 11. As a result, since the molten resin at the time of ultrasonic welding does not protrude into the flow path or the like, it is possible to prevent the protruding portion from coming off and flowing out as foreign matter into the flow path of the refrigeration cycle system, resulting in a problem.

また、この図2の実施形態では、雄ねじ部12と雌ねじ部11との一方(雄ねじ部12)のねじ山の高さが他方(雌ねじ部11)のねじ溝の深さより小さい例について示したが、小さいものに限定するものではなく同じ寸法の場合も含む図3の変形例1について説明する。図3に示すように、溶融前の状態において、雌ねじの谷の径[D1]と雄ねじの山の頂径(外径)[D2]の差[A](雌ねじ谷底の径方向隙間)と、雌ねじの内径[D3]と雄ねじの谷の径[D4]の差[B](雄ねじ谷底の径方向隙間)の合計(A+B)が、雌ねじの谷の径[D1]と雄ねじの谷の径[D4]の差[C](雄ねじと雌ねじの谷底間径方向長さ)の20%以上、
すなわち、
A=D1−D2
B=D3−D4
C=D1−D4において
(A+B)/C×100≧20
とすることで、「溶融溜まり」としての隙間[A]の空隙S1と隙間[B]の空隙S3が十分形成される。これにより、超音波溶着時の溶融樹脂が流路等にはみ出すことがない為、はみ出し部が外れ、冷凍サイクルシステムの流路内に異物として流出し不具合となる事を防止することができる。
Further, in the embodiment of FIG. 2, an example is shown in which the height of the thread of one of the male threaded portion 12 and the female threaded portion 11 (male threaded portion 12) is smaller than the depth of the thread groove of the other (female threaded portion 11). A modified example 1 of FIG. 3 will be described, which includes not only small ones but also cases of the same dimensions. As shown in FIG. 3, in the state before melting, the difference [A] (radial gap at the bottom of the female thread valley) between the diameter of the female thread valley [D1] and the top diameter (outer diameter) [D2] of the male screw thread, The total (A + B) of the difference [B] (radial gap at the bottom of the male screw valley) between the inner diameter of the female screw [D3] and the diameter of the male screw valley [D4] is the diameter of the female screw valley [D1] and the diameter of the male screw valley [D1]. 20% or more of the difference [C] (diameter length between male and female threads) of D4],
That is,
A = D1-D2
B = D3-D4
At C = D1-D4, (A + B) / C × 100 ≧ 20
By doing so, the gap S1 in the gap [A] and the gap S3 in the gap [B] are sufficiently formed as a “melt pool”. As a result, since the molten resin at the time of ultrasonic welding does not protrude into the flow path or the like, it is possible to prevent the protruding portion from coming off and flowing out as foreign matter into the flow path of the refrigeration cycle system, resulting in a problem.

また、雌ねじの谷の径[D1]と雄ねじの山の頂径(外径)[D2]の差[A](雌ねじ谷底の径方向隙間)と、雌ねじの内径[D3]と雄ねじの谷の径[D4]の差[B](雄ねじ谷底の径方向隙間)の合計(A+B)が、雌ねじの谷の径[D1]と雄ねじの谷の径[D4]の差[C](雄ねじと雌ねじの谷底間径方向長さ)の30〜40%とすることが好ましく、これにより、上記よりも十分に溶融樹脂を逃がせる空隙を確保できる為、より望ましい。また、50%程度とすると、更に望ましい。 Further, the difference [A] (radial gap at the bottom of the female screw valley) between the diameter of the female screw valley [D1] and the top diameter (outer diameter) [D2] of the male screw thread, and the inner diameter [D3] of the female screw and the male screw valley. The total (A + B) of the difference [B] (radial gap at the bottom of the male screw valley) of the diameter [D4] is the difference [C] (male screw and female screw) between the diameter of the female screw valley [D1] and the diameter of the male screw valley [D4]. It is preferably 30 to 40% of the length in the radial direction of the valley bottom), which is more desirable because it can secure a gap that allows the molten resin to escape more sufficiently than the above. Further, it is more desirable to set it to about 50%.

