JP2021145465A - Autonomous power supply system and control method thereof - Google Patents

Autonomous power supply system and control method thereof Download PDF

Info

Publication number
JP2021145465A
JP2021145465A JP2020042581A JP2020042581A JP2021145465A JP 2021145465 A JP2021145465 A JP 2021145465A JP 2020042581 A JP2020042581 A JP 2020042581A JP 2020042581 A JP2020042581 A JP 2020042581A JP 2021145465 A JP2021145465 A JP 2021145465A
Authority
JP
Japan
Prior art keywords
storage element
power storage
voltage
threshold voltage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020042581A
Other languages
Japanese (ja)
Other versions
JP7325361B2 (en
Inventor
司 藤森
Tsukasa Fujimori
司 藤森
千咲紀 田窪
Chisaki Takubo
千咲紀 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020042581A priority Critical patent/JP7325361B2/en
Publication of JP2021145465A publication Critical patent/JP2021145465A/en
Application granted granted Critical
Publication of JP7325361B2 publication Critical patent/JP7325361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To propose an autonomous power supply system that can reduce energy loss and generate electricity with high efficiency, and a control method thereof.SOLUTION: In an autonomous power supply system that supplies power generated by a power generation element to a load, and a control method thereof, the autonomous power supply system includes a primary power storage element that stores the power generated by the power generation element, a secondary power storage element that supplies the power to the load, and a power supply control unit that controls charging from the primary power storage element to the secondary power storage element, and the power control unit monitors a terminal voltage of the primary power storage element and a terminal voltage of the secondary power storage element, and controls the charging from the primary power storage element to the secondary power storage element such that charging is performed from the primary power storage element to the secondary power storage element in stages.SELECTED DRAWING: Figure 1

Description

本発明は自立電源システム及びその制御方法に関し、例えば、無線センサシステムに適用して好適なものである。 The present invention relates to a self-sustaining power supply system and a control method thereof, and is suitable for application to, for example, a wireless sensor system.

微小な環境エネルギーを太陽電池や熱電発電素子などの発電素子により電気エネルギーに変換するエネルギーハーベスティング技術は、電力供給が困難な環境下や、電力供給のために配線工事が必要となるような環境下に小電力で動作する電子機器を設置する際に有効な自立電源技術として利用されている。 Energy harvesting technology, which converts minute environmental energy into electrical energy using power generation elements such as solar cells and thermoelectric power generation elements, is used in environments where power supply is difficult or where wiring work is required to supply power. It is used as an effective self-sustaining power supply technology when installing electronic devices that operate with low power underneath.

このようなエネルギーハーベスティング技術を利用した自立発電システムでは、発電素子から出力される電力が微小であり、さらには発電素子の発電電力量が環境条件により大きく変動するため、発電素子から出力された電力をコンデンサ等の蓄電素子にある程度蓄えてから利用するのが一般的である。 In a self-sustaining power generation system using such energy harvesting technology, the power output from the power generation element is very small, and the amount of power generated by the power generation element fluctuates greatly depending on the environmental conditions. It is common to store power in a power storage element such as a capacitor to some extent before using it.

この場合において、電子機器を安定動作させるためには蓄電素子の容量を大きくする必要があるが、蓄電素子の容量を大きくすると、蓄電素子の端子電圧が利用可能な電圧となって負荷側への電力供給を開始できるようになるまでに相応の時間を要する問題がある。 In this case, it is necessary to increase the capacity of the power storage element in order to operate the electronic device stably. However, when the capacity of the power storage element is increased, the terminal voltage of the power storage element becomes a usable voltage and is transferred to the load side. There is a problem that it takes a considerable amount of time before the power supply can be started.

この問題を解決するための1つの方法として、特許文献1には、発電素子の発電効率を制御する発電制御回路と、発電素子で発電した電力を充電する蓄電素子群と、発電素子群の充放電動作を制御する充電制御回路とを設け、発電素子群を、少なくとも発電制御回路及び充電制御回路に電力を供給する1次蓄電素子と、負荷装置に電力を供給する2次蓄電素子とにより構成し、1次蓄電素子の容量を2次蓄電素子の容量値よりも小さくし、発電素子で発電した電力を1次蓄電素子に優先して充電した後、1次蓄電素子から2次蓄電素子に充電する自立電源システムが開示されている。 As one method for solving this problem, Patent Document 1 describes a power generation control circuit that controls the power generation efficiency of a power generation element, a power storage element group that charges the power generated by the power generation element, and a charge of the power generation element group. A charge control circuit that controls the discharge operation is provided, and the power generation element group is composed of at least a primary power storage element that supplies power to the power generation control circuit and the charge control circuit, and a secondary power storage element that supplies power to the load device. Then, the capacity of the primary power storage element is made smaller than the capacity value of the secondary power storage element, and the power generated by the power generation element is preferentially charged over the primary power storage element, and then the primary power storage element is changed to the secondary power storage element. A self-sustaining power system for charging is disclosed.

この自立電源システムによれば、発電素子が微小かつ不安定な環境エネルギーから発電する方式であっても、発電制御回路が起動するまでの期間又は停止している期間を最小限とすることができ、これにより負荷装置へ短時間で電力供給を開始できるという効果を得ることができる。 According to this self-sustaining power supply system, even if the power generation element generates power from minute and unstable environmental energy, the period until the power generation control circuit is started or stopped can be minimized. As a result, it is possible to obtain the effect that power supply to the load device can be started in a short time.

特開2015−15848号公報JP-A-2015-15848

ところで、かかる特許文献1に開示された自立発電システムにおいて、1次蓄電素子から2次蓄電素子に電荷を転送する際のエネルギー損失量は、1次蓄電素子の端子電圧をV1、2次蓄電素子の端子電圧をV2、当該2次蓄電素子の容量をC2として、次式

Figure 2021145465
により表される。 By the way, in the self-sustaining power generation system disclosed in Patent Document 1, the amount of energy loss when transferring an electric charge from the primary storage element to the secondary storage element is such that the terminal voltage of the primary storage element is changed to V1 or the secondary storage element. The terminal voltage of is V2, and the capacity of the secondary power storage element is C2.
Figure 2021145465
Represented by.

この(1)式からも明らかなように、特許文献1に開示された自立発電システムでは、2次蓄電素子C2の容量が大きければ大きいほど、また1次蓄電素子及び2次蓄電素子間の電圧差(V1−V2)が大きければ大きいほど、1次蓄電素子から2次蓄電素子に電荷を転送して2次蓄電素子を充電する際のエネルギー損失量が大きくなるという問題があった。 As is clear from the equation (1), in the self-sustaining power generation system disclosed in Patent Document 1, the larger the capacity of the secondary power storage element C2, the more the voltage between the primary power storage element and the secondary power storage element. There is a problem that the larger the difference (V1-V2) is, the larger the amount of energy loss when the charge is transferred from the primary power storage element to the secondary power storage element to charge the secondary power storage element.

本発明は以上の点を考慮してなされたもので、かかるエネルギー損失量を低減し、高効率で発電可能な自立電源システム及びその制御方法を提案しようとするものである。 The present invention has been made in consideration of the above points, and an object of the present invention is to propose an independent power supply system capable of generating electricity with high efficiency by reducing the amount of energy loss and a control method thereof.

