JP2021145333A - Broad band antenna - Google Patents

Broad band antenna Download PDF

Info

Publication number
JP2021145333A
JP2021145333A JP2021028328A JP2021028328A JP2021145333A JP 2021145333 A JP2021145333 A JP 2021145333A JP 2021028328 A JP2021028328 A JP 2021028328A JP 2021028328 A JP2021028328 A JP 2021028328A JP 2021145333 A JP2021145333 A JP 2021145333A
Authority
JP
Japan
Prior art keywords
feeding
conductor
conductor portion
unbalanced
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021028328A
Other languages
Japanese (ja)
Inventor
正雄 作間
Masao Sakuma
正雄 作間
久 森下
Hisashi Morishita
久 森下
かおり 鈴木
Kaori Suzuki
かおり 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKUMA ANTENNA CO Ltd
Original Assignee
SAKUMA ANTENNA CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKUMA ANTENNA CO Ltd filed Critical SAKUMA ANTENNA CO Ltd
Priority to PCT/JP2021/007193 priority Critical patent/WO2021172469A1/en
Publication of JP2021145333A publication Critical patent/JP2021145333A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

To provide a broad band antenna capable of increasing a radiant gain.SOLUTION: A broad band antenna 10A comprises: an imbalanced feeding material 11 having a power supply part 20 and a non-power supply part 21; a resonance conductor 12 resonated with the power supply part 20 of the imbalanced feeding material 11; a ground conductor 13 resonated with the non-power supply part 21 of the imbalanced feeding material 11; and a fixing conductor 14 positioned between the resonance conductor 12 and the ground conductor 13 to be connected to the imbalanced feeding material 11. The resonance conductor 12 is formed by: a first resonance conductive part 22a extended in an axial front direction from the fixing conductor 14 in parallel to the power supply part 20; and a second resonance conductive part 22b extended in the axial front direction from the fixing conductor 14 in parallel to the power supply part 20. The ground conductor 13 is formed by: a first ground conductive part 25a extended in an axial rear direction from the fixing conductor 14 in parallel to the non-power supply part 21; and a second ground conductive part 25b extended in the axial rear direction from the fixing conductor 14 in parallel to the non-power supply part 21.SELECTED DRAWING: Figure 1

Description

本発明は、不平衡給電材と共振用導体とグランド用導体とを備えた広帯域アンテナに関する。 The present invention relates to a wideband antenna including an unbalanced feeding material, a resonance conductor, and a ground conductor.

所定長さの給電部及びその給電部に繋がる所定長さの無給電部を有する不平衡給電材と、所定の誘電率を有する誘電体基板と、所定面積を有する板状に成型されて不平衡給電材の給電部と共振する共振用導体と、所定面積を有する板状に成型されて共振用導体と一体となり、不平衡給電材の無給電部と共振するグランド用導体とを備えたアンテナが開示されている(特許文献1参照)。 An unbalanced feeding material having a feeding portion having a predetermined length and a non-feeding portion having a predetermined length connected to the feeding portion, a dielectric substrate having a predetermined dielectric constant, and an unbalanced plate formed into a plate having a predetermined area. An antenna having a resonance conductor that resonates with the feeding part of the feeding material and a ground conductor that is molded into a plate shape having a predetermined area and integrated with the resonance conductor and resonates with the non-feeding part of the unbalanced feeding material. It is disclosed (see Patent Document 1).

このアンテナの共振用導体は、不平衡給電材の径方向外方へ離間するとともに、給電部に並行して該不平衡給電材の軸方向前方へ延びる第1共振用導体部と、不平衡給電材を挟んで第1共振用導体部の反対側に位置し、不平衡給電材の径方向外方へ離間するとともに、給電部に並行して軸方向前方へ延びる第2共振用導体部とから形成されている。アンテナのグランド用導体は、不平衡給電材に固定手段を介して電気的に接続された固定部と、固定部に繋がって不平衡給電材の径方向外方へ離間するとともに、無給電部に並行して不平衡給電材の軸方向後方へ延びる第1グランド用導体部と、不平衡給電材を挟んで第1グランド用導体の反対側に位置し、固定部に繋がって不平衡給電材の径方向外方へ離間するとともに、無給電部に並行して軸方向後方へ延びる第2グランド用導体部とから形成されている。アンテナでは、共振用導体の第1および第2共振用導体部が誘電体基板の一方の面に接合され、グランド用導体の固定部と第1および第2グランド用導体部とが第1および第2共振用導体部を接合した誘電体基板の一方の面と同一の面に接合されている。 The resonance conductor of this antenna is separated outward in the radial direction of the unbalanced feeding material, and is unbalanced with the first resonance conductor portion extending axially forward of the unbalanced feeding material in parallel with the feeding portion. It is located on the opposite side of the first resonance conductor part with the material in between, and is separated from the unbalanced feeding material radially outward and from the second resonance conductor part extending axially forward in parallel with the feeding part. It is formed. The ground conductor of the antenna is connected to the fixed portion electrically connected to the unbalanced feeding material via the fixing means, and is connected to the fixed portion to be separated outward in the radial direction of the unbalanced feeding material, and is also a non-feeding portion. In parallel, the first gland conductor that extends rearward in the axial direction of the unbalanced feeding material and the unbalanced feeding material are located on the opposite side of the first gland conductor with the unbalanced feeding material in between, and are connected to the fixed part of the unbalanced feeding material. It is formed from a second ground conductor portion that is separated outward in the radial direction and extends rearward in the axial direction in parallel with the non-feeding portion. In the antenna, the first and second resonance conductor portions of the resonance conductor are joined to one surface of the dielectric substrate, and the fixed portion of the ground conductor and the first and second ground conductor portions are the first and first. 2 The conductor portion for resonance is joined to the same surface as one surface of the bonded dielectric substrate.

特開2012−238944号JP 2012-238944

前記特許文献1に開示のアンテナは、所定の誘電率を有する誘電体基板が容量性として機能することで、その誘電体基板に接合された第1および第2共振用導体部と給電部とが容易に共振しつつ、誘電体基板に接合された第1および第2グランド用導体部と無給電部とが容易に共振し、複数の共振周波数を得ることが可能であり、得られた複数の共振周波数が一方向へ連続して隣り合うとともにそれら共振周波数の一部が重なり合うから、アンテナにおける比帯域を大幅に広げることができる。 In the antenna disclosed in Patent Document 1, a dielectric substrate having a predetermined dielectric constant functions as a capacitance, so that the first and second resonance conductor portions and the feeding portion bonded to the dielectric substrate are connected to each other. While easily resonating, the first and second ground conductor portions bonded to the dielectric substrate and the non-feeding portion easily resonate, and a plurality of resonance frequencies can be obtained, and a plurality of obtained resonance frequencies can be obtained. Since the resonance frequencies are continuously adjacent to each other in one direction and some of the resonance frequencies overlap, the specific band of the antenna can be greatly widened.

近年、通信技術の向上によってアンテナの重要性が高まり、比帯域が広帯域であることはもちろん、アンテナに高い放射利得が求められる。前記特許文献1に開示のアンテナは、比帯域が広帯域ではあるが、放射利得を高くすることができず、所定の電界強度を維持した状態で電波を遠方に飛ばす(放射利得を上げる)ことが難しい。又、電波の送受信時にアンテナの近傍に金属等の導体からなる障害物が近接或いは存在すると、その障害物によってアンテナの共振点が変動し、アンテナの周波数帯域が変化する場合があり、特定の周波数帯域の電波を送受信することができず、高周波電流を電波に変換する変換効率が低下し、設計どおり周波数帯域の電波を送受信することができない場合がある。 In recent years, the importance of antennas has increased due to improvements in communication technology, and antennas are required to have a high radiation gain as well as a wide band. Although the antenna disclosed in Patent Document 1 has a wide specific band, it cannot increase the radiation gain, and it is possible to send radio waves far away (increase the radiation gain) while maintaining a predetermined electric field strength. difficult. In addition, if an obstacle made of a conductor such as metal is close to or exists in the vicinity of the antenna when transmitting and receiving radio waves, the resonance point of the antenna may fluctuate due to the obstacle, and the frequency band of the antenna may change. It may not be possible to send and receive radio waves in the band, the conversion efficiency for converting high-frequency current into radio waves is reduced, and it may not be possible to send and receive radio waves in the frequency band as designed.

本発明の目的は、比帯域が広帯域であり、電波を広帯域で送受信することができるとともに、高い放射利得を有し、所定の電界強度を維持した状態で電波を遠方に飛ばす(放射利得を上げる)ことがきる広帯域アンテナを提供することにある。本発明の他の目的は、近傍に金属等の導体からなる障害物が近接或いは存在したとしても、アンテナの共振点が変動することはなく、アンテナの周波数帯域の変化がなく、高周波電流を電波に変換する変換効率を維持することができ、設計どおりの周波数帯域の電波を送受信することができる広帯域アンテナを提供することにある。 An object of the present invention is to have a wide band of specific bands, to be able to transmit and receive radio waves in a wide band, to have a high radiation gain, and to send radio waves far away while maintaining a predetermined electric field strength (increasing the radiation gain). ) Is to provide a wideband antenna that can be used. Another object of the present invention is that even if an obstacle made of a conductor such as metal is close or present in the vicinity, the resonance point of the antenna does not fluctuate, the frequency band of the antenna does not change, and a high-frequency current is transmitted. It is an object of the present invention to provide a wideband antenna capable of maintaining the conversion efficiency of converting to and transmitting and receiving radio waves in the frequency band as designed.

前記課題を解決するための本発明の広帯域アンテナは、所定長さの給電部及び給電部に繋がって給電部から軸方向後方へ延びる所定長さの無給電部を有する不平衡給電材と、不平衡給電材の給電部と共振する共振用導体と、不平衡給電材の無給電部と共振するグランド用導体と、共振用導体及びグランド用導体の間に位置して不平衡給電材に固定手段を介して電気的に接続された固定用導体とを備え、共振用導体が、不平衡給電材の径方向外方へ離間するとともに、給電部に並行して固定用導体から軸方向前方へ延びる第1共振導体部と、不平衡給電材を挟んで第1共振導体部の反対側に位置し、不平衡給電材の径方向外方へ離間するとともに、給電部に並行して固定用導体から軸方向前方へ延びる第2共振導体部とから形成され、グランド用導体が、不平衡給電材の径方向外方へ離間するとともに、無給電部に並行して固定用導体から軸方向後方へ延びる第1グランド導体部と、不平衡給電材を挟んで第1グランド導体の反対側に位置し、不平衡給電材の径方向外方へ離間するとともに、無給電部に並行して固定用導体から軸方向後方へ延びる第2グランド導体部とから形成されていることを特徴とする。 The broadband antenna of the present invention for solving the above problems is incompatible with an unbalanced feeding material having a feeding portion having a predetermined length and a non-feeding portion having a predetermined length connected to the feeding portion and extending axially rearward from the feeding portion. A means for fixing to the unbalanced feeding material, which is located between the resonance conductor that resonates with the feeding part of the balanced feeding material, the ground conductor that resonates with the non-feeding part of the unbalanced feeding material, and the resonance conductor and the ground conductor. It is provided with a fixing conductor electrically connected via a wire, and the resonance conductor is separated radially outward of the unbalanced feeding material and extends axially forward from the fixing conductor in parallel with the feeding portion. It is located on the opposite side of the first resonance conductor part and the first resonance conductor part with the unbalanced feeding material in between, and is separated radially outward of the unbalanced feeding material, and is separated from the fixing conductor in parallel with the feeding part. It is formed from a second resonance conductor portion that extends forward in the axial direction, and the ground conductor is separated radially outward of the unbalanced feeding material and extends axially rearward from the fixing conductor in parallel with the non-feeding portion. It is located on the opposite side of the first ground conductor and the unbalanced feeding material with the unbalanced feeding material in between, and is separated outward in the radial direction of the unbalanced feeding material, and is separated from the fixing conductor in parallel with the non-feeding part. It is characterized in that it is formed from a second ground conductor portion extending rearward in the axial direction.

本発明の一例としては、広帯域アンテナが、第1グランド導体部と第2グランド導体部との間に位置する第1無給電素子を有し、第1無給電素子が、不平衡給電材に固定手段を介して電気的に接続された第1無給電固定部と、不平衡給電材と第1グランド導体部との間に位置し、不平衡給電材の径方向外方へ離間するとともに第1グランド導体部の径方向内方へ離間しつつ、無給電部に並行して第1無給電固定部から軸方向前方へ延びる第1無給電導体部と、不平衡給電材と第2グランド導体部との間に位置し、不平衡給電材の径方向外方へ離間するとともに第2グランド導体部の径方向内方へ離間しつつ、無給電部に並行して第1無給電固定部から軸方向前方へ延びる第2無給電導体部とから形成されている。 As an example of the present invention, the broadband antenna has a first non-feeding element located between the first ground conductor portion and the second ground conductor portion, and the first non-feeding element is fixed to the unbalanced feeding material. It is located between the first non-feeding fixed portion electrically connected via means, the unbalanced feeding material and the first ground conductor portion, and is separated outward in the radial direction of the unbalanced feeding material and is the first. The first non-feeding conductor portion extending axially forward from the first non-feeding fixed portion, the unbalanced feeding material, and the second ground conductor portion while being separated inward in the radial direction of the ground conductor portion. Located between and, while separating the unbalanced feeding material radially outward and inward in the radial direction of the second ground conductor portion, the shaft from the first non-feeding fixed portion is parallel to the non-feeding portion. It is formed from a second non-feeding conductor portion extending forward in the direction.

本発明の他の一例としては、共振用導体の第1共振導体部と第2共振導体部とが、不平衡給電材の中心軸線に対して線対称の関係にあり、グランド用導体の第1グランド導体部と第2グランド導体部とが、不平衡給電材の中心軸線に対して線対称の関係にあり、第1無給電素子の第1無給電導体部と第2無給電導体部とが、不平衡給電材の中心軸線に対して線対称の関係にある。 As another example of the present invention, the first resonance conductor portion and the second resonance conductor portion of the resonance conductor are in a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material, and the first conductor for ground is used. The ground conductor portion and the second ground conductor portion are in a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material, and the first non-feeding conductor portion and the second non-feeding conductor portion of the first non-feeding element are , There is a line symmetry with respect to the central axis of the unbalanced feeding material.

本発明の他の一例として、広帯域アンテナでは、第1無給電素子の第1無給電導体部及び第2無給電導体部の軸方向の長さがλ/8〜λ/16である。 As another example of the present invention, in the broadband antenna, the axial lengths of the first non-feeding conductor portion and the second non-feeding conductor portion of the first non-feeding element are λ / 8 to λ / 16.

本発明の他の一例としては、広帯域アンテナが、第1グランド導体部と第2グランド導体部との間であって第1無給電素子の軸方向前方に位置して第1無給電素子に対向する第2無給電素子を有し、第2無給電素子が、不平衡給電材に固定手段を介して電気的に接続された第2無給電固定部と、不平衡給電材と第1グランド導体部との間に位置し、不平衡給電材の径方向外方へ離間するとともに第1グランド導体部の径方向内方へ離間しつつ、無給電部に並行して第2無給電固定部から軸方向後方へ延びる第3無給電導体部と、不平衡給電材と第2グランド導体部との間に位置し、不平衡給電材の径方向外方へ離間するとともに第2グランド導体部の径方向内方へ離間しつつ、無給電部に並行して第2無給電固定部から軸方向後方へ延びる第4無給電導体部とから形成されている。 As another example of the present invention, the broadband antenna is located between the first ground conductor portion and the second ground conductor portion and is axially forward of the first non-feeding element and faces the first non-feeding element. The second non-feeding element is provided, and the second non-feeding element is electrically connected to the unbalanced feeding material via a fixing means, and the unbalanced feeding material and the first ground conductor. It is located between the parts and the unbalanced feeding material, and while separating outward in the radial direction and inward in the radial direction of the first ground conductor part, from the second non-feeding fixed part in parallel with the non-feeding part. It is located between the third non-feeding conductor portion extending rearward in the axial direction and the unbalanced feeding material and the second ground conductor portion, and is separated outward in the radial direction of the unbalanced feeding material and the diameter of the second ground conductor portion. It is formed from a fourth non-feeding conductor portion extending axially rearward from the second non-feeding fixed portion in parallel with the non-feeding portion while being separated inward in the direction.

本発明の他の一例としては、第2無給電素子の第3無給電導体部と第4無給電導体部とが、不平衡給電材の中心軸線に対して線対称の関係にあり、広帯域アンテナでは、第1無給電素子の第1無給電導体部及び第2無給電導体部の軸方向の長さがλ/8〜λ/16であり、第2無給電素子の第3無給電導体部及び第4無給電導体部の軸方向の長さがλ/8〜λ/16である。 As another example of the present invention, the third non-feeding conductor portion and the fourth non-feeding conductor portion of the second non-feeding element have a line symmetric relationship with respect to the central axis of the unbalanced feeding material, and the broadband antenna. Then, the axial lengths of the first non-feeding conductor portion and the second non-feeding conductor portion of the first non-feeding element are λ / 8 to λ / 16, and the third non-feeding conductor portion of the second non-feeding element. The axial length of the fourth passive conductor portion is λ / 8 to λ / 16.

本発明の他の一例としては、第1無給電素子の第1無給電導体部と第2無給電素子の第3無給電導体部とが、それら導体部のうちのいずれか一方が上となりいずれか他方が下となった状態で、広帯域アンテナの厚み方向へ離間対向して並び、第1無給電素子の第2無給電導体部と第2無給電素子の第4無給電導体部とが、それら導体部のうちのいずれか一方が上となりいずれか他方が下となった状態で、広帯域アンテナの厚み方向へ離間対向して並んでいる。 As another example of the present invention, the first non-feeding conductor portion of the first non-feeding element and the third non-feeding conductor portion of the second non-feeding element have one of the conductor portions facing up. With the other side facing down, the wideband antennas are lined up so as to be separated from each other in the thickness direction, and the second non-feeding conductor portion of the first non-feeding element and the fourth non-feeding conductor portion of the second non-feeding element are arranged. One of the conductors is on the top and the other is on the bottom, and they are lined up so as to be separated from each other in the thickness direction of the wideband antenna.

本発明の他の一例としては、第1無給電素子の第1無給電導体部の前端が、第2無給電素子の第3無給電導体部の後端から軸方向後方へわずかに離間対向し、第1無給電素子の第2無給電導体部の前端が、第2無給電素子の第4無給電導体部の後端から軸方向後方へわずかに離間対向している。 As another example of the present invention, the front end of the first non-feeding conductor portion of the first non-feeding element is slightly separated and opposed to the rear end in the axial direction from the rear end of the third non-feeding conductor portion of the second non-feeding element. The front end of the second non-feeding conductor portion of the first non-feeding element is slightly separated and opposed to the rear end in the axial direction from the rear end of the fourth non-feeding conductor portion of the second non-feeding element.

本発明の他の一例としては、広帯域アンテナが、所定面積を有する板状に成形されて共振用導体の軸方向前方に位置する給電素子を有し、給電素子が、給電部に電気的に接続された給電固定部と、給電固定部から径方向外方へ延びていて共振用導体の第1共振導体部から軸方向前方に位置する所定面積の第1給電導体部と、給電固定部から径方向外方へ延びていて共振用導体の第2共振導体部から軸方向前方に位置する所定面積の第2給電導体部とを有する。 As another example of the present invention, the broadband antenna has a feeding element that is formed into a plate shape having a predetermined area and is located axially forward of the resonance conductor, and the feeding element is electrically connected to the feeding portion. The diameter of the power supply fixing portion, the first feeding conductor portion having a predetermined area extending radially outward from the feeding fixing portion and located axially forward from the first resonance conductor portion of the resonance conductor, and the feeding feeding fixing portion. It has a second feeding conductor portion having a predetermined area extending outward in the direction and located forward in the axial direction from the second resonance conductor portion of the resonance conductor.

本発明の他の一例として、第1給電導体部には、第1給電導体部の後端から前端に向かって階段状に並ぶ複数の第1段差部分が形成され、第2給電導体部には、第2給電導体部の後端から前端に向かって階段状に並ぶ複数の第2段差部分が形成されている。 As another example of the present invention, the first feeding conductor portion is formed with a plurality of first stepped portions arranged in a stepped manner from the rear end to the front end of the first feeding conductor portion, and the second feeding conductor portion is formed. , A plurality of second stepped portions arranged in a staircase pattern from the rear end to the front end of the second feeding conductor portion are formed.

本発明の他の一例としては、給電素子の第1給電導体部と第2給電導体部とが、不平衡給電材の中心軸線に対して線対称の関係にある。 As another example of the present invention, the first feeding conductor portion and the second feeding conductor portion of the feeding element have a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material.

本発明の他の一例としては、不平衡給電材が、軸方向へ延びる第1導体と、第1導体の外周面を包被する絶縁体と、絶縁体の外周面を包被して軸方向へ延びる第2導体とから形成され、不平衡給電材の給電部が、第1導体から形成され、不平衡給電材の無給電部が、第1及び第2導体と絶縁体とから形成され、固定用導体が、第2導体に電気的に接続され、給電素子が、第1導体に電気的に接続されている。 As another example of the present invention, the unbalanced feeding material covers the first conductor extending in the axial direction, the insulator covering the outer peripheral surface of the first conductor, and the outer peripheral surface of the insulator in the axial direction. The feeding portion of the unbalanced feeding material is formed from the first conductor, and the non-feeding portion of the unbalanced feeding material is formed from the first and second conductors and the insulator. The fixing conductor is electrically connected to the second conductor, and the feeding element is electrically connected to the first conductor.

本発明に係る広帯域アンテナによれば、第1及び第2共振導体部と給電部とに高周波電流が誘起されて第1及び第2共振導体部と給電部との軸方向へ高周波電流が流れ、第1及び第2グランド導体部と無給電部とに高周波電流が誘起されて第1及び第2グランド導体部と無給電部との軸方向へ高周波電流が流れ、第1及び第2共振導体部と給電部とがそれら導体部と給電部とに誘起された軸方向の高周波電流によって共振しつつ、第1及び第2グランド導体部と無給電部とがそれら導体部と無給電部とに誘起された軸方向の高周波電流によって共振し、複数の共振周波数を得ることが可能であり、得られた複数の共振周波数が一方向へ連続して隣り合うとともにそれら共振周波数の一部が重なり合うから、アンテナにおける比帯域(約100MHz〜約10.0GHz)を大幅に広げることができるのみならず、第1及び第2グランド導体部に高周波電流が誘起されて第1及び第2グランド導体部の軸方向一方へ高周波電流が流れ、第1無給電素子の軸方向へ延びる第1及び第2無給電導体部に高周波電流が誘起されて第1及び第2無給電導体部の軸方向他方へ高周波電流が流れ、第1グランド導体部の軸方向一方へ流れる高周波電流と第1無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部の軸方向一方へ流れる高周波電流と第2無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合うことで不要電流がキャンセルされ、アンテナにおける放射利得が向上するから、電界の振動方向がアンテナの軸方向と平行する直線偏波の強い電磁界が発生し、高い放射利得を備えたアンテナにすることができ、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。広帯域アンテナは、VSWR(電圧定在波比)が2以上3以下の高い放射利得を備えたアンテナを作ることができるとともに、それが使用可能な比帯域(使用周波数帯域)のうちのすべての帯域において電波を送受信することができ、広帯域(ブロードバンド)における使用が可能であって1本のみで広帯域の電波を送受信することが可能なアンテナを作ることができる。 According to the broadband antenna according to the present invention, a high-frequency current is induced in the first and second resonant conductors and the feeding portion, and a high-frequency current flows in the axial direction between the first and second resonant conductors and the feeding portion. A high-frequency current is induced in the first and second ground conductors and the non-feeding portion, and a high-frequency current flows in the axial direction between the first and second ground conductors and the non-feeding portion, and the first and second resonant conductors And the feeding part resonate with the axial high-frequency current induced in the conductor part and the feeding part, and the first and second ground conductor parts and the non-feeding part are induced in the conductor part and the non-feeding part. It is possible to obtain a plurality of resonance frequencies by resonating with a high-frequency current in the axial direction, and the obtained plurality of resonance frequencies are continuously adjacent to each other in one direction and some of the resonance frequencies overlap. Not only can the specific band (about 100 MHz to about 10.0 GHz) of the antenna be significantly widened, but also high-frequency current is induced in the first and second ground conductors to induce axial currents in the first and second ground conductors. A high-frequency current flows to one side, and a high-frequency current is induced in the first and second non-feeding conductor portions extending in the axial direction of the first non-feeding element, and a high-frequency current flows to the other axial direction of the first and second non-feeding conductor portions. The high-frequency current that flows in one axial direction of the first ground conductor and the high-frequency current that flows in the other axial direction of the first non-feeding conductor cancel each other out, and the high-frequency current that flows in one axial direction of the second ground conductor and the first 2 Axial direction of the non-feeding conductor The unnecessary current is canceled by canceling the high-frequency current flowing to the other side, and the radiation gain in the antenna is improved. A strong electromagnetic field is generated, and an antenna having a high radiation gain can be obtained, and a wide band radio wave can be sent over a wide range and far away (increasing the radiation gain) while maintaining a predetermined electric current strength. A wideband antenna can be used to make an antenna having a high radiation gain with VSWR (voltage standing wave ratio) of 2 or more and 3 or less, and all of the specific bands (frequency bands used) in which it can be used. It is possible to make an antenna capable of transmitting and receiving radio waves in a wide band (broadband) and capable of transmitting and receiving a wide band radio wave with only one antenna.

共振用導体の第1共振導体部と第2共振導体部とが不平衡給電材の中心軸線に対して線対称の関係にあり、グランド用導体の第1グランド導体部と第2グランド導体部とが不平衡給電材の中心軸線に対して線対称の関係にあり、第1無給電素子の第1無給電導体部と第2無給電導体部とが不平衡給電材の中心軸線に対して線対称の関係にある広帯域アンテナは、不平衡給電材の中心軸線に対して線対称の関係にある第1及び第2共振導体部が同一の電解強さであって複数の共振周波数で給電部と容易に共振するとともに、不平衡給電材の中心軸線に対して線対称の関係にある第1及び第2グランド導体部が同一の電解強さであって複数の共振周波数で無給電部と容易に共振し、複数の共振周波数を得ることが可能であり、得られた複数の共振周波数が一方向へ連続して隣り合うとともにそれら共振周波数の一部が重なり合うから、アンテナにおける比帯域(約100MHz〜約10.0GHz)を大幅に広げることができるのみならず、不平衡給電材の中心軸線に対して線対称の関係にある第1及び第2グランド導体部に高周波電流が誘起されて第1及び第2グランド導体部の軸方向一方へ高周波電流が流れ、不平衡給電材の中心軸線に対して線対称の関係にある第1及び第2無給電導体部に高周波電流が誘起されて第1及び第2無給電導体部の軸方向他方へ高周波電流が流れ、第1グランド導体部の軸方向一方へ流れる高周波電流と第1無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部の軸方向一方へ流れる高周波電流と第2無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合うことで不要電流がキャンセルされ、アンテナにおける放射利得が大きく向上するから、電界の振動方向がアンテナの軸方向と平行する直線偏波の強い電磁界が発生し、高い放射利得を備えたアンテナにすることができ、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。広帯域アンテナは、VSWR(電圧定在波比)が2以上3以下の高い放射利得を備えたアンテナを作ることができるとともに、それが使用可能な比帯域(使用周波数帯域)のうちのすべての帯域において電波を送受信することができ、広帯域(ブロードバンド)における使用が可能であって1本のみで広帯域の電波を送受信することが可能なアンテナを作ることができる。 The first resonance conductor portion and the second resonance conductor portion of the resonance conductor have a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material, and the first ground conductor portion and the second ground conductor portion of the ground conductor Is in a line symmetric relationship with respect to the central axis of the unbalanced feeding material, and the first non-feeding conductor portion and the second non-feeding conductor portion of the first non-feeding element are lined with respect to the central axis of the unbalanced feeding material. In a wideband antenna having a symmetric relationship, the first and second resonant conductors having a linear symmetry with respect to the central axis of the unbalanced feeding material have the same electrolytic strength, and the feeding portion and the feeding portion have a plurality of resonance frequencies. It easily resonates, and the first and second ground conductors, which are line-symmetrical with respect to the central axis of the unbalanced feeding material, have the same electrolytic strength and easily interact with the non-feeding part at multiple resonance frequencies. It is possible to resonate and obtain a plurality of resonance frequencies, and since the obtained plurality of resonance frequencies are continuously adjacent to each other in one direction and some of the resonance frequencies overlap, the specific band in the antenna (about 100 MHz to about 100 MHz). Not only can it be greatly expanded (about 10.0 GHz), but high-frequency currents are induced in the first and second ground conductors, which are line-symmetrical with respect to the central axis of the unbalanced feed material, and the first and second ground conductors are induced. A high-frequency current flows in one of the axial directions of the second ground conductor portion, and a high-frequency current is induced in the first and second non-feeding conductor portions which are line-symmetrical with respect to the central axis of the unbalanced feeding material, and the first and second ground conductors are A high-frequency current flows in the other axial direction of the second non-feeding conductor portion, and the high-frequency current flowing in one axial direction of the first ground conductor portion and the high-frequency current flowing in the other axial direction of the first non-feeding conductor portion cancel each other out. 2 The high-frequency current flowing in one axial direction of the ground conductor and the high-frequency current flowing in the other axial direction of the second non-feeding conductor cancel each other out, thereby canceling the unnecessary current and greatly improving the radiation gain in the antenna. A strong electromagnetic field with linear polarization whose vibration direction is parallel to the axial direction of the antenna is generated, and the antenna can be made into an antenna with high radiation gain. It can fly far away (increase the radiation gain). A wideband antenna can be used to make an antenna having a high radiation gain with VSWR (voltage standing wave ratio) of 2 or more and 3 or less, and all of the specific bands (frequency bands used) in which it can be used. It is possible to make an antenna capable of transmitting and receiving radio waves in a wide band (broadband) and capable of transmitting and receiving a wide band radio wave with only one antenna.