図5は実施形態における調整ねじの変形例2を示す図であり、この変形例2の調整ねじ13′は、雄ねじ部12′の軸線X方向の両外側端部において、雌ねじ部11と螺合しない欠損部を設け、この欠損部の部分において、雄ねじ部12′の山の欠損部の部分と雌ねじ部11の谷との間に「溶融溜まり」としての空隙S2を設けたものである。これにより、超音波溶着時の溶融樹脂Gが流路等にはみ出すことがない為、はみ出し部が外れ、冷凍サイクルシステムの流路内に異物として流出し不具合となる事を防止することができる。 FIG. 5 is a diagram showing a modified example 2 of the adjusting screw in the embodiment, and the adjusting screw 13'of the modified example 2 is screwed with the female screw portion 11 at both outer ends of the male screw portion 12'in the axis X direction. A non-defective portion is provided, and in this defective portion, a gap S2 as a “melt pool” is provided between the defective portion of the ridge of the male threaded portion 12 ′ and the valley of the female threaded portion 11. As a result, since the molten resin G at the time of ultrasonic welding does not protrude into the flow path or the like, it is possible to prevent the protruding portion from coming off and flowing out as foreign matter into the flow path of the refrigeration cycle system, resulting in a problem.

以上、弁装置としての温度式膨張弁について説明したが、本発明は、この実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。前記実施形態では弁装置として温度式膨張弁の例を示したが、雄ねじと雌ねじの螺合による調整ねじ機構を備えた弁装置に適用できる。例えば、特許文献1のように、コイルばねの変形量を調整して設定圧力を調整するような圧力調整弁に適用してもよい。また、温度式膨張弁や、圧力調整弁に限らず、調整ばね等の弾性体の変形量を調整する機構を設けたその他の電磁弁や電動弁等の弁装置に適用してもよい。また、弁装置以外の機器に適用しても良い。 Although the temperature type expansion valve as a valve device has been described above, the present invention is not limited to this embodiment, and includes other configurations that can achieve the object of the present invention, and is modified as shown below. Etc. are also included in the present invention. In the above embodiment, an example of a temperature type expansion valve is shown as a valve device, but it can be applied to a valve device provided with an adjusting screw mechanism by screwing a male screw and a female screw. For example, as in Patent Document 1, it may be applied to a pressure adjusting valve that adjusts the set pressure by adjusting the amount of deformation of the coil spring. Further, the present invention is not limited to the temperature type expansion valve and the pressure adjusting valve, and may be applied to other valve devices such as an electromagnetic valve and an electric valve provided with a mechanism for adjusting the amount of deformation of an elastic body such as an adjusting spring. Further, it may be applied to equipment other than the valve device.

以上、本発明の実施の形態について図面を参照して詳述し、その他の実施形態についても詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings, and other embodiments have also been described in detail. However, the specific configuration is not limited to these embodiments, and the present invention is not limited to these embodiments. Even if there is a design change or the like within a range that does not deviate from the gist, it is included in the present invention.

1 調整ねじ機構
11 雌ねじ部
12 雄ねじ部
13 調整ねじ
14 調整ばね
2 弁本体
2A 下側部分
2B 上側部分
21 側部開口
22 下端開口
23 弁ガイド孔
24 作動軸ガイド孔
25 冷媒通過部
26 ばね室
27 均圧孔
3 駆動アクチュエータ
3A 上蓋
3B 下蓋
3C 抜け止め部材
31 フランジ部
32 円筒部
32a 弁座部
33 弁ポート
34 ダイヤフラム
35 ダイヤフラム室
36 均圧室
37 当金
38 作動軸
38a 下端部
39 コイルばね
4 弁体
41 内空間
42 貫通孔
43 ニードル部
5 感温筒
X 軸線
10 温度式膨張弁
20 ハウジング
20A 弁ユニット装着孔
20B 流入通路
20C 流出通路
100 圧縮機
200 凝縮器
300 蒸発器
400 アキュムレータ
1 Adjusting screw mechanism 11 Female thread 12 Male thread 13 Adjusting screw 14 Adjusting spring 2 Valve body 2A Lower part 2B Upper part 21 Side opening 22 Lower end opening 23 Valve guide hole 24 Actuating shaft guide hole 25 Coolant passing part 26 Spring chamber 27 Pressure equalizing hole 3 Drive actuator 3A Upper lid 3B Lower lid 3C Retaining member 31 Flange part 32 Cylindrical part 32a Valve seat part 33 Valve port 34 Diaphragm 35 Diaphragm chamber 36 Pressure equalizing chamber 37 Seat 38 Operating shaft 38a Lower end 39 Coil spring 4 Valve body 41 Inner space 42 Through hole 43 Needle part 5 Temperature sensitive cylinder X Axis line 10 Temperature type expansion valve 20 Housing 20A Valve unit mounting hole 20B Inflow passage 20C Outflow passage 100 Compressor 200 Condenser 300 Evaporator 400 Accumulator