かかる課題を解決するため本発明においては、発電素子で発電した電力を負荷に供給する自立電源システにおいて、前記発電素子で発電した前記電力を蓄電する1次蓄電素子と、前記負荷に電力を供給する2次蓄電素子と、前記1次蓄電素子から前記2次蓄電素子への充電が段階的に行われるように、前記1次蓄電素子から前記2次蓄電素子への充電を制御する電源制御部とを設けるようにした。 In order to solve such a problem, in the present invention, in the self-sustaining power supply system that supplies the electric power generated by the power generation element to the load, the primary power storage element that stores the electric power generated by the power generation element and the electric power are supplied to the load. A power supply control unit that controls charging from the primary power storage element to the secondary power storage element so that the secondary power storage element and the secondary power storage element are charged in stages. And so on.

また本発明においては、発電素子で発電した電力を負荷に供給する自立電源システムの制御方法において、前記自立電源システムは、前記発電素子で発電した前記電力を蓄電する1次蓄電素子と、前記負荷に電力を供給する2次蓄電素子と、前記1次蓄電素子から前記2次蓄電素子への充電を制御する電源制御部とを有し、前記電源制御部が、前記1次蓄電素子の端子電圧及び前記2次蓄電素子の端子電圧を監視する第1のステップと、前記電源制御部が、前記1次蓄電素子から前記2次蓄電素子への充電が段階的に行われるように、前記1次蓄電素子から前記2次蓄電素子への充電を制御する第2のステップとを設けるようにした。 Further, in the present invention, in the control method of the self-sustaining power supply system that supplies the power generated by the power generation element to the load, the self-sustaining power supply system includes the primary power storage element that stores the power generated by the power generation element and the load. It has a secondary power storage element that supplies power to the secondary power storage element and a power supply control unit that controls charging from the primary power storage element to the secondary power storage element, and the power supply control unit controls the terminal voltage of the primary power storage element. And the first step of monitoring the terminal voltage of the secondary power storage element, and the primary so that the power supply control unit gradually charges the secondary power storage element from the primary power storage element. A second step of controlling charging from the power storage element to the secondary power storage element is provided.

本発明の自立電源システム及びその制御方法によれば、1次蓄電素子の端子電圧及び2次蓄電素子の端子電圧の電位差を一定以内(各段階の電圧値の差以内)に抑えることができる。 According to the self-sustaining power supply system of the present invention and its control method, the potential difference between the terminal voltage of the primary power storage element and the terminal voltage of the secondary power storage element can be suppressed within a certain range (within the difference in the voltage values of each stage).

本発明によれば、エネルギー損失量を低減し、高効率で発電可能な自立電源システム及びその制御方法を実現できる。 According to the present invention, it is possible to realize an independent power supply system capable of generating electricity with high efficiency by reducing the amount of energy loss and a control method thereof.

上記した以外の課題、構成及び効果は、以下の発明を実施するための形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments for carrying out the invention.

本実施の形態による無線センサ端末の構成を示すブロック図である。It is a block diagram which shows the structure of the wireless sensor terminal by this embodiment. 電圧監視部によるスイッチのオン/オフ制御の説明に供する波形図である。It is a waveform diagram which provides the explanation of the on / off control of a switch by a voltage monitoring unit. 閾値電圧管理テーブルの構成を示す図表である。It is a figure which shows the structure of the threshold voltage management table. 本実施の形態における1次蓄電素子の端子電圧の変化の様子を示す波形図である。It is a waveform figure which shows the state of the change of the terminal voltage of the primary power storage element in this embodiment. 本実施の形態における2次蓄電素子の端子電圧の変化の様子を示す波形図である。It is a waveform diagram which shows the state of the change of the terminal voltage of the secondary power storage element in this embodiment. 閾値電圧設定処理の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the threshold voltage setting process. 実験結果を示すグラフである。It is a graph which shows the experimental result. 実験結果を示すグラフである。It is a graph which shows the experimental result.

以下図面について、本発明の一実施の形態を詳述する。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

なお、以下に説明する実施の形態は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略及び簡略化がなされている。本発明は、他の種々の形態でも実施することが可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 The embodiments described below are examples for explaining the present invention, and are appropriately omitted or simplified for the purpose of clarifying the description. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.

図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range and the like disclosed in the drawings.

各種情報の例として、「テーブル」、「リスト」、「キュー」等の表現にて説明することがあるが、各種情報はこれら以外のデータ構造で表現されてもよい。例えば、「XXテーブル」、「XXリスト」、「XXキュー」等の各種情報は、「XX情報」としてもよい。識別情報について説明する際に、「識別情報」、「識別子」、「名」、「ID」、「番号」等の表現を用いるが、これらについてはお互いに置換が可能である。 Examples of various information may be described by expressions such as "table", "list", and "queue", but various information may be expressed by data structures other than these. For example, various information such as "XX table", "XX list", and "XX queue" may be "XX information". When describing the identification information, expressions such as "identification information", "identifier", "name", "ID", and "number" are used, but these can be replaced with each other.

同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。また、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 When there are a plurality of components having the same or similar functions, they may be described by adding different subscripts to the same reference numerals. Further, when it is not necessary to distinguish between these a plurality of components, the subscripts may be omitted for explanation.

実施の形態において、プログラムを実行して行う処理について説明する場合がある。ここで、計算機は、プロセッサ(例えばCPU(Central Processing Unit)、GPU(Graphics ))によりプログラムを実行し、記憶資源(例えばメモリ)やインターフェースデバイス(例えば通信ポート)等を用いながら、プログラムで定められた処理を行う。 In the embodiment, a process performed by executing the program may be described. Here, the computer is defined by the program by executing the program by the processor (for example, CPU (Central Processing Unit), GPU (Graphics)) and using the storage resource (for example, memory) and the interface device (for example, communication port). Perform the processing.

そのため、プログラムを実行して行う処理の主体を、プロセッサとしてもよい。同様に、プログラムを実行して行う処理の主体が、プロセッサを有するコントローラ、装置、システム、計算機、ノードであってもよい。プログラムを実行して行う処理の主体は、演算部であれば良く、特定の処理を行う専用回路を含んでいてもよい。ここで、専用回路とは、例えばFPGA(Field Programmable Gate Array)やASIC(ApplicationSpecific Integrated Circuit)、CPLD(Complex Programmable Logic Device)等である。 Therefore, the main body of the processing performed by executing the program may be a processor. Similarly, the subject of processing for executing a program may be a controller, a device, a system, a computer, or a node having a processor. The main body of the processing performed by executing the program may be an arithmetic unit, and may include a dedicated circuit for performing a specific processing. Here, the dedicated circuit is, for example, an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), a CPLD (Complex Programmable Logic Device), or the like.

プログラムは、プログラムソースから計算機にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバまたは計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、実施の形態において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。 The program may be installed on the computer from the program source. The program source may be, for example, a program distribution server or a computer-readable storage medium. When the program source is a program distribution server, the program distribution server includes a processor and a storage resource for storing the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers. Further, in the embodiment, two or more programs may be realized as one program, or one program may be realized as two or more programs.

(1)本実施の形態による無線センサ端末の構成
図1は、本実施の形態による無線センサ端末1の構成を示す。無線センサ端末1は、自立電源システム2を備え、その発電電力と、一次電池3からダイオード4を介して供給される電力とを、負荷5を構成するセンサ6及び通信装置7に供給する。
(1) Configuration of Wireless Sensor Terminal According to the Present Embodiment FIG. 1 shows the configuration of the wireless sensor terminal 1 according to the present embodiment. The wireless sensor terminal 1 includes an independent power supply system 2, and supplies the generated power and the power supplied from the primary battery 3 via the diode 4 to the sensor 6 and the communication device 7 constituting the load 5.