第1無給電素子の第1無給電導体部及び第2無給電導体部の軸方向の長さがλ/8〜λ/16である広帯域アンテナは、第1無給電素子の第1及び第2無給電導体部の軸方向の長さを前記長さにすることで、第1及び第2無給電導体部の長さを合わせた長さがλ/4になり、λ/4の長さの第1及び第2グランド導体部に高周波電流が誘起されて第1及び第2グランド導体部の軸方向一方へ高周波電流が流れ、λ/4の長さの第1及び第2無給電導体部に高周波電流が誘起されて第1及び第2無給電導体部の軸方向他方へ高周波電流が流れ、第1グランド導体部の軸方向一方へ流れる高周波電流と第1無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部の軸方向一方へ流れる高周波電流と第2無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合うことで不要電流が確実にキャンセルされ、アンテナにおける放射利得が大きく向上するから、電界の振動方向がアンテナの軸方向と平行する直線偏波の強い電磁界が発生し、高い放射利得を備えたアンテナにすることができ、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。 The wideband antennas in which the axial lengths of the first non-feeding conductor portion and the second non-feeding conductor portion of the first non-feeding element are λ / 8 to λ / 16 are the first and second non-feeding elements of the first non-feeding element. By setting the axial length of the non-feeding conductor portion to the above-mentioned length, the total length of the first and second non-feeding conductor portions becomes λ / 4, and the length of λ / 4 A high-frequency current is induced in the first and second ground conductors, and a high-frequency current flows in one of the axial directions of the first and second ground conductors, and flows in the first and second non-feeding conductors having a length of λ / 4. A high-frequency current is induced and a high-frequency current flows to the other axial direction of the first and second non-feeding conductor portions, and the high-frequency current flowing to one axial direction of the first ground conductor portion and the other axial direction of the first non-feeding conductor portion The high-frequency current that flows cancels each other out, and the high-frequency current that flows in one axial direction of the second ground conductor and the high-frequency current that flows in the other axial direction of the second non-feeding conductor cancel each other out, so that the unnecessary current is reliably canceled. Since the radiation gain in the antenna is greatly improved, a strong electromagnetic field with linear polarization in which the vibration direction of the electric current is parallel to the axial direction of the antenna is generated, and the antenna can be made into an antenna having a high radiation gain, and a predetermined electric current strength can be obtained. It is possible to send a wide band radio wave over a wide range and far away (increase the radiation gain) while maintaining the above.

第1グランド導体部と第2グランド導体部との間であって第1無給電素子の軸方向前方に位置して第1無給電素子に対向する第2無給電素子を有し、第2無給電素子が第2無給電固定部と第2無給電固定部から軸方向後方へ延びる第3無給電導体部と第2無給電固定部から軸方向後方へ延びる第4無給電導体部とから形成された広帯域アンテナは、第1及び第2グランド導体部に高周波電流が誘起されて第1及び第2グランド導体部の軸方向一方へ高周波電流が流れ、第1無給電素子の軸方向へ延びる第1及び第2無給電導体部に高周波電流が誘起されて第1及び第2無給電導体部の軸方向他方へ高周波電流が流れるとともに、第2無給電素子の軸方向へ延びる第3及び第4無給電導体部に高周波電流が誘起されて第3及び第4無給電導体部の軸方向他方へ高周波電流が流れ、第1グランド導体部の軸方向一方へ流れる高周波電流と第1及び第3無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部の軸方向一方へ流れる高周波電流と第2及び第4無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合うことで不要電流がキャンセルされ、アンテナにおける放射利得が向上するから、電界の振動方向がアンテナの軸方向と平行する直線偏波の強い電磁界が発生し、高い放射利得を備えたアンテナにすることができ、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。 It has a second non-feeding element located between the first ground conductor portion and the second ground conductor portion in the axial direction of the first non-feeding element and facing the first non-feeding element, and has a second non-feeding element. The power feeding element is formed of a second non-feeding fixing portion, a third non-feeding conductor portion extending axially rearward from the second non-feeding fixing portion, and a fourth non-feeding conductor portion extending axially rearward from the second non-feeding fixing portion. In the wideband antenna, a high-frequency current is induced in the first and second ground conductors, a high-frequency current flows in one of the axial directions of the first and second ground conductors, and the high-frequency current extends in the axial direction of the first non-feeding element. A high-frequency current is induced in the 1st and 2nd non-feeding conductors, and a high-frequency current flows in the other axial direction of the 1st and 2nd non-feeding conductors, and the 3rd and 4th extending in the axial direction of the 2nd non-feeding element. A high-frequency current is induced in the non-feeding conductor portion, and a high-frequency current flows in the other axial direction of the third and fourth non-feeding conductor portions, and the high-frequency current flowing in one axial direction of the first ground conductor portion and the first and third none. The high-frequency current flowing in the axial direction of the feeding conductor cancels each other, and the high-frequency current flowing in one of the axial directions of the second ground conductor and the high-frequency current flowing in the axial direction of the second and fourth non-feeding conductors cancel each other out. By matching, unnecessary current is canceled and the radiation gain in the antenna is improved. Therefore, a strong electromagnetic field with linear polarization in which the vibration direction of the electric field is parallel to the axial direction of the antenna is generated, and the antenna has a high radiation gain. It is possible to send a wide band radio wave over a wide range and far away (increase the radiation gain) while maintaining a predetermined electric current strength.

第2無給電素子の第3無給電導体部と第4無給電導体部とが不平衡給電材の中心軸線に対して線対称の関係にある広帯域アンテナは、不平衡給電材の中心軸線に対して線対称の関係にある第3及び第4無給電導体部に高周波電流が誘起されて第3及び第4無給電導体部の軸方向他方へ高周波電流が流れ、第1グランド導体部の軸方向一方へ流れる高周波電流と第3無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部の軸方向一方へ流れる高周波電流と第4無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合うことで不要電流が確実にキャンセルされ、アンテナにおける放射利得が大きく向上するから、電界の振動方向がアンテナの軸方向と平行する直線偏波の強い電磁界が発生し、高い放射利得を備えたアンテナにすることができ、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。 A broadband antenna in which the third non-feeding conductor portion and the fourth non-feeding conductor portion of the second non-feeding element are in a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material has a relationship with respect to the central axis of the unbalanced feeding material. A high-frequency current is induced in the third and fourth non-feeding conductors, which are line-symmetrical with each other, and a high-frequency current flows in the other axial direction of the third and fourth non-feeding conductors, and the axial direction of the first ground conductor. The high-frequency current flowing in one direction and the high-frequency current flowing in the axial direction of the third non-feeding conductor cancel each other out, and the high-frequency current flowing in one axial direction of the second ground conductor and the axial other of the fourth non-feeding conductor section cancel each other out. By canceling out the flowing high-frequency current, unnecessary current is surely canceled and the radiation gain in the antenna is greatly improved. Therefore, a strong electromagnetic field with linear polarization in which the vibration direction of the electric field is parallel to the axial direction of the antenna is generated. It is possible to make an antenna having a high radiation gain, and it is possible to send a wide band radio wave to a wide range and a long distance (increase the radiation gain) while maintaining a predetermined electric current strength.

第1無給電素子の第1無給電導体部及び第2無給電導体部の軸方向の長さがλ/8〜λ/16であり、第2無給電素子の第3無給電導体部及び第4無給電導体部の軸方向の長さがλ/8〜λ/16である広帯域アンテナは、第1無給電素子の第1及び第2無給電導体部の軸方向の長さを前記長さにするとともに、第2無給電素子の第3無給電導体部及び第4無給電導体部の軸方向の長さを前記長さにすることで、第1無給電導体部及び第2無給電導体部の軸方向の長さを合わせた長さがλ/4になり、第3無給電導体部及び第4無給電導体部の軸方向の長さを合わせた長さがλ/4になり、λ/4の長さの第1及び第2グランド導体部に高周波電流が誘起されて第1及び第2グランド導体部の軸方向一方へ高周波電流が流れ、λ/4の長さの第1〜第4無給電導体部に高周波電流が誘起されて第1〜第4無給電導体部の軸方向他方へ高周波電流が流れ、第1及び第2グランド導体部の軸方向一方へ流れる高周波電流と第1〜第4無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合うことで不要電流が確実にキャンセルされ、アンテナにおける放射利得が大きく向上するから、電界の振動方向がアンテナの軸方向と平行する直線偏波の強い電磁界が発生し、高い放射利得を備えたアンテナにすることができ、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。 The axial lengths of the first non-feeding conductor portion and the second non-feeding conductor portion of the first non-feeding element are λ / 8 to λ / 16, and the third non-feeding conductor portion and the second non-feeding conductor portion of the second non-feeding element. 4. In the wideband antenna in which the axial length of the non-feeding conductor portion is λ / 8 to λ / 16, the axial length of the first and second non-feeding conductor portions of the first non-feeding element is set to the length. By setting the axial lengths of the third non-feeding conductor portion and the fourth non-feeding conductor portion of the second non-feeding element to the above-mentioned lengths, the first non-feeding conductor portion and the second non-feeding conductor portion are set. The combined length of the axial lengths of the portions is λ / 4, and the combined axial lengths of the third non-feeding conductor portion and the fourth non-feeding conductor portion are λ / 4. A high-frequency current is induced in the first and second ground conductors having a length of λ / 4, and a high-frequency current flows in one of the axial directions of the first and second ground conductors. A high-frequency current is induced in the fourth non-feeding conductor portion, a high-frequency current flows in the other axial direction of the first to fourth non-feeding conductor portions, and the high-frequency current flows in one axial direction of the first and second ground conductor portions. Axial direction of the 1st to 4th non-feeding conductors By canceling the high-frequency current flowing to the other side, unnecessary current is surely canceled and the radiation gain in the antenna is greatly improved. Therefore, the vibration direction of the electric field is the axial direction of the antenna. A strong electromagnetic field with parallel linear polarization is generated, and an antenna with high radiation gain can be obtained, and a wide band radio wave is sent over a wide range and far away (increasing radiation gain) while maintaining a predetermined electric current strength. be able to.

第1無給電素子の第1無給電導体部と第2無給電素子の第3無給電導体部とがそれら導体部のうちのいずれか一方が上となりいずれか他方が下となった状態で、広帯域アンテナの厚み方向へ離間対向して並び、第1無給電素子の第2無給電導体部と第2無給電素子の第4無給電導体部とがそれら導体部のうちのいずれか一方が上となりいずれか他方が下となった状態で、広帯域アンテナの厚み方向へ離間対向して並んでいる広帯域アンテナは、第1無給電素子の第1無給電導体部の前端と第2無給電素子の第3無給電導体部の後端とが当接した状態で重なり合い、第1無給電素子の第2無給電導体部の前端と第2無給電素子の第4無給電導体部の後端とが当接した状態で重なり合うと、第1〜第4無給電導体部に高周波電流が誘起されず、第1及び第2グランド導体部に流れる高周波電流を打ち消すことができないが、第1無給電素子の第1無給電導体部と第2無給電素子の第3無給電導体部とが広帯域アンテナの厚み方向へ離間対向して並び、第1無給電素子の第2無給電導体部と第2無給電素子の第4無給電導体部とが広帯域アンテナの厚み方向へ離間対向して並ぶことで、第1無給電素子の軸方向へ延びる第1及び第2無給電導体部に高周波電流が誘起されて第1及び第2無給電導体部の軸方向他方へ高周波電流が流れ、第2無給電素子の軸方向へ延びる第3及び第4無給電導体部に高周波電流が誘起されて第3及び第4無給電導体部の軸方向他方へ高周波電流が流れ、第1グランド導体部の軸方向一方へ流れる高周波電流と第1及び第3無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部の軸方向一方へ流れる高周波電流と第2及び第4無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合うことで不要電流がキャンセルされ、アンテナにおける放射利得が向上するから、電界の振動方向がアンテナの軸方向と平行する直線偏波の強い電磁界が発生し、高い放射利得を備えたアンテナにすることができ、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。 The first non-feeding conductor portion of the first non-feeding element and the third non-feeding conductor portion of the second non-feeding element are in a state where one of the conductor portions is on the top and the other is on the bottom. The second non-feeding conductor portion of the first non-feeding element and the fourth non-feeding conductor portion of the second non-feeding element are arranged so as to be separated from each other in the thickness direction of the wideband antenna, and one of the conductor portions is on the top. The wideband antennas arranged so as to be separated from each other in the thickness direction of the wideband antenna with one of them facing down are the front end of the first non-feeding conductor portion of the first non-feeding element and the second non-feeding element. The rear ends of the third non-feeding conductor are overlapped with each other in contact with each other, and the front end of the second non-feeding conductor of the first non-feeding element and the rear end of the fourth non-feeding conductor of the second non-feeding element are overlapped with each other. If they overlap in the abutting state, the high frequency current is not induced in the first to fourth non-feeding conductors, and the high frequency currents flowing in the first and second ground conductors cannot be canceled. The first non-feeding conductor portion and the third non-feeding conductor portion of the second non-feeding element are arranged so as to be separated from each other in the thickness direction of the broadband antenna, and the second non-feeding conductor portion of the first non-feeding element and the second non-feeding conductor portion are arranged. By arranging the fourth non-feeding conductor portion of the element so as to be separated and opposed to each other in the thickness direction of the broadband antenna, a high frequency current is induced in the first and second non-feeding conductor portions extending in the axial direction of the first non-feeding element. A high-frequency current flows to the other axial direction of the first and second non-feeding conductors, and a high-frequency current is induced in the third and fourth non-feeding conductors extending in the axial direction of the second non-feeding element to induce the third and fourth. A high-frequency current flows in the other axial direction of the non-feeding conductor portion, and the high-frequency current flowing in one axial direction of the first ground conductor portion and the high-frequency current flowing in the other axial direction of the first and third non-feeding conductor portions cancel each other out. The high-frequency current flowing in one axial direction of the second ground conductor and the high-frequency current flowing in the other axial direction of the second and fourth non-feeding conductors cancel each other out, thereby canceling the unnecessary current and improving the radiation gain in the antenna. Therefore, a strong electromagnetic field with linear polarization whose vibration direction of the electric current is parallel to the axial direction of the antenna is generated, and the antenna can be made into an antenna having a high radiation gain. Can be flown over a wide area and far away (increasing the radiation gain).

第1無給電素子の第1無給電導体部の前端が第2無給電素子の第3無給電導体部の後端から軸方向後方へわずかに離間対向し、第1無給電素子の第2無給電導体部の前端が第2無給電素子の第4無給電導体部の後端から軸方向後方へわずかに離間対向している広帯域アンテナは、第1無給電素子の第1無給電導体部の前端と第2無給電素子の第3無給電導体部の後端とが当接し、第1無給電素子の第2無給電導体部の前端と第2無給電素子の第4無給電導体部の後端とが当接すると、第1〜第4無給電導体部に高周波電流が誘起されず、第1及び第2グランド導体部に流れる高周波電流を打ち消すことができないが、第1無給電素子の第1無給電導体部の前端と第2無給電素子の第3無給電導体部の後端とが軸方向へわずかに離間対向し、第1無給電素子の第2無給電導体部の前端と第2無給電素子の第4無給電導体部の後端とが軸方向へわずかに離間対向することで、第1無給電素子の軸方向へ延びる第1及び第2無給電導体部に高周波電流が誘起されて第1及び第2無給電導体部の軸方向他方へ高周波電流が流れ、第2無給電素子の軸方向へ延びる第3及び第4無給電導体部に高周波電流が誘起されて第3及び第4無給電導体部の軸方向他方へ高周波電流が流れ、第1グランド導体部の軸方向一方へ流れる高周波電流と第1及び第3無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部の軸方向一方へ流れる高周波電流と第2及び第4無給電導体部の軸方向他方へ流れる高周波電流とが打ち消し合うことで不要電流がキャンセルされ、アンテナにおける放射利得が向上するから、電界の振動方向がアンテナの軸方向と平行する直線偏波の強い電磁界が発生し、高い放射利得を備えたアンテナにすることができ、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。 The front end of the first non-feeding conductor portion of the first non-feeding element faces slightly rearward in the axial direction from the rear end of the third non-feeding conductor portion of the second non-feeding element, and the second non-feeding element of the first non-feeding element. The wideband antenna in which the front end of the feeding conductor portion is slightly separated and opposed to the rear end in the axial direction from the rear end of the fourth non-feeding conductor portion of the second non-feeding element is the first non-feeding conductor portion of the first non-feeding element. The front end and the rear end of the third non-feeding conductor portion of the second non-feeding element come into contact with each other, and the front end of the second non-feeding conductor portion of the first non-feeding element and the fourth non-feeding conductor portion of the second non-feeding element When it comes into contact with the rear end, a high-frequency current is not induced in the first to fourth non-feeding conductors, and the high-frequency current flowing in the first and second ground conductors cannot be canceled. The front end of the first non-feeding conductor portion and the rear end of the third non-feeding conductor portion of the second non-feeding element are slightly separated and opposed in the axial direction, and are opposed to the front end of the second non-feeding conductor portion of the first non-feeding element. By slightly separating and facing the rear end of the fourth non-feeding conductor portion of the second non-feeding element in the axial direction, a high-frequency current is applied to the first and second non-feeding conductor portions extending in the axial direction of the first non-feeding element. Is induced and a high-frequency current flows to the other axial direction of the first and second non-feeding conductors, and a high-frequency current is induced in the third and fourth non-feeding conductors extending in the axial direction of the second non-feeding element. A high-frequency current flows to the other axial direction of the 3rd and 4th non-feeding conductors, and a high-frequency current flowing to one axial direction of the 1st ground conductor and a high-frequency current flowing to the other axial direction of the 1st and 3rd non-feeding conductors. Cancel each other, and the high-frequency current flowing in one axial direction of the second ground conductor and the high-frequency current flowing in the other axial direction of the second and fourth non-feeding conductors cancel each other out, thereby canceling unnecessary current and radiating in the antenna. Since the gain is improved, a strong electromagnetic field with linear polarization in which the vibration direction of the electric current is parallel to the axial direction of the antenna is generated, and the antenna can be made with a high radiation gain, and a predetermined electric current strength is maintained. It is possible to send a wide band radio wave over a wide range and far away (increase the radiation gain).

所定面積を有する板状に成形されて共振用導体の軸方向前方に位置する給電素子を有し、給電素子が給電部に電気的に接続された給電固定部と給電固定部から径方向外方へ延びていて共振用導体の第1共振導体部から軸方向前方に位置する所定面積の第1給電導体部と給電固定部から径方向外方へ延びていて共振用導体の第2共振導体部から軸方向前方に位置する所定面積の第2給電導体部とを有する広帯域アンテナは、給電素子の第1給電導体部の軸方向へ高周波電流が流れ、給電素子の第2給電導体部の軸方向へ高周波電流が流れ、給電素子の第1給電導体部と共振用導体の第1共振導体部とがそれら導体部に誘起された軸方向の高周波電流によって共振するとともに、給電素子の第2給電導体部と共振用導体の第2共振導体部とがそれら導体部に誘起された軸方向の高周波電流によって共振し、それら導体部の共振によって帯域が異なる強い電界強度の複数の共振周波数を得ることができるから、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができることはもちろん、給電素子の第1及び第2給電導体部と共振用導体の第1及び共振導体部とが共振することで、共振させる周波数帯域を安定化させることができ、アンテナ近傍に金属等の導体からなる障害物が近接或いは存在したとしても、アンテナの共振点が変動することはなく、アンテナの周波数帯域の変化を防ぐことができ、高周波電流を電波に変換する変換効率を維持することができるとともに、設計どおりの周波数帯域の電波を送受信することができる。広帯域アンテナは、給電素子の第1及び第2給電導体部の大きさ(面積)を大きくすることで、不平衡給電材の給電部と共振用導体の第1及び第2共振導体部との共振点の高位への移動を大きくすることができ、給電素子の第1及び第2給電導体部の大きさ(面積)を小さくすることで、不平衡給電材の給電部と共振用導体の第1及び第2共振導体部との共振点の高位への移動を小さくすることができ、給電素子の第1及び第2給電導体部の大きさ(面積)を変更することで、アンテナにおける比帯域(使用周波数帯域)の高位への移動を微調整することができる。 It has a feeding element that is molded into a plate shape with a predetermined area and is located in front of the axial direction of the resonance conductor, and the feeding element is electrically connected to the feeding portion. A first feeding conductor portion having a predetermined area located axially forward from the first resonance conductor portion of the resonance conductor and a second resonance conductor portion of the resonance conductor extending radially outward from the feeding fixing portion. In a broadband antenna having a second feeding conductor portion having a predetermined area located forward in the axial direction from the above, a high-frequency current flows in the axial direction of the first feeding conductor portion of the feeding element, and the axial direction of the second feeding conductor portion of the feeding element. A high-frequency current flows to, and the first feeding conductor portion of the feeding element and the first resonant conductor portion of the resonance conductor resonate with the axial high-frequency current induced in these conductor portions, and the second feeding conductor of the feeding element is resonated. It is possible to obtain a plurality of resonance frequencies with strong electric field strengths in which the band and the second resonance conductor portion of the resonance conductor resonate with each other due to the axial high-frequency current induced in the conductor portions and the bands differ due to the resonance of the conductor portions. Therefore, it is possible to send a wide band radio wave over a wide range and far away (increase the radiation gain) while maintaining a predetermined electric current strength, and of course, the first and second feeding conductors of the feeding element and the resonance conductor are the first. By resonating with 1 and the resonance conductor portion, the frequency band to be resonated can be stabilized, and the resonance point of the antenna fluctuates even if an obstacle made of a conductor such as metal is close or present in the vicinity of the antenna. It is possible to prevent changes in the frequency band of the antenna, maintain the conversion efficiency of converting high-frequency current into radio waves, and transmit and receive radio waves in the frequency band as designed. In the wideband antenna, the size (area) of the first and second feeding conductors of the feeding element is increased, so that the feeding portion of the unbalanced feeding material and the first and second resonance conductors of the resonance conductor resonate with each other. The movement of the point to a higher position can be increased, and by reducing the size (area) of the first and second feeding conductors of the feeding element, the feeding portion of the unbalanced feeding material and the first conductor for resonance can be reduced. The movement of the resonance point with the second resonant conductor portion to a higher position can be reduced, and by changing the size (area) of the first and second feeding conductor portions of the feeding element, the specific band (specific band) in the antenna ( It is possible to fine-tune the movement of the frequency band used to higher levels.

複数の階段状の第1段差部分が形成された第1給電導体部に高周波電流が誘起されて第1給電導体部の後端から前端に向かって軸方向へ高周波電流が流れ、複数の階段状の第2段差部分が形成された第2給電導体部に高周波電流が誘起されて第2給電導体部の後端から前端に向かって軸方向への高周波電流が流れ、第1給電導体部の複数の第1段差部分と共振用導体の第1共振導体部とがそれら導体部に誘起された軸方向の高周波電流によって複数共振するとともに、第2給電導体部の複数の第1段差部分と共振用導体の第2共振導体部とがそれら導体部に誘起された軸方向の高周波電流によって複数共振し、それら導体部の共振によって帯域が異なる強い電界強度の複数の共振周波数を得ることができるから、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができることはもちろん、複数の第1及び第2段差部分が形成された給電素子の第1及び第2給電導体部と共振用導体の第1及び共振導体部とが共振することで、共振させる周波数帯域を安定化させることができ、アンテナ近傍に金属等の導体からなる障害物が近接或いは存在したとしても、アンテナの共振点が変動することはなく、アンテナの周波数帯域の変化を防ぐことができ、高周波電流を電波に変換する変換効率を維持することができるとともに、設計どおりの周波数帯域の電波を送受信することができる。 A high-frequency current is induced in the first feeding conductor portion in which a plurality of stepped first stepped portions are formed, and a high-frequency current flows axially from the rear end to the front end of the first feeding conductor portion, resulting in a plurality of stepped shapes. A high-frequency current is induced in the second feeding conductor portion in which the second step portion is formed, and a high-frequency current flows in the axial direction from the rear end to the front end of the second feeding conductor portion, and a plurality of the first feeding conductor portions are formed. The first step portion of the above and the first resonance conductor portion of the resonance conductor resonate with a plurality of axial high-frequency currents induced in these conductor portions, and at the same time, resonate with the plurality of first step portions of the second feeding conductor portion. Since the second resonance conductor portion of the conductor resonates a plurality of times due to the high-frequency current in the axial direction induced in the conductor portion, and the resonance of the conductor portion can obtain a plurality of resonance frequencies having strong electric field strengths having different bands. It is possible to send a wide band radio wave over a wide range and far away (increase the radiation gain) while maintaining a predetermined electric current strength, and of course, the first and first power feeding elements in which a plurality of first and second step portions are formed are formed. 2 By resonating the feeding conductor portion with the first resonance conductor portion and the resonance conductor portion, the frequency band to be resonated can be stabilized, and an obstacle made of a conductor such as metal is close to or exists in the vicinity of the antenna. Even so, the resonance point of the antenna does not fluctuate, the change in the frequency band of the antenna can be prevented, the conversion efficiency of converting the high-frequency current into radio waves can be maintained, and the radio waves in the frequency band as designed can be maintained. Can be sent and received.

給電素子の第1給電導体部と第2給電導体部とが不平衡給電材の中心軸線に対して線対称の関係にある広帯域アンテナは、不平衡給電材の中心軸線に対して線対称の関係にある第1及び第2給電導体部の軸方向へ高周波電流が流れ、給電素子の第1及び第2給電導体部と共振用導体の第1及び第2共振導体部とがそれら導体部に誘起された軸方向の高周波電流によって同一の電解強さで共振し、それら導体部の共振によって帯域が異なる強い電界強度の複数の共振周波数を得ることができるから、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができることはもちろん、アンテナ近傍に金属等の導体からなる障害物が近接或いは存在したとしても、アンテナの共振点が変動することはなく、アンテナの周波数帯域の変化を防ぐことができ、高周波電流を電波に変換する変換効率を維持することができるとともに、設計どおりの周波数帯域の電波を送受信することができる。 A broadband antenna in which the first feeding conductor portion and the second feeding conductor portion of the feeding element have a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material has a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material. A high-frequency current flows in the axial direction of the first and second feeding conductors in the above, and the first and second feeding conductors of the feeding element and the first and second resonant conductors of the resonance conductor are induced in the conductors. It resonates with the same electrolytic strength due to the high-frequency current in the axial direction, and multiple resonance frequencies with strong electric field strengths in different bands can be obtained by the resonance of these conductors. It is possible to send a wide band radio wave over a wide range and far away (increase the radiation gain), and even if an obstacle made of a conductor such as metal is near or present near the antenna, the resonance point of the antenna does not fluctuate. , The change of the frequency band of the antenna can be prevented, the conversion efficiency of converting the high frequency current into the radio wave can be maintained, and the radio wave of the frequency band as designed can be transmitted and received.

不平衡給電材が軸方向へ延びる第1導体と第1導体の外周面を包被する絶縁体と絶縁体の外周面を包被して軸方向へ延びる第2導体とから形成され、不平衡給電材の給電部が第1導体から形成され、不平衡給電材の無給電部が第1及び第2導体と絶縁体とから形成され、固定用導体が第2導体に電気的に接続され、給電素子が第1導体に電気的に接続されている広帯域アンテナは、第1及び第2共振導体部と第1導体から形成された給電部とが高い効率で容易に共振するとともに、第1及び第2グランド導体部と第1及び第2導体及び絶縁体から形成された無給電部とが高い効率で容易に共振し、複数の共振周波数を得ることが可能であり、得られた複数の共振周波数が一方向へ連続して隣り合うとともにそれら共振周波数の一部が重なり合うから、アンテナにおける比帯域(約100MHz〜約10.0GHz)を大幅に広げることができるのみならず、第1グランド導体部の軸方向一方へ流れる高周波電流と第1無給電導体部(及び第3無給電導体部)の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部の軸方向一方へ流れる高周波電流と第2無給電導体部(及び第4無給電導体部)の軸方向他方へ流れる高周波電流とが打ち消し合うことで不要電流がキャンセルされ、アンテナにおける放射利得が向上するから、電界の振動方向がアンテナの軸方向と平行する直線偏波の強い電磁界が発生し、高い放射利得を備えたアンテナにすることができ、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。広帯域アンテナは、第1導体と第2導体との間に絶縁体が介在することにより、インピーダンスを安定に保持することができるとともに、不平衡給電材の第1導体と第2導体とショートを防ぐことができ、それら導体がショートすることによる送受信機の高周波回路の破壊を防ぐことができる。 The unbalanced feeding material is formed of a first conductor extending in the axial direction, an insulator covering the outer peripheral surface of the first conductor, and a second conductor covering the outer peripheral surface of the insulator and extending in the axial direction, and is unbalanced. The feeding part of the feeding material is formed from the first conductor, the non-feeding part of the unbalanced feeding material is formed from the first and second conductors and the insulator, and the fixing conductor is electrically connected to the second conductor. In a broadband antenna in which the feeding element is electrically connected to the first conductor, the first and second resonance conductor portions and the feeding portion formed from the first conductor easily resonate with high efficiency, and the first and second resonant conductors are easily resonated with each other. The second ground conductor portion and the non-feeding portion formed of the first and second conductors and the insulator resonate easily with high efficiency, and it is possible to obtain a plurality of resonance frequencies, and a plurality of obtained resonances can be obtained. Since the frequencies are continuously adjacent to each other in one direction and some of the resonance frequencies overlap with each other, not only the specific band (about 100 MHz to about 10.0 GHz) of the antenna can be significantly widened, but also the first ground conductor portion. The high-frequency current flowing in one axial direction of the The unnecessary current is canceled by canceling the high-frequency current flowing to the other side in the axial direction of the second non-feeding conductor portion (and the fourth non-feeding conductor portion), and the radiation gain in the antenna is improved, so that the vibration direction of the electric field is changed. A strong electromagnetic field with linear polarization parallel to the axial direction of the antenna is generated, and the antenna can be made with a high radiation gain, and a wide band radio wave is sent over a wide range and far away while maintaining a predetermined electric current strength ( Radiation gain can be increased). The wideband antenna can maintain stable impedance by interposing an insulator between the first conductor and the second conductor, and also prevents a short circuit between the first conductor and the second conductor of the unbalanced feeding material. This makes it possible to prevent the high frequency circuit of the transmitter / receiver from being destroyed due to a short circuit between the conductors.