Claims (7)

弾性体の圧縮量を当該弾性体の変形方向に相互に調整可能な雄ねじ部と雌ねじ部とからなるねじ機構により調整する調整ねじ機構の固定構造であって、
前記調整ねじ機構の前記雄ねじ部と前記雌ねじ部とが樹脂部材で構成され、当該雄ねじ部と雌ねじ部とが、互いに螺合部分の界面にて溶着により固定されていることを特徴とする調整ねじ機構の固定構造。
It is a fixed structure of an adjusting screw mechanism that adjusts the amount of compression of an elastic body by a screw mechanism consisting of a male threaded portion and a female threaded portion that are mutually adjustable in the deformation direction of the elastic body.
The adjusting screw is characterized in that the male-threaded portion and the female-threaded portion of the adjusting screw mechanism are formed of a resin member, and the male-threaded portion and the female-threaded portion are fixed to each other by welding at the interface of the screwed portion. Fixed structure of the mechanism.
前記雄ねじ部と雌ねじ部とが、互いに螺合部分の界面の一部のみにて溶着により固定されていることを特徴とする請求項1に記載の調整ねじ機構の固定構造。 The fixing structure of the adjusting screw mechanism according to claim 1, wherein the male screw portion and the female screw portion are fixed to each other by welding only at a part of the interface of the screwed portion. 前記雄ねじ部と前記雌ねじ部との螺合状態において、雌ねじ谷底の径方向隙間と雄ねじ谷底の径方向隙間の合計が、雌ねじ谷底径と雄ねじ谷底径の差の20%以上であることを特徴とする請求項1または2に記載の調整ねじ機構の固定構造。 In the screwed state between the male screw portion and the female screw portion, the total of the radial gap of the female screw root bottom and the radial gap of the male screw valley bottom is 20% or more of the difference between the female screw valley bottom diameter and the male screw valley bottom diameter. The fixing structure of the adjusting screw mechanism according to claim 1 or 2. 前記調整ねじ機構は、駆動アクチュエータが発生する荷重方向と対向する方向に荷重を発生させる前記弾性体の圧縮量を調整するよう構成されていることを特徴とする請求項1乃至3のいずれか一項に記載の調整ねじ機構の固定構造。 Any one of claims 1 to 3, wherein the adjusting screw mechanism is configured to adjust the amount of compression of the elastic body that generates a load in a direction opposite to the load direction generated by the drive actuator. Fixed structure of the adjusting screw mechanism described in the section. 流体が流れる弁ポートの開度を弁体により制御するよう構成されるとともに、請求項4の調整ねじ機構の固定構造を備えた弁装置であって、前記駆動アクチュエータの駆動力を前記弁体に伝達するよう構成されたことを特徴とする弁装置。 A valve device configured to control the opening degree of a valve port through which a fluid flows by a valve body and having a fixed structure of the adjusting screw mechanism according to claim 4, wherein the driving force of the driving actuator is applied to the valve body. A valve device characterized in that it is configured to transmit. 前記弁体と前記弁ポートは、流入通路から流入する冷媒を絞って流出通路から該冷媒を膨張させて流出させる膨張弁として構成されたことを特徴とする請求項5に記載の弁装置。 The valve device according to claim 5, wherein the valve body and the valve port are configured as an expansion valve that narrows down the refrigerant flowing in from the inflow passage and expands and outflows the refrigerant from the outflow passage. 圧縮機と、凝縮器と、蒸発器と、絞り装置とを含む冷凍サイクルシステムであって、請求項6に記載の弁装置が、前記絞り装置として用いられていることを特徴とする冷凍サイクルシステム。 A refrigeration cycle system including a compressor, a condenser, an evaporator, and a squeezing device, wherein the valve device according to claim 6 is used as the squeezing device. ..
JP2020046191A 2020-03-17 2020-03-17 Fixing structure of adjustment screw mechanism, valve device, and refrigeration cycle system Active JP7249301B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020046191A JP7249301B2 (en) 2020-03-17 2020-03-17 Fixing structure of adjustment screw mechanism, valve device, and refrigeration cycle system
CN202110240212.7A CN113404879B (en) 2020-03-17 2021-03-04 Fixing structure of adjusting screw mechanism, valve device and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020046191A JP7249301B2 (en) 2020-03-17 2020-03-17 Fixing structure of adjustment screw mechanism, valve device, and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2021148151A true JP2021148151A (en) 2021-09-27
JP7249301B2 JP7249301B2 (en) 2023-03-30