本実施の形態の場合、センサ6としては、搬送装置や切削加工機のモータ電流を計測する電流計を想定しているが、電流以外の各種物理量を測定する他のセンサであってもよい。通信装置7は、無線通信装置から構成される。通信装置7は、センサ6により計測された物理量を定期的又は不定期にアンテナ8を介して図示しない受信装置に無線送信する。 In the case of the present embodiment, the sensor 6 is assumed to be an ammeter that measures the motor current of the transport device or the cutting machine, but may be another sensor that measures various physical quantities other than the current. The communication device 7 is composed of a wireless communication device. The communication device 7 wirelessly transmits the physical quantity measured by the sensor 6 to a receiving device (not shown) via the antenna 8 periodically or irregularly.

自立電源システム2は、発電素子10、整流回路11、1次蓄電素子C1、2次蓄電素子C2及び電源制御部12を備えて構成される。 The self-sustaining power supply system 2 includes a power generation element 10, a rectifier circuit 11, a primary power storage element C1, a secondary power storage element C2, and a power supply control unit 12.

発電素子10は、例えばカレントトランスから構成される。本実施の形態の場合、発電素子10は、対象とするモータ電流が流れるケーブル13の周囲を1次側コイルが取り巻くように設置される。そして発電素子10は、かかるケーブル13を流れるモータ電流により生じた当該ケーブル13周囲の磁束変動に応じて1次側コイルに発生した電磁誘導電流に基づく発電電力を2次側コイルから整流回路11に出力する。 The power generation element 10 is composed of, for example, a current transformer. In the case of the present embodiment, the power generation element 10 is installed so that the primary coil surrounds the cable 13 through which the target motor current flows. Then, the power generation element 10 transfers the generated power based on the electromagnetic induction current generated in the primary side coil from the secondary side coil to the rectifying circuit 11 in response to the fluctuation of the magnetic flux around the cable 13 generated by the motor current flowing through the cable 13. Output.

整流回路11は、ブリッジ接続された4つのダイオードD1〜D4から構成される。整流回路11は、発電素子10から出力された発電電力を整流し、整流した発電電力を1次蓄電素子C1に印加する。また1次蓄電素子C1は、数十〔μF〕程度の容量を有するコンデンサから構成され、整流回路11により印加された発電電力を蓄電する。 The rectifier circuit 11 is composed of four bridge-connected diodes D1 to D4. The rectifier circuit 11 rectifies the generated power output from the power generation element 10 and applies the rectified generated power to the primary power storage element C1. Further, the primary power storage element C1 is composed of a capacitor having a capacity of about several tens [μF], and stores the generated power applied by the rectifier circuit 11.

1次蓄電素子C1に蓄電された電力は、電源制御部12の後述するスイッチ20を介して2次蓄電素子C2に供給される。2次蓄電素子C2は、1次蓄電素子C1よりも容量が大きい数十〔mF〕程度の容量を有するコンデンサから構成され、1次蓄電素子C1から供給された電力を蓄電する。 The electric power stored in the primary power storage element C1 is supplied to the secondary power storage element C2 via a switch 20 described later in the power supply control unit 12. The secondary power storage element C2 is composed of a capacitor having a capacity of several tens [mF], which is larger than that of the primary power storage element C1, and stores the electric power supplied from the primary power storage element C1.

なお1次蓄電素子C1や2次蓄電素子C2を構成するコンデンサとしては、リーク電流が小さくかつ内部抵抗が小さい積層セラミックコンデンサを適用することが好ましい。ただし、積層セラミックコンデンサ以外の電界コンデンサ、タンタル電界コンデンサ又は電気二重層コンデンサ等を利用することもできる。また1次蓄電素子C1及び2次蓄電素子C2をそれぞれ1つのコンデンサにより構成するようにしても、複数個の並列に接続することにより構成するようにしてもよい。 As the capacitor constituting the primary power storage element C1 and the secondary power storage element C2, it is preferable to use a multilayer ceramic capacitor having a small leakage current and a small internal resistance. However, an electric field capacitor other than the monolithic ceramic capacitor, a tantalum electric field capacitor, an electric double layer capacitor, or the like can also be used. Further, the primary power storage element C1 and the secondary power storage element C2 may each be configured by one capacitor, or may be configured by connecting a plurality of them in parallel.

電源制御部12は、1次蓄電素子C1から2次蓄電素子C2への充電を制御する機能部であり、スイッチ20、電圧監視部21及び制御部(以下、MCU(Micro Controller Unit)とする)22を備えて構成される。 The power supply control unit 12 is a functional unit that controls charging from the primary power storage element C1 to the secondary power storage element C2, and is a switch 20, a voltage monitoring unit 21, and a control unit (hereinafter referred to as an MCU (Micro Controller Unit)). 22 is provided.

スイッチ20は、オン時の抵抗が小さく、オフ時の抵抗が大きい電界効果トランジスタ等の一般的なスイッチング素子から構成される。スイッチ20は、電圧監視部21によりオン/オフ制御される。 The switch 20 is composed of a general switching element such as a field effect transistor having a small resistance when it is turned on and a large resistance when it is turned off. The switch 20 is on / off controlled by the voltage monitoring unit 21.

電圧監視部21は、1次蓄電素子C1の端子電圧V1を監視し、当該端子電圧V1の電圧値に応じてスイッチ20をオン/オフ制御する。具体的に、電圧監視部21は、図2に示すように、1次蓄電素子C1の端子電圧V1が予めMCU22により指定された第1の閾値電圧Va未満の状態では、スイッチ20をオフ状態とすることで、整流回路11から印加される発電電力により1次蓄電素子C1を充電させる。 The voltage monitoring unit 21 monitors the terminal voltage V1 of the primary power storage element C1 and controls the switch 20 on / off according to the voltage value of the terminal voltage V1. Specifically, as shown in FIG. 2, the voltage monitoring unit 21 turns off the switch 20 when the terminal voltage V1 of the primary power storage element C1 is less than the first threshold voltage Va previously specified by the MCU 22. By doing so, the primary power storage element C1 is charged by the generated power applied from the rectifier circuit 11.

また電圧監視部21は、その後、1次蓄電素子C1の端子電圧V1が第1の閾値電圧Vaに達すると、スイッチ20をオン動作させて1次蓄電素子C1に蓄積された電荷をスイッチ20を介して2次蓄電素子C2に供給することにより2次蓄電素子C2を充電する。 After that, when the terminal voltage V1 of the primary storage element C1 reaches the first threshold voltage Va, the voltage monitoring unit 21 turns on the switch 20 to transfer the electric charge accumulated in the primary storage element C1 to the switch 20. The secondary power storage element C2 is charged by supplying it to the secondary power storage element C2 via the device.

さらに電圧監視部21は、この後、1次蓄電素子C1の端子電圧V1が第1の閾値電圧Vaよりも所定電圧だけ低い第2の閾値電圧Vbまで低下すると再びスイッチ20をオフ状態に戻し、この後、1次蓄電素子C1の端子電圧V1の大きさに応じてスイッチ20をオン/オフさせる上述と同様の制御動作を繰り返す。この結果、スイッチ20のオン/オフに伴って1次蓄電素子C1の充放電が繰り返され、これに伴って2次蓄電素子C2が第1の閾値電圧Vaとなるまで充電される。 Further, when the terminal voltage V1 of the primary storage element C1 drops to the second threshold voltage Vb, which is lower than the first threshold voltage Va by a predetermined voltage, the voltage monitoring unit 21 returns the switch 20 to the off state again. After that, the same control operation as described above for turning on / off the switch 20 according to the magnitude of the terminal voltage V1 of the primary power storage element C1 is repeated. As a result, charging / discharging of the primary power storage element C1 is repeated as the switch 20 is turned on / off, and the secondary power storage element C2 is charged until the first threshold voltage Va is reached.