一例として示す広帯域アンテナの斜視図。A perspective view of a wideband antenna shown as an example. 図1のA−A線端面図。FIG. 1 is an end view taken along the line AA. 図1のB−B線端面図。BB line end view of FIG. 他の一例として示す広帯域アンテナの斜視図。A perspective view of a wideband antenna shown as another example. 他の一例として示す広帯域アンテナの斜視図。A perspective view of a wideband antenna shown as another example. 図5のC−C線端面図。FIG. 5 is an end view taken along the line CC. 図5のD−D線端面図。FIG. 5 is an end view of the DD line. 他の一例として示す広帯域アンテナの斜視図。A perspective view of a wideband antenna shown as another example. 図8のE−E線端面図。EE line end view of FIG. 他の一例として示す広帯域アンテナの斜視図。A perspective view of a wideband antenna shown as another example. 図10のF−F線端面図。FIG. 10 is an end view of the FF line. 図10のG−G線端面図。FIG. 10 is an end view of the GG line. 他の一例として示す広帯域アンテナの斜視図。A perspective view of a wideband antenna shown as another example. 広帯域アンテナにおけるVSWR(電圧定在波比)と使用帯域との相関関係を示す図。The figure which shows the correlation between VSWR (voltage standing wave ratio) and use band in a wide band antenna. 広帯域アンテナのインピーダンスを示すスミスチャート。Smith chart showing the impedance of a wideband antenna. 広帯域アンテナの3平面(XY面)の周り方向において計測した電界強度を示す図。The figure which shows the electric field strength measured in the direction around 3 planes (XY planes) of a wide band antenna. 広帯域アンテナの3平面(YZ面又はZX面)の周り方向において計測した電界強度を示す図。The figure which shows the electric field strength measured in the direction around 3 planes (YZ plane or ZX plane) of a wide band antenna.

一例として示す広帯域アンテナ10Aの斜視図である図1等の添付の図面を参照し、本発明に係る広帯域アンテナの詳細を説明すると、以下のとおりである。尚、図2は、図1のA−A線端面図であり、図3は、図1のB−B線端面図である。図1では、軸方向を矢印X、径方向を矢印Yで示すとともに、軸方向前方を矢印X1で示し、軸方向後方を矢印X2で示す。図2,3では、厚み方向を矢印Zで示す。図1では、中心軸線S1を点線で示す。 The details of the wideband antenna according to the present invention will be described below with reference to the accompanying drawings such as FIG. 1 which is a perspective view of the wideband antenna 10A shown as an example. 2 is an end view taken along the line AA of FIG. 1, and FIG. 3 is an end view taken along the line BB of FIG. In FIG. 1, the axial direction is indicated by an arrow X, the radial direction is indicated by an arrow Y, the axial front is indicated by an arrow X1, and the axial rear is indicated by an arrow X2. In FIGS. 2 and 3, the thickness direction is indicated by an arrow Z. In FIG. 1, the central axis S1 is shown by a dotted line.

広帯域アンテナ10Aは、不平衡給電材11(同軸ケーブル又はセミリジットケーブル)と共振用導体12とグラウンド用導体13と固定用導体14と第1無給電素子15と給電素子16とから形成されている。不平衡給電材11は、所定長さを有して軸方向へ延びている。不平衡給電材11は、軸方向へ延びる棒状の細長い第1導体17(中心金属導体)と、第1導体17の外周面を包被して軸方向へ延びる断面円形の第1絶縁体18と、第1絶縁体18の外周面を包被して軸方向へ延びる断面円筒状の第2導体19(外側金属導体)とから形成されている。不平衡給電材11では、第1導体17の外周面と第1絶縁体18の内周面とが固着され、第1絶縁体18の外周面と第2導体19の内周面とが固着されている。 The wideband antenna 10A is composed of an unbalanced feeding material 11 (coaxial cable or semi-rigid cable), a resonance conductor 12, a ground conductor 13, a fixing conductor 14, a first non-feeding element 15, and a feeding element 16. The unbalanced feeding material 11 has a predetermined length and extends in the axial direction. The unbalanced feeding material 11 includes a rod-shaped elongated first conductor 17 (central metal conductor) extending in the axial direction and a first insulator 18 having a circular cross section extending in the axial direction so as to cover the outer peripheral surface of the first conductor 17. , Is formed from a second conductor 19 (outer metal conductor) having a cylindrical cross section extending in the axial direction so as to cover the outer peripheral surface of the first insulator 18. In the unbalanced feeding material 11, the outer peripheral surface of the first conductor 17 and the inner peripheral surface of the first insulator 18 are fixed, and the outer peripheral surface of the first insulator 18 and the inner peripheral surface of the second conductor 19 are fixed. ing.

不平衡給電材11は、略λ/4の長さ(所定長さ)に設定された給電部20と、給電部20に繋がる略λ/4の長さ(所定長さ)に設定された無給電部21(無給電部21の長さはλ/4に30mm程度付加可能)とを有する。給電部20は、第1導体17又は第1導体17及び第1絶縁体18から形成され、軸方向へ略直線状に延びている。無給電部21は、第1導体17と第1絶縁体18と第2導体19とから形成され、給電部20から軸方向後方へ略直線状に延びている。 The unbalanced feeding material 11 has a feeding portion 20 set to a length of approximately λ / 4 (predetermined length) and nothing set to a length of substantially λ / 4 (predetermined length) connected to the feeding portion 20. It has a power feeding unit 21 (the length of the non-feeding unit 21 can be added to λ / 4 by about 30 mm). The feeding portion 20 is formed of the first conductor 17, the first conductor 17, and the first insulator 18, and extends substantially linearly in the axial direction. The non-feeding portion 21 is formed of a first conductor 17, a first insulator 18, and a second conductor 19, and extends substantially linearly rearward from the feeding portion 20 in the axial direction.

尚、不平衡給電材11は、第1導体17や第1絶縁体18、第2導体19に加え、第2導体19の外周面を包被する第2絶縁体(図示せず)を備えていてもよい。この場合、第2導体19の外周面と第2絶縁体の内周面とが固着され、給電部20が第1導体17又は第1導体17及び第1絶縁体18から形成されるとともに、無給電部121第1導体17と第1絶縁体18と第2導体10と第2絶縁体とから形成される。第1導体17や第2導体19には、アルミニウムや銅、合金等の導電性金属を使用することができ、第1絶縁体18や第2絶縁体には、不平衡給電材11のインピーダンスを固定するための材料となる熱可塑性合成樹脂を使用することができ,プラスチック系の誘電率を有するポリテトラフルオロエチレンを使用することが好ましい。 The unbalanced feeding material 11 includes, in addition to the first conductor 17, the first insulator 18, and the second conductor 19, a second insulator (not shown) that covers the outer peripheral surface of the second conductor 19. You may. In this case, the outer peripheral surface of the second conductor 19 and the inner peripheral surface of the second insulator are fixed, and the feeding portion 20 is formed of the first conductor 17, the first conductor 17, and the first insulator 18, and is absent. The power feeding unit 121 is formed of a first conductor 17, a first insulator 18, a second conductor 10, and a second insulator. A conductive metal such as aluminum, copper, or an alloy can be used for the first conductor 17 and the second conductor 19, and the impedance of the unbalanced feeding material 11 is applied to the first insulator 18 and the second insulator. A thermoplastic synthetic resin as a material for fixing can be used, and it is preferable to use polytetrafluoroethylene having a plastic-based dielectric constant.

共振用導体12は、断面円形の軸方向へ細長い線条であり、導電性金属(アルミニウムや銅、合金等)から作られ、不平衡給電材11の給電部20と共振する。共振用導体12は、給電部20を挟んで給電部20から径方向外方へ離間して並ぶ第1共振導体部22aと第2共振導体部22bとから形成されている。第1共振導体部22a及び第2共振導体部22bは、導電性金属を線状又は棒状に成形することから作られている。 The resonance conductor 12 is an axially elongated wire having a circular cross section, is made of a conductive metal (aluminum, copper, alloy, etc.), and resonates with the feeding portion 20 of the unbalanced feeding material 11. The resonance conductor 12 is formed of a first resonance conductor portion 22a and a second resonance conductor portion 22b that are arranged radially outward from the feeding portion 20 with the feeding portion 20 interposed therebetween. The first resonance conductor portion 22a and the second resonance conductor portion 22b are made by molding a conductive metal into a linear or rod shape.

第1共振導体部22aは、その基端部が固定用導体14に電気的に連結(固定)されている。第1共振導体部22aは、不平衡給電材11(給電部20)の径方向外方へ離間するとともに、給電部20に並行して固定用導体14から軸方向前方へ延びている。第1共振導体部22aは、不平衡給電材11の給電部20(第1導体17(中心金属導体))と共振する。第2共振導体部22bは、その基端部が固定用導体14に電気的に連結(固定)されている。第2共振導体部22bは、不平衡給電材11(給電部20)を挟んで第1共振導体部22aの反対側に位置し、不平衡給電材11の径方向外方へ離間するとともに、給電部20に並行して固定用導体14から軸方向前方へ延びている。第2共振導体部22aは、不平衡給電材11の給電部20(第1導体17(中心金属導体))と共振する。 The base end portion of the first resonant conductor portion 22a is electrically connected (fixed) to the fixing conductor 14. The first resonance conductor portion 22a is separated radially outward of the unbalanced feeding material 11 (feeding portion 20), and extends axially forward from the fixing conductor 14 in parallel with the feeding portion 20. The first resonant conductor portion 22a resonates with the feeding portion 20 (first conductor 17 (central metal conductor)) of the unbalanced feeding material 11. The base end portion of the second resonant conductor portion 22b is electrically connected (fixed) to the fixing conductor 14. The second resonance conductor portion 22b is located on the opposite side of the first resonance conductor portion 22a with the unbalanced feeding material 11 (feeding portion 20) interposed therebetween, and is separated outward in the radial direction of the unbalanced feeding material 11 and fed. It extends axially forward from the fixing conductor 14 in parallel with the portion 20. The second resonant conductor portion 22a resonates with the feeding portion 20 (first conductor 17 (central metal conductor)) of the unbalanced feeding material 11.

第1共振導体部22aは、固定用導体14から軸方向前方へ向かって不平衡給電材11(給電部20)から次第に離間するように円弧を画いている。第2共振導体部22bは、固定用導体14から軸方向前方へ向かって不平衡給電材11(給電部20)から次第に離間するように円弧を画いている。尚、第1共振導体部22aが固定用導体14から軸方向前方へ向かって不平衡給電材11(給電部20)から次第に離間するように直状に延びていてもよく、第2共振導体部22bが固定用導体14から軸方向前方へ向かって不平衡給電材11(給電部20)から次第に離間するように直状に延びていてもよい。この場合、第1及び第2共振導体部22a,22bが不平衡給電材11(給電部20)に対して所定の角度で軸方向前方へ向かって末広がりに傾斜する。 The first resonance conductor portion 22a draws an arc so as to gradually separate from the unbalanced feeding material 11 (feeding portion 20) in the axially forward direction from the fixing conductor 14. The second resonance conductor portion 22b draws an arc so as to gradually separate from the unbalanced feeding material 11 (feeding portion 20) in the axially forward direction from the fixing conductor 14. The first resonance conductor portion 22a may extend linearly from the fixing conductor 14 toward the front in the axial direction so as to be gradually separated from the unbalanced feeding material 11 (feeding portion 20), and the second resonance conductor portion may be extended. The 22b may extend linearly from the fixing conductor 14 toward the front in the axial direction so as to gradually separate from the unbalanced feeding material 11 (feeding portion 20). In this case, the first and second resonant conductor portions 22a and 22b are inclined toward the front in the axial direction at a predetermined angle with respect to the unbalanced feeding material 11 (feeding portion 20).

第1共振導体部22aと第2共振導体部22bとは、不平衡給電材11の中心軸線S1に対して線対称(面対称)の関係にあり、それらの断面形状が同一であるとともに、それらの軸方向の長さL1が同一である。更に、不平衡給電材11の中心軸線S1(給電部20の中心)に対する第1共振導体部22a(内側縁)の径方向の離間寸法L2と第2共振導体部22b(内側縁)の径方向の離間寸法L2とが同一である。不平衡給電材11の給電部20は、第1及び第2共振導体部22a,22bと並行して延びる並行部分23と、並行部分23に繋がって第1及び第2共振導体部22a,22bから軸方向前方へ延出する延出部分24とを有する。 The first resonant conductor portion 22a and the second resonant conductor portion 22b have a line-symmetrical (plane-symmetrical) relationship with respect to the central axis S1 of the unbalanced feeding material 11, and have the same cross-sectional shape and they. The axial length L1 of is the same. Further, the radial separation dimension L2 of the first resonant conductor portion 22a (inner edge) from the central axis S1 (center of the feeding portion 20) of the unbalanced feeding material 11 and the radial direction of the second resonant conductor portion 22b (inner edge). The separation dimension L2 of is the same. The feeding portion 20 of the unbalanced feeding material 11 is connected to the parallel portion 23 extending in parallel with the first and second resonant conductor portions 22a and 22b and the first and second resonant conductor portions 22a and 22b connected to the parallel portion 23. It has an extension portion 24 that extends forward in the axial direction.

グラウンド用導体13は、断面円形の軸方向へ細長い線条であり、導電性金属(アルミニウムや銅、合金等)から作られ、不平衡給電材11の無給電部21と共振する。グランド用導体14は、無給電部21を挟んで無給電部21から径方向外方へ離間して並ぶ第1グランド導体部25aと第2グランド導体部25bとから形成されている。第1グランド導体部25a及び第2グランド導体部25bは、導電性金属を線状又は棒状に成形することから作られている。 The ground conductor 13 is an axially elongated wire having a circular cross section, is made of a conductive metal (aluminum, copper, alloy, etc.), and resonates with the non-feeding portion 21 of the unbalanced feeding material 11. The ground conductor 14 is formed of a first ground conductor portion 25a and a second ground conductor portion 25b that are arranged radially outward from the non-feeding portion 21 with the non-feeding portion 21 interposed therebetween. The first ground conductor portion 25a and the second ground conductor portion 25b are made by molding a conductive metal into a linear or rod shape.

第1グランド導体部25aは、その基端部が固定用導体14に電気的に連結(固定)されている。第1グランド導体部25aは、不平衡給電材11(無給電部21)の径方向外方へ離間するとともに、固定用導体14から軸方向後方へ延びている。第1グラウンド導体部25a(グランド用導体13)は、第1共振導体部22a(共振用導体12)と一体になり、第1共振導体部22aに繋がっている。第1グラウンド導体部25aは、固定用導体14から軸方向後方へ向かって不平衡給電材11(無給電部21)から次第に離間するように所定の角度で末広がりに傾斜して延びる傾斜部分26aと、傾斜部分26aから軸方向後方へ向かって不平衡給電材11(無給電部21)と並行して延びる直状部分27aとを有する。第1グランド導体部25a(傾斜部分26a、直状部分27a)は、不平衡給電材11の無給電部21(第2導体19(外側金属導体))と共振する。 The base end portion of the first ground conductor portion 25a is electrically connected (fixed) to the fixing conductor 14. The first ground conductor portion 25a is separated radially outward from the unbalanced feeding material 11 (non-feeding portion 21) and extends axially rearward from the fixing conductor 14. The first ground conductor portion 25a (ground conductor 13) is integrated with the first resonance conductor portion 22a (resonance conductor 12) and is connected to the first resonance conductor portion 22a. The first ground conductor portion 25a and the inclined portion 26a extending divergently at a predetermined angle so as to be gradually separated from the unbalanced feeding material 11 (non-feeding portion 21) from the fixing conductor 14 toward the rear in the axial direction. It has a straight portion 27a extending in parallel with the unbalanced feeding material 11 (non-feeding portion 21) from the inclined portion 26a toward the rear in the axial direction. The first ground conductor portion 25a (inclined portion 26a, straight portion 27a) resonates with the non-feeding portion 21 (second conductor 19 (outer metal conductor)) of the unbalanced feeding material 11.

第2グランド導体部25bは、その基端部が固定用導体14に電気的に連結(固定)されている。第2グランド導体部25bは、不平衡給電材11(給電部21)を挟んで第1グランド導体部25aの反対側に位置し、不平衡給電材11の径方向外方へ離間するとともに、固定用導体14から軸方向後方へ延びている。第2グラウンド導体部25b(グランド用導体13)は、第2共振導体部22b(共振用導体12)と一体になり、第2共振導体部22bに繋がっている。第2グラウンド導体部25bは、固定用導体14から軸方向後方へ向かって不平衡給電材11(給電部21)から次第に離間するように所定の角度で末広がりに傾斜して延びる傾斜部分26bと、傾斜部分26bから軸方向後方へ向かって不平衡給電材11(無給電部21)と並行して延びる直状部分27bとを有する。第2グランド導体部25b(傾斜部分26b、直状部分27b)は、不平衡給電材11の無給電部21(第2導体19(外側金属導体))と共振する。 The base end portion of the second ground conductor portion 25b is electrically connected (fixed) to the fixing conductor 14. The second ground conductor portion 25b is located on the opposite side of the first ground conductor portion 25a with the unbalanced feeding material 11 (feeding portion 21) interposed therebetween, and is separated and fixed in the radial direction of the unbalanced feeding material 11. It extends axially rearward from the conductor 14. The second ground conductor portion 25b (ground conductor 13) is integrated with the second resonance conductor portion 22b (resonance conductor 12) and is connected to the second resonance conductor portion 22b. The second ground conductor portion 25b includes an inclined portion 26b extending divergently at a predetermined angle so as to be gradually separated from the unbalanced feeding material 11 (feeding portion 21) from the fixing conductor 14 toward the rear in the axial direction. It has a straight portion 27b extending in parallel with the unbalanced feeding material 11 (non-feeding portion 21) from the inclined portion 26b toward the rear in the axial direction. The second ground conductor portion 25b (inclined portion 26b, straight portion 27b) resonates with the non-feeding portion 21 (second conductor 19 (outer metal conductor)) of the unbalanced feeding material 11.

第1グランド導体部25aと第2グランド導体部25bとは、不平衡給電材11の中心軸線S1に対して線対称(面対称)の関係にあり、それらの断面形状が同一であるとともに、それらの軸方向の長さL3が同一である。更に、不平衡給電材11の中心軸線S1(無給電部21の中心)に対する第1グランド導体部25a(内側縁)の径方向の離間寸法L4と第2グランド導体部25b(内側縁)の径方向の離間寸法L4とが同一である。不平衡給電材11の無給電部21は、第1及び第2グランド導体部25a,25bと並行して延びる並行部分28と、並行部分28につながって第1及び第2グランド導体部25a,25bから軸方向後方へ延出する延出部分29とを有する。無給電部21の延出部分29の後端(不平衡給電材11の後端)には、コネクタ30が取り付けられている。 The first ground conductor portion 25a and the second ground conductor portion 25b have a line-symmetrical (plane-symmetrical) relationship with respect to the central axis S1 of the unbalanced feeding material 11, and they have the same cross-sectional shape and they. The axial lengths L3 of are the same. Further, the radial distance dimension L4 of the first ground conductor portion 25a (inner edge) from the central axis S1 (center of the non-feeding portion 21) of the unbalanced feeding material 11 and the diameter of the second ground conductor portion 25b (inner edge). The separation dimension L4 in the direction is the same. The non-feeding portion 21 of the unbalanced feeding material 11 has a parallel portion 28 extending in parallel with the first and second ground conductor portions 25a and 25b, and a first and second ground conductor portions 25a and 25b connected to the parallel portion 28. It has an extension portion 29 extending from the rear in the axial direction. A connector 30 is attached to the rear end (rear end of the unbalanced feeding material 11) of the extending portion 29 of the non-feeding portion 21.

固定用導体14は、導電性金属(アルミニウムや銅、合金等)から作られ、リング状に成形されている。固定用導体14は、共振用導体12(第1及び第2共振導体部22a,22b)及びグランド用導体13(第1及び第2グランド導体部25a,25b)の間に位置し、不平衡給電材11(給電部20と無給電部21との境界近傍に位置する無給電部21の第2導体19(外側金属導体))に溶接(半田付け等)(固定手段)によって固定(連結)され、不平衡給電材11に電気的に接続されている。 The fixing conductor 14 is made of a conductive metal (aluminum, copper, alloy, etc.) and is formed into a ring shape. The fixing conductor 14 is located between the resonance conductor 12 (first and second resonance conductor portions 22a, 22b) and the ground conductor 13 (first and second ground conductor portions 25a, 25b), and is unbalanced. It is fixed (connected) to the material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21 located near the boundary between the feeding portion 20 and the non-feeding portion 21) by welding (soldering or the like) (fixing means). , Is electrically connected to the unbalanced feeding material 11.

第1無給電素子15は、導電性金属(アルミニウムや銅、合金等)から作られ、第1グランド導体部25aと第2グランド導体部25bとの間に位置している。第1無給電素子15は、第1無給電固定部31と第1無給電導体部32と第2無給電導体部33とから形成されている。第1無給電素子15では、第1無給電固定部31と第1無給電導体部32と第2無給電導体部33とが一体に成形されている。第1無給電固定部31は、径方向へ長い所定面積の矩形薄板状に成形され、第1グランド導体部25aの後端と第2グランド導体部25bの後端との間に位置している。第1無給電固定部31は、不平衡給電材11(無給電部21の第2導体19(外側金属導体))に加締められることで不平衡給電材11に固定(連結)され、不平衡給電材11に電気的に接続されている。尚、第1無給電固定部31が不平衡給電材11(無給電部21の第2導体19(外側金属導体))に溶接(半田付け等)(固定手段)によって固定(連結)されていてもよい。 The first non-feeding element 15 is made of a conductive metal (aluminum, copper, alloy, etc.) and is located between the first ground conductor portion 25a and the second ground conductor portion 25b. The first non-feeding element 15 is formed of a first non-feeding fixing portion 31, a first non-feeding conductor portion 32, and a second non-feeding conductor portion 33. In the first non-feeding element 15, the first non-feeding fixing portion 31, the first non-feeding conductor portion 32, and the second non-feeding conductor portion 33 are integrally formed. The first non-feeding fixing portion 31 is formed into a rectangular thin plate having a predetermined area long in the radial direction, and is located between the rear end of the first ground conductor portion 25a and the rear end of the second ground conductor portion 25b. .. The first non-feeding fixing portion 31 is fixed (connected) to the unbalanced feeding material 11 by being crimped to the unbalanced feeding material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21), and is unbalanced. It is electrically connected to the feeding material 11. The first non-feeding fixing portion 31 is fixed (connected) to the unbalanced feeding material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21) by welding (soldering or the like) (fixing means). May be good.

第1無給電導体部32は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)と第1グランド導体部25aとの間に位置し、不平衡給電材11(無給電部21)の径方向外方へ離間するとともに、第1グランド導体部25aの径方向内方へ離間している。第1無給電導体部32は、その基端部が第1無給電固定部31に繋がり、不平衡給電材11の無給電部21に並行して第1無給電固定部31から軸方向前方へ延びている。第1無給電導体部32は、軸方向の長さL5がλ/8〜λ/16である。第1無給電導体部32は、第1グランド導体部25aの直状部分27aと並行している。第1無給電導体部32には、第1グランド導体部25aに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The first non-feeding conductor portion 32 is formed into a rectangular thin plate having a predetermined area long in the axial direction, and is located between the unbalanced feeding material 11 (non-feeding portion 21) and the first ground conductor portion 25a, and is unbalanced. The feeding material 11 (non-feeding portion 21) is separated radially outward, and the first ground conductor portion 25a is separated radially inward. The base end of the first non-feeding conductor portion 32 is connected to the first non-feeding fixing portion 31, and is axially forward from the first non-feeding fixing portion 31 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. It is extending. The length L5 of the first non-feeding conductor portion 32 in the axial direction is λ / 8 to λ / 16. The first non-feeding conductor portion 32 is parallel to the straight portion 27a of the first ground conductor portion 25a. A high-frequency current flows through the first non-feeding conductor portion 32 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the first ground conductor portion 25a (one in the axial direction).

第2無給電導体部33は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)を挟んで第1無給電導体部32の反対側に位置するとともに、不平衡給電材11(無給電部21)と第2グランド導体部25bとの間に位置し、不平衡給電材11の径方向外方へ離間するとともに、第2グランド導体部25bの径方向内方へ離間している。第2無給電導体部33は、その基端部が第1無給電固定部31に繋がり、不平衡給電材11の無給電部21に並行して第1無給電固定部31から軸方向前方へ延びている。第2無給電導体部33は、軸方向の長さL5がλ/8〜λ/16である。第2無給電導体部33は、第2グランド導体部25bの直状部分27bと並行している。第2無給電導体部33には、第2グランド導体部25bに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。尚、第1無給電固定部31が固定用導体14と同様にリング状に成形され、第1無給電導体部32及び第2無給電導体部33が第1及び第2共振導体部22a,22bや第1及び第2グランド導体部25a,25bと同様に線条(線状又は棒状)に成形されていてもよい。 The second non-feeding conductor portion 33 is formed into a rectangular thin plate having a predetermined area long in the axial direction, and is located on the opposite side of the first non-feeding conductor portion 32 with the unbalanced feeding material 11 (non-feeding portion 21) interposed therebetween. At the same time, it is located between the unbalanced feeding material 11 (non-feeding portion 21) and the second ground conductor portion 25b, and is separated outward in the radial direction of the unbalanced feeding material 11 and the diameter of the second ground conductor portion 25b. Separated inward in the direction. The base end of the second non-feeding conductor portion 33 is connected to the first non-feeding fixing portion 31, and is axially forward from the first non-feeding fixing portion 31 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. It is extending. The second passive conductor portion 33 has an axial length L5 of λ / 8 to λ / 16. The second non-feeding conductor portion 33 is parallel to the straight portion 27b of the second ground conductor portion 25b. A high-frequency current flows through the second non-feeding conductor portion 33 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the second ground conductor portion 25b (one in the axial direction). The first non-feeding fixing portion 31 is formed in a ring shape like the fixing conductor 14, and the first non-feeding conductor portion 32 and the second non-feeding conductor portion 33 are the first and second resonant conductor portions 22a and 22b. And the first and second ground conductor portions 25a and 25b may be formed into striations (linear or rod-shaped).

第1無給電導体部32と第2無給電導体部33とは、不平衡給電材11(無給電部21)の中心軸線S1(無給電部21の中心)に対して線対称(面対称)の関係にあり、それらの断面形状が同一であるとともに、それらの軸方向の長さL5が同一である。更に、不平衡給電材11の中心軸線S1に対する第1無給電導体部32(内側縁)の径方向の離間寸法L6と第2無給電導体部33(内側縁)の径方向の離間寸法L6とが同一である。第1無給電素子15では、第1無給電導体部32の軸方向の長さL5に第2無給電導体部33の軸方向の長さL5を加えた長さがλ/4である。 The first non-feeding conductor portion 32 and the second non-feeding conductor portion 33 are line-symmetrical (plane-symmetrical) with respect to the central axis S1 (center of the non-feeding portion 21) of the unbalanced feeding material 11 (non-feeding portion 21). The cross-sectional shapes are the same, and their axial lengths L5 are the same. Further, the radial separation dimension L6 of the first non-feeding conductor portion 32 (inner edge) and the radial separation dimension L6 of the second non-feeding conductor portion 33 (inner edge) with respect to the central axis S1 of the unbalanced feeding material 11. Are the same. In the first non-feeding element 15, the length obtained by adding the axial length L5 of the first non-feeding conductor portion 32 to the axial length L5 of the second non-feeding conductor portion 33 is λ / 4.

給電素子16は、導電性金属(アルミニウムや銅、合金等)から作られ、所定面積を有する薄板状に成形されている。給電素子16は、共振用導体12(第1共振導体部22a及び第2共振導体部22b)の軸方向前方に位置(離間)し、不平衡給電材11(給電部21)の前端部34に設置されている。給電素子16は、給電固定部35と第1給電導体部36と第2給電導体部37とから形成されている。給電固定部35は、不平衡給電材11(第1導体17(中心金属導体))に加締められることで不平衡給電材11の前端部34に固定(連結)され、不平衡給電材11(第1導体17(中心金属導体))に電気的に接続されている。尚、給電固定部35が不平衡給電材11(第1導体17(中心金属導体))に溶接(半田付け等)(固定手段)によって固定(連結)されていてもよい。 The power feeding element 16 is made of a conductive metal (aluminum, copper, alloy, etc.) and is formed into a thin plate having a predetermined area. The feeding element 16 is positioned (separated) in the axially forward direction of the resonance conductor 12 (first resonance conductor portion 22a and second resonance conductor portion 22b), and is located at the front end portion 34 of the unbalanced feeding material 11 (feeding portion 21). is set up. The power feeding element 16 is formed of a power feeding fixing portion 35, a first feeding conductor portion 36, and a second feeding conductor portion 37. The power supply fixing portion 35 is fixed (connected) to the front end portion 34 of the unbalanced power supply material 11 by being crimped to the unbalanced power supply material 11 (first conductor 17 (central metal conductor)), and the unbalanced power supply material 11 ( It is electrically connected to the first conductor 17 (central metal conductor). The feeding fixing portion 35 may be fixed (connected) to the unbalanced feeding material 11 (first conductor 17 (central metal conductor)) by welding (soldering or the like) (fixing means).