Family

ID=77691402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020046191A Active JP7249301B2 (en) 2020-03-17 2020-03-17 Fixing structure of adjustment screw mechanism, valve device, and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP7249301B2 (en)
CN (1) CN113404879B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101472A (en) * 1980-01-19 1981-08-14 Saginomiya Seisakusho Inc Expansion valve
JPH07110022A (en) * 1993-10-08 1995-04-25 Mitsubishi Pencil Co Ltd Threaded engagement structure of trapezoidal thread screw
JPH11117929A (en) * 1997-10-15 1999-04-27 Suzuki Neji Seisakusho:Kk Male screw and screwing structure between male screw and female screw
JP2003035472A (en) * 2001-07-19 2003-02-07 Saginomiya Seisakusho Inc Choking passage device and expansion valve
JP2011007355A (en) * 2009-06-23 2011-01-13 Fuji Koki Corp Diaphragm-actuated fluid control valve
JP2017180755A (en) * 2016-03-31 2017-10-05 三菱重工業株式会社 Thermoplastic plastic nut, nut welding device, and nut welding method
JP2018204840A (en) * 2017-06-01 2018-12-27 株式会社鷺宮製作所 Throttle device and refrigeration cycle system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420887C (en) * 2005-09-13 2008-09-24 浙江三花制冷集团有限公司 Thermal expansion valve
CN101749465A (en) * 2008-12-02 2010-06-23 上海宇航系统工程研究所 Double-valve seat pressure-reducing valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101472A (en) * 1980-01-19 1981-08-14 Saginomiya Seisakusho Inc Expansion valve
JPH07110022A (en) * 1993-10-08 1995-04-25 Mitsubishi Pencil Co Ltd Threaded engagement structure of trapezoidal thread screw
JPH11117929A (en) * 1997-10-15 1999-04-27 Suzuki Neji Seisakusho:Kk Male screw and screwing structure between male screw and female screw
JP2003035472A (en) * 2001-07-19 2003-02-07 Saginomiya Seisakusho Inc Choking passage device and expansion valve
JP2011007355A (en) * 2009-06-23 2011-01-13 Fuji Koki Corp Diaphragm-actuated fluid control valve
JP2017180755A (en) * 2016-03-31 2017-10-05 三菱重工業株式会社 Thermoplastic plastic nut, nut welding device, and nut welding method
JP2018204840A (en) * 2017-06-01 2018-12-27 株式会社鷺宮製作所 Throttle device and refrigeration cycle system

Also Published As

Publication number Publication date
CN113404879B (en) 2023-06-20
JP7249301B2 (en) 2023-03-30
CN113404879A (en) 2021-09-17

Similar Documents

Publication Publication Date Title
JPH11351440A (en) Thermal expansion valve and manufacture of the same
US7621151B2 (en) Pressure control valve
JP2017025975A (en) Pressure operation valve and refrigeration cycle
JP2002054861A (en) Thermostatic expansion valve
JP2008138812A (en) Differential pressure valve
US3478774A (en) Refrigerant expansion valve
JP5550601B2 (en) Temperature expansion valve
CN110779246B (en) Expansion valve using shape memory alloy spring and vehicle air conditioning system using the same
JP2021148151A (en) Fixing structure of adjustment screw mechanism, valve device and refrigeration cycle system
JP6447906B2 (en) Expansion valve
KR101734265B1 (en) expansion valve of car air-conditioning system and car air-conditioning system including the same
JP7303143B2 (en) Screw fixation structure, valve device, and refrigeration cycle system
JP2001012824A (en) Control valve
WO2023007462A1 (en) Thermal expansion valve for a residential refrigeration application
US10989455B1 (en) Integrated hybrid thermostatic expansion valve and method for providing uniform cooling of heat generating devices
JP3920059B2 (en) Expansion valve
JP6634624B2 (en) Expansion valve
JP3046668B2 (en) Expansion valve
JP2003065634A (en) Expansion valve
JP3476619B2 (en) Expansion valve
JP6846875B2 (en) Expansion valve
JP6667753B2 (en) Expansion valve
JP3392319B2 (en) Manufacturing method of temperature type expansion valve
JP7403148B2 (en) expansion valve
KR102316461B1 (en) Air-tight fixing structure of poppet valve for electronic expansion valve and electronic expansion valve comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230317

R150 Certificate of patent or registration of utility model

Ref document number: 7249301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150