このとき電圧監視部21は、2次蓄電素子C2の端子電圧V2を検出し、検出した2次蓄電素子C2の端子電圧V2をMCU22に常時通知する。 At this time, the voltage monitoring unit 21 detects the terminal voltage V2 of the secondary power storage element C2 and constantly notifies the MCU 22 of the detected terminal voltage V2 of the secondary power storage element C2.

MCU22は、CPU及びメモリを備えたマイクロプロセッサから構成される。MCU22は、初期時には1次蓄電素子C1に蓄えられた電力により動作を開始し、2次蓄電素子C2に一定以上の電力が蓄積された後は、2次蓄電素子C2に蓄えられた電力により動作する。 The MCU 22 is composed of a microprocessor including a CPU and a memory. The MCU 22 starts operating with the electric power stored in the primary storage element C1 at the initial stage, and operates by the electric power stored in the secondary storage element C2 after a certain amount of electric power is stored in the secondary storage element C2. do.

このMCU22は、図3に示すような閾値電圧管理テーブル23をメモリに保持している。閾値電圧管理テーブル23は、電圧監視部21に設定する第1の閾値電圧Vaを段階的に上昇させるべく、各段階における第1の閾値電圧Vaとして設定すべき電圧値Vt(Vt1,Vt2,Vt3,……)がそれぞれ登録されたテーブルであり、図3に示すように、段階欄23A及び電圧値欄23Bを備えて構成される。 The MCU 22 holds a threshold voltage management table 23 as shown in FIG. 3 in a memory. The threshold voltage management table 23 has a voltage value Vt (Vt1, Vt2, Vt3) to be set as the first threshold voltage Va in each stage in order to gradually increase the first threshold voltage Va set in the voltage monitoring unit 21. , ...) Are registered tables, and as shown in FIG. 3, the stage column 23A and the voltage value column 23B are provided.

そして段階欄23Aには、各段階を表す数値がそれぞれ格納され、電圧値欄23Bには、対応する段階において電圧監視部21に第1の閾値電圧Vaとして設定すべき電圧値Vtが格納される。この場合、各段階の電圧値Vtの大きさは、1段階目の電圧値Vt(図3のVt1)が最も小さく、段階が上がるごとに徐々に大きくなるように決定される。 A numerical value representing each stage is stored in the stage column 23A, and a voltage value Vt to be set as the first threshold voltage Va in the voltage monitoring unit 21 in the corresponding stage is stored in the voltage value column 23B. .. In this case, the magnitude of the voltage value Vt in each stage is determined so that the voltage value Vt in the first stage (Vt1 in FIG. 3) is the smallest and gradually increases as the stage increases.

また閾値電圧管理テーブル23には、少なくとも3段階分の電圧値Vtが予め登録される。この場合、1段階目の電圧値Vt(Vt1)としては、MCU22が動作を開始できる最低限の電圧値(以下、これを動作可能電圧値と呼ぶ)が登録される。また第2段階目以降の電圧値Vt(図3のVt2,Vt3,……)としては、次の段階の電圧値Vtとの電圧差が一定以上とならないように選定された電圧値がそれぞれ登録される。さらに最後の段階の電圧値Vtとしては、負荷5に電源供給するために必要十分な大きさの電圧値Vtが選定されて登録される。 Further, in the threshold voltage management table 23, voltage values Vt for at least three stages are registered in advance. In this case, as the voltage value Vt (Vt1) of the first stage, the minimum voltage value at which the MCU 22 can start the operation (hereinafter, this is referred to as an operable voltage value) is registered. Further, as the voltage values Vt (Vt2, Vt3, ... In FIG. 3) of the second and subsequent stages, the voltage values selected so that the voltage difference from the voltage value Vt of the next stage does not exceed a certain level are registered. Will be done. Further, as the voltage value Vt at the final stage, a voltage value Vt having a size necessary and sufficient for supplying power to the load 5 is selected and registered.

そしてMCU22は、1次蓄電素子C1の端子電圧V1がMCU22の動作可能電圧となると動作を開始し、まず、閾値電圧管理テーブル23に登録されている電圧値Vtのうちの1段階目の電圧値Vtの値を取得し、これを第1の閾値電圧Vaとして電圧監視部21に設定する。 Then, the MCU 22 starts operating when the terminal voltage V1 of the primary power storage element C1 becomes the operable voltage of the MCU 22, and first, the voltage value of the first stage among the voltage values Vt registered in the threshold voltage management table 23. The value of Vt is acquired and set in the voltage monitoring unit 21 as the first threshold voltage Va.

この結果、整流回路11から1次蓄電素子C1に印加された電圧により1次蓄電素子C1が充電されて、やがて1次蓄電素子C1の端子電圧V1がMCU22により第1の閾値電圧Vaとして設定された電圧値Vtに到達すると、電圧監視部21が上述のようなスイッチ20のオン/オフ制御を開始することにより2次蓄電素子C2の充電が開始される。 As a result, the primary power storage element C1 is charged by the voltage applied from the rectifier circuit 11 to the primary power storage element C1, and the terminal voltage V1 of the primary power storage element C1 is eventually set as the first threshold voltage Va by the MCU 22. When the voltage value Vt is reached, the voltage monitoring unit 21 starts the on / off control of the switch 20 as described above, so that the charging of the secondary power storage element C2 is started.

またMCU22は、電圧監視部21から通知される2次蓄電素子C2の端子電圧V2を監視し、当該端子電圧V2がそのとき電圧監視部21に第1の閾値電圧Vaとして設定している電圧値Vtに到達すると、次の段階の電圧値Vtを閾値電圧管理テーブル23から取得し、取得した電圧値Vtを新たな第1の閾値電圧Vaとして電圧監視部21に設定する。 Further, the MCU 22 monitors the terminal voltage V2 of the secondary storage element C2 notified from the voltage monitoring unit 21, and the terminal voltage V2 is the voltage value set in the voltage monitoring unit 21 as the first threshold voltage Va at that time. When Vt is reached, the voltage value Vt of the next stage is acquired from the threshold voltage management table 23, and the acquired voltage value Vt is set in the voltage monitoring unit 21 as a new first threshold voltage Va.

この結果、電圧監視部21は、1次蓄電素子C1の端子電圧V1がこのときMCU22により新たな第1の閾値電圧Vaとして設定された電圧値Vtとなるまではスイッチ20をオフ状態に維持すると共に、やがて1次蓄電素子C1の端子電圧V1が個の電圧値Vtに到達すると、電圧監視部21が上述のようなスイッチ20のオン/オフ制御を開始することにより2次蓄電素子C2の充電が再開される。 As a result, the voltage monitoring unit 21 keeps the switch 20 in the off state until the terminal voltage V1 of the primary power storage element C1 becomes the voltage value Vt set as the new first threshold voltage Va by the MCU 22 at this time. At the same time, when the terminal voltage V1 of the primary power storage element C1 reaches the individual voltage values Vt, the voltage monitoring unit 21 starts the on / off control of the switch 20 as described above to charge the secondary power storage element C2. Is restarted.

そして、この後、1次蓄電素子C1の端子電圧V1が閾値電圧管理テーブル23に登録されている2段目の電圧値Vt(Vt2)、3段目の電圧値Vt(Vt3)、……となるごとに、上述と同様の処理がMCU22及び電圧監視部21間で繰り返される。 After that, the terminal voltage V1 of the primary power storage element C1 is registered in the threshold voltage management table 23 as the second-stage voltage value Vt (Vt2), the third-stage voltage value Vt (Vt3), and so on. Each time, the same process as described above is repeated between the MCU 22 and the voltage monitoring unit 21.