第1給電導体部36は、径方向へ長い所定面積の薄板状に成形され、共振用導体12(第1共振導体部25a及び第2共振導体部25b)の軸方向前方に位置(離間)し、給電固定部35(不平衡給電材11の前端部34)から径方向外方へ延びている。第1給電導体部36の後端部38の外周縁には、後端部38の円弧を画く後端から径方向へ直状に延びる前端に向かって階段状に並ぶ(階段状に凹む)同形同大の複数の第1段差部分39が形成されている。第1給電導体部36は、共振用導体12の第1共振導体部22aと共振する。 The first feeding conductor portion 36 is formed into a thin plate having a predetermined area long in the radial direction, and is positioned (separated) in the axially forward direction of the resonance conductor 12 (the first resonance conductor portion 25a and the second resonance conductor portion 25b). , It extends radially outward from the power feeding fixing portion 35 (front end portion 34 of the unbalanced feeding material 11). On the outer peripheral edge of the rear end 38 of the first feeding conductor portion 36, the rear end 38 is lined up in a staircase pattern (recessed in a staircase shape) toward the front end extending linearly in the radial direction from the rear end drawing an arc. A plurality of first stepped portions 39 having the same shape are formed. The first feeding conductor portion 36 resonates with the first resonance conductor portion 22a of the resonance conductor 12.

第2給電導体部37は、径方向へ長い所定面積の薄板状に成形され、共振用導体12(第1共振導体部25a及び第2共振導体部25b)の軸方向前方に位置(離間)し、給電固定部35(不平衡給電材11の前端部34)から径方向外方へ延びている。第2給電導体部37の後端部38の外周縁には、後端部38の円弧を画く後端から径方向へ直状に延びる前端に向かって階段状に並ぶ(階段状に凹む)同形同大の複数の第2段差部分40が形成されている。第2給電導体部37は、共振用導体12の第2共振導体部25bと共振する。第1給電導体部36と第2給電導体部37とは、不平衡給電材の中心軸線S1(給電部20の中心)に対して線対称の関係にあり、それらの平面形状が同一(同形同大)であるとともに、それらの面積が同一である。 The second feeding conductor portion 37 is formed into a thin plate having a predetermined area long in the radial direction, and is positioned (separated) in the axially forward direction of the resonance conductor 12 (the first resonance conductor portion 25a and the second resonance conductor portion 25b). , It extends radially outward from the power feeding fixing portion 35 (front end portion 34 of the unbalanced feeding material 11). The outer peripheral edge of the rear end portion 38 of the second feeding conductor portion 37 is lined up in a staircase pattern (recessed in a staircase shape) toward the front end extending linearly in the radial direction from the rear end drawing an arc of the rear end portion 38. A plurality of second stepped portions 40 having the same shape are formed. The second feeding conductor portion 37 resonates with the second resonance conductor portion 25b of the resonance conductor 12. The first feeding conductor portion 36 and the second feeding conductor portion 37 have a line-symmetrical relationship with respect to the central axis S1 (center of the feeding portion 20) of the unbalanced feeding material, and their planar shapes are the same (same shape). The same size) and their areas are the same.

図4は、他の一例として示す広帯域アンテナ10Bの斜視図である。図4では、軸方向を矢印X、径方向を矢印Yで示すとともに、軸方向前方を矢印X1で示し、軸方向後方を矢印X2で示す。図4の広帯域アンテナ10Bが図1のそれと異なるところは、第2無給電素子41を有する点にあり、その他の構成は図1の広帯域アンテナ10Aのそれらと同一であるから、図1と同一の符号を付すとともに、図1の広帯域アンテナ10Aの説明を援用することで、この広帯域アンテナ10Bのその他の構成の説明は省略する。 FIG. 4 is a perspective view of the wideband antenna 10B shown as another example. In FIG. 4, the axial direction is indicated by an arrow X, the radial direction is indicated by an arrow Y, the axial front is indicated by an arrow X1, and the axial rear is indicated by an arrow X2. The wideband antenna 10B of FIG. 4 is different from that of FIG. 1 in that it has a second non-feeding element 41, and the other configurations are the same as those of the wideband antenna 10A of FIG. By adding reference numerals and referring to the description of the wideband antenna 10A of FIG. 1, the description of other configurations of the wideband antenna 10B will be omitted.

広帯域アンテナ10Bは、不平衡給電材11(同軸ケーブル又はセミリジットケーブル)と共振用導体12とグラウンド用導体13と固定用導体14と第1無給電素子15と第2無給電素子41と給電素子16とから形成されている。不平衡給電材11や共振用導体12、グラウンド用導体13、固定用導体14、第1無給電素子15、給電素子16は、図1の広帯域アンテナ10Aのそれらと同一である。 The wideband antenna 10B includes an unbalanced feeding material 11 (coaxial cable or semi-rigid cable), a resonance conductor 12, a ground conductor 13, a fixing conductor 14, a first non-feeding element 15, a second non-feeding element 41, and a feeding element 16. It is formed from and. The unbalanced feeding material 11, the resonance conductor 12, the ground conductor 13, the fixing conductor 14, the first non-feeding element 15, and the feeding element 16 are the same as those of the wideband antenna 10A of FIG.

第2無給電素子41は、導電性金属(アルミニウムや銅、合金等)から作られ、第1グランド導体部25aと第2グランド導体部25bとの間であって第1無給電素子15の軸方向前方に位置し、第1無給電素子15に対向している。第2無給電素子41は、第2無給電固定部42と第3無給電導体部43と第4無給電導体部44とから形成されている。第2無給電素子41では、第2無給電固定部42と第3無給電導体部43と第4無給電導体部44とが一体に成形されている。第2無給電固定部42は、径方向へ長い所定面積の矩形薄板状に成形され、第1グランド導体部25aの傾斜部分26aと第2グランド導体部25bの傾斜部分26bとの間に位置している。第2無給電固定部41は、不平衡給電材11(無給電部21の第2導体19(外側金属導体))に加締められることで不平衡給電材11に固定(連結)され、不平衡給電材11に電気的に接続されている。尚、第2無給電固定部42が不平衡給電材11(無給電部21の第2導体19(外側金属導体))に溶接(半田付け等)(固定手段)によって固定(連結)されていてもよい。 The second non-feeding element 41 is made of a conductive metal (aluminum, copper, alloy, etc.), and is between the first ground conductor portion 25a and the second ground conductor portion 25b, and is the shaft of the first non-feeding element 15. It is located forward in the direction and faces the first non-feeding element 15. The second non-feeding element 41 is formed of a second non-feeding fixing portion 42, a third non-feeding conductor portion 43, and a fourth non-feeding conductor portion 44. In the second non-feeding element 41, the second non-feeding fixing portion 42, the third non-feeding conductor portion 43, and the fourth non-feeding conductor portion 44 are integrally formed. The second non-feeding fixing portion 42 is formed into a rectangular thin plate having a predetermined area long in the radial direction, and is located between the inclined portion 26a of the first ground conductor portion 25a and the inclined portion 26b of the second ground conductor portion 25b. ing. The second non-feeding fixing portion 41 is fixed (connected) to the unbalanced feeding material 11 by being crimped to the unbalanced feeding material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21), and is unbalanced. It is electrically connected to the feeding material 11. The second non-feeding fixing portion 42 is fixed (connected) to the unbalanced feeding material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21) by welding (soldering or the like) (fixing means). May be good.

第3無給電導体部43は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)と第1グランド導体部25aとの間に位置しつつ、第1無給電導体部32の軸方向前方に位置している。第3無給電導体部43は、不平衡給電材11(無給電部21)の径方向外方へ離間するとともに、第1グランド導体部25aの径方向内方へ離間している。第3無給電導体部43は、その基端部が第2無給電固定部42に繋がり、不平衡給電材11の無給電部21に並行して第2無給電固定部42から軸方向後方へ延びている。第3無給電導体部43は、第1グランド導体部25aの並行部分27aと並行している。第3無給電導体部43には、第1グランド導体部25aに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The third non-feeding conductor portion 43 is formed into a rectangular thin plate having a predetermined area long in the axial direction, and is located between the unbalanced feeding material 11 (non-feeding portion 21) and the first ground conductor portion 25a. 1 It is located in front of the non-feeding conductor portion 32 in the axial direction. The third non-feeding conductor portion 43 is separated in the radial direction of the unbalanced feeding material 11 (non-feeding portion 21) and inward in the radial direction of the first ground conductor portion 25a. The base end portion of the third non-feeding conductor portion 43 is connected to the second non-feeding fixing portion 42, and the third non-feeding conductor portion 43 is axially rearward from the second non-feeding fixing portion 42 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. It is extending. The third non-feeding conductor portion 43 is parallel to the parallel portion 27a of the first ground conductor portion 25a. A high-frequency current flows through the third non-feeding conductor portion 43 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the first ground conductor portion 25a (one in the axial direction).

第4無給電導体部44は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)を挟んで第3無給電導体部43の反対側に位置するとともに、不平衡給電材11(無給電部21)と第2グランド導体部25bとの間に位置しつつ、第2無給電導体部33の軸方向前方に位置している。第4無給電導体部44は、不平衡給電材11(無給電部21)の径方向外方へ離間するとともに、第2グランド導体部25bの径方向内方へ離間している。第4無給電導体部44は、その基端部が第2無給電固定部42に繋がり、不平衡給電材11の無給電部21に並行して第2無給電固定部42から軸方向後方へ延びている。第4無給電導体部44は、第2グランド導体部25bの並行部分27bと並行している。第4無給電導体部44には、第2グランド導体部25bに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。尚、第1無給電固定部31や第2無給電固定部42が固定用導体14と同様にリング状に成形され、第1無給電導体部32及び第2無給電導体部33や第3無給電導体部43及び第4無給電導体部44が第1及び第2共振導体部22a,22bや第1及び第2グランド導体部25a,25bと同様に線条(線状又は棒状)に成形されていてもよい。 The fourth non-feeding conductor portion 44 is formed into a rectangular thin plate having a predetermined area long in the axial direction, and is located on the opposite side of the third non-feeding conductor portion 43 with the unbalanced feeding material 11 (non-feeding portion 21) interposed therebetween. At the same time, it is located between the unbalanced feeding material 11 (non-feeding portion 21) and the second ground conductor portion 25b, and is located axially forward of the second non-feeding conductor portion 33. The fourth non-feeding conductor portion 44 is separated in the radial direction of the unbalanced feeding material 11 (non-feeding portion 21) and inward in the radial direction of the second ground conductor portion 25b. The base end portion of the fourth non-feeding conductor portion 44 is connected to the second non-feeding fixing portion 42, and the fourth non-feeding conductor portion 44 is axially rearward from the second non-feeding fixing portion 42 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. It is extending. The fourth passive conductor portion 44 is parallel to the parallel portion 27b of the second ground conductor portion 25b. A high-frequency current flows through the fourth non-feeding conductor portion 44 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the second ground conductor portion 25b (one in the axial direction). The first non-feeding fixing portion 31 and the second non-feeding fixing portion 42 are formed in a ring shape in the same manner as the fixing conductor 14, and the first non-feeding conductor portion 32, the second non-feeding conductor portion 33, and the third non-feeding conductor portion 33 are formed. The feeding conductor portion 43 and the fourth non-feeding conductor portion 44 are formed into stripes (linear or rod-shaped) in the same manner as the first and second resonant conductor portions 22a and 22b and the first and second ground conductor portions 25a and 25b. May be.

第3無給電導体部43と第4無給電導体部44とは、不平衡給電材11の中心軸線S1(無給電部21の中心)に対して線対称(面対称)の関係にあり、それらの断面形状が同一であるとともに、それらの軸方向の長さL7が同一である。更に、不平衡給電材11の中心軸線S1に対する第3無給電導体部43(内側縁)の径方向の離間寸法L8と第4無給電導体部44(内側縁)の径方向の離間寸法L8とが同一である。 The third non-feeding conductor portion 43 and the fourth non-feeding conductor portion 44 have a line symmetry (plane symmetry) with respect to the central axis S1 (center of the non-feeding portion 21) of the unbalanced feeding material 11. The cross-sectional shapes of the above are the same, and their axial lengths L7 are the same. Further, a radial separation dimension L8 of the third non-feeding conductor portion 43 (inner edge) and a radial separation dimension L8 of the fourth non-feeding conductor portion 44 (inner edge) with respect to the central axis S1 of the unbalanced feeding material 11. Are the same.

広帯域アンテナ10Bでは、第1無給電導体部32の軸方向の長さL5及び第2無給電導体部33の軸方向の長さL5がλ/8〜λ/16であり、第3無給電導体部43の軸方向の長さL7及び第4無給電導体部44の軸方向の長さL7がλ/8〜λ/16である。第1無給電導体部32の軸方向の長さL5及び第2無給電導体部33の軸方向の長さL5がλ/8であり、第3無給電導体部43の軸方向の長さL7及び第4無給電導体部44の軸方向の長さL7がλ/8である場合、第1無給電導体部32の長さL5に第2無給電導体部33の長さL5を加えた長さ(2×L5)がλ/4であり、第3無給電導体部43の長さL7に第4無給電導体部44の長さL7を加えた長さ(2×L7)がλ/4である。又、第1無給電導体部32の軸方向の長さL5及び第2無給電導体部33の軸方向の長さL5がλ/16であり、第3無給電導体部43の軸方向の長さL7及び第4無給電導体部44の軸方向の長さL7がλ/16である場合、第1無給電導体部32の長さL5に第2無給電導体部33の長さL5を加えた長さ(2×L5)がλ/8であり、第3無給電導体部43の長さL7に第4無給電導体部44の長さL7を加えた長さ(2×L7)がλ/8であり、第1及び第2無給電導体部32,33の軸方向の長さ(2×L5)に第3及び第4無給電導体部43,44の軸方向の長さ(2×L7)を加えた長さがλ/4である。 In the wideband antenna 10B, the axial length L5 of the first non-feeding conductor portion 32 and the axial length L5 of the second non-feeding conductor portion 33 are λ / 8 to λ / 16, and the third non-feeding conductor The axial length L7 of the portion 43 and the axial length L7 of the fourth non-feeding conductor portion 44 are λ / 8 to λ / 16. The axial length L5 of the first non-feeding conductor portion 32 and the axial length L5 of the second non-feeding conductor portion 33 are λ / 8, and the axial length L7 of the third non-feeding conductor portion 43. And when the axial length L7 of the fourth non-feeding conductor portion 44 is λ / 8, the length L5 of the first non-feeding conductor portion 32 plus the length L5 of the second non-feeding conductor portion 33 is added. (2 × L5) is λ / 4, and the length (2 × L7) obtained by adding the length L7 of the third non-feeding conductor portion 43 to the length L7 of the fourth non-feeding conductor portion 44 is λ / 4. Is. Further, the axial length L5 of the first non-feeding conductor portion 32 and the axial length L5 of the second non-feeding conductor portion 33 are λ / 16, and the axial length of the third non-feeding conductor portion 43. When the axial length L7 of the L7 and the fourth non-feeding conductor portion 44 is λ / 16, the length L5 of the second non-feeding conductor portion 33 is added to the length L5 of the first non-feeding conductor portion 32. The length (2 × L5) is λ / 8, and the length (2 × L7) obtained by adding the length L7 of the third non-feeding conductor portion 43 to the length L7 of the fourth non-feeding conductor portion 44 is λ. / 8, and the axial lengths (2 × L5) of the first and second non-feeding conductors 32 and 33 and the axial lengths (2 ×) of the third and fourth non-feeding conductors 43 and 44. The length to which L7) is added is λ / 4.

広帯域アンテナ10Bでは、第1無給電素子15の第1無給電導体部32の前端45が第2無給電素子41の第3無給電導体部43の後端46から軸方向後方へわずかに離間(1〜5mmの範囲)し、第1無給電導体部32の前端45と第3無給電導体部43の後端46との間にクリアランス(わずかな隙間)が形成されている。第1無給電素子15の第2無給電導体部33の前端45が第2無給電素子41の第4無給電導体部44の後端46から軸方向後方へわずかに離間(1〜5mmの範囲)し、第2無給電導体部33の前端45と第4無給電導体部44の後端46との間にクリアランス(わずかな隙間)が形成されている。 In the wideband antenna 10B, the front end 45 of the first non-feeding conductor portion 32 of the first non-feeding element 15 is slightly separated axially rearward from the rear end 46 of the third non-feeding conductor portion 43 of the second non-feeding element 41. A clearance (slight gap) is formed between the front end 45 of the first non-feeding conductor portion 32 and the rear end 46 of the third non-feeding conductor portion 43). The front end 45 of the second non-feeding conductor portion 33 of the first non-feeding element 15 is slightly separated axially rearward from the rear end 46 of the fourth non-feeding conductor portion 44 of the second non-feeding element 41 (range of 1 to 5 mm). ), And a clearance (slight gap) is formed between the front end 45 of the second non-feeding conductor portion 33 and the rear end 46 of the fourth non-feeding conductor portion 44.

尚、図8の広帯域アンテナ10Dと同様に、第1無給電導体部が上となり第3無給電導体部が下となった状態で、第1無給電導体部と第3無給電導体部とが広帯域アンテナの厚み方向へ離間対向して並び、第2無給電導体部が上となり第4無給電導体部が下となった状態で、第2無給電導体部と第4無給電導体部とが広帯域アンテナの厚み方向へ離間対向して並んでいてもよい。 Similar to the wideband antenna 10D of FIG. 8, the first non-feeding conductor portion and the third non-feeding conductor portion are in a state where the first non-feeding conductor portion is on the top and the third non-feeding conductor portion is on the bottom. The second non-feeding conductor portion and the fourth non-feeding conductor portion are arranged in a state where the second non-feeding conductor portion is on the top and the fourth non-feeding conductor portion is on the bottom. The wideband antennas may be arranged so as to be separated from each other in the thickness direction.

図5は、他の一例として示す広帯域アンテナ10Cの斜視図であり、図6は、図5のC−C線端面図であり、図7は、図5のD−D線端面図である。図5では、軸方向を矢印X、径方向を矢印Yで示すとともに、軸方向前方を矢印X1で示し、軸方向後方を矢印X2で示す。図6,7では、厚み方向を矢印Zで示す。図5では、中心軸線S1を点線で示す。図5の広帯域アンテナ10Cが図1のそれと異なるところは、共振用導体12とグラウンド用導体13と固定用導体14とが矩形の薄板状に成形されている点にあり、その他の構成は図1の広帯域アンテナ10Aのそれらと同一であるから、図1の広帯域アンテナ10Aの説明を援用することで、広帯域アンテナ10Cのその他の構成の説明は省略する。 5 is a perspective view of the wideband antenna 10C shown as another example, FIG. 6 is a CC line end view of FIG. 5, and FIG. 7 is a DD line end view of FIG. In FIG. 5, the axial direction is indicated by an arrow X, the radial direction is indicated by an arrow Y, the axial front is indicated by an arrow X1, and the axial rear is indicated by an arrow X2. In FIGS. 6 and 7, the thickness direction is indicated by an arrow Z. In FIG. 5, the central axis S1 is shown by a dotted line. The wideband antenna 10C of FIG. 5 differs from that of FIG. 1 in that the resonance conductor 12, the ground conductor 13, and the fixing conductor 14 are formed in a rectangular thin plate shape, and the other configurations are shown in FIG. Since it is the same as that of the wideband antenna 10A of the above, the description of other configurations of the wideband antenna 10C will be omitted by referring to the description of the wideband antenna 10A of FIG.

広帯域アンテナ10Cは、不平衡給電材11(同軸ケーブル又はセミリジットケーブル)と共振用導体12とグラウンド用導体13と固定用導体14と第1無給電素子15と給電素子16とから形成されている。不平衡給電材11や第1無給電素子15、給電素子16は、図1の広帯域アンテナ10Aのそれらと同一である。共振用導体12は、導電性金属(アルミニウムや銅、合金等)から作られ、所定の厚みを有する所定面積の薄板状に成形されている。共振用導体12は、不平衡給電材11の給電部20と共振する。共振用導体12は、給電部20を挟んで径方向へ離間して並ぶ第1共振導体部22aと第2共振導体部22bとから形成されている。 The wideband antenna 10C is composed of an unbalanced feeding material 11 (coaxial cable or semi-rigid cable), a resonance conductor 12, a ground conductor 13, a fixing conductor 14, a first non-feeding element 15, and a feeding element 16. The unbalanced feeding material 11, the first non-feeding element 15, and the feeding element 16 are the same as those of the wideband antenna 10A of FIG. The resonance conductor 12 is made of a conductive metal (aluminum, copper, alloy, etc.) and is formed into a thin plate having a predetermined thickness and a predetermined area. The resonance conductor 12 resonates with the feeding portion 20 of the unbalanced feeding material 11. The resonance conductor 12 is formed of a first resonance conductor portion 22a and a second resonance conductor portion 22b that are radially spaced apart from each other with the feeding portion 20 in between.

第1共振導体部22aは、導電性金属を所定面積の矩形薄板状に成形することから作られ、その平面形状が軸方向へ長い長方形である。第1共振導体部22aは、その基端部が固定用導体14に電気的に連結(固定)されている。第1共振導体部22aは、不平衡給電材11(給電部20)の径方向外方へ離間するとともに、給電部20に並行して固定用導体14から軸方向前方へ直状に延びている。第1共振導体部22aは、不平衡給電材11の給電部20(第1導体17(中心金属導体))と共振する。 The first resonance conductor portion 22a is made by molding a conductive metal into a rectangular thin plate having a predetermined area, and the planar shape thereof is a rectangle long in the axial direction. The base end portion of the first resonant conductor portion 22a is electrically connected (fixed) to the fixing conductor 14. The first resonant conductor portion 22a is separated radially outward of the unbalanced feeding material 11 (feeding portion 20), and extends linearly forward from the fixing conductor 14 in parallel with the feeding portion 20. .. The first resonant conductor portion 22a resonates with the feeding portion 20 (first conductor 17 (central metal conductor)) of the unbalanced feeding material 11.

第2共振導体部22bは、導電性金属を所定面積の矩形薄板状に成形することから作られ、その平面形状が軸方向へ長い長方形である。第2共振導体部22bは、その基端部が固定用導体14に電気的に固定(連結)されている。第2共振導体部22bは、不平衡給電材11(給電部20)を挟んで第1共振導体部22aの反対側に位置し、不平衡給電材11の径方向外方へ離間するとともに、給電部20に並行して固定用導体14から軸方向前方へ延びている。第2共振導体部22aは、不平衡給電材11の給電部20(第1導体17(中心金属導体))と共振する。 The second resonant conductor portion 22b is made by molding a conductive metal into a rectangular thin plate having a predetermined area, and the planar shape thereof is a rectangle long in the axial direction. The base end portion of the second resonant conductor portion 22b is electrically fixed (connected) to the fixing conductor 14. The second resonance conductor portion 22b is located on the opposite side of the first resonance conductor portion 22a with the unbalanced feeding material 11 (feeding portion 20) interposed therebetween, and is separated outward in the radial direction of the unbalanced feeding material 11 and fed. It extends axially forward from the fixing conductor 14 in parallel with the portion 20. The second resonant conductor portion 22a resonates with the feeding portion 20 (first conductor 17 (central metal conductor)) of the unbalanced feeding material 11.

第1共振導体部22aと第2共振導体部22bとは、不平衡給電材11の中心軸線S1(給電部20の中心)に対して線対称(面対称)の関係にあり、それらの平面形状が同一であるとともに、それらの軸方向の長さL1が同一である。更に、不平衡給電材11の中心軸線S1に対する第1共振導体部22a(内側縁)の径方向の離間寸法L2と第2共振導体部22b(内側縁)の径方向の離間寸法L2とが同一である。 The first resonant conductor portion 22a and the second resonant conductor portion 22b have a line symmetry (plane symmetry) with respect to the central axis S1 (center of the feeding portion 20) of the unbalanced feeding material 11, and their planar shapes. Are the same, and their axial lengths L1 are the same. Further, the radial separation dimension L2 of the first resonance conductor portion 22a (inner edge) and the radial separation dimension L2 of the second resonance conductor portion 22b (inner edge) with respect to the central axis S1 of the unbalanced feeding material 11 are the same. Is.

グラウンド用導体13は、導電性金属(アルミニウムや銅、合金等)から作られ、所定の厚みを有する所定面積の薄板状に成形されている。グラウンド用導体13は、不平衡給電材11の無給電部21と共振する。グランド用導体14は、無給電部21を挟んで径方向へ離間して並ぶ第1グランド導体部25aと第2グランド導体部25bとから形成されている。 The ground conductor 13 is made of a conductive metal (aluminum, copper, alloy, etc.) and is formed into a thin plate having a predetermined thickness and a predetermined area. The ground conductor 13 resonates with the non-feeding portion 21 of the unbalanced feeding material 11. The ground conductor 14 is formed of a first ground conductor portion 25a and a second ground conductor portion 25b that are arranged radially apart with respect to the non-feeding portion 21.

第1グランド導体部25aは、導電性金属を所定面積の矩形薄板状に成形することから作られ、その平面形状が軸方向へ長い長方形である。第1グランド導体部25aは、第1共振導体部22a(共振用導体12)と一体になり、その基端部が固定用導体14に電気的に連結(固定)されている。第1グランド導体部25aは、不平衡給電材11(給電部20)の径方向外方へ離間するとともに、給電部20に並行して固定用導体14から軸方向後方へ延びている。第1グランド導体部25aは、不平衡給電材11の無給電部21(第2導体19(外側金属導体))と共振する。 The first ground conductor portion 25a is made by molding a conductive metal into a rectangular thin plate having a predetermined area, and the planar shape thereof is a rectangle long in the axial direction. The first ground conductor portion 25a is integrated with the first resonance conductor portion 22a (resonance conductor 12), and its base end portion is electrically connected (fixed) to the fixing conductor 14. The first ground conductor portion 25a is separated radially outward of the unbalanced feeding material 11 (feeding portion 20), and extends axially rearward from the fixing conductor 14 in parallel with the feeding portion 20. The first ground conductor portion 25a resonates with the non-feeding portion 21 (second conductor 19 (outer metal conductor)) of the unbalanced feeding material 11.

第2グランド導体部25bは、導電性金属を所定面積の矩形薄板状に成形することから作られ、その平面形状が軸方向へ長い長方形である。第2グランド導体部25bは、第2共振導体部22b(共振用導体12)と一体になり、その基端部が固定用導体14に電気的に連結(固定)されている。第2グランド導体部25bは、不平衡給電材11(給電部21)の径方向外方へ離間するとともに、給電部21に並行して固定用導体14から軸方向後方へ延びている。第2グランド導体部25bは、不平衡給電材11の無給電部21(第2導体19(外側金属導体))と共振する。 The second ground conductor portion 25b is made by molding a conductive metal into a rectangular thin plate having a predetermined area, and the planar shape thereof is a rectangle long in the axial direction. The second ground conductor portion 25b is integrated with the second resonance conductor portion 22b (resonance conductor 12), and its base end portion is electrically connected (fixed) to the fixing conductor 14. The second ground conductor portion 25b is separated radially outward of the unbalanced feeding material 11 (feeding portion 21), and extends axially rearward from the fixing conductor 14 in parallel with the feeding portion 21. The second ground conductor portion 25b resonates with the non-feeding portion 21 (second conductor 19 (outer metal conductor)) of the unbalanced feeding material 11.

第1グランド導体部25aと第2グランド導体部25bとは、不平衡給電材11の中心軸線S1(無給電部21の中心)に対して線対称(面対称)の関係にあり、それらの平面形状が同一であるとともに、それらの軸方向の長さL3が同一である。更に、不平衡給電材11の中心軸線S1に対する第1グランド導体部25a(内側縁)の径方向の離間寸法L4と第2グランド導体部25b(内側縁)の径方向の離間寸法L4とが同一である。 The first ground conductor portion 25a and the second ground conductor portion 25b have a line symmetry (plane symmetry) with respect to the central axis S1 (center of the non-feeding portion 21) of the unbalanced feeding material 11, and their planes. The shapes are the same, and their axial lengths L3 are the same. Further, the radial separation dimension L4 of the first ground conductor portion 25a (inner edge) and the radial separation dimension L4 of the second ground conductor portion 25b (inner edge) with respect to the central axis S1 of the unbalanced feeding material 11 are the same. Is.