これにより第1の蓄電素子C1の端子電圧V1が図4のように段階的に上昇し、これに伴って2次蓄電素子C2の端子電圧V2が図5のように徐々に最終的な電圧値(閾値電圧管理テーブル23に登録された最後の電圧値Vt)に向けて徐々に上昇する。そして、やがて2次蓄電素子C2の端子電圧V2が最終的な電圧値Vtに到達すると、電圧監視部21がスイッチ20をオン状態を維持するように制御し、これにより2次蓄電素子C2の端子電圧V2が最終的な電圧値Vtの周辺の電圧値に維持される。 As a result, the terminal voltage V1 of the first power storage element C1 rises stepwise as shown in FIG. 4, and the terminal voltage V2 of the secondary power storage element C2 gradually increases to the final voltage value as shown in FIG. It gradually rises toward (the last voltage value Vt registered in the threshold voltage management table 23). Then, when the terminal voltage V2 of the secondary power storage element C2 reaches the final voltage value Vt, the voltage monitoring unit 21 controls the switch 20 to maintain the ON state, whereby the terminal of the secondary power storage element C2 is maintained. The voltage V2 is maintained at a voltage value around the final voltage value Vt.

なお、第1の閾値電圧Vaを最終的な電圧値Vtに向けて上げてゆく過程及び第1の閾値電圧Vaが最終的な電圧値Vtに到達した後において、2次蓄電素子C2に蓄えられた電力が負荷5により消費されて、2次蓄電素子C2の端子電圧V2が第1の閾値電圧Vaとしてそのとき電圧監視部21に設定している電圧値Vtの1つ前の段階の電圧値Vtよりも下がる事態が発生するおそれがある。 In addition, after the process of raising the first threshold voltage Va toward the final voltage value Vt and after the first threshold voltage Va reaches the final voltage value Vt, it is stored in the secondary storage element C2. The power is consumed by the load 5, and the terminal voltage V2 of the secondary storage element C2 is set as the first threshold voltage Va, which is the voltage value at the stage immediately before the voltage value Vt set in the voltage monitoring unit 21 at that time. There is a possibility that the voltage will be lower than Vt.

このような場合、MCU22は、電圧監視部21に第1の閾値電圧Vaとして設定している電圧値Vtを1つ前の段階の電圧値Vtに変更し直す。このようにしてMCU22は、1次蓄電素子C1の端子電圧V1と、2次蓄電素子C2の端子電圧V2との電圧差が一定電圧(各段階の電圧値Vtの差)以上とならないように第1の閾値電圧Vaの値を制御することで、1次蓄電素子C1から2次蓄電素子C2に電荷を移動させる際のエネルギー損失が大きくなるのを未然に防止する。 In such a case, the MCU 22 changes the voltage value Vt set as the first threshold voltage Va in the voltage monitoring unit 21 to the voltage value Vt of the previous step. In this way, the MCU 22 is set so that the voltage difference between the terminal voltage V1 of the primary storage element C1 and the terminal voltage V2 of the secondary storage element C2 does not exceed a constant voltage (difference in voltage value Vt at each stage). By controlling the value of the threshold voltage Va of 1, it is possible to prevent an increase in energy loss when the electric charge is transferred from the primary storage element C1 to the secondary storage element C2.

(2)閾値電圧設定処理
図6は、上述のような第1の閾値電圧Vaの設定に関してMCU22により実行される閾値電圧設定処理の具体的な処理手順を示す。MCU22は、この図6に示す処理手順に従って電圧監視部21に対して第1の閾値電圧Vaとして設定した電圧値Vtを適宜更新する。
(2) Threshold Voltage Setting Process FIG. 6 shows a specific processing procedure of the threshold voltage setting process executed by the MCU 22 regarding the setting of the first threshold voltage Va as described above. The MCU 22 appropriately updates the voltage value Vt set as the first threshold voltage Va for the voltage monitoring unit 21 according to the processing procedure shown in FIG.

実際上、MCU22は、第1の蓄電素子C1の端子電圧V1が動作電圧に到達して動作を開始すると、この閾値電圧設定処理を開始し、まず、閾値電圧管理テーブル23(図3)に登録されている1段階目の電圧値Vtの値を取得し、これを第1の閾値電圧Vaとして電圧監視部21に設定する(S1)。 In practice, when the terminal voltage V1 of the first power storage element C1 reaches the operating voltage and starts operating, the MCU 22 starts this threshold voltage setting process, and first registers it in the threshold voltage management table 23 (FIG. 3). The value of the voltage value Vt of the first stage is acquired, and this is set in the voltage monitoring unit 21 as the first threshold voltage Va (S1).

続いて、MCU22は、電圧監視部21から通知される2次蓄電素子C2の端子電圧V2が当該MCU22の動作可能電圧(ステップS1で電圧監視部21に設定した1段階目の電圧値Vt)以上となるのを待ち受ける(S2)。 Subsequently, in the MCU 22, the terminal voltage V2 of the secondary power storage element C2 notified from the voltage monitoring unit 21 is equal to or higher than the operable voltage of the MCU 22 (the first-stage voltage value Vt set in the voltage monitoring unit 21 in step S1). Wait for it to become (S2).

そしてMCU22は、やがて2次蓄電素子C2の端子電圧V2がMCU22の動作可能電圧以上となると、次の段階の電圧値Vt(ここでは2段階目の電圧値Vt2)を閾値電圧管理テーブル23から読み出し、これを新たな第1の閾値電圧Vaとして電圧監視部21に設定する(S3)。 Then, when the terminal voltage V2 of the secondary power storage element C2 eventually becomes equal to or higher than the operable voltage of the MCU 22, the MCU 22 reads the voltage value Vt of the next stage (here, the voltage value Vt2 of the second stage) from the threshold voltage management table 23. , This is set in the voltage monitoring unit 21 as a new first threshold voltage Va (S3).

次いで、MCU22は、電圧監視部21から通知される2次蓄電素子C2の端子電圧V2に基づいて、当該端子電圧V2が電圧監視部21に現在設定されている電圧値Vtに到達したか否かを判断する(S4)。またMCU22は、この判断で否定結果を得ると、2次蓄電素子C2の端子電圧V2が、電圧監視部21に現在設定されている電圧値Vtの1つ前の電圧値Vt未満まで下がったか否かを判断する(S6)。 Next, the MCU 22 determines whether or not the terminal voltage V2 has reached the voltage value Vt currently set in the voltage monitoring unit 21 based on the terminal voltage V2 of the secondary storage element C2 notified from the voltage monitoring unit 21. Is determined (S4). Further, when the MCU 22 obtains a negative result in this determination, whether or not the terminal voltage V2 of the secondary power storage element C2 has dropped to less than the voltage value Vt immediately before the voltage value Vt currently set in the voltage monitoring unit 21. Is determined (S6).

MCU22は、ステップS6の判断で否定結果を得るとステップS4に戻り、この後、ステップS4又はステップS6で肯定結果を得るまでステップS4−ステップS6−ステップS4のループを繰り返す。 When the MCU22 obtains a negative result in the judgment of step S6, the MCU 22 returns to step S4, and then repeats the loop of step S4-step S6-step S4 until a positive result is obtained in step S4 or step S6.

そしてMCU22は、やがて2次蓄電素子C2の端子電圧が、現在、電圧監視部21に設定されている電圧値Vtに到達することによりステップS4で肯定結果を得ると、電圧監視部21に第1の閾値電圧Vaとして現在設定されている電圧値Vtよりも1段階上の電圧値Vtを閾値電圧管理テーブル23から読み出し、これを新たな第1の閾値電圧Vaとして電圧監視部21に設定する(S5)。そしてMCU22は、ステップS4に戻り、この後、ステップS4以降の処理を上述と同様に繰り返す。 Then, when the terminal voltage of the secondary power storage element C2 eventually reaches the voltage value Vt currently set in the voltage monitoring unit 21, the MCU 22 obtains an affirmative result in step S4, and the voltage monitoring unit 21 first receives a positive result. The voltage value Vt one step higher than the voltage value Vt currently set as the threshold voltage Va of is read from the threshold voltage management table 23, and this is set in the voltage monitoring unit 21 as a new first threshold voltage Va ( S5). Then, the MCU 22 returns to step S4, and after that, the processes after step S4 are repeated in the same manner as described above.

ただし、MCU22は、ステップS4で肯定結果を得た場合においても、現在、電圧監視部21に設定されている電圧値Vtが、閾値電圧管理テーブル23に登録されている最終段階の電圧値Vt(閾値電圧管理テーブル23に登録されている最も大きい電圧値Vt)である場合には、ステップS5の処理を省略してステップS4に戻り、この後、ステップS4以降の処理を上述と同様に繰り返す。 However, even when an affirmative result is obtained in step S4, the MCU 22 has a voltage value Vt at the final stage in which the voltage value Vt currently set in the voltage monitoring unit 21 is registered in the threshold voltage management table 23 ( In the case of the largest voltage value Vt) registered in the threshold voltage management table 23, the process of step S5 is omitted and the process returns to step S4, after which the processes of step S4 and subsequent steps are repeated in the same manner as described above.

またMCU22は、2次蓄電素子C2の端子電圧V2が、現在、電圧監視部21に設定されている電圧値Vtの1段階下の段階の電圧値Vt未満の値となることによりステップS6で肯定結果を得ると、電圧監視部21に第1の閾値電圧Vaとして現在設定されている電圧値Vtよりも1段階下の電圧値Vtを閾値電圧管理テーブル23から読み出し、これを新たな第1の閾値電圧Vaとして電圧監視部21に設定する(S7)。そしてMCU22は、ステップS4に戻り、この後、ステップS4以降の処理を上述と同様に繰り返す。 Further, the MCU 22 is affirmed in step S6 because the terminal voltage V2 of the secondary power storage element C2 becomes a value less than the voltage value Vt one step below the voltage value Vt currently set in the voltage monitoring unit 21. When the result is obtained, the voltage value Vt one step lower than the voltage value Vt currently set as the first threshold voltage Va in the voltage monitoring unit 21 is read from the threshold voltage management table 23, and this is read out from the threshold voltage management table 23. The threshold voltage Va is set in the voltage monitoring unit 21 (S7). Then, the MCU 22 returns to step S4, and after that, the processes after step S4 are repeated in the same manner as described above.

ただし、MCU22は、ステップS6で肯定結果を得た場合においても、現在、電圧監視部21に設定されている電圧値Vtが、閾値電圧管理テーブル23に登録されている1段階目の電圧値Vt(閾値電圧管理テーブル23に登録されている最も小さい電圧値Vt)である場合には、ステップS7の処理を省略してステップS4に戻り、この後、ステップS4以降の処理を繰り返す。 However, in the MCU 22, even when a positive result is obtained in step S6, the voltage value Vt currently set in the voltage monitoring unit 21 is the voltage value Vt of the first stage registered in the threshold voltage management table 23. If it is (the smallest voltage value Vt registered in the threshold voltage management table 23), the process of step S7 is omitted and the process returns to step S4, and then the processes of step S4 and subsequent steps are repeated.

(3)本実施の形態の効果
以上のように本実施の形態による無線センサ端末1では、2次蓄電素子C2の端子電圧V2を段階的に上昇させるよう電圧監視部21及びMCU22がスイッチ20のオン/オフ制御を実行するため、1次蓄電素子C1の端子電圧V1及び2次蓄電素子C2の端子電圧V2の電位差を一定以内(各段階の電圧値Vtの差以内)に抑えることができる。従って、本無線センサ端末1によれば、1次蓄電素子C1から2次蓄電素子C2への電荷転送時におけるエネルギー損失量を低減し、高効率で発電することができる。
(3) Effect of the present embodiment As described above, in the wireless sensor terminal 1 according to the present embodiment, the voltage monitoring unit 21 and the MCU 22 switch 20 so as to gradually increase the terminal voltage V2 of the secondary power storage element C2. Since the on / off control is executed, the potential difference between the terminal voltage V1 of the primary power storage element C1 and the terminal voltage V2 of the secondary power storage element C2 can be suppressed within a certain range (within the difference between the voltage values Vt of each stage). Therefore, according to the wireless sensor terminal 1, the amount of energy loss during charge transfer from the primary power storage element C1 to the secondary power storage element C2 can be reduced, and power can be generated with high efficiency.

実際上、実験によれば、本実施の形態によるスイッチ20のオン/オフ制御により2次蓄電素子C2の端子電圧の変化として図7のような結果が得られた。この図7からも明らかなように、本実施の形態のように2次蓄電素子C2の端子電圧V2を段階的に上昇させるよう充電することにより(曲線K1)、段階的に上昇させない従来の手法で2次蓄電素子を充電する場合(曲線K2)に比べて効率良く2次蓄電素子C2を充電できることが確認できた。 In fact, according to an experiment, the result shown in FIG. 7 was obtained as a change in the terminal voltage of the secondary power storage element C2 by the on / off control of the switch 20 according to the present embodiment. As is clear from FIG. 7, a conventional method in which the terminal voltage V2 of the secondary power storage element C2 is charged so as to be gradually increased (curve K1) as in the present embodiment, so that the terminal voltage V2 is not increased stepwise. It was confirmed that the secondary power storage element C2 can be charged more efficiently than in the case of charging the secondary power storage element (curve K2).

また図8に示すように、本実施の形態による2次蓄電素子C2の充電手法(曲線K3)と、従来の2次蓄電素子C2の充電手法(曲線K4)とを、2次蓄電素子C2の端子電圧V2の二乗をとってエネルギーの次元で比べてみても、前者の方が高効率で2次蓄電素子C2を充電(自立電源システム2が高効率で発電)できることも確認できた。 Further, as shown in FIG. 8, the charging method of the secondary power storage element C2 (curve K3) according to the present embodiment and the charging method of the conventional secondary power storage element C2 (curve K4) are combined with each other of the secondary power storage element C2. Even when the square of the terminal voltage V2 is taken and compared in terms of energy, it was confirmed that the former can charge the secondary power storage element C2 with higher efficiency (the self-sustaining power supply system 2 can generate electricity with higher efficiency).

(4)他の実施の形態
なお上述の実施の形態においては、本発明による自立電源システム2を無線センサ端末1に適用するようにした場合について述べたが、本発明はこれに限らず、本発明は無線センサ端末1以外の種々の装置に広く適用することができる。
(4) Other Embodiments In the above-described embodiment, the case where the self-sustaining power supply system 2 according to the present invention is applied to the wireless sensor terminal 1 has been described, but the present invention is not limited to this. The invention can be widely applied to various devices other than the wireless sensor terminal 1.

また上述の実施の形態においては、電圧監視部21及びMCU22を別個に設けるようにした場合について述べたが、本発明はこれに限らず、これら電圧監視部21及びMCU22を1つの機能部として構成するようにしてもよい。 Further, in the above-described embodiment, the case where the voltage monitoring unit 21 and the MCU 22 are separately provided has been described, but the present invention is not limited to this, and the voltage monitoring unit 21 and the MCU 22 are configured as one functional unit. You may try to do it.