固定用導体14は、導電性金属(アルミニウムや銅、合金等)を所定面積の矩形薄板状に成形することから作られ、その平面形状が径方向へ長い長方形である。固定用導体14は、共振用導体12(第1及び第2共振導体部22a,22b)及びグランド用導体13(第1及び第2グランド導体部25a,25b)の間に位置し、不平衡給電材11(給電部20と無給電部21との境界近傍に位置する無給電部21の第2導体19(外側金属導体))に加締められることで不平衡給電材11に固定(連結)され、不平衡給電材11に電気的に接続されている。尚、固定用導体14が不平衡給電材11(給電部20と無給電部21との境界近傍に位置する無給電部21の第2導体19(外側金属導体))に溶接(半田付け等)(固定手段)によって固定(連結)されていてもよい。又、第1無給電固定部31が図1の固定用導体14と同様にリング状に成形され、第1無給電導体部32及び第2無給電導体部33が図1の第1及び第2共振導体部22a,22bや第1及び第2グランド導体部25a,25bと同様に線条(線状又は棒状)に成形されていてもよい。 The fixing conductor 14 is made by molding a conductive metal (aluminum, copper, alloy, etc.) into a rectangular thin plate having a predetermined area, and the planar shape thereof is a rectangle long in the radial direction. The fixing conductor 14 is located between the resonance conductor 12 (first and second resonance conductor portions 22a, 22b) and the ground conductor 13 (first and second ground conductor portions 25a, 25b), and is unbalanced power supply. It is fixed (connected) to the unbalanced feeding material 11 by being crimped to the material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21 located near the boundary between the feeding portion 20 and the non-feeding portion 21). , Is electrically connected to the unbalanced feeding material 11. The fixing conductor 14 is welded (soldered, etc.) to the unbalanced feeding material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21 located near the boundary between the feeding portion 20 and the non-feeding portion 21). It may be fixed (connected) by (fixing means). Further, the first non-feeding fixing portion 31 is formed in a ring shape like the fixing conductor 14 of FIG. 1, and the first non-feeding conductor portion 32 and the second non-feeding conductor portion 33 are the first and second conductors of FIG. Similar to the resonant conductor portions 22a and 22b and the first and second ground conductor portions 25a and 25b, they may be formed into linear lines (linear or rod-shaped).

図8は、他の一例として示す広帯域アンテナ10Dの斜視図であり、図9は、図8のE−E線端面図である。図8では、軸方向を矢印X、径方向を矢印Yで示すとともに、軸方向前方を矢印X1で示し、軸方向後方を矢印X2で示す。図9では、厚み方向を矢印Zで示す。図8の広帯域アンテナ10Dが図5のそれと異なるところは、第2無給電素子41を有する点にあり、その他の構成は図5の広帯域アンテナ10Cのそれらと同一であるから、図1と同一の符号を付すとともに、図1の広帯域アンテナ10A及び図5の広帯域アンテナ10Cの説明を援用することで、この広帯域アンテナ10Dのその他の構成の説明は省略する。 FIG. 8 is a perspective view of the wideband antenna 10D shown as another example, and FIG. 9 is an end view of the line EE of FIG. In FIG. 8, the axial direction is indicated by an arrow X, the radial direction is indicated by an arrow Y, the axial front is indicated by an arrow X1, and the axial rear is indicated by an arrow X2. In FIG. 9, the thickness direction is indicated by an arrow Z. The wideband antenna 10D of FIG. 8 is different from that of FIG. 5 in that it has a second non-feeding element 41, and the other configurations are the same as those of the wideband antenna 10C of FIG. The description of the other configurations of the wideband antenna 10D will be omitted by adding reference numerals and referring to the description of the wideband antenna 10A of FIG. 1 and the wideband antenna 10C of FIG.

広帯域アンテナ10Dは、不平衡給電材11(同軸ケーブル又はセミリジットケーブル)と共振用導体12とグラウンド用導体13と固定用導体14と第1無給電素子15と第2無給電素子41と給電素子16とから形成されている。不平衡給電材11や第1無給電素子15、給電素子16は、図1の広帯域アンテナ10Aのそれらと同一であり、共振用導体12やグラウンド用導体13、固定用導体14は、図5の広帯域アンテナ10Cのそれらと同一である。第2無給電素子41は、図4の広帯域アンテナ10Bのそれと同一である。 The wideband antenna 10D includes an unbalanced feeding material 11 (coaxial cable or semi-rigid cable), a resonance conductor 12, a ground conductor 13, a fixing conductor 14, a first non-feeding element 15, a second non-feeding element 41, and a feeding element 16. It is formed from and. The unbalanced feeding material 11, the first non-feeding element 15, and the feeding element 16 are the same as those of the wideband antenna 10A of FIG. 1, and the resonance conductor 12, the ground conductor 13, and the fixing conductor 14 are shown in FIG. It is the same as those of the wideband antenna 10C. The second non-feeding element 41 is the same as that of the wideband antenna 10B of FIG.

第1無給電素子15の第1無給電導体部32は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部)21と矩形薄板状の第1グランド導体部25aとの間に位置し、不平衡給電材11の径方向外方へ離間するとともに、第1グランド導体部25aの径方向内方へ離間し、不平衡給電材11の無給電部21に並行して第1無給電固定部31から軸方向前方へ延びている。第1無給電導体部32は、矩形薄板状の第1グランド導体部25aと並行している。第1無給電導体部32には、第1グランド導体部25aに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The first non-feeding conductor portion 32 of the first non-feeding element 15 is formed into a rectangular thin plate shape having a predetermined area long in the axial direction, and the unbalanced feeding material 11 (non-feeding portion) 21 and the rectangular thin plate-shaped first ground conductor. It is located between the unbalanced power supply material 11 and is separated in the radial direction of the unbalanced power feeding material 11 and is separated in the radial direction of the first ground conductor portion 25a to the non-feeding portion 21 of the unbalanced feeding material 11. In parallel, it extends forward in the axial direction from the first non-feeding fixing portion 31. The first non-feeding conductor portion 32 is parallel to the rectangular thin plate-shaped first ground conductor portion 25a. A high-frequency current flows through the first non-feeding conductor portion 32 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the first ground conductor portion 25a (one in the axial direction).

第1無給電素子15の第2無給電導体部33は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)を挟んで第1無給電導体部32の反対側に位置するとともに、不平衡給電材11と矩形薄板状の第2グランド導体部25bとの間に位置し、不平衡給電材11の径方向外方へ離間するとともに、第2グランド導体部25bの径方向内方へ離間している。第2無給電導体部33は、不平衡給電材11の無給電部21に並行して第1無給電固定部31から軸方向前方へ延びている。第2無給電導体部33は、矩形薄板状の第2グランド導体部25bの並行部分と並行している。第2無給電導体部33には、第2グランド導体部25bに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The second non-feeding conductor portion 33 of the first non-feeding element 15 is formed into a rectangular thin plate having a predetermined area long in the axial direction, and the first non-feeding conductor portion sandwiches the unbalanced feeding material 11 (non-feeding portion 21). It is located on the opposite side of 32, and is located between the unbalanced feeding material 11 and the rectangular thin plate-shaped second ground conductor portion 25b, is separated radially outward of the unbalanced feeding material 11, and is separated from the second ground. The conductor portion 25b is separated inward in the radial direction. The second non-feeding conductor portion 33 extends axially forward from the first non-feeding fixing portion 31 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. The second non-feeding conductor portion 33 is parallel to the parallel portion of the rectangular thin plate-shaped second ground conductor portion 25b. A high-frequency current flows through the second non-feeding conductor portion 33 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the second ground conductor portion 25b (one in the axial direction).

第2無給電素子41の第3無給電導体部43は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)と矩形薄板状の第1グランド導体部25aとの間に位置しつつ、第1無給電導体部32の軸方向前方に位置し、不平衡給電材11の径方向外方へ離間するとともに、第1グランド導体部25aの径方向内方へ離間している。第3無給電導体部43は、不平衡給電材11の無給電部21に並行して第2無給電固定部42から軸方向後方へ延びている。第3無給電導体部43は、矩形薄板状の第1グランド導体部25aと並行している。第3無給電導体部43には、第1グランド導体部25aに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The third non-feeding conductor portion 43 of the second non-feeding element 41 is formed into a rectangular thin plate shape having a predetermined area long in the axial direction, and the unbalanced feeding material 11 (non-feeding portion 21) and the rectangular thin plate-shaped first ground conductor. Although it is located between the portion 25a and the first non-feeding conductor portion 32 in the axial direction, it is separated radially outward of the unbalanced feeding material 11 and within the radial direction of the first ground conductor portion 25a. It is separated toward you. The third non-feeding conductor portion 43 extends axially rearward from the second non-feeding fixing portion 42 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. The third passive conductor portion 43 is parallel to the rectangular thin plate-shaped first ground conductor portion 25a. A high-frequency current flows through the third non-feeding conductor portion 43 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the first ground conductor portion 25a (one in the axial direction).

第2無給電素子41の第4無給電導体部44は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)を挟んで第3無給電導体部43の反対側に位置するとともに、不平衡給電材11と第2グランド導体部25bとの間に位置しつつ、第2無給電導体部33の軸方向前方に位置している。第4無給電導体部44は、不平衡給電材11(無給電部21)の径方向外方へ離間するとともに、第2グランド導体部25bの径方向内方へ離間している。第4無給電導体部44は、不平衡給電材11の無給電部21に並行して第2無給電固定部42から軸方向後方へ延びている。第4無給電導体部44は、矩形薄板状の第2グランド導体部25bと並行している。第4無給電導体部44には、第2グランド導体部25bに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The fourth non-feeding conductor portion 44 of the second non-feeding element 41 is formed into a rectangular thin plate having a predetermined area long in the axial direction, and the third non-feeding conductor portion sandwiches the unbalanced feeding material 11 (non-feeding portion 21). It is located on the opposite side of 43, and is located between the unbalanced feeding material 11 and the second ground conductor portion 25b, and is located axially forward of the second non-feeding conductor portion 33. The fourth non-feeding conductor portion 44 is separated in the radial direction of the unbalanced feeding material 11 (non-feeding portion 21) and inward in the radial direction of the second ground conductor portion 25b. The fourth non-feeding conductor portion 44 extends axially rearward from the second non-feeding fixing portion 42 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. The fourth passive conductor portion 44 is parallel to the rectangular thin plate-shaped second ground conductor portion 25b. A high-frequency current flows through the fourth non-feeding conductor portion 44 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the second ground conductor portion 25b (one in the axial direction).

広帯域アンテナ10Dでは、第1無給電導体部32の軸方向の長さL5及び第2無給電導体部33の軸方向の長さL5がλ/8〜λ/16であり、第3無給電導体部43の軸方向の長さL7及び第4無給電導体部44の軸方向の長さL7がλ/8〜λ/16である。第1無給電導体部32の軸方向の長さL5及び第2無給電導体部33の軸方向の長さL5がλ/8であり、第3無給電導体部43の軸方向の長さL7及び第4無給電導体部44の軸方向の長さL7がλ/8である場合、第1無給電導体部32の長さL5に第2無給電導体部33の長さL5を加えた長さ(2×L5)がλ/4であり、第3無給電導体部43の長さL7に第4無給電導体部44の長さL7を加えた長さ(2×L7)がλ/4である。又、第1無給電導体部32の軸方向の長さL5及び第2無給電導体部33の軸方向の長さL5がλ/16であり、第3無給電導体部43の軸方向の長さL7及び第4無給電導体部44の軸方向の長さL7がλ/16である場合、第1無給電導体部32の長さL5に第2無給電導体部33の長さL5を加えた長さ(2×L5)がλ/8であり、第3無給電導体部43の長さL7に第4無給電導体部44の長さL7を加えた長さ(2×L7)がλ/8であり、第1及び第2無給電導体部32,33の軸方向の長さ(2×L5)に第3及び第4無給電導体部43,44の軸方向の長さ(2×L7)を加えた長さがλ/4である。 In the wideband antenna 10D, the axial length L5 of the first non-feeding conductor portion 32 and the axial length L5 of the second non-feeding conductor portion 33 are λ / 8 to λ / 16, and the third non-feeding conductor The axial length L7 of the portion 43 and the axial length L7 of the fourth non-feeding conductor portion 44 are λ / 8 to λ / 16. The axial length L5 of the first non-feeding conductor portion 32 and the axial length L5 of the second non-feeding conductor portion 33 are λ / 8, and the axial length L7 of the third non-feeding conductor portion 43. And when the axial length L7 of the fourth non-feeding conductor portion 44 is λ / 8, the length L5 of the first non-feeding conductor portion 32 plus the length L5 of the second non-feeding conductor portion 33 is added. (2 × L5) is λ / 4, and the length (2 × L7) obtained by adding the length L7 of the third non-feeding conductor portion 43 to the length L7 of the fourth non-feeding conductor portion 44 is λ / 4. Is. Further, the axial length L5 of the first non-feeding conductor portion 32 and the axial length L5 of the second non-feeding conductor portion 33 are λ / 16, and the axial length of the third non-feeding conductor portion 43. When the axial length L7 of the L7 and the fourth non-feeding conductor portion 44 is λ / 16, the length L5 of the second non-feeding conductor portion 33 is added to the length L5 of the first non-feeding conductor portion 32. The length (2 × L5) is λ / 8, and the length (2 × L7) obtained by adding the length L7 of the third non-feeding conductor portion 43 to the length L7 of the fourth non-feeding conductor portion 44 is λ. / 8, and the axial lengths (2 × L5) of the first and second non-feeding conductors 32 and 33 and the axial lengths (2 ×) of the third and fourth non-feeding conductors 43 and 44. The length to which L7) is added is λ / 4.

第1無給電素子と第2無給電素子とは、第1無給電導体部が上となり第3無給電導体部が下となった状態で、第1無給電導体部と第3無給電導体部とが広帯域アンテナの厚み方向へ離間対向して並び、第1無給電導体部と第3無給電導体部とが厚み方向へ部分的に重なっている。第1無給電導体部と第3無給電導体部とは、厚み方向へわずかに離間(1〜3mmの範囲)している。又、第2無給電導体部が上となり第4無給電導体部が下となった状態で、第2無給電導体部と第4無給電導体部とが広帯域アンテナの厚み方向へ離間対向して並び、第2無給電導体部と第4無給電導体部とが厚み方向へ部分的に重なっている。第2無給電導体部と第4無給電導体部とは、厚み方向へわずかに離間(1〜3mmの範囲)している。尚、第3無給電導体部が上となり第1無給電導体部が下となり、第4無給電導体部が上となり第2無給電導体部が下となった状態で、それら導体部が厚み方向へ離間対向して並んでいてもよい。 The first non-feeding element and the second non-feeding element are the first non-feeding conductor portion and the third non-feeding conductor portion in a state where the first non-feeding conductor portion is on the top and the third non-feeding conductor portion is on the bottom. Are lined up so as to be separated from each other in the thickness direction of the broadband antenna, and the first non-feeding conductor portion and the third non-feeding conductor portion partially overlap in the thickness direction. The first non-feeding conductor portion and the third non-feeding conductor portion are slightly separated in the thickness direction (range of 1 to 3 mm). Further, in a state where the second non-feeding conductor portion is on the top and the fourth non-feeding conductor portion is on the bottom, the second non-feeding conductor portion and the fourth non-feeding conductor portion are separated and opposed to each other in the thickness direction of the broadband antenna. The second non-feeding conductor portion and the fourth non-feeding conductor portion partially overlap each other in the thickness direction. The second non-feeding conductor portion and the fourth non-feeding conductor portion are slightly separated in the thickness direction (range of 1 to 3 mm). In a state where the third non-feeding conductor portion is on the top, the first non-feeding conductor portion is on the bottom, the fourth non-feeding conductor portion is on the top, and the second non-feeding conductor portion is on the bottom, these conductor portions are in the thickness direction. They may be lined up so as to be separated from each other.

尚、図4の広帯域アンテナ10Bと同様に、第1無給電素子15の第1無給電導体部32の前端45が第2無給電素子41の第3無給電導体部43の後端46から軸方向後方へわずかに離間(1〜5mmの範囲)し、第1無給電素子15の第2無給電導体部33の前端45が第2無給電素子41の第4無給電導体部44の後端46から軸方向後方へわずかに離間(1〜5mmの範囲)していてもよい。 Similar to the wideband antenna 10B of FIG. 4, the front end 45 of the first non-feeding conductor portion 32 of the first non-feeding element 15 is shafted from the rear end 46 of the third non-feeding conductor portion 43 of the second non-feeding element 41. The front end 45 of the second non-feeding conductor portion 33 of the first non-feeding element 15 is the rear end of the fourth non-feeding conductor portion 44 of the second non-feeding element 41, slightly separated rearward in the direction (range of 1 to 5 mm). It may be slightly separated (in the range of 1 to 5 mm) from 46 in the rear direction in the axial direction.

図10は、他の一例として示す広帯域アンテナ10Eの斜視図であり、図11は、図10のF−F線端面図であり、図12は、図10のG−G線端面図である。図10では、軸方向を矢印X、径方向を矢印Yで示すとともに、軸方向前方を矢印X1で示し、軸方向後方を矢印X2で示す。図11,12では、厚み方向を矢印Zで示す。図10では、中心軸線S1を点線で示す。広帯域アンテナ10Eは、誘電体基板47と不平衡給電材11(同軸ケーブルまたはセミリジットケーブル)と共振用導体12とグランド用導体13と固定用導体14と第1無給電素子15と給電素子16とから形成されている。 10 is a perspective view of the wideband antenna 10E shown as another example, FIG. 11 is an end view of the FF line of FIG. 10, and FIG. 12 is an end view of the GG line of FIG. In FIG. 10, the axial direction is indicated by an arrow X, the radial direction is indicated by an arrow Y, the axial front is indicated by an arrow X1, and the axial rear is indicated by an arrow X2. In FIGS. 11 and 12, the thickness direction is indicated by an arrow Z. In FIG. 10, the central axis S1 is shown by a dotted line. The wideband antenna 10E is composed of a dielectric substrate 47, an unbalanced feeding material 11 (coaxial cable or semi-rigid cable), a resonance conductor 12, a ground conductor 13, a fixing conductor 14, a first non-feeding element 15, and a feeding element 16. It is formed.

誘電体基板47は、所定の誘電率を有するガラスエポキシから作られている。誘電体基板47は、所定の厚みを有する板状に成形され、その平面形状が軸方向へ長い方形(長方形)である。誘電体基板47は、不平衡給電材11が位置する一方の面48(上面)と、その反対側に位置する他方の面49(下面)とを有する。誘電体基板47は、広帯域アンテナ10Eにおいて電荷を蓄積する容量性(コンデンサ)として機能する。誘電体基板47は、ガラスエポキシの他に、所定の誘電率を有する熱可塑性合成樹脂や熱硬化性合成樹脂から作ることもできる。 The dielectric substrate 47 is made of glass epoxy having a predetermined dielectric constant. The dielectric substrate 47 is formed into a plate shape having a predetermined thickness, and its planar shape is a square (rectangle) long in the axial direction. The dielectric substrate 47 has one surface 48 (upper surface) on which the unbalanced feeding material 11 is located and the other surface 49 (lower surface) located on the opposite side. The dielectric substrate 47 functions as a capacitance (capacitor) for accumulating electric charges in the wideband antenna 10E. In addition to the glass epoxy, the dielectric substrate 47 can also be made of a thermoplastic synthetic resin or a thermosetting synthetic resin having a predetermined dielectric constant.

不平衡給電材11は、図1の広帯域アンテナ10Aのそれと同一である。共振用導体12は、不平衡給電材11の給電部20を挟んで径方向へ離間して並ぶ第1共振導体部22aと第2共振導体部22bとから形成されている。第1共振導体部22aは、導電性金属(アルミニウムや銅、合金等)から作られ、所定面積を有する矩形薄板状に成形されている。第1共振導体部22aは、その基端部が固定用導体14に電気的に連結(固定)され、不平衡給電材11(給電部20)の径方向外方へ離間するとともに、給電部20に並行して固定用導体14から軸方向前方へ延びている。第1共振導体部22aは、不平衡給電材11の給電部20(第1導体17(中心金属導体))と共振する。 The unbalanced feeding material 11 is the same as that of the wideband antenna 10A of FIG. The resonance conductor 12 is formed of a first resonance conductor portion 22a and a second resonance conductor portion 22b that are radially spaced apart from each other with the feeding portion 20 of the unbalanced feeding material 11 interposed therebetween. The first resonant conductor portion 22a is made of a conductive metal (aluminum, copper, alloy, etc.) and is formed into a rectangular thin plate having a predetermined area. The base end of the first resonant conductor portion 22a is electrically connected (fixed) to the fixing conductor 14, and is separated outward in the radial direction of the unbalanced feeding material 11 (feeding portion 20), and the feeding portion 20 is provided. In parallel with, the fixing conductor 14 extends forward in the axial direction. The first resonant conductor portion 22a resonates with the feeding portion 20 (first conductor 17 (central metal conductor)) of the unbalanced feeding material 11.

第2共振導体部22bは、導電性金属(アルミニウムや銅、合金等)から作られ、所定面積を有する矩形薄板状に成形されている。第2共振導体部22bは、その基端部が固定用導体14に電気的に連結(固定)され、不平衡給電材11(給電部20)を挟んで第1共振導体部22aの反対側に位置し、不平衡給電材11の径方向外方へ離間するとともに、給電部20に並行して固定用導体14から軸方向前方へ延びている。第2共振導体部22bは、不平衡給電材11の給電部20(第1導体17(中心金属導体))と共振する。 The second resonant conductor portion 22b is made of a conductive metal (aluminum, copper, alloy, etc.) and is formed into a rectangular thin plate having a predetermined area. The base end of the second resonant conductor portion 22b is electrically connected (fixed) to the fixing conductor 14, and is located on the opposite side of the first resonant conductor portion 22a with the unbalanced feeding material 11 (feeding portion 20) interposed therebetween. It is located and is spaced outward in the radial direction of the unbalanced feeding material 11, and extends axially forward from the fixing conductor 14 in parallel with the feeding portion 20. The second resonant conductor portion 22b resonates with the feeding portion 20 (first conductor 17 (central metal conductor)) of the unbalanced feeding material 11.

第1共振導体部22a及び第2共振導体部22bは、誘電体基板47の一方の面48(上面)に接合(固定)されている。第1及び第2共振導体部22a,22bは、それらが不平衡給電材11の中心軸線S1(給電部20の中心)に対して線対称(面対称)の関係にあり、それらの平面形状が同形同大であり、それらの軸方向の長さL1が同一である。更に、不平衡給電材11の中心軸線S1(給電部17の中心)に対する第1共振導体部22a(内側縁)の径方向の離間寸法L2と第2共振導体部22b(内側縁)の径方向の離間寸法L2とが同一である。不平衡給電材11の給電部17は、第1及び第2共振導体部22a,22bと並行して延びる並行部分23と、並行部分23に繋がって第1及び第2共振導体部22a,22bから軸方向前方へ延出する延出部分24とを有する。 The first resonance conductor portion 22a and the second resonance conductor portion 22b are joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47. The first and second resonant conductor portions 22a and 22b have a line symmetry (plane symmetry) with respect to the central axis S1 (center of the feeding portion 20) of the unbalanced feeding material 11, and their planar shapes are different. They have the same shape and the same size, and their axial lengths L1 are the same. Further, the radial separation dimension L2 of the first resonant conductor portion 22a (inner edge) from the central axis S1 (center of the feeding portion 17) of the unbalanced feeding material 11 and the radial direction of the second resonant conductor portion 22b (inner edge). The separation dimension L2 of is the same. The feeding portion 17 of the unbalanced feeding material 11 is connected to the parallel portion 23 extending in parallel with the first and second resonant conductor portions 22a and 22b and the first and second resonant conductor portions 22a and 22b connected to the parallel portion 23. It has an extension portion 24 that extends forward in the axial direction.

グランド用導体13は、無給電部21を挟んで径方向へ離間して並ぶ第1グランド導体部25aと第2グランド導体部25bとから形成されている。第1グランド導体部25aは、導電性金属(アルミニウムや銅、合金等)から作られ、所定面積を有する軸方向へ長い矩形薄板状に成形されている。第1グランド導体部25aは、その基端部が固定用導体14に電気的に連結(固定)され、不平衡給電材11(無給電部21)の径方向外方へ離間するとともに、無給電部21に並行して固定用導体14から軸方向後方へ延びている。第1グランド導体部25aは、不平衡給電材11の無給電部21(第2導体19(外側金属導体))と共振する。 The ground conductor 13 is formed of a first ground conductor portion 25a and a second ground conductor portion 25b that are arranged radially apart with respect to the non-feeding portion 21. The first ground conductor portion 25a is made of a conductive metal (aluminum, copper, alloy, etc.) and is formed into a rectangular thin plate having a predetermined area and long in the axial direction. The base end of the first ground conductor portion 25a is electrically connected (fixed) to the fixing conductor 14, and is separated outward in the radial direction of the unbalanced feeding material 11 (non-feeding portion 21), and no feeding is performed. It extends axially rearward from the fixing conductor 14 in parallel with the portion 21. The first ground conductor portion 25a resonates with the non-feeding portion 21 (second conductor 19 (outer metal conductor)) of the unbalanced feeding material 11.

第2グランド導体部25bは、導電性金属(アルミニウムや銅、合金等)から作られ、所定面積を有する軸方向へ長い矩形薄板状に成形されている。第2グランド導体部25bは、その基端部が固定用導体13に電気的に連結(固定)され、不平衡給電材11(無給電部21)を挟んで第1グランド導体部25aの反対側に位置し、不平衡給電材11の径方向外方へ離間するとともに、無給電部21に並行して固定用導体14から軸方向後方へ延びている。第2グランド導体部25bは、不平衡給電材11の無給電部21(第2導体19(外側金属導体))と共振する。 The second ground conductor portion 25b is made of a conductive metal (aluminum, copper, alloy, etc.) and is formed into a rectangular thin plate having a predetermined area and long in the axial direction. The base end of the second ground conductor portion 25b is electrically connected (fixed) to the fixing conductor 13, and the unbalanced feeding material 11 (non-feeding portion 21) is sandwiched between the second ground conductor portion 25b and the opposite side of the first ground conductor portion 25a. The unbalanced feeding material 11 is radially outwardly separated from the unbalanced feeding material 11 and extends axially rearward from the fixing conductor 14 in parallel with the non-feeding portion 21. The second ground conductor portion 25b resonates with the non-feeding portion 21 (second conductor 19 (outer metal conductor)) of the unbalanced feeding material 11.

第1グランド導体部25a及び第2グランド導体部25bは、誘電体基板47の一方の面48(上面)に接合(固定)されている。第1及び第2グランド導体部25a,25bは、それらが不平衡給電材11の中心軸線S1(無給電部21の中心)に対して線対称(面対称)の関係にあり、それらの平面形状が同形同大であり、それらの軸方向の長さL3が同一である。更に、不平衡給電材11の中心軸線S1(無給電部21の中心)に対する第1グランド導体部25a(内側縁)の径方向の離間寸法L4と第2グランド導体部25b(内側縁)の径方向の離間寸法L4とが同一である。 The first ground conductor portion 25a and the second ground conductor portion 25b are joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47. The first and second ground conductor portions 25a and 25b have a line symmetry (plane symmetry) with respect to the central axis S1 (center of the non-feeding portion 21) of the unbalanced feeding material 11, and their planar shapes. Are of the same shape and size, and their axial lengths L3 are the same. Further, the radial distance dimension L4 of the first ground conductor portion 25a (inner edge) from the central axis S1 (center of the non-feeding portion 21) of the unbalanced feeding material 11 and the diameter of the second ground conductor portion 25b (inner edge). The separation dimension L4 in the direction is the same.

不平衡給電材11の無給電部21は、第1及び第2グランド導体部25a,25bと並行して延びる並行部分28と、並行部分28に繋がって第1及び第2グランド導体部25a,25bから軸方向後方へ延出する延出部分29とを有する。無給電部21の延出部分29の後端(不平衡給電材11の後端)には、コネクタ30が取り付けられている。広帯域アンテナ10Eでは、第1グランド導体部25a及び第2グランド導体部25bの軸方向の長さが第1共振導体部22a及び第2共振導体部22bの軸方向の長さよりも長く、第1グランド導体部25a及び第2グランド導体部25bの軸方向の長さが第1共振導体部22a及び第2共振導体部22bの軸方向の長さの約4倍である。 The non-balanced feeding material 11 has a parallel portion 28 extending in parallel with the first and second ground conductor portions 25a and 25b, and a first and second ground conductor portions 25a and 25b connected to the parallel portion 28. It has an extension portion 29 extending from the rear in the axial direction. A connector 30 is attached to the rear end (rear end of the unbalanced feeding material 11) of the extending portion 29 of the non-feeding portion 21. In the wideband antenna 10E, the axial lengths of the first ground conductor portion 25a and the second ground conductor portion 25b are longer than the axial lengths of the first resonance conductor portion 22a and the second resonance conductor portion 22b, and the first ground The axial length of the conductor portion 25a and the second ground conductor portion 25b is about four times the axial length of the first resonance conductor portion 22a and the second resonance conductor portion 22b.

固定用導体14は、導電性金属(アルミニウムや銅、合金等)を所定面積の矩形薄板状に成形することから作られ、その平面形状が径方向へ長い長方形である。固定用導体14は、共振用導体12(第1及び第2共振導体部22a,22b)及びグランド用導体13(第1及び第2グランド導体部25a,25b)の間に位置し、不平衡給電材11(給電部20と無給電部21との境界近傍に位置する無給電部21の第2導体19(外側金属導体))に溶接(半田付け等)(固定手段)によって固定(連結)され、不平衡給電材11に電気的に接続されている。固定用導体14は、誘電体基板47の一方の面48(上面)に接合(固定)されている。 The fixing conductor 14 is made by molding a conductive metal (aluminum, copper, alloy, etc.) into a rectangular thin plate having a predetermined area, and the planar shape thereof is a rectangle long in the radial direction. The fixing conductor 14 is located between the resonance conductor 12 (first and second resonance conductor portions 22a, 22b) and the ground conductor 13 (first and second ground conductor portions 25a, 25b), and is unbalanced. It is fixed (connected) to the material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21 located near the boundary between the feeding portion 20 and the non-feeding portion 21) by welding (soldering or the like) (fixing means). , Is electrically connected to the unbalanced feeding material 11. The fixing conductor 14 is joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47.