さらに上述の実施の形態においては、発電素子10としてカレントトランスを適用するようにした場合について述べたが、本発明はこれに限らず、光、振動、熱、電波などの環境エネルギーを収集して電気エネルギーに変換する素子であれば、太陽電池、熱発電素子、圧電素子等の種々の発電素子を広く適用することができる。 Further, in the above-described embodiment, the case where the current transformer is applied as the power generation element 10 has been described, but the present invention is not limited to this, and environmental energy such as light, vibration, heat, and radio waves is collected. As long as it is an element that converts into electric energy, various power generation elements such as a solar cell, a thermal power generation element, and a piezoelectric element can be widely applied.

さらに上述の実施の形態においては、自立電源システム2に加えて一次電池3をも利用する場合について述べたが、本発明はこれに限らず、一次電池3を利用しない場合においても本発明を適用することができる。 Further, in the above-described embodiment, the case where the primary battery 3 is used in addition to the self-supporting power supply system 2 has been described, but the present invention is not limited to this, and the present invention is applied even when the primary battery 3 is not used. can do.

本発明は発電素子で発電した電力を1次蓄電素子に蓄電し、1次蓄電素子に蓄えられた電荷を2次蓄電素子に転送するようにして2次蓄電素子を充電し、2次蓄電素子に蓄えられた電力を負荷に供給する種々の構成の自立電源システムに広く適用することができる。 In the present invention, the electric power generated by the power generation element is stored in the primary power storage element, and the electric charge stored in the primary power storage element is transferred to the secondary power storage element to charge the secondary power storage element. It can be widely applied to self-sustaining power supply systems having various configurations for supplying the electric power stored in the load to the load.

1……無線センサ端末、2……自立電源システム、5……負荷、10……発電素子、11……整流回路、12……電源制御部、20……スイッチ、21……電圧監視部、22……MCU、23……閾値電圧管理テーブル、C1……1次蓄電素子、C2……2次蓄電素子、V1,V2……端子電圧、Vt……電圧値。 1 ... Wireless sensor terminal, 2 ... Independent power supply system, 5 ... Load, 10 ... Power generation element, 11 ... Rectifier circuit, 12 ... Power control unit, 20 ... Switch, 21 ... Voltage monitoring unit, 22 ... MCU, 23 ... Threshold voltage management table, C1 ... Primary power storage element, C2 ... Secondary power storage element, V1, V2 ... Terminal voltage, Vt ... Voltage value.

Claims (8)

発電素子で発電した電力を負荷に供給する自立電源システムにおいて、
前記発電素子で発電した前記電力を蓄電する1次蓄電素子と、
前記負荷に電力を供給する2次蓄電素子と、
前記1次蓄電素子から前記2次蓄電素子への充電が段階的に行われるように、前記1次蓄電素子から前記2次蓄電素子への充電を制御する電源制御部と
を備えることを特徴とする自立電源システム。
In an independent power supply system that supplies the power generated by the power generation element to the load
A primary power storage element that stores the electric power generated by the power generation element, and
A secondary power storage element that supplies power to the load,
It is characterized by including a power supply control unit that controls charging from the primary power storage element to the secondary power storage element so that the primary power storage element charges the secondary power storage element in stages. Independent power supply system.
前記電源制御部は、
前記1次蓄電素子の端子電圧を監視し、当該端子電圧が予め設定している閾値電圧を超えた場合に、前記1次蓄電素子に蓄えられた電力を前記2次蓄電素子に供給することにより当該2次蓄電素子を充電すると共に、前記2次蓄電素子の端子電圧を監視し、当該端子電圧が前記閾値電圧を超えた場合に、設定している前記閾値電圧を、現在の前記閾値電圧よりも電圧値が大きい次の段階の前記閾値電圧に変更する
ことを特徴とする請求項1に記載の自立電源システム。
The power supply control unit
By monitoring the terminal voltage of the primary power storage element and supplying the power stored in the primary power storage element to the secondary power storage element when the terminal voltage exceeds a preset threshold voltage. While charging the secondary storage element, the terminal voltage of the secondary storage element is monitored, and when the terminal voltage exceeds the threshold voltage, the set threshold voltage is changed from the current threshold voltage. The self-sustaining power supply system according to claim 1, wherein the voltage value is changed to the threshold voltage of the next stage having a large voltage value.
前記電源制御部は、
前記2次蓄電素子の前記端子電圧が1段階前の前記閾値電圧未満となった場合に、当該端子電圧を1段階前の前記閾値電圧に変更する
ことを特徴とする請求項2に記載の自立電源システム。
The power supply control unit
The self-sustaining aspect according to claim 2, wherein when the terminal voltage of the secondary power storage element becomes less than the threshold voltage one step before, the terminal voltage is changed to the threshold voltage one step before. Power system.
前記電源制御部は、
前記1次蓄電素子及び前記2次蓄電素子間を接続するスイッチと、
前記1次蓄電素子の端子電圧を監視し、当該端子電圧に基づいて前記スイッチをオン/オフ制御すると共に、前記2次蓄電素子の端子電圧を検出する電圧監視部と、
前記監視部が検出した前記2次蓄電素子の前記端子電圧に基づいて、前記電圧監視部に閾値電圧を設定する制御部と
を備え、
前記電圧監視部は、
前記1次蓄電素子の前記端子電圧が前記制御部により設定された前記閾値電圧に到達した場合に前記1次蓄電素子から前記2次蓄電素子へ充電するよう前記スイッチをオン/オフ制御し、
前記制御部は、
前記電圧監視部により検出された前記2次蓄電素子の前記端子電圧が前記電圧監視部に設定した前記閾値電圧に到達した場合に、前記電圧監視部に設定した前記閾値電圧を、現在の前記閾値電圧よりも電圧値が大きい次の段階の前記閾値電圧に更新する
ことを特徴とする請求項1に記載の自立電源システム。
The power supply control unit
A switch that connects the primary power storage element and the secondary power storage element,
A voltage monitoring unit that monitors the terminal voltage of the primary power storage element, controls the switch on / off based on the terminal voltage, and detects the terminal voltage of the secondary power storage element.
The voltage monitoring unit is provided with a control unit that sets a threshold voltage based on the terminal voltage of the secondary power storage element detected by the monitoring unit.
The voltage monitoring unit
When the terminal voltage of the primary power storage element reaches the threshold voltage set by the control unit, the switch is controlled to be turned on / off so that the primary power storage element charges the secondary power storage element.
The control unit
When the terminal voltage of the secondary power storage element detected by the voltage monitoring unit reaches the threshold voltage set in the voltage monitoring unit, the threshold voltage set in the voltage monitoring unit is set to the current threshold voltage. The self-sustaining power supply system according to claim 1, wherein the voltage value is updated to the threshold voltage of the next stage having a voltage value larger than the voltage.
発電素子で発電した電力を負荷に供給する自立電源システムの制御方法において、
前記自立電源システムは、
前記発電素子で発電した前記電力を蓄電する1次蓄電素子と、
前記負荷に電力を供給する2次蓄電素子と、
前記1次蓄電素子から前記2次蓄電素子への充電を制御する電源制御部と
を有し、
前記電源制御部が、前記1次蓄電素子の端子電圧及び前記2次蓄電素子の端子電圧を監視する第1のステップと、
前記電源制御部が、前記1次蓄電素子から前記2次蓄電素子への充電が段階的に行われるように、前記1次蓄電素子から前記2次蓄電素子への充電を制御する第2のステップと
を備えることを特徴とする自立電源システムの制御方法。
In the control method of the self-sustaining power supply system that supplies the power generated by the power generation element to the load,
The self-sustaining power supply system
A primary power storage element that stores the electric power generated by the power generation element, and
A secondary power storage element that supplies power to the load,
It has a power supply control unit that controls charging from the primary power storage element to the secondary power storage element.
The first step in which the power supply control unit monitors the terminal voltage of the primary power storage element and the terminal voltage of the secondary power storage element, and
A second step in which the power supply control unit controls charging from the primary power storage element to the secondary power storage element so that the primary power storage element charges the secondary power storage element in stages. A method of controlling a self-sustaining power supply system, which comprises.
前記第2のステップにおいて、前記電源制御部は、
前記1次蓄電素子の前記端子電圧が予め設定している閾値電圧を超えた場合に、前記1次蓄電素子に蓄えられた電力を前記2次蓄電素子に供給することにより当該2次蓄電素子を充電すると共に、前記2次蓄電素子の前記端子電圧が前記閾値電圧を超えた場合に設定している前記閾値電圧を、現在の前記閾値電圧よりも電圧値が大きい次の段階の前記閾値電圧に変更する
ことを特徴とする請求項5に記載の自立電源システムの制御方法。
In the second step, the power supply control unit
When the terminal voltage of the primary power storage element exceeds a preset threshold voltage, the power stored in the primary power storage element is supplied to the secondary power storage element to supply the secondary power storage element. While charging, the threshold voltage set when the terminal voltage of the secondary power storage element exceeds the threshold voltage is changed to the threshold voltage of the next stage in which the voltage value is larger than the current threshold voltage. The control method for an independent power supply system according to claim 5, wherein the method is changed.
前記第2のステップにおいて、前記電源制御部は、
前記2次蓄電素子の前記端子電圧が1段階前の前記閾値電圧未満となった場合に、当該端子電圧を1段階前の前記閾値電圧に変更する
ことを特徴とする請求項6に記載の自立電源システムの制御方法。
In the second step, the power supply control unit
The self-sustaining aspect according to claim 6, wherein when the terminal voltage of the secondary power storage element becomes less than the threshold voltage one step before, the terminal voltage is changed to the threshold voltage one step before. How to control the power system.
前記電源制御部は、
前記1次蓄電素子及び前記2次蓄電素子間を接続するスイッチと、
前記1次蓄電素子の端子電圧を監視し、当該端子電圧に基づいて前記スイッチをオン/オフ制御すると共に、前記2次蓄電素子の端子電圧を検出する電圧監視部と、
前記監視部が検出した前記2次蓄電素子の前記端子電圧に基づいて、前記電圧監視部に閾値電圧を設定する制御部と
を有し、
前記第1及び第2のステップにおいて、
前記電圧監視部は、
前記1次蓄電素子の前記端子電圧が前記制御部により設定された前記閾値電圧に到達した場合に前記1次蓄電素子から前記2次蓄電素子へ充電するよう前記スイッチをオン/オフ制御し、
前記制御部は、
前記電圧監視部により検出された前記2次蓄電素子の前記端子電圧が前記電圧監視部に設定した前記閾値電圧に到達した場合に、前記電圧監視部に設定した前記閾値電圧を、現在の前記閾値電圧よりも電圧値が大きい次の段階の前記閾値電圧に更新する
ことを特徴とする請求項5に記載の自立電源システムの制御方法。
The power supply control unit
A switch that connects the primary power storage element and the secondary power storage element,
A voltage monitoring unit that monitors the terminal voltage of the primary power storage element, controls the switch on / off based on the terminal voltage, and detects the terminal voltage of the secondary power storage element.
The voltage monitoring unit has a control unit that sets a threshold voltage based on the terminal voltage of the secondary power storage element detected by the monitoring unit.
In the first and second steps,
The voltage monitoring unit
When the terminal voltage of the primary power storage element reaches the threshold voltage set by the control unit, the switch is controlled to be turned on / off so that the primary power storage element charges the secondary power storage element.
The control unit
When the terminal voltage of the secondary power storage element detected by the voltage monitoring unit reaches the threshold voltage set in the voltage monitoring unit, the threshold voltage set in the voltage monitoring unit is set to the current threshold voltage. The control method for an independent power supply system according to claim 5, wherein the threshold voltage is updated to the threshold voltage in the next stage in which the voltage value is larger than the voltage.
JP2020042581A 2020-03-12 2020-03-12 Independent power supply system and its control method Active JP7325361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020042581A JP7325361B2 (en) 2020-03-12 2020-03-12 Independent power supply system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042581A JP7325361B2 (en) 2020-03-12 2020-03-12 Independent power supply system and its control method

Publications (2)

Publication Number Publication Date
JP2021145465A true JP2021145465A (en) 2021-09-24
JP7325361B2 JP7325361B2 (en) 2023-08-14

Family

ID=77767383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042581A Active JP7325361B2 (en) 2020-03-12 2020-03-12 Independent power supply system and its control method

Country Status (1)

Country Link
JP (1) JP7325361B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152059A (en) * 2011-01-20 2012-08-09 Univ Of Tokyo Power supply circuit
JP2012235631A (en) * 2011-05-02 2012-11-29 Seiko Instruments Inc Secondary battery charge device, secondary battery charge system, and secondary battery charge method
JP2015015848A (en) * 2013-07-05 2015-01-22 株式会社日立製作所 Autonomous power supply system
JP2017034769A (en) * 2015-07-29 2017-02-09 株式会社東芝 Power storage device and radio system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152059A (en) * 2011-01-20 2012-08-09 Univ Of Tokyo Power supply circuit
JP2012235631A (en) * 2011-05-02 2012-11-29 Seiko Instruments Inc Secondary battery charge device, secondary battery charge system, and secondary battery charge method
JP2015015848A (en) * 2013-07-05 2015-01-22 株式会社日立製作所 Autonomous power supply system
JP2017034769A (en) * 2015-07-29 2017-02-09 株式会社東芝 Power storage device and radio system

Also Published As

Publication number Publication date
JP7325361B2 (en) 2023-08-14

Similar Documents

Publication Publication Date Title
EP3367537B1 (en) Energy management method and circuit for friction nano power generator, and device
EP3002863B1 (en) Single inductor dc-dc converter with regulated output, energy storage and energy harvesting system
JP6018980B2 (en) Free standing power system
KR20170018448A (en) Engine start and battery support module
JPWO2017199604A1 (en) Control device, control method, and power storage control device
US8378622B2 (en) Energy and power management integrated circuit device
JP2003244854A (en) Charge and discharge controller for storage apparatus, charge and discharge control method, and power storage system
KR102308628B1 (en) Hybrid Power Conversion System and Method for Determining Maximum Efficiency Using the Same
JP2013522717A (en) Energy harvester battery charging circuit and method
JP2013102576A (en) Charge control system, charge control device, charge control method, and discharge control device
JP6774312B2 (en) Power supply, power supply system, sensor system and method
JP5861063B2 (en) Power storage device and power supply system
CN101647174A (en) Compact ultra fast battery charger
JP5794115B2 (en) POWER SUPPLY DEVICE, POWER CONTROL SYSTEM, AND ELECTRIC DEVICE STARTUP METHOD
JP2015171280A (en) Voltage equalization device and power storage device
JP7325361B2 (en) Independent power supply system and its control method
JP6257388B2 (en) Power supply system
JP6468948B2 (en) Power system
CN110492585B (en) High-load-capacity miniaturized environmental energy collection and storage energy system and method
KR102133558B1 (en) Cell balancing apparatus and method using fan
KR101483517B1 (en) Apparatus for controlling charging and discharging of batterry in step down converter for dc power grid
JP6257425B2 (en) Power supply system
CN114268161B (en) Multi-stage super-capacity super-capacitor stable power supply method for integrated sensor of power transmission line
JP2017139843A (en) Power storage system and control method thereof
JP6257387B2 (en) Power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230801

R150 Certificate of patent or registration of utility model

Ref document number: 7325361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150