第1無給電素子15は、導電性金属(アルミニウムや銅、合金等)から作られ、第1グランド導体部25aと第2グランド導体部25bとの間に位置している。第1無給電素子15は、第1無給電固定部31と第1無給電導体部32と第2無給電導体部33とから形成されている。第1無給電素子15(第1無給電固定部31、第1無給電導体部32、第2無給電導体部33)は、誘電体基板47の一方の面48(上面)に接合(固定)されている。第1無給電固定部31は、所定面積を有する径方向へ長い矩形薄板状に成形され、第1グランド導体部25aと第2グランド導体部25bとの間に位置し、不平衡給電材11(無給電部21の第2導体19(外側金属導体))に溶接(半田付け等)(固定手段)によって固定(連結)され、不平衡給電材11(無給電部21の第2導体19外側金属導体))に電気的に接続されている。 The first non-feeding element 15 is made of a conductive metal (aluminum, copper, alloy, etc.) and is located between the first ground conductor portion 25a and the second ground conductor portion 25b. The first non-feeding element 15 is formed of a first non-feeding fixing portion 31, a first non-feeding conductor portion 32, and a second non-feeding conductor portion 33. The first non-feeding element 15 (first non-feeding fixing portion 31, first non-feeding conductor portion 32, second non-feeding conductor portion 33) is joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47. Has been done. The first non-feeding fixing portion 31 is formed into a rectangular thin plate having a predetermined area and is long in the radial direction, and is located between the first ground conductor portion 25a and the second ground conductor portion 25b. It is fixed (connected) to the second conductor 19 (outer metal conductor) of the non-feeding portion 21 by welding (soldering or the like) (fixing means), and is fixed (connected) to the unbalanced feeding material 11 (second conductor 19 outer metal of the non-feeding portion 21). It is electrically connected to the conductor)).

第1無給電導体部32軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11の無給電部21と第1グランド導体部25aとの間に位置し、不平衡給電材11(無給電部21)の径方向外方へ離間するとともに、第1グランド導体部25aの径方向内方へ離間している。第1無給電導体部32は、その基端部が第1無給電固定部31に繋がり、不平衡給電材11の無給電部21に並行して第1無給電固定部31から軸方向前方へ延びている。第1無給電導体部32は、軸方向の長さL5がλ/8〜λ/16であり、第1グランド導体部25aと並行している。第1無給電導体部32には、第1グランド導体部25aに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The first non-feeding conductor portion 32 is formed into a rectangular thin plate having a predetermined area long in the axial direction, and is located between the non-feeding portion 21 of the unbalanced feeding material 11 and the first ground conductor portion 25a. The (non-feeding portion 21) is separated in the radial direction and the first ground conductor portion 25a is separated in the radial direction. The base end of the first non-feeding conductor portion 32 is connected to the first non-feeding fixing portion 31, and is axially forward from the first non-feeding fixing portion 31 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. It is extending. The first non-feeding conductor portion 32 has an axial length L5 of λ / 8 to λ / 16, and is parallel to the first ground conductor portion 25a. A high-frequency current flows through the first non-feeding conductor portion 32 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the first ground conductor portion 25a (one in the axial direction).

第2無給電導体部33は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)を挟んで第1無給電導体部32の反対側に位置するとともに、不平衡給電材11(無給電部21)と第2グランド導体部25bとの間に位置し、不平衡給電材11の径方向外方へ離間するとともに、第2グランド導体部25bの径方向内方へ離間している。第2無給電導体部33は、その基端部が第1無給電固定部31に繋がり、不平衡給電材11の無給電部21に並行して第1無給電固定部31から軸方向前方へ延びている。第2無給電導体部33は、軸方向の長さL5がλ/8〜λ/16である。第2無給電導体部33は、第2グランド導体部25bと並行している。第2無給電導体部33には、第2グランド導体部25bに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The second non-feeding conductor portion 33 is formed into a rectangular thin plate having a predetermined area long in the axial direction, and is located on the opposite side of the first non-feeding conductor portion 32 with the unbalanced feeding material 11 (non-feeding portion 21) interposed therebetween. At the same time, it is located between the unbalanced feeding material 11 (non-feeding portion 21) and the second ground conductor portion 25b, and is separated outward in the radial direction of the unbalanced feeding material 11 and the diameter of the second ground conductor portion 25b. Separated inward in the direction. The base end of the second non-feeding conductor portion 33 is connected to the first non-feeding fixing portion 31, and is axially forward from the first non-feeding fixing portion 31 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. It is extending. The second passive conductor portion 33 has an axial length L5 of λ / 8 to λ / 16. The second non-feeding conductor portion 33 is parallel to the second ground conductor portion 25b. A high-frequency current flows through the second non-feeding conductor portion 33 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the second ground conductor portion 25b (one in the axial direction).

第1無給電導体部32と第2無給電導体部33とは、不平衡給電材11の中心軸線S1(無給電部21の中心)に対して線対称(面対称)の関係にあり、それらの断面形状が同一(同形同大)であるとともに、それらの軸方向の長さL5が同一である。更に、不平衡給電材11の中心軸線S1(給電部21の中心)に対する第1無給電導体部32(内側縁)の径方向の離間寸法L6と第2無給電導体部33(内側縁)の径方向の離間寸法L6とが同一である。第1無給電素子15では、第1無給電導体部32の軸方向の長さL5に第2無給電導体部33の軸方向の長さL5を加えた長さがλ/4である。 The first non-feeding conductor portion 32 and the second non-feeding conductor portion 33 have a line symmetry (plane symmetry) with respect to the central axis S1 (center of the non-feeding portion 21) of the unbalanced feeding material 11. The cross-sectional shapes of the above are the same (same shape and the same size), and their axial lengths L5 are the same. Further, the radial distance dimension L6 of the first non-feeding conductor portion 32 (inner edge) from the central axis S1 (center of the feeding portion 21) of the unbalanced feeding material 11 and the second non-feeding conductor portion 33 (inner edge). The radial separation dimension L6 is the same. In the first non-feeding element 15, the length obtained by adding the axial length L5 of the first non-feeding conductor portion 32 to the axial length L5 of the second non-feeding conductor portion 33 is λ / 4.

給電素子16は、導電性金属(アルミニウムや銅、合金等)から作られ、所定面積を有する薄板状に成形されている。給電素子15は、共振用導体12(第1共振導体部22a及び第2共振導体部22b)の軸方向前方に位置(離間)し、不平衡給電材11(給電部20)の前端部34に対向設置されている。給電素子16は、給電固定部35と第1給電導体部36と第2給電導体部37とから形成されている。給電固定部15(給電固定部35、第1給電導体部36、第2給電導体部37)は、誘電体基板47の他方の面48(下面)に接合(固定)され、給電固定部135が不平衡給電材11(給電部20の第1導体17(中心金属導体))に電気的に接続されている。 The power feeding element 16 is made of a conductive metal (aluminum, copper, alloy, etc.) and is formed into a thin plate having a predetermined area. The feeding element 15 is positioned (separated) in the axially forward direction of the resonance conductor 12 (first resonance conductor portion 22a and second resonance conductor portion 22b), and is located at the front end portion 34 of the unbalanced feeding material 11 (feeding portion 20). It is installed facing each other. The power feeding element 16 is formed of a power feeding fixing portion 35, a first feeding conductor portion 36, and a second feeding conductor portion 37. The power feeding fixing portion 15 (feeding fixing portion 35, first feeding conductor portion 36, second feeding conductor portion 37) is joined (fixed) to the other surface 48 (lower surface) of the dielectric substrate 47, and the feeding fixing portion 135 is joined. It is electrically connected to the unbalanced feeding material 11 (the first conductor 17 (center metal conductor) of the feeding portion 20).

第1給電導体部36は、径方向へ長い所定面積の薄板状に成形され、共振用導体12(第1共振導体部22a及び第2共振導体部22b)の軸方向前方に位置(離間)し、給電固定部35(不平衡給電材11の前端部34)から径方向外方へ延びている。第1給電導体部36は、共振用導体12の第1共振導体部22aと共振する。第2給電導体部37は、径方向へ長い所定面積の薄板状に成形され、共振用導体12(第1共振導体部22a及び第2共振導体部22b)の軸方向前方に位置(離間)し、給電固定部35(不平衡給電材11の前端部34)から径方向外方へ延びている。第2給電導体部37は、共振用導体12の第2共振導体部22bと共振する。第1給電導体部36と第2給電導体部37とは、不平衡給電材11の中心軸線S1(給電部20の中心)に対して線対称の関係にあり、それらの平面形状が同一(同形同大)であるとともに、それらの面積が同一である。 The first feeding conductor portion 36 is formed into a thin plate having a predetermined area long in the radial direction, and is positioned (separated) in the axially forward direction of the resonance conductor 12 (the first resonance conductor portion 22a and the second resonance conductor portion 22b). , It extends radially outward from the power feeding fixing portion 35 (front end portion 34 of the unbalanced feeding material 11). The first feeding conductor portion 36 resonates with the first resonance conductor portion 22a of the resonance conductor 12. The second feeding conductor portion 37 is formed into a thin plate having a predetermined area long in the radial direction, and is positioned (separated) in the axially forward direction of the resonance conductor 12 (the first resonance conductor portion 22a and the second resonance conductor portion 22b). , It extends radially outward from the power feeding fixing portion 35 (front end portion 34 of the unbalanced feeding material 11). The second feeding conductor portion 37 resonates with the second resonance conductor portion 22b of the resonance conductor 12. The first feeding conductor portion 36 and the second feeding conductor portion 37 have a line-symmetrical relationship with respect to the central axis S1 (center of the feeding portion 20) of the unbalanced feeding material 11, and their planar shapes are the same (same as above). They are the same size) and their areas are the same.

図13は、他の一例として示す広帯域アンテナ10Fの斜視図である。図13では、軸方向を矢印X、径方向を矢印Yで示すとともに、軸方向前方を矢印X1で示し、軸方向後方を矢印X2で示す。図13の広帯域アンテナ10Fが図10のそれと異なるところは、第2無給電素子41を有する点にあり、その他の構成は図10の広帯域アンテナ10Eのそれらと同一であるから、図10と同一の符号を付すとともに、図10の広帯域アンテナ10Eの説明を援用することで、この広帯域アンテナ10Fのその他の構成の説明は省略する。 FIG. 13 is a perspective view of the wideband antenna 10F shown as another example. In FIG. 13, the axial direction is indicated by an arrow X, the radial direction is indicated by an arrow Y, the axial front is indicated by an arrow X1, and the axial rear is indicated by an arrow X2. The wideband antenna 10F of FIG. 13 differs from that of FIG. 10 in that it has a second non-feeding element 41, and the other configurations are the same as those of the wideband antenna 10E of FIG. By adding reference numerals and referring to the description of the wideband antenna 10E of FIG. 10, the description of other configurations of the wideband antenna 10F will be omitted.

広帯域アンテナ10Fは、不平衡給電材11(同軸ケーブル又はセミリジットケーブル)と共振用導体12とグラウンド用導体13と固定用導体14と第1無給電素子15と第2無給電素子41と給電素子16とから形成されている。不平衡給電材11や共振用導体12、グラウンド用導体13、固定用導体14、第1無給電素子15、給電素子16は、図9の広帯域アンテナ10Eのそれらと同一である。 The wideband antenna 10F includes an unbalanced feeding material 11 (coaxial cable or semi-rigid cable), a resonance conductor 12, a ground conductor 13, a fixing conductor 14, a first non-feeding element 15, a second non-feeding element 41, and a feeding element 16. It is formed from and. The unbalanced feeding material 11, the resonance conductor 12, the ground conductor 13, the fixing conductor 14, the first non-feeding element 15, and the feeding element 16 are the same as those of the wideband antenna 10E of FIG.

第1無給電素子15の第1無給電固定部31は、所定面積を有する径方向へ長い矩形薄板状に成形され、第1グランド導体部25aと第2グランド導体部25bとの間に位置し、不平衡給電材11(無給電部21の第2導体19(外側金属導体))に溶接(半田付け等)(固定手段)によって固定(連結)され、不平衡給電材11(無給電部21の第2導体19(外側金属導体))に電気的に接続されている。第1無給電固定部31は、誘電体基板47の一方の面48(上面)に接合(固定)されている。 The first non-feeding fixing portion 31 of the first non-feeding element 15 is formed into a rectangular thin plate having a predetermined area and long in the radial direction, and is located between the first ground conductor portion 25a and the second ground conductor portion 25b. , Is fixed (connected) to the unbalanced feeding material 11 (second conductor 19 (outer metal conductor) of the non-feeding portion 21) by welding (soldering or the like) (fixing means), and the unbalanced feeding material 11 (non-feeding portion 21) It is electrically connected to the second conductor 19 (outer metal conductor) of the above. The first non-feeding fixing portion 31 is joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47.

第1無給電素子15の第1無給電導体部32は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)と矩形薄板状の第1グランド導体部25aとの間に位置し、不平衡給電材11の径方向外方へ離間するとともに、第1グランド導体部25aの径方向内方へ離間し、不平衡給電材11の無給電部21に並行して第1無給電固定部31から軸方向前方へ延びている。第1無給電導体部32は、誘電体基板47の一方の面48(上面)に接合(固定)されている。第1無給電導体部32は、矩形薄板状の第1グランド導体部25aと並行している。第1無給電導体部32には、第1グランド導体部25aに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The first non-feeding conductor portion 32 of the first non-feeding element 15 is formed into a rectangular thin plate shape having a predetermined area long in the axial direction, and the unbalanced feeding material 11 (non-feeding portion 21) and the rectangular thin plate-shaped first ground conductor. It is located between the portion 25a and is separated radially outward of the unbalanced feeding material 11 and is separated radially inward of the first ground conductor portion 25a so as to be separated from the unbalanced feeding material 11 in the non-feeding portion 21. In parallel, it extends forward in the axial direction from the first non-feeding fixing portion 31. The first non-feeding conductor portion 32 is joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47. The first non-feeding conductor portion 32 is parallel to the rectangular thin plate-shaped first ground conductor portion 25a. A high-frequency current flows through the first non-feeding conductor portion 32 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the first ground conductor portion 25a (one in the axial direction).

第1無給電素子15の第2無給電導体部33は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)を挟んで第1無給電導体部32の反対側に位置するとともに、不平衡給電材11(無給電部21)と矩形薄板状の第2グランド導体部25bとの間に位置し、不平衡給電材11の径方向外方へ離間するとともに、第2グランド導体部25bの径方向内方へ離間している。第2無給電導体部33は、不平衡給電材11の無給電部21に並行して第1無給電固定部31から軸方向前方へ延びている。第2無給電導体部33は、誘電体基板47の一方の面48(上面)に接合(固定)されている。第2無給電導体部33は、矩形薄板状の第2グランド導体部25bの並行部分と並行している。第2無給電導体部33には、第2グランド導体部25bに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The second non-feeding conductor portion 33 of the first non-feeding element 15 is formed into a rectangular thin plate having a predetermined area long in the axial direction, and the first non-feeding conductor portion sandwiches the unbalanced feeding material 11 (non-feeding portion 21). It is located on the opposite side of 32, and is located between the unbalanced feeding material 11 (non-feeding portion 21) and the rectangular thin plate-shaped second ground conductor portion 25b, and is separated outward in the radial direction of the unbalanced feeding material 11. At the same time, the second ground conductor portion 25b is separated inward in the radial direction. The second non-feeding conductor portion 33 extends axially forward from the first non-feeding fixing portion 31 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. The second non-feeding conductor portion 33 is joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47. The second non-feeding conductor portion 33 is parallel to the parallel portion of the rectangular thin plate-shaped second ground conductor portion 25b. A high-frequency current flows through the second non-feeding conductor portion 33 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the second ground conductor portion 25b (one in the axial direction).

第2無給電素子41は、導電性金属(アルミニウムや銅、合金等)から作られ、第1グランド導体部25aと第2グランド導体部25bとの間であって第1無給電素子15の軸方向前方に位置し、第1無給電素子15に対向している。第2無給電素子41は、第2無給電固定部42と第3無給電導体部43と第4無給電導体部44とから形成されている。第2無給電素子41では、第2無給電固定部42と第3無給電導体部43と第4無給電導体部44とが一体に成形されている。第2無給電固定部42は、径方向へ長い所定面積の矩形薄板状に成形され、矩形薄板状の第1グランド導体部25aと矩形薄板状の第2グランド導体部25bとの間に位置している。第2無給電固定部42は、不平衡給電材11(無給電部21の第2導体19(外側金属導体))に溶接(半田付け等)(固定手段)によって固定(連結)され、不平衡給電材11(無給電部21の第2導体19(外側金属導体))に電気的に接続されている。第2無給電固定部42は、誘電体基板47の一方の面48(上面)に接合(固定)されている。 The second non-feeding element 41 is made of a conductive metal (aluminum, copper, alloy, etc.), and is between the first ground conductor portion 25a and the second ground conductor portion 25b, and is the shaft of the first non-feeding element 15. It is located forward in the direction and faces the first non-feeding element 15. The second non-feeding element 41 is formed of a second non-feeding fixing portion 42, a third non-feeding conductor portion 43, and a fourth non-feeding conductor portion 44. In the second non-feeding element 41, the second non-feeding fixing portion 42, the third non-feeding conductor portion 43, and the fourth non-feeding conductor portion 44 are integrally formed. The second non-feeding fixing portion 42 is formed into a rectangular thin plate shape having a predetermined area long in the radial direction, and is located between the rectangular thin plate-shaped first ground conductor portion 25a and the rectangular thin plate-shaped second ground conductor portion 25b. ing. The second non-feeding fixing portion 42 is fixed (connected) to the unbalanced feeding material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21) by welding (soldering or the like) (fixing means), and is unbalanced. It is electrically connected to the feeding material 11 (the second conductor 19 (outer metal conductor) of the non-feeding portion 21). The second non-feeding fixing portion 42 is joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47.

第2無給電素子41の第3無給電導体部43は、軸方向へ長い所定面積の矩形薄板状に成形され、不平衡給電材11(無給電部21)と矩形薄板状の第1グランド導体部25aとの間に位置しつつ、第1無給電導体部32の軸方向前方に位置し、不平衡給電材11(無給電部21)の径方向外方へ離間するとともに、第1グランド導体部25aの径方向内方へ離間している。第3無給電導体部43は、不平衡給電材11の無給電部21に並行して第2無給電固定部42から軸方向後方へ延びている。第3無給電導体部43は、誘電体基板47の一方の面48(上面)に接合(固定)されている。第3無給電導体部43は、矩形薄板状の第1グランド導体部25aと並行している。第3無給電導体部43には、第1グランド導体部25aに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The third non-feeding conductor portion 43 of the second non-feeding element 41 is formed into a rectangular thin plate shape having a predetermined area long in the axial direction, and the unbalanced feeding material 11 (non-feeding portion 21) and the rectangular thin plate-shaped first ground conductor. Although it is located between the portion 25a and the first non-feeding conductor portion 32, it is located axially forward of the first non-feeding conductor portion 32, is separated outward in the radial direction of the unbalanced feeding material 11 (non-feeding portion 21), and is separated from the first ground conductor. The portions 25a are separated inward in the radial direction. The third non-feeding conductor portion 43 extends axially rearward from the second non-feeding fixing portion 42 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. The third non-feeding conductor portion 43 is joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47. The third passive conductor portion 43 is parallel to the rectangular thin plate-shaped first ground conductor portion 25a. A high-frequency current flows through the third non-feeding conductor portion 43 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the first ground conductor portion 25a (one in the axial direction).

第2無給電素子41の第4無給電導体部44は、不平衡給電材11(無給電部21)を挟んで第3無給電導体部43の反対側に位置するとともに、不平衡給電材11(無給電部21)と第2グランド導体部25bとの間に位置しつつ、第2無給電導体部33の軸方向前方に位置している。第4無給電導体部44は、不平衡給電材11(無給電部21)の径方向外方へ離間するとともに、第2グランド導体部25bの径方向内方へ離間している。第4無給電導体部44は、不平衡給電材11の無給電部21に並行して第2無給電固定部342から軸方向後方へ延びている。第4無給電導体部44は、誘電体基板47の一方の面48(上面)に接合(固定)されている。第4無給電導体部44は、矩形薄板状の第2グランド導体部25bと並行している。第4無給電導体部44には、第2グランド導体部25bに流れる高周波電流の向き(軸方向一方)とは逆向き(軸方向他方)へ高周波電流が流れる。 The fourth non-feeding conductor portion 44 of the second non-feeding element 41 is located on the opposite side of the third non-feeding conductor portion 43 with the unbalanced feeding material 11 (non-feeding portion 21) interposed therebetween, and the unbalanced feeding material 11 It is located between the (non-feeding portion 21) and the second ground conductor portion 25b, and is located in front of the second non-feeding conductor portion 33 in the axial direction. The fourth non-feeding conductor portion 44 is separated in the radial direction of the unbalanced feeding material 11 (non-feeding portion 21) and inward in the radial direction of the second ground conductor portion 25b. The fourth non-feeding conductor portion 44 extends axially rearward from the second non-feeding fixing portion 342 in parallel with the non-feeding portion 21 of the unbalanced feeding material 11. The fourth passive conductor portion 44 is joined (fixed) to one surface 48 (upper surface) of the dielectric substrate 47. The fourth passive conductor portion 44 is parallel to the rectangular thin plate-shaped second ground conductor portion 25b. A high-frequency current flows through the fourth non-feeding conductor portion 44 in the direction opposite to the direction (one in the axial direction) of the high-frequency current flowing in the second ground conductor portion 25b (one in the axial direction).

広帯域アンテナ10Fでは、第1無給電導体部32の軸方向の長さL5及び第2無給電導体部33の軸方向の長さL5がλ/8〜λ/16であり、第3無給電導体部43の軸方向の長さL7及び第4無給電導体部44の軸方向の長さL7がλ/8〜λ/16である。第1無給電導体部32の軸方向の長さL5及び第2無給電導体部33の軸方向の長さL5がλ/8であり、第3無給電導体部43の軸方向の長さL7及び第4無給電導体部44の軸方向の長さL7がλ/8である場合、第1無給電導体部32の長さL5に第2無給電導体部33の長さL5を加えた長さ(2×L5)がλ/4であり、第3無給電導体部43の長さL7に第4無給電導体部44の長さL7を加えた長さ(2×L7)がλ/4である。又、第1無給電導体部32の軸方向の長さL5及び第2無給電導体部33の軸方向の長さL5がλ/16であり、第3無給電導体部43の軸方向の長さL7及び第4無給電導体部44の軸方向の長さL7がλ/16である場合、第1無給電導体部32の長さL5に第2無給電導体部33の長さL5を加えた長さ(2×L5)がλ/8であり、第3無給電導体部43の長さL7に第4無給電導体部44の長さL7を加えた長さ(2×L7)がλ/8であり、第1及び第2無給電導体部32,33の軸方向の長さ(2×L5)に第3及び第4無給電導体部43,44の軸方向の長さ(2×L7)を加えた長さがλ/4である。 In the wideband antenna 10F, the axial length L5 of the first non-feeding conductor portion 32 and the axial length L5 of the second non-feeding conductor portion 33 are λ / 8 to λ / 16, and the third non-feeding conductor The axial length L7 of the portion 43 and the axial length L7 of the fourth non-feeding conductor portion 44 are λ / 8 to λ / 16. The axial length L5 of the first non-feeding conductor portion 32 and the axial length L5 of the second non-feeding conductor portion 33 are λ / 8, and the axial length L7 of the third non-feeding conductor portion 43. And when the axial length L7 of the fourth non-feeding conductor portion 44 is λ / 8, the length L5 of the first non-feeding conductor portion 32 plus the length L5 of the second non-feeding conductor portion 33 is added. (2 × L5) is λ / 4, and the length (2 × L7) obtained by adding the length L7 of the third non-feeding conductor portion 43 to the length L7 of the fourth non-feeding conductor portion 44 is λ / 4. Is. Further, the axial length L5 of the first non-feeding conductor portion 32 and the axial length L5 of the second non-feeding conductor portion 33 are λ / 16, and the axial length of the third non-feeding conductor portion 43. When the axial length L7 of the L7 and the fourth non-feeding conductor portion 44 is λ / 16, the length L5 of the second non-feeding conductor portion 33 is added to the length L5 of the first non-feeding conductor portion 32. The length (2 × L5) is λ / 8, and the length (2 × L7) obtained by adding the length L7 of the third non-feeding conductor portion 43 to the length L7 of the fourth non-feeding conductor portion 44 is λ. / 8, and the axial lengths (2 × L5) of the first and second non-feeding conductors 32 and 33 and the axial lengths (2 ×) of the third and fourth non-feeding conductors 43 and 44. The length to which L7) is added is λ / 4.

広帯域アンテナ10Fでは、第1無給電素子15の第1無給電導体部32の前端45が第2無給電素子41の第3無給電導体部43の後端46から軸方向後方へわずかに離間(1〜5mmの範囲)し、第1無給電導体部32の前端45と第3無給電導体部43の後端46との間にクリアランス(わずかな隙間)が形成されている。第1無給電素子15の第2無給電導体部33の前端45が第2無給電素子41の第4無給電導体部44の後端46から軸方向後方へわずかに離間(1〜5mmの範囲)し、第1無給電素子15の第2無給電導体部33の前端45と第2無給電素子41の第4無給電導体部44の後端46との間にクリアランス(わずかな隙間)が形成されている。 In the wideband antenna 10F, the front end 45 of the first non-feeding conductor portion 32 of the first non-feeding element 15 is slightly separated axially rearward from the rear end 46 of the third non-feeding conductor portion 43 of the second non-feeding element 41. A clearance (slight gap) is formed between the front end 45 of the first non-feeding conductor portion 32 and the rear end 46 of the third non-feeding conductor portion 43). The front end 45 of the second non-feeding conductor portion 33 of the first non-feeding element 15 is slightly separated axially rearward from the rear end 46 of the fourth non-feeding conductor portion 44 of the second non-feeding element 41 (range of 1 to 5 mm). ), And there is a clearance (slight gap) between the front end 45 of the second non-feeding conductor portion 33 of the first non-feeding element 15 and the rear end 46 of the fourth non-feeding conductor portion 44 of the second non-feeding element 41. It is formed.

尚、図8の広帯域アンテナ10Dと同様に、第1無給電導体部が上となり第3無給電導体部が下となった状態で、第1無給電導体部と第3無給電導体部とが広帯域アンテナの厚み方向へ離間対向して並び、第2無給電導体部が上となり第4無給電導体部が下となった状態で、第2無給電導体部と第4無給電導体部とが広帯域アンテナの厚み方向へ離間対向して並んでいてもよい。この場合、第1無給電導体部と第3無給電導体部との間に絶縁体が介在し、第2無給電導体部と第4無給電導体部との間に絶縁体が介在する。 Similar to the wideband antenna 10D of FIG. 8, the first non-feeding conductor portion and the third non-feeding conductor portion are in a state where the first non-feeding conductor portion is on the top and the third non-feeding conductor portion is on the bottom. The second non-feeding conductor portion and the fourth non-feeding conductor portion are arranged in a state where the second non-feeding conductor portion is on the top and the fourth non-feeding conductor portion is on the bottom. The wideband antennas may be arranged so as to be separated from each other in the thickness direction. In this case, an insulator is interposed between the first non-feeding conductor portion and the third non-feeding conductor portion, and an insulator is interposed between the second non-feeding conductor portion and the fourth non-feeding conductor portion.

広帯域アンテナ10A〜10Fは、不平衡給電材11の給電部20に対する共振用導体12の第1及び第2共振導体部22a,22bの軸方向の長さL1や不平衡給電材11の無給電部21に対するグラウンド用導体13の第1及び第2グラウンド導体部15a,15bの軸方向の長さL3を自由に設定することができる。広帯域アンテナ10A〜10Fでは、給電部20に対する第1及び第2共振導体部22a,22bの長さL1のみを変更することができ、無給電部21に対する第1及び第2グラウンド導体部25a,25bの長さL3のみを変更することができるとともに、それら長さL1,L3の両方を変更することができる。 The wideband antennas 10A to 10F include the axial lengths L1 of the first and second resonant conductors 22a and 22b of the resonance conductor 12 with respect to the feeding portion 20 of the unbalanced feeding material 11 and the non-feeding portion of the unbalanced feeding material 11. The axial length L3 of the first and second ground conductor portions 15a and 15b of the ground conductor 13 with respect to 21 can be freely set. In the wideband antennas 10A to 10F, only the lengths L1 of the first and second resonant conductors 22a and 22b with respect to the feeding portion 20 can be changed, and the first and second ground conductors 25a and 25b with respect to the non-feeding portion 21 can be changed. Only the length L3 of the can be changed, and both the lengths L1 and L3 can be changed.

給電部20に対する第1及び第2共振導体部22a,22bの軸方向の長さL1の変更には、共振用導体12の第1及び第2共振導体部22a,22bの長さを変更する場合、不平衡給電材11に対する固定用導体14の固定位置を軸方向前方又は軸方向後方へ移動させる場合、又は、それらの両方を併用する場合がある。無給電部21に対する第1及び第2グラウンド導体部25a,25bの軸方向の長さL3の変更には、グラウンド用導体13の第1及び第2グラウンド導体部25a,25bの長さを変更する場合、不平衡給電材11に対する固定用導体14の固定位置を軸方向前方又は軸方向後方へ移動させる場合、又は、それらの両方を併用する場合がある。 To change the axial lengths L1 of the first and second resonant conductors 22a and 22b with respect to the feeding conductor 20, the lengths of the first and second resonant conductors 22a and 22b of the resonant conductor 12 are changed. , The fixing position of the fixing conductor 14 with respect to the unbalanced feeding material 11 may be moved forward in the axial direction or rearward in the axial direction, or both of them may be used in combination. To change the axial lengths L3 of the first and second ground conductors 25a and 25b with respect to the non-feeding portion 21, the lengths of the first and second ground conductors 25a and 25b of the ground conductor 13 are changed. In this case, the fixing position of the fixing conductor 14 with respect to the unbalanced feeding material 11 may be moved to the front in the axial direction or the rear in the axial direction, or both of them may be used in combination.

広帯域アンテナ10A〜10Fは、給電部20に対する第1及び第2共振導体部22a,22bの軸方向の長さL1と無給電部21に対する第1及び第2グラウンド導体部25a,25bの軸方向の長さL3とのうちの少なくとも一方の長さL1,L3を変更することで、その比帯域(使用周波数帯域)を高い方と低い方とへ自由に移動させることができる。たとえば、長さL1を図示のそれよりも長くすると、給電部20と共振用導体12との共振点が高い方へ移動し、それによってアンテナ10A〜10Fの比帯域を高い方(高位)へ移動させることができる。逆に長さ寸法L1を図示のそれよりも短くすると、給電部20と共振用導体12との共振波長が長くなり、アンテナ10A〜10Fの比帯域を低い方(低位)へ移動させることができる。又、長さL3を図示のそれよりも長くすると、無給電部21とグラウンド用導体13との共振波長が長くなり、アンテナ10A〜10Fの比帯域を低い方(低位)へ移動させることができる。逆に長さL3を図示のそれよりも短くすると、無給電部21とグラウンド用導体13との共振点が高い方へ移動し、それによってアンテナ10A〜10Fの比帯域を高い方(高位)へ移動させることができる。 The wideband antennas 10A to 10F have axial lengths L1 of the first and second resonant conductors 22a and 22b with respect to the feeding portion 20 and axial lengths of the first and second ground conductors 25a and 25b with respect to the non-feeding portion 21. By changing the lengths L1 and L3 of at least one of the lengths L3, the specific band (used frequency band) can be freely moved to the higher side and the lower side. For example, when the length L1 is made longer than that shown in the figure, the resonance point between the feeding portion 20 and the resonance conductor 12 moves to the higher side, thereby moving the specific band of the antennas 10A to 10F to the higher side (higher). Can be made to. On the contrary, when the length dimension L1 is shorter than that shown in the drawing, the resonance wavelength between the feeding portion 20 and the resonance conductor 12 becomes longer, and the specific band of the antennas 10A to 10F can be moved to the lower side (lower). .. Further, when the length L3 is made longer than that shown in the drawing, the resonance wavelength between the non-feeding portion 21 and the ground conductor 13 becomes longer, and the specific band of the antennas 10A to 10F can be moved to the lower side (lower). .. On the contrary, when the length L3 is made shorter than that shown in the figure, the resonance point between the non-feeding portion 21 and the ground conductor 13 moves to the higher side, whereby the specific band of the antennas 10A to 10F moves to the higher side (higher). Can be moved.

広帯域アンテナ10A〜10Fは、給電素子16の第1及び第2給電導体部36,37の大きさ(面積)を大きくすることで、不平衡給電材11の給電部20と共振用導体12の第1及び第2共振導体部22a,22bとの共振点の高位への移動が大きくなり、給電素子16の第1及び第2給電導体部36,37の大きさ(面積)を小さくすることで、不平衡給電材11の給電部20と共振用導体12の第1及び第2共振導体部22a,22bとの共振点の高位への移動が小さくなる。 In the wideband antennas 10A to 10F, the size (area) of the first and second feeding conductors 36 and 37 of the feeding element 16 is increased, so that the feeding portion 20 of the unbalanced feeding material 11 and the resonance conductor 12 are the first. The movement of the resonance point with the 1st and 2nd resonance conductor portions 22a and 22b to a higher position is increased, and the size (area) of the 1st and 2nd feeding conductor portions 36 and 37 of the feeding element 16 is reduced. The movement of the resonance point between the feeding portion 20 of the unbalanced feeding material 11 and the first and second resonance conductor portions 22a and 22b of the resonance conductor 12 to a higher position is reduced.

広帯域アンテナ10A〜10Fは、給電素子16の第1及び第2給電導体部36,37の大きさ(面積)を大きくすることで、不平衡給電材11の給電部20と共振用導体12の第1及び第2共振導体部22a,22bとの共振点を高位へ大きく移動させることができ、給電素子16の第1及び第2給電導体部36,37の大きさ(面積)を小さくすることで、不平衡給電材11の給電部20と共振用導体12の第1及び第2共振導体部22a,22bとの共振点を高位へ小さく移動させることができ、比帯域の高位への移動を微調整することができる。 In the wideband antennas 10A to 10F, the size (area) of the first and second feeding conductors 36 and 37 of the feeding element 16 is increased, so that the feeding portion 20 of the unbalanced feeding material 11 and the resonance conductor 12 are the first. The resonance points with the 1st and 2nd resonance conductors 22a and 22b can be largely moved to a higher position, and the size (area) of the 1st and 2nd feeding conductors 36 and 37 of the feeding element 16 can be reduced. The resonance point between the feeding portion 20 of the unbalanced feeding material 11 and the first and second resonance conductor portions 22a and 22b of the resonance conductor 12 can be moved to a higher position, and the movement to a higher position of the specific band can be made fine. Can be adjusted.

広帯域アンテナ10A〜10Fは、不平衡給電材11の中心軸線S1(給電部20の中心)と共振用導体12の第1及び第2共振導体部22a,22b(内側縁)の径方向の離間寸法L2が2〜9mmの範囲にある。離間寸法L2が2mm未満では、不平衡給電材11の給電部20と第1及び第2共振導体部22a,22bとの共振が不十分になり、複数の共振周波数を得ることができず、アンテナ10A〜10Fにおいて使用可能な周波数帯域を広げることができない。離間寸法L2が9mmを超過すると、広帯域アンテナ10A〜10Fにおける比帯域(使用周波数帯域)が最も広い状態で飽和し、それ以上アンテナ10A〜10Fの比帯域を広げることができないのみならず、離間寸法L2を大きくし過ぎると、不平衡給電材11の給電部20と第1及び第2共振導体部22a,22bとの共振が周波数帯域内において不安定になり、不平衡給電材11の給電部20と第1及び第2共振導体部22a,22bとを共振させることができない場合がある。 The wideband antennas 10A to 10F have a radial separation dimension between the central axis S1 (center of the feeding portion 20) of the unbalanced feeding material 11 and the first and second resonance conductor portions 22a and 22b (inner edges) of the resonance conductor 12. L2 is in the range of 2-9 mm. If the separation dimension L2 is less than 2 mm, the resonance between the feeding portion 20 of the unbalanced feeding material 11 and the first and second resonance conductor portions 22a and 22b becomes insufficient, and a plurality of resonance frequencies cannot be obtained, and the antenna. The frequency band that can be used in 10A to 10F cannot be expanded. When the separation dimension L2 exceeds 9 mm, the specific band (frequency band used) of the wideband antennas 10A to 10F is saturated in the widest state, and the specific band of the antennas 10A to 10F cannot be further widened. If L2 is made too large, the resonance between the feeding portion 20 of the unbalanced feeding material 11 and the first and second resonance conductor portions 22a and 22b becomes unstable in the frequency band, and the feeding portion 20 of the unbalanced feeding material 11 becomes unstable. And the first and second resonance conductor portions 22a and 22b may not be able to resonate.

広帯域アンテナ10A〜10Fは、離間寸法L2を前記範囲において変更することで、アンテナ10A〜10Fにおける比帯域(使用周波数帯域)の広狭を自由に調整することができ、共振させる周波数帯域を安定化させることができる。具体的には、離間寸法L2を大きくすることで、比帯域を広くすることができ、離間寸法L2を小さくすることで、比帯域を狭くし、共振帯域内のVSWRを安定化させることができる。広帯域アンテナ10A〜10Fは、離間寸法L2が2mmから大きくなるにつれて比帯域が急勾配に広がり、離間寸法L2が9mmで比帯域が最も広い状態となり、離間寸法L2がそれ以上大きくなったとしても、アンテナ10A〜10Fの比帯域は略一定となる。広帯域アンテナ10A〜10Fは、離間寸法L2を2〜9mmの範囲にすることで、給電部20と第1及び第2共振導体部22a,22bとの電波の共振効率が最適となり、給電部20と第1及び第2共振導体部22a,22bとを効率よく共振させることができるとともに、アンテナ10A〜10Fにおける比帯域を大幅に広げることができる。 By changing the separation dimension L2 in the above range, the wide band antennas 10A to 10F can freely adjust the width of the specific band (used frequency band) of the antennas 10A to 10F, and stabilize the resonating frequency band. be able to. Specifically, by increasing the separation dimension L2, the specific band can be widened, and by decreasing the separation dimension L2, the specific band can be narrowed and the VSWR in the resonance band can be stabilized. .. In the wideband antennas 10A to 10F, the specific band widens steeply as the separation dimension L2 increases from 2 mm, the specific band becomes the widest at the separation dimension L2 of 9 mm, and even if the separation dimension L2 becomes larger than that. The specific band of the antennas 10A to 10F is substantially constant. In the wideband antennas 10A to 10F, by setting the separation dimension L2 in the range of 2 to 9 mm, the resonance efficiency of the radio waves between the feeding portion 20 and the first and second resonant conductor portions 22a and 22b becomes optimum, and the feeding portion 20 and The first and second resonance conductor portions 22a and 22b can be efficiently resonated, and the specific band of the antennas 10A to 10F can be significantly widened.

広帯域アンテナ10A〜10Fは、不平衡給電材11の中心軸線S1(無給電部21の中心)と第1及び第2グランド導体部25a,25b(内側縁)との間の離間寸法L4が3〜10mmの範囲にある。アンテナ10A〜10Fでは、離間寸法L4を離間寸法L2よりも大きくし、又は、離間寸法L4を離間寸法L2と同一にする。離間寸法L4が3mm未満では、不平衡給電材11の無給電部21と第1及び第2グランド導体部25a,25bとの共振が不十分になり、複数の共振周波数を得ることができず、アンテナ10A〜10Fにおいて使用可能な周波数帯域を広げることができない。離間寸法L4が10mmを超過すると、アンテナ10A〜10Fにおける使用可能な周波数帯域が最も広い状態で飽和し、それ以上アンテナ10A〜10Fの周波数帯域を広げることができないのみならず、離間寸法L4を大きくし過ぎると、不平衡給電材11の無給電部21と第1及び第2グランド導体部25a,25bとの共振が周波数帯域内において不安定になり、不平衡給電材11の給電部21と第1及び第2グランド導体部25a,25bとを共振させることができない場合がある。 The wideband antennas 10A to 10F have a distance L4 between the central axis S1 (center of the non-feeding portion 21) of the unbalanced feeding material 11 and the first and second ground conductor portions 25a and 25b (inner edges) of 3 to 3. It is in the range of 10 mm. In the antennas 10A to 10F, the separation dimension L4 is made larger than the separation dimension L2, or the separation dimension L4 is made the same as the separation dimension L2. If the separation dimension L4 is less than 3 mm, the resonance between the non-feeding portion 21 of the unbalanced feeding material 11 and the first and second ground conductor portions 25a and 25b becomes insufficient, and a plurality of resonance frequencies cannot be obtained. The frequency band that can be used in the antennas 10A to 10F cannot be expanded. When the separation dimension L4 exceeds 10 mm, the usable frequency band of the antennas 10A to 10F is saturated in the widest state, and not only the frequency band of the antennas 10A to 10F cannot be further expanded, but also the separation dimension L4 is increased. If it is excessive, the resonance between the non-feeding portion 21 of the unbalanced feeding material 11 and the first and second ground conductors 25a and 25b becomes unstable in the frequency band, and the feeding portion 21 and the first and second ground conductors 11 of the unbalanced feeding material 11 become unstable. It may not be possible to resonate the 1st and 2nd ground conductors 25a and 25b.

広帯域アンテナ10A〜10Fは、離間寸法L4を前記範囲において変更することで、アンテナ10A〜10Fにおける比帯域(使用周波数帯域)の広狭を自由に調整することができ、共振させる周波数帯域を安定化させることができる。具体的には、離間寸法L4を大きくすることで、比帯域を広くすることができ、離間寸法L4を小さくすることで、比帯域を狭くし、共振帯域内のVSWRを安定化させることができる。広帯域アンテナ10A〜10Fは、離間寸法L4が3mmから大きくなるにつれて比帯域が急勾配に広がり、離間寸法L4が10mmで比帯域が最も広い状態となり、離間寸法L4がそれ以上大きくなったとしても、アンテナ10A〜10Fの比帯域は略一定となる。広帯域アンテナ10A〜10Fは、離間寸法L4を3〜10mmの範囲にすることで、無給電部21と第1及び第2グランド導体部25a,25bとの電波の共振効率が最適となり、無給電部21と第1及び第2グランド導体部25a,25bとを効率よく共振させることができるとともに、アンテナ10A〜10Fにおける比帯域を大幅に広げることができる。 The wide band antennas 10A to 10F can freely adjust the width of the specific band (used frequency band) of the antennas 10A to 10F by changing the separation dimension L4 in the above range, and stabilize the resonating frequency band. be able to. Specifically, by increasing the separation dimension L4, the specific band can be widened, and by decreasing the separation dimension L4, the specific band can be narrowed and the VSWR in the resonance band can be stabilized. .. In the wideband antennas 10A to 10F, the specific band widens steeply as the separation dimension L4 increases from 3 mm, the specific band becomes the widest at the separation dimension L4 of 10 mm, and even if the separation dimension L4 becomes larger than that. The specific band of the antennas 10A to 10F is substantially constant. In the wideband antennas 10A to 10F, the resonance efficiency of the radio waves between the non-feeding portion 21 and the first and second ground conductors 25a and 25b is optimized by setting the separation dimension L4 in the range of 3 to 10 mm, and the non-feeding portion The 21 and the first and second ground conductor portions 25a and 25b can be efficiently resonated, and the specific band of the antennas 10A to 10F can be significantly widened.

広帯域アンテナ10A〜10Fは、離間寸法L2,L4が前記範囲にあり、第1及び第2共振導体部22a,22bと給電部20とに高周波電流が誘起されて第1及び第2共振導体部22a,22bと給電部20との軸方向へ高周波電流が流れ、第1及び第2グランド導体部25a,25bと無給電部21とに高周波電流が誘起されて第1及び第2グランド導体部25a,25bと無給電部21との軸方向へ高周波電流が流れ、第1及び第2共振導体部22a,22b(共振用導体12)と不平衡給電材11の給電部20とがそれら導体部22a,22bと給電部20とに誘起された軸方向の高周波電流によって効率よく確実に共振するとともに、第1及び第2グランド導体部25a,25b(グラウンド用導体13)と不平衡給電材11の無給電部21とがそれら導体部25a,25bと無給電部21とに誘起された軸方向の高周波電流によって効率よく確実に共振することで、複数の共振周波数が得られ、得られた複数の共振周波数が一方向へ連続して隣り合うとともにそれら共振周波数の一部が重なり合う。 In the wideband antennas 10A to 10F, the separation dimensions L2 and L4 are in the above range, and a high frequency current is induced in the first and second resonance conductor portions 22a and 22b and the feeding portion 20, and the first and second resonance conductor portions 22a , 22b and the power feeding unit 20 flow in the axial direction, and high frequency currents are induced in the first and second ground conductor portions 25a, 25b and the non-feeding unit 21, and the first and second ground conductor portions 25a, A high-frequency current flows in the axial direction between the 25b and the non-feeding portion 21, and the first and second resonant conductors 22a and 22b (resonant conductor 12) and the feeding portion 20 of the unbalanced feeding material 11 are the conductors 22a, The axial high-frequency current induced in 22b and the power feeding unit 20 resonates efficiently and reliably, and the first and second ground conductors 25a and 25b (ground conductor 13) and the unbalanced power feeding material 11 are not fed. A plurality of resonance frequencies are obtained by the parts 21 efficiently and surely resonating with the high-frequency currents in the axial direction induced in the conductor parts 25a and 25b and the non-feeding part 21, and the obtained plurality of resonance frequencies are obtained. Are adjacent to each other continuously in one direction, and some of their resonance frequencies overlap.

広帯域アンテナ10A〜10Fは、給電素子16の第1給電導体部36の軸方向へ高周波電流が流れ、給電素子16の第2給電導体部37の軸方向へ高周波電流が流れ、給電素子15の第1給電導体部36と共振用導体12の第1共振導体部22aとがそれら導体部22a,36に誘起された軸方向の高周波電流によって共振するとともに、給電素子16の第2給電導体部37と共振用導体12の第2共振導体部22bとがそれら導体部22b,37に誘起された軸方向の高周波電流によって共振することで、共振させる周波数帯域が安定化する。 In the broadband antennas 10A to 10F, a high-frequency current flows in the axial direction of the first feeding conductor portion 36 of the feeding element 16, a high-frequency current flows in the axial direction of the second feeding conductor portion 37 of the feeding element 16, and the first feeding element 15 1 The feeding conductor portion 36 and the first resonant conductor portion 22a of the resonance conductor 12 resonate with the axial high-frequency current induced in the conductor portions 22a and 36, and also with the second feeding conductor portion 37 of the feeding element 16. The second resonance conductor portion 22b of the resonance conductor 12 resonates with the axial high-frequency current induced in the conductor portions 22b and 37, so that the frequency band to be resonated is stabilized.

広帯域アンテナ10A,10C,10Eは、第1グランド導体部25aに高周波電流が誘起されて第1グランド導体部25aの軸方向一方へ高周波電流が流れ、第1無給電素子15の軸方向へ延びる第1無給電導体部32に高周波電流が誘起されて第1無給電導体部32の軸方向他方へ高周波電流が流れ、第1無給電導体部32には第1グランド導体部25aに流れる高周波電流の向き(軸方向一方)とは逆方向の向き(軸方向他方)に高周波電流が流れるから、第1グランド導体部25bの軸方向一方へ流れる高周波電流と第1無給電導体部32の軸方向他方へ流れる高周波電流とが打ち消し合う。 In the wideband antennas 10A, 10C, 10E, a high-frequency current is induced in the first ground conductor portion 25a, a high-frequency current flows in one of the axial directions of the first ground conductor portion 25a, and the high-frequency current extends in the axial direction of the first non-feeding element 15. 1 A high-frequency current is induced in the non-feeding conductor portion 32, a high-frequency current flows to the other axial direction of the first non-feeding conductor portion 32, and the high-frequency current flowing in the first ground conductor portion 25a flows through the first non-feeding conductor portion 32. Since the high-frequency current flows in the direction opposite to the direction (one in the axial direction) (the other in the axial direction), the high-frequency current flowing in one of the axial directions of the first ground conductor portion 25b and the other in the axial direction of the first non-feeding conductor portion 32. The high-frequency current flowing to cancels each other out.

広帯域アンテナ10A,10C,10Eは、第2グランド導体部25bに高周波電流が誘起されて第2グランド導体部25bの軸方向一方へ高周波電流が流れ、第2無給電素子15の軸方向へ延びる第2無給電導体部33に高周波電流が誘起されて第2給電導体部33の軸方向他方へ高周波電流が流れ、第2無給電導体部33には第2グランド導体部25bに流れる高周波電流の向き(軸方向一方)とは逆方向の向き(軸方向他方)に高周波電流が流れるから、第2グランド導体部25bの軸方向一方へ流れる高周波電流と第2無給電導体部33の軸方向他方へ流れる高周波電流とが打ち消し合う。 In the broadband antennas 10A, 10C, 10E, a high-frequency current is induced in the second ground conductor portion 25b, a high-frequency current flows in one of the axial directions of the second ground conductor portion 25b, and the high-frequency current extends in the axial direction of the second non-feeding element 15. 2 A high-frequency current is induced in the non-feeding conductor portion 33, a high-frequency current flows in the axial direction of the second feeding conductor portion 33, and the direction of the high-frequency current flowing in the second ground conductor portion 25b in the second non-feeding conductor portion 33. Since the high-frequency current flows in the direction opposite to (one in the axial direction) (the other in the axial direction), the high-frequency current flowing in one of the axial directions of the second ground conductor portion 25b and the other in the axial direction of the second non-feeding conductor portion 33 The high-frequency current that flows cancels each other out.

広帯域アンテナ10B,10D,10Fは、第1グランド導体部25aに高周波電流が誘起されて第1グランド導体部25aの軸方向一方へ高周波電流が流れ、第1無給電素子15の軸方向へ延びる第1無給電導体部32に高周波電流が誘起されて第1無給電導体部32の軸方向他方へ高周波電流が流れるとともに、第2無給電素子41の軸方向へ延びる第3無給電導体部43に高周波電流が誘起されて第3無給電導体部43の軸方向他方へ高周波電流が流れ、第1無給電導体部32及び第3無給電導体部43には第1グランド導体部25aに流れる高周波電流の向き(軸方向一方)とは逆方向の向き(軸方向他方)に高周波電流が流れるから、第1グランド導体部25aの軸方向一方へ流れる高周波電流と第1無給電導体部32の軸方向他方へ流れる高周波電流とが打ち消し合うとともに、第1グランド導体部25aの軸方向一方へ流れる高周波電流と第3無給電導体部43の軸方向他方へ流れる高周波電流とが打ち消し合う。 In the broadband antennas 10B, 10D, and 10F, a high-frequency current is induced in the first ground conductor portion 25a, a high-frequency current flows in one of the axial directions of the first ground conductor portion 25a, and the high-frequency current extends in the axial direction of the first non-feeding element 15. 1 A high-frequency current is induced in the non-feeding conductor portion 32, and a high-frequency current flows in the other axial direction of the first non-feeding conductor portion 32, and at the same time, the third non-feeding conductor portion 43 extending in the axial direction of the second non-feeding element 41 A high-frequency current is induced and a high-frequency current flows to the other side in the axial direction of the third non-feeding conductor portion 43, and the high-frequency current flowing through the first ground conductor portion 25a in the first non-feeding conductor portion 32 and the third non-feeding conductor portion 43. Since the high-frequency current flows in the direction opposite to the direction of (one in the axial direction) (the other in the axial direction), the high-frequency current flowing in one of the axial directions of the first ground conductor portion 25a and the axial direction of the first non-feeding conductor portion 32. The high-frequency current flowing to the other cancels each other, and the high-frequency current flowing in one axial direction of the first ground conductor portion 25a and the high-frequency current flowing in the other axial direction of the third non-feeding conductor portion 43 cancel each other out.

広帯域アンテナ10B,10D,10Fは、第2グランド導体部25bに高周波電流が誘起されて第2グランド導体部25bの軸方向一方へ高周波電流が流れ、第1無給電素子15の軸方向へ延びる第2無給電導体部33に高周波電流が誘起されて第2無給電導体部33の軸方向他方へ高周波電流が流れるとともに、第2無給電素子41の軸方向へ延びる第4無給電導体部44に高周波電流が誘起されて第3無給電導体部44の軸方向他方へ高周波電流が流れ、第2無給電導体部33及び第4無給電導体部44には第2グランド導体部25bに流れる高周波電流の向き(軸方向一方)とは逆方向の向き(軸方向他方)に高周波電流が流れるから、第2グランド導体部25bの軸方向一方へ流れる高周波電流と第2無給電導体部33の軸方向他方へ流れる高周波電流とが打ち消し合うとともに、第2グランド導体部25bの軸方向一方へ流れる高周波電流と第4無給電導体部44の軸方向他方へ流れる高周波電流とが打ち消し合う。 In the broadband antennas 10B, 10D, and 10F, a high-frequency current is induced in the second ground conductor portion 25b, a high-frequency current flows in one of the axial directions of the second ground conductor portion 25b, and the high-frequency current extends in the axial direction of the first non-feeding element 15. 2 A high-frequency current is induced in the non-feeding conductor portion 33, and a high-frequency current flows in the other axial direction of the second non-feeding conductor portion 33, and at the same time, in the fourth non-feeding conductor portion 44 extending in the axial direction of the second non-feeding element 41. A high-frequency current is induced and a high-frequency current flows to the other side in the axial direction of the third non-feeding conductor portion 44, and the high-frequency current flowing through the second ground conductor portion 25b in the second non-feeding conductor portion 33 and the fourth non-feeding conductor portion 44. Since the high-frequency current flows in the direction opposite to the direction of (one in the axial direction) (the other in the axial direction), the high-frequency current flowing in one of the axial directions of the second ground conductor portion 25b and the axial direction of the second non-feeding conductor portion 33. The high-frequency current flowing to the other cancels each other, and the high-frequency current flowing in one axial direction of the second ground conductor portion 25b and the high-frequency current flowing in the other axial direction of the fourth non-feeding conductor portion 44 cancel each other out.

図14は、広帯域アンテナ10A〜10FにおけるVSWR(電圧定在波比)と使用帯域との相関関係を示す図であり、図15は、広帯域アンテナ10A〜10Fのインピーダンスを示すスミスチャートである。図16,17は、広帯域アンテナ10A〜10Fの3平面(XY面、YZ面、ZX面)の周り方向において計測した電界強度を示す図である。図16は、XY面アンテナ特性の周り方向(0°〜360°)の電界強度の計測結果を示し、図17は、YZ面又はZX面アンテナ特性の周り方向(0°〜360°)の電界強度の計測結果を示す。 FIG. 14 is a diagram showing the correlation between VSWR (voltage standing wave ratio) and the band used in the wideband antennas 10A to 10F, and FIG. 15 is a Smith chart showing the impedance of the wideband antennas 10A to 10F. 16 and 17 are diagrams showing the electric field strength measured in the circumferential direction of the three planes (XY plane, YZ plane, ZX plane) of the wideband antennas 10A to 10F. FIG. 16 shows the measurement results of the electric field strength in the circumferential direction (0 ° to 360 °) of the XY plane antenna characteristic, and FIG. 17 shows the electric field in the circumferential direction (0 ° to 360 °) of the YZ plane or ZX plane antenna characteristic. The measurement result of the strength is shown.

広帯域アンテナ10A〜10Fは、図14に示すように、比帯域(使用周波数帯域)が約100MHz〜約10.0GHzにおいて反射係数VSWR(電圧定在波比)が2以上3以下であり、低いVSWR(電圧定在波比)を維持した状態で、広い比帯域を持っていることが分かる。又、図15に示すように、広帯域アンテナ10A〜10Fのインピーダンスが50Ωであり、図16に示すように、XY面アンテナ特性の周り方向(0°〜360°)の電界強度(電波強度)が略真円を画き、図17に示すように、YZ面またはZX面アンテナ特性の周り方向(0°〜360°)の電界強度(電波強度)がメガネ型を画いており、広帯域アンテナ10A〜10Fが良好な無指向性を有していることが分かる。 As shown in FIG. 14, the wideband antennas 10A to 10F have a reflection coefficient VSWR (voltage standing wave ratio) of 2 or more and 3 or less at a specific band (use frequency band) of about 100 MHz to about 10.0 GHz, and have a low VSWR. It can be seen that it has a wide specific band while maintaining (voltage standing wave ratio). Further, as shown in FIG. 15, the impedance of the wideband antennas 10A to 10F is 50Ω, and as shown in FIG. 16, the electric field strength (radio wave strength) in the circumferential direction (0 ° to 360 °) of the XY plane antenna characteristics is A substantially perfect circle is drawn, and as shown in FIG. 17, the electric field strength (radio wave strength) in the circumferential direction (0 ° to 360 °) of the YZ plane or ZX plane antenna characteristics draws a glasses type, and the wideband antennas 10A to 10F. Has good omnidirectionality.

広帯域アンテナ10A〜10Fは、第1及び第2共振導体部22a,22bと給電部20とに高周波電流が誘起されて第1及び第2共振導体部22a,22bと給電部20との軸方向へ高周波電流が流れ、第1及び第2グランド導体部25a,25bと無給電部21とに高周波電流が誘起されて第1及び第2グランド導体部25a,25bと無給電部21との軸方向へ高周波電流が流れ、第1及び第2共振導体部22a,22bと給電部20とがそれら導体部22a,22bと給電部20とに誘起された軸方向の高周波電流によって共振しつつ、第1及び第2グランド導体部25a,25bと無給電部21とがそれら導体部25a,25bと無給電部21とに誘起された軸方向の高周波電流によって共振し、複数の共振周波数を得ることが可能であり、得られた複数の共振周波数が一方向へ連続して隣り合うとともにそれら共振周波数の一部が重なり合うから、アンテナ10A〜10Fにおける比帯域(約100MHz〜約10.0GHz)を大幅に広げることができる。 In the wideband antennas 10A to 10F, a high frequency current is induced in the first and second resonant conductors 22a and 22b and the feeding portion 20, and the first and second resonant conductors 22a and 22b and the feeding portion 20 are axially oriented. A high-frequency current flows, and a high-frequency current is induced in the first and second ground conductor portions 25a and 25b and the non-feeding portion 21, in the axial direction of the first and second ground conductor portions 25a and 25b and the non-feeding portion 21. A high-frequency current flows, and the first and second resonant conductors 22a and 22b and the feeding portion 20 resonate with the axially high-frequency current induced in the conductors 22a and 22b and the feeding portion 20, while the first and second resonant conductors 22a and 22b resonate with each other. The second ground conductor portions 25a and 25b and the non-feeding portion 21 resonate with each other due to the high frequency current in the axial direction induced in the conductor portions 25a and 25b and the non-feeding portion 21, and it is possible to obtain a plurality of resonance frequencies. Yes, since the obtained plurality of resonance frequencies are continuously adjacent to each other in one direction and some of the resonance frequencies overlap, the specific band (about 100 MHz to about 10.0 GHz) in the antennas 10A to 10F can be significantly widened. Can be done.

広帯域アンテナ10A〜10Fは、VSWR(電圧定在波比)が2以上3以下の高い放射利得を備えたアンテナ10A〜10Fを作ることができるとともに、それが使用可能な比帯域(約100MHz〜約10.0GHz)のうちのすべての帯域において電波を送受信することができ、広帯域(ブロードバンド)における使用が可能であって1本のみで広帯域の電波を送受信することが可能なアンテナ10A〜10Fを作ることができる。 Wideband antennas 10A to 10F can make antennas 10A to 10F having a high radiation gain with VSWR (voltage standing wave ratio) of 2 or more and 3 or less, and can use the specific band (about 100 MHz to about 100 MHz to about). Antennas 10A to 10F that can transmit and receive radio waves in all bands of 10.0 GHz), can be used in a wide band (broadband), and can transmit and receive wide band radio waves with only one antenna. be able to.

広帯域アンテナ10A〜10Fは、複数の階段状の第1段差部分39が形成された給電素子16の第1給電導体部36に高周波電流が誘起されて第1給電導体部36の後端から前端に向かって軸方向へ高周波電流が流れ、複数の階段状の第2段差部分分40が形成された給電素子16の第2給電導体部37に高周波電流が誘起されて第2給電導体部37の後端から前端に向かって軸方向への高周波電流が流れ、第1給電導体部36の複数の第1段差部分39と共振用導体12の第1共振導体部22aとがそれら導体部22a,36に誘起された軸方向の高周波電流によって複数共振するとともに、第2給電導体部37の複数の第2段差部分40と共振用導体12の第2共振導体部22bとがそれら導体部22b,37に誘起された軸方向の高周波電流によって複数共振し、それら導体部22a,22b,36,37の共振によって帯域が異なる強い電界強度(電波強度)の複数の共振周波数を得ることができるから、所定の電界強度を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができることはもちろん、複数の第1及び第2段差部分分39,40が形成された給電素子16の第1及び第2給電導体部36,37と共振用導体12の第1及び共振導体部22a,22bとが共振することで、共振させる周波数帯域を安定化させることができ、アンテナ10A〜10F近傍に金属等の導体からなる障害物が近接或いは存在したとしても、アンテナ10A〜10Fの共振点が変動することはなく、アンテナ10A〜10Fの周波数帯域の変化を防ぐことができ、高周波電流を電波に変換する変換効率を維持することができるとともに、設計どおりの周波数帯域の電波を送受信することができる。 In the wideband antennas 10A to 10F, a high-frequency current is induced in the first feeding conductor portion 36 of the feeding element 16 in which a plurality of stepped first stepped portions 39 are formed, and from the rear end to the front end of the first feeding conductor portion 36. A high-frequency current flows in the axial direction toward the axis, and a high-frequency current is induced in the second feeding conductor portion 37 of the feeding element 16 in which a plurality of stepped second step portions 40 are formed, and after the second feeding conductor portion 37. A high-frequency current flows in the axial direction from the end to the front end, and the plurality of first step portions 39 of the first feeding conductor portion 36 and the first resonance conductor portion 22a of the resonance conductor 12 are connected to the conductor portions 22a and 36. A plurality of resonances are caused by the induced axial high-frequency current, and the plurality of second step portions 40 of the second feeding conductor portion 37 and the second resonance conductor portion 22b of the resonance conductor 12 are induced in the conductor portions 22b and 37. A plurality of resonance frequencies are resonated by the high-frequency current in the axial direction, and a plurality of resonance frequencies having strong electric field strengths (radio field strengths) having different bands can be obtained by the resonance of the conductor portions 22a, 22b, 36, and 37. It is possible to send a wide band radio wave over a wide range and far away (increase the radiation gain) while maintaining the strength, and of course, the first of the feeding element 16 in which a plurality of first and second stepped portions 39 and 40 are formed. By resonating the second feeding conductors 36 and 37 with the first and resonance conductors 22a and 22b of the resonance conductor 12, the resonating frequency band can be stabilized, and the metal near the antennas 10A to 10F. Even if an obstacle made of a conductor such as the above is close to or present, the resonance point of the antennas 10A to 10F does not fluctuate, the change of the frequency band of the antennas 10A to 10F can be prevented, and the high frequency current is converted into a radio wave. The conversion efficiency can be maintained, and radio waves in the frequency band as designed can be transmitted and received.

図1,図5,図10に示す広帯域アンテナ10A,10C,10Eは、第1グランド導体部25aに高周波電流が誘起されて第1グランド導体部25aの軸方向一方へ高周波電流が流れ、第1無給電導体部32に高周波電流が誘起されて第1無給電導体部32の軸方向他方へ高周波電流が流れ、第1グランド導体部25aの軸方向一方へ流れる高周波電流と第1無給電導体部32の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部25bに高周波電流が誘起されて第2グランド導体部25bの軸方向一方へ高周波電流が流れ、第2無給電導体部33に高周波電流が誘起されて第2無給電導体部33の軸方向他方へ高周波電流が流れ、第2グランド導体部25bの軸方向一方へ流れる高周波電流と第2無給電導体部33の軸方向他方へ流れる高周波電流とが打ち消し合うから、それによって不要電流がキャンセルされ、アンテナ10A,10C,10Eにおける放射利得が向上し、電界の振動方向がアンテナ10A,10C,10Eの軸方向と平行する直線偏波の強い電磁界を発生させることができ、高い放射利得を備えたアンテナ10A,10C,10Eにすることができるとともに、所定の電界強度(電波強度)を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。 In the broadband antennas 10A, 10C, and 10E shown in FIGS. 1, 5, and 10, a high-frequency current is induced in the first ground conductor portion 25a, and a high-frequency current flows in one of the axial directions of the first ground conductor portion 25a. A high-frequency current is induced in the non-feeding conductor portion 32, and a high-frequency current flows in the other axial direction of the first non-feeding conductor portion 32. The high-frequency current flowing in the other axial direction of 32 cancels each other, the high-frequency current is induced in the second ground conductor portion 25b, the high-frequency current flows in one axial direction of the second ground conductor portion 25b, and the second non-feeding conductor portion 33 A high-frequency current is induced in the second non-feeding conductor portion 33, and a high-frequency current flows to the other axial direction of the second non-feeding conductor portion 33. Since the high-frequency current flowing to the current cancels out, the unnecessary current is canceled, the radiation gain in the antennas 10A, 10C, and 10E is improved, and the vibration direction of the electric field is linearly biased parallel to the axial direction of the antennas 10A, 10C, 10E. It is possible to generate an electromagnetic field with strong waves, and the antennas 10A, 10C, and 10E with high radiation gain can be used, and a wide band of radio waves can be spread over a wide range while maintaining a predetermined electric current strength (radio strength). It can fly far away (increase the radiation gain).

図4,図8,図13に示す広帯域アンテナ10B,10D,10Fは、第1グランド導体部25aに高周波電流が誘起されて第1グランド導体部25aの軸方向一方へ高周波電流が流れ、第1無給電導体部32に高周波電流が誘起されて第1無給電導体部32の軸方向他方へ高周波電流が流れるとともに、第3無給電導体部43に高周波電流が誘起されて第3無給電導体部43の軸方向他方へ高周波電流が流れ、第1グランド導体部25aの軸方向一方へ流れる高周波電流と第1無給電導体部32及び第3無給電導体部43の軸方向他方へ流れる高周波電流とが打ち消し合い、第2グランド導体部25bに高周波電流が誘起されて第2グランド導体部25bの軸方向一方へ高周波電流が流れ、第2無給電導体部33に高周波電流が誘起されて第2無給電導体部33の軸方向他方へ高周波電流が流れるとともに、第4無給電導体部44に高周波電流が誘起されて第4無給電導体部44の軸方向他方へ高周波電流が流れ、第2グランド導体部25bの軸方向一方へ流れる高周波電流と第2無給電導体部33及び第4無給電導体部44の軸方向他方へ流れる高周波電流とが打ち消し合うから、それによって不要電流がキャンセルされ、アンテナ10B,10D,10Fにおける放射利得が向上し、電界の振動方向がアンテナ10B,10D,10Fの軸方向と平行する直線偏波の強い電磁界を発生させることができ、高い放射利得を備えたアンテナ10B,10D,10Fにすることができるとともに、所定の電界強度(電波強度)を維持した状態で広帯域の電波を広範囲かつ遠方に飛ばす(放射利得を上げる)ことができる。 In the broadband antennas 10B, 10D, and 10F shown in FIGS. 4, 8, and 13, a high-frequency current is induced in the first ground conductor portion 25a, and a high-frequency current flows in one of the axial directions of the first ground conductor portion 25a. A high-frequency current is induced in the non-feeding conductor portion 32 to cause a high-frequency current to flow to the other axial direction of the first non-feeding conductor portion 32, and a high-frequency current is induced in the third non-feeding conductor portion 43 to induce a high-frequency current in the third non-feeding conductor portion 32. A high-frequency current flows in the other axial direction of 43, and a high-frequency current flowing in one axial direction of the first ground conductor portion 25a and a high-frequency current flowing in the other axial direction of the first non-feeding conductor portion 32 and the third non-feeding conductor portion 43. Cancel each other, a high-frequency current is induced in the second ground conductor portion 25b, a high-frequency current flows in one of the axial directions of the second ground conductor portion 25b, and a high-frequency current is induced in the second non-feeding conductor portion 33. A high-frequency current flows to the other axial direction of the feeding conductor portion 33, a high-frequency current is induced in the fourth non-feeding conductor portion 44, and a high-frequency current flows to the other axial direction of the fourth non-feeding conductor portion 44, and the second ground conductor Since the high-frequency current flowing in one axial direction of the portion 25b and the high-frequency current flowing in the other axial direction of the second non-feeding conductor portion 33 and the fourth non-feeding conductor portion 44 cancel each other out, the unnecessary current is canceled and the antenna 10B is canceled. , 10D, 10F, the radiation gain is improved, the vibration direction of the electric current can generate a strong electromagnetic field with linear polarization parallel to the axial direction of the antennas 10B, 10D, 10F, and the antenna 10B with high radiation gain. , 10D, 10F, and a wide band radio wave can be sent over a wide range (increasing the radiation gain) while maintaining a predetermined electric current strength (radio strength).

図9,図12に示す広帯域アンテナ10E,10Fは、所定の誘電率を有する誘電体基板47が容量性として機能することで、誘電体基板47に接合された第1及び第2共振導体部22a,22bと給電部20とがそれら22a,22bと給電部20とに誘起された軸方向の高周波電流によって容易に共振しつつ、誘電体基板47に接合された第1及び第2グランド導体部25a,25bと無給電部21とがそれら導体部25a,25bと無給電部21に誘起された軸方向の高周波電流によって共振し、複数の共振周波数を得ることが可能であり、得られた複数の共振周波数が一方向へ連続して隣り合うとともにそれら共振周波数の一部が重なり合うから、アンテナ10E,10Fにおける比帯域(使用周波数帯域)を大幅に広げることができる。 In the wideband antennas 10E and 10F shown in FIGS. 9 and 12, the first and second resonant conductor portions 22a joined to the dielectric substrate 47 by the dielectric substrate 47 having a predetermined dielectric constant functioning as a capacitance. , 22b and the feeding portion 20 easily resonate with the axial high-frequency current induced in the 22a, 22b and the feeding portion 20, and the first and second ground conductor portions 25a joined to the dielectric substrate 47. , 25b and the non-feeding portion 21 resonate with the conductor portions 25a, 25b and the high-frequency current in the axial direction induced in the non-feeding portion 21, and it is possible to obtain a plurality of resonance frequencies. Since the resonance frequencies are continuously adjacent to each other in one direction and some of the resonance frequencies overlap with each other, the specific band (used frequency band) of the antennas 10E and 10F can be significantly widened.

10A 広帯域アンテナ
10B 広帯域アンテナ
10C 広帯域アンテナ
10D 広帯域アンテナ
10E 広帯域アンテナ
10F 広帯域アンテナ
11 不平衡給電材
12 共振用導体
13 グラウンド用導体
14 固定用導体
15 第1無給電素子
16 給電素子
17 第1導体
18 第1絶縁体
19 第2導体
20 給電部
21 無給電部
22a 第1共振導体部
22b 第2共振導体部
23 並行部分
24 延出部分
25a 第1グランド導体部
25b 第2グランド導体部
26a 傾斜部分
26b 傾斜部分
27a 直状部分
27b 直状部分
28 並行部分
29 延出部分
30 コネクタ
31 第1無給電固定部
32 第1無給電導体部
33 第2無給電導体部
34 前端部
35 給電固定部
36 第1給電導体部
37 第2給電導体部
38 後端部
39 第1段差部分
40 第2段差部分
41 第2無給電素子
42 第2無給電固定部
43 第3無給電導体部
44 第4無給電導体部
45 前端
46 後端
47 誘電体基板
48 一方の面(上面)
49 他方の面(下面)
L1 軸方向の長さ
L2 径方向の離間寸法
L3 軸方向の長さ
L4 径方向の離間寸法
L5 軸方向の長さ
L6 径方向の離間寸法
L7 軸方向の長さ
L8 径方向の離間寸法
S1 中心軸線

10A Broadband Antenna 10B Broadband Antenna 10C Broadband Antenna 10D Broadband Antenna 10E Wideband Antenna 10F Wideband Antenna 11 Unbalanced Feeding Material 12 Resonant Conductor 13 Ground Conductor 14 Fixing Conductor 15 First Non-feeding Element 16 Feeding Element 17 First Conductor 18th 1 Insulator 19 2nd conductor 20 Feeding part 21 Non-feeding part 22a 1st resonance conductor part 22b 2nd resonance conductor part 23 Parallel part 24 Extending part 25a 1st ground conductor part 25b 2nd ground conductor part 26a Inclined part 26b Inclined Part 27a Straight part 27b Straight part 28 Parallel part 29 Extension part 30 Connector 31 1st non-feeding fixing part 32 1st non-feeding conductor part 33 2nd non-feeding conductor part 34 Front end part 35 Power feeding fixing part 36 1st feeding Conductor part 37 2nd feeding conductor part 38 Rear end part 39 1st step part 40 2nd step part 41 2nd non-feeding element 42 2nd non-feeding fixing part 43 3rd non-feeding conductor part 44 4th non-feeding conductor part 45 Front end 46 Rear end 47 Dielectric substrate 48 One side (upper surface)
49 The other side (bottom surface)
L1 Axial length L2 Axial distance L3 Axial length L4 Axial distance L5 Axial length L6 Axial distance L7 Axial length L8 Axial distance S1 Center Axis

Claims (12)

所定長さの給電部及び前記給電部に繋がって該給電部から軸方向後方へ延びる所定長さの無給電部を有する不平衡給電材と、前記不平衡給電材の給電部と共振する共振用導体と、前記不平衡給電材の無給電部と共振するグランド用導体と、前記共振用導体及び前記グランド用導体の間に位置して前記不平衡給電材に固定手段を介して電気的に接続された固定用導体とを備え、前記共振用導体が、前記不平衡給電材の径方向外方へ離間するとともに、前記給電部に並行して前記固定用導体から軸方向前方へ延びる第1共振導体部と、前記不平衡給電材を挟んで前記第1共振導体部の反対側に位置し、前記不平衡給電材の径方向外方へ離間するとともに、前記給電部に並行して前記固定用導体から前記軸方向前方へ延びる第2共振導体部とから形成され、前記グランド用導体が、前記不平衡給電材の径方向外方へ離間するとともに、前記無給電部に並行して前記固定用導体から軸方向後方へ延びる第1グランド導体部と、前記不平衡給電材を挟んで前記第1グランド導体の反対側に位置し、前記不平衡給電材の径方向外方へ離間するとともに、前記無給電部に並行して前記固定用導体から前記軸方向後方へ延びる第2グランド導体部とから形成されていることを特徴とする広帯域アンテナ。 For resonance between an unbalanced feeding material having a feeding portion having a predetermined length and a non-feeding portion having a predetermined length connected to the feeding portion and extending axially rearward from the feeding portion, and a feeding portion of the unbalanced feeding material. It is located between the conductor, the ground conductor that resonates with the non-feeding portion of the unbalanced feeding material, and the resonance conductor and the ground conductor, and is electrically connected to the unbalanced feeding material via a fixing means. First resonance It is located on the opposite side of the first resonance conductor portion with the conductor portion and the unbalanced feeding material sandwiched between them, and is separated outward in the radial direction of the unbalanced feeding material, and is used for fixing in parallel with the feeding portion. It is formed from a second resonance conductor portion extending forward in the axial direction from the conductor, and the ground conductor is separated radially outward of the unbalanced feeding material and is used for fixing in parallel with the non-feeding portion. The first ground conductor portion extending axially rearward from the conductor is located on the opposite side of the first ground conductor with the unbalanced feeding material interposed therebetween, and is separated outward in the radial direction of the unbalanced feeding material. A broadband antenna characterized in that it is formed from a second ground conductor portion extending rearward in the axial direction from the fixing conductor in parallel with the non-feeding portion. 前記広帯域アンテナが、前記第1グランド導体部と前記第2グランド導体部との間に位置する第1無給電素子を有し、前記第1無給電素子が、前記不平衡給電材に固定手段を介して電気的に接続された第1無給電固定部と、前記不平衡給電材と前記第1グランド導体部との間に位置し、前記不平衡給電材の径方向外方へ離間するとともに前記第1グランド導体部の径方向内方へ離間しつつ、前記無給電部に並行して前記第1無給電固定部から軸方向前方へ延びる第1無給電導体部と、前記不平衡給電材と前記第2グランド導体部との間に位置し、前記不平衡給電材の径方向外方へ離間するとともに前記第2グランド導体部の径方向内方へ離間しつつ、前記無給電部に並行して前記第1無給電固定部から軸方向前方へ延び る第2無給電導体部とから形成されている請求項1に記載の広帯域アンテナ。 The broadband antenna has a first non-feeding element located between the first ground conductor portion and the second ground conductor portion, and the first non-feeding element provides fixing means to the unbalanced feeding material. It is located between the first non-feeding fixing portion electrically connected via the unbalanced feeding material and the unbalanced feeding material and the first ground conductor portion, and is separated outward in the radial direction of the unbalanced feeding material and described above. The first non-feeding conductor portion extending axially forward from the first non-feeding fixed portion in parallel with the non-feeding portion while being separated inward in the radial direction of the first ground conductor portion, and the unbalanced feeding material. It is located between the second ground conductor portion and is parallel to the non-feeding portion while being separated radially outward of the unbalanced feeding material and radially inward of the second ground conductor portion. The wideband antenna according to claim 1, further comprising a second non-feeding conductor portion extending axially forward from the first non-feeding fixed portion. 前記共振用導体の第1共振導体部と第2共振導体部とが、前記不平衡給電材の中心軸線に対して線対称の関係にあり、前記グランド用導体の第1グランド導体部と第2グランド導体部とが、前記不平衡給電材の中心軸線に対して線対称の関係にあり、前記第1無給電素子の第1無給電導体部と第2無給電導体部とが、前記不平衡給電材の中心軸線に対して線対称の関係にある請求項1又は請求項2に記載の広帯域アンテナ。 The first resonance conductor portion and the second resonance conductor portion of the resonance conductor are in a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material, and the first ground conductor portion and the second ground conductor portion of the ground conductor are in a line-symmetrical relationship. The ground conductor portion has a line-symmetrical relationship with the central axis of the unbalanced feeding material, and the first non-feeding conductor portion and the second non-feeding conductor portion of the first non-feeding element are in the unbalanced relationship. The wideband antenna according to claim 1 or 2, which has a line-symmetrical relationship with respect to the central axis of the feeding material. 前記広帯域アンテナでは、前記第1無給電素子の第1無給電導体部及び第2無給電導体部の軸方向の長さがλ/8〜λ/16である請求項1ないし請求項3いずれかに記載の広帯域アンテナ。 In the wideband antenna, any one of claims 1 to 3 in which the axial lengths of the first non-feeding conductor portion and the second non-feeding conductor portion of the first non-feeding element are λ / 8 to λ / 16. Wideband antenna described in. 前記広帯域アンテナが、前記第1グランド導体部と前記第2グランド導体部との間であって前記第1無給電素子の軸方向前方に位置して該第1無給電素子に対向する第2無給電素子を有し、前記第2無給電素子が、前記不平衡給電材に固定手段を介して電気的に接続された第2無給電固定部と、前記不平衡給電材と前記第1グランド導体部との間に位置し、前記不平衡給電材の径方向外方へ離間するとともに前記第1グランド導体部の径方向内方へ離間しつつ、前記無給電部に並行して前記第2無給電固定部から軸方向後方へ延びる第3無給電導体部と、前記不平衡給電材と前記第2グランド導体部との間に位置し、前記不平衡給電材の径方向外方へ離間するとともに前記第2グランド導体部の径方向内方へ離間しつつ、前記無給電部に並行して前記第2無給電固定部から軸方向後方へ延びる第4無給電導体部とから形成されている請求項1ないし請求項4いずれかに記載の広帯域アンテナ。 The wideband antenna is located between the first ground conductor portion and the second ground conductor portion in the axially forward direction of the first non-feeding element, and faces the first non-feeding element. A second non-feeding fixing portion having a feeding element, the second non-feeding element being electrically connected to the unbalanced feeding material via a fixing means, the unbalanced feeding material, and the first ground conductor. The second non-feeding material is located between the parts and the unbalanced feeding material in parallel with the non-feeding part while being separated in the radial direction of the unbalanced feeding material and inward in the radial direction of the first ground conductor portion. It is located between the third non-feeding conductor portion extending axially rearward from the feeding fixing portion, the unbalanced feeding material and the second ground conductor portion, and is separated outward in the radial direction of the unbalanced feeding material. A claim formed from a fourth non-feeding conductor portion extending axially rearward from the second non-feeding fixed portion in parallel with the non-feeding portion while being separated inward in the radial direction of the second ground conductor portion. The wideband antenna according to any one of items 1 to 4. 前記第2無給電素子の第3無給電導体部と第4無給電導体部とが、前記不平衡給電材の中心軸線に対して線対称の関係にあり、前記広帯域アンテナでは、前記第1無給電素子の第1無給電導体部及び第2無給電導体部の軸方向の長さがλ/8〜λ/16であり、前記第2無給電素子の第3無給電導体部及び第4無給電導体部の軸方向の長さがλ/8〜λ/16である請求項5に記載の広帯域アンテナ。 The third non-feeding conductor portion and the fourth non-feeding conductor portion of the second non-feeding element have a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material, and in the broadband antenna, the first non-feeding material is used. The axial lengths of the first non-feeding conductor portion and the second non-feeding conductor portion of the feeding element are λ / 8 to λ / 16, and the third non-feeding conductor portion and the fourth non-feeding conductor portion of the second non-feeding element. The wideband antenna according to claim 5, wherein the length of the feeding conductor portion in the axial direction is λ / 8 to λ / 16. 前記第1無給電素子の第1無給電導体部と前記第2無給電素子の第3無給電導体部とが、それら導体部のうちのいずれか一方が上となりいずれか他方が下となった状態で、前記広帯域アンテナの厚み方向へ離間対向して並び、前記第1無給電素子の第2無給電導体部と前記第2無給電素子の第4無給電導体部とが、それら導体部のうちのいずれか一方が上となりいずれか他方が下となった状態で、前記広帯域アンテナの厚み方向へ離間対向して並んでいる請求項4ないし請求項6いずれかに記載の広帯域アンテナ。 The first non-feeding conductor portion of the first non-feeding element and the third non-feeding conductor portion of the second non-feeding element are such that one of the conductor portions is on the top and the other is on the bottom. In this state, the wideband antennas are arranged so as to be separated from each other in the thickness direction, and the second non-feeding conductor portion of the first non-feeding element and the fourth non-feeding conductor portion of the second non-feeding element are the conductor portions. The wideband antenna according to any one of claims 4 to 6, wherein one of them is on the top and the other is on the bottom, and the wideband antennas are arranged so as to be separated from each other in the thickness direction of the wideband antenna. 前記第1無給電素子の第1無給電導体部の前端が、前記第2無給電素子の第3無給電導体部の後端から軸方向後方へわずかに離間対向し、前記第1無給電素子の第2無給電導体部の前端が、前記第2無給電素子の第4無給電導体部の後端から軸方向後方へわずかに離間対向している請求項4ないし請求項6いずれかに記載の広帯域アンテナ。 The front end of the first non-feeding conductor portion of the first non-feeding element faces slightly rearward in the axial direction from the rear end of the third non-feeding conductor portion of the second non-feeding element, and the first non-feeding element The present invention according to any one of claims 4 to 6, wherein the front end of the second non-feeding conductor portion of the second non-feeding element is slightly separated and opposed to the rear end in the axial direction from the rear end of the fourth non-feeding conductor portion of the second non-feeding element. Wideband antenna. 前記広帯域アンテナが、所定面積を有する板状に成形されて前記共振用導体の軸方向前方に位置する給電素子を有し、前記給電素子が、前記給電部に電気的に接続された給電固定部と、前記給電固定部から径方向外方へ延びていて前記共振用導体の第1共振導体部から軸方向前方に位置する所定面積の第1給電導体部と、前記給電固定部から径方向外方へ延びていて前記共振用導体の第2共振導体部から軸方向前方に位置する所定面積の第2給電導体部とを有する請求項1ないし請求項8いずれかに記載の広帯域アンテナ。 The broadband antenna has a feeding element that is formed into a plate shape having a predetermined area and is located axially forward of the resonance conductor, and the feeding element is electrically connected to the feeding portion. A first feeding conductor portion having a predetermined area extending radially outward from the feeding fixing portion and located axially forward from the first resonance conductor portion of the resonance conductor, and a feeding conductor portion outside the radial direction from the feeding fixing portion. The wideband antenna according to any one of claims 1 to 8, further comprising a second feeding conductor portion having a predetermined area located axially forward from the second resonance conductor portion of the resonance conductor. 前記第1給電導体部には、該第1給電導体部の後端から前端に向かって階段状に並ぶ複数の第1段差部分が形成され、前記第2給電導体部には、該第2給電導体部の後端から前端に向かって階段状に並ぶ複数の第2段差部分が形成されている請求項9に記載の広帯域アンテナ。 A plurality of first stepped portions arranged in a staircase pattern from the rear end to the front end of the first feeding conductor portion are formed in the first feeding conductor portion, and the second feeding conductor portion is formed with the second feeding conductor portion. The wideband antenna according to claim 9, wherein a plurality of second step portions arranged in a staircase pattern from the rear end to the front end of the conductor portion are formed. 前記給電素子の第1給電導体部と第2給電導体部とが、前記不平衡給電材の中心軸線に対して線対称の関係にある請求項9又は請求項11に記載の広帯域アンテナ。 The wideband antenna according to claim 9 or 11, wherein the first feeding conductor portion and the second feeding conductor portion of the feeding element have a line-symmetrical relationship with respect to the central axis of the unbalanced feeding material. 前記不平衡給電材が、軸方向へ延びる第1導体と、前記第1導体の外周面を包被する絶縁体と、前記絶縁体の外周面を包被して軸方向へ延びる第2導体とから形成され、前記不平衡給電材の給電部が、前記第1導体から形成され、前記不平衡給電材の無給電部が、前記第1及び第2導体と前記絶縁体とから形成され、前記固定用導体が、前記第2導体に電気的に接続され、前記給電素子が、前記第1導体に電気的に接続されている請求項8ないし請求項11いずれかに記載の広帯域アンテナ。


The unbalanced feeding material includes a first conductor extending in the axial direction, an insulator covering the outer peripheral surface of the first conductor, and a second conductor covering the outer peripheral surface of the insulator and extending in the axial direction. The feeding portion of the unbalanced feeding material is formed from the first conductor, and the non-feeding portion of the unbalanced feeding material is formed from the first and second conductors and the insulator. The wideband antenna according to any one of claims 8 to 11, wherein the fixing conductor is electrically connected to the second conductor, and the feeding element is electrically connected to the first conductor.


JP2021028328A 2020-02-28 2021-02-25 Broad band antenna Pending JP2021145333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007193 WO2021172469A1 (en) 2020-02-28 2021-02-25 Broadband antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020033613 2020-02-28
JP2020033613 2020-02-28

Publications (1)

Publication Number Publication Date
JP2021145333A true JP2021145333A (en) 2021-09-24

Family

ID=77767352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028328A Pending JP2021145333A (en) 2020-02-28 2021-02-25 Broad band antenna

Country Status (1)

Country Link
JP (1) JP2021145333A (en)

Similar Documents

Publication Publication Date Title
EP1376757B1 (en) Dual-band directional/omnidirectional antenna
KR100588765B1 (en) Circularly polarized dielectric resonator antenna
US7804458B2 (en) Slot antenna
US9385433B2 (en) Multiband hybrid antenna
US20040061652A1 (en) Top-loading monopole antenna apparatus with short-circuit conductor connected between top-loading electrode and grounding conductor
EP3533109B1 (en) Arrangement comprising antenna elements
US8654013B2 (en) Multi-band antenna
JP6258045B2 (en) antenna
JP2011509624A (en) Multi-band built-in antenna
US20180090833A1 (en) Multi-band antenna and radio communication device
KR20090114973A (en) Internal Wide Band Antenna Using Slow Wave Structure
EP2490295B1 (en) Antenna
JP2005508099A (en) Multiband antenna for mobile equipment
JP2004072731A (en) Monopole antenna device, communication system, and mobile communication system
CN109390666A (en) Single-piece double frequency band aerial and ground plane
CN210111029U (en) Dual-band antenna and aircraft
WO2021172469A1 (en) Broadband antenna
CN106848577A (en) A kind of logarithm period monopole antenna
Islam et al. A novel feeding technique for a dual band microstrip patch antenna
US9337533B2 (en) Ground plane meandering in Z direction for spiral antenna
JP2021145333A (en) Broad band antenna
JP5632207B2 (en) antenna
JP5677150B2 (en) antenna
CN114300833B (en) Cone antenna and digital broadcasting antenna
JP5782661B2 (en) antenna

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240117