JP2021140961A - Heat dissipation structure and battery including the same - Google Patents

Heat dissipation structure and battery including the same Download PDF

Info

Publication number
JP2021140961A
JP2021140961A JP2020038400A JP2020038400A JP2021140961A JP 2021140961 A JP2021140961 A JP 2021140961A JP 2020038400 A JP2020038400 A JP 2020038400A JP 2020038400 A JP2020038400 A JP 2020038400A JP 2021140961 A JP2021140961 A JP 2021140961A
Authority
JP
Japan
Prior art keywords
heat
heat radiating
conductive sheet
battery cell
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020038400A
Other languages
Japanese (ja)
Other versions
JP7429566B2 (en
Inventor
明 樫本
Akira Kashimoto
明 樫本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2020038400A priority Critical patent/JP7429566B2/en
Publication of JP2021140961A publication Critical patent/JP2021140961A/en
Application granted granted Critical
Publication of JP7429566B2 publication Critical patent/JP7429566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a heat dissipation structure which can be adapted to various forms of a heat source, which is rich in elastic deformability, and which is capable of increasing the heat dissipation of a heat source through heat storage effects, and a battery including the heat dissipation structure.SOLUTION: The present invention relates to: a heat dissipation structure 1 which is located between a heat source 50 and a cooling member 45 and conducts heat from the heat source 50 to the cooling member 45, thereby achieving heat dissipation from the heat source 50, and in which a cushion member 11 comprising a rubber-like elastic body contains a heat storage capsule 3 where a heat storage material storing heat by phase transition is sealed in a microcapsule; and a battery 40 including the same.SELECTED DRAWING: Figure 1

Description

本発明は、放熱構造体およびそれを備えるバッテリーに関する。 The present invention relates to a heat radiating structure and a battery including the heat radiating structure.

自動車、航空機、船舶あるいは家庭用若しくは業務用電子機器の制御システムは、より高精度かつ複雑化してきており、それに伴って、回路基板上の小型電子部品の集積密度が増加の一途を辿っている。この結果、回路基板周辺の発熱による電子部品の故障や短寿命化を解決することが強く望まれている。 Control systems for automobiles, aircraft, ships, or household or commercial electronic devices are becoming more accurate and complex, and the density of small electronic components on circuit boards is increasing. .. As a result, it is strongly desired to solve the failure and shortening of the life of electronic components due to heat generation around the circuit board.

回路基板からの速やかな放熱を実現するには、従来から、回路基板自体を放熱性に優れた材料で構成し、ヒートシンクを取り付け、あるいは冷却ファンを駆動するといった手段を単一で若しくは複数組み合わせて行われている。これらの内、回路基板自体を放熱性に優れた材料、例えばダイヤモンド、窒化アルミニウム(AlN)、立方晶窒化ホウ素(cBN)等から構成する方法は、回路基板のコストを極めて高くしてしまう。また、冷却ファンの配置は、ファンという回転機器の故障、故障防止のためのメンテナンスの必要性や設置スペースの確保が難しいという問題を生じる。これに対して、放熱フィンは、熱伝導性の高い金属(例えば、アルミニウム)を用いた柱状あるいは平板状の突出部位を数多く形成することによって表面積を大きくして放熱性をより高めることのできる簡易な部材であるため、放熱部品として汎用的に用いられている(特許文献1を参照)。 In order to realize quick heat dissipation from the circuit board, conventionally, the circuit board itself is made of a material having excellent heat dissipation, a heat sink is attached, or a cooling fan is driven by a single means or a combination of multiple means. It is done. Of these, a method in which the circuit board itself is made of a material having excellent heat dissipation, for example, diamond, aluminum nitride (AlN), cubic boron nitride (cBN), etc., makes the cost of the circuit board extremely high. In addition, the arrangement of the cooling fan causes problems such as failure of the rotating device called the fan, maintenance necessity for preventing the failure, and difficulty in securing the installation space. On the other hand, the heat radiating fin is a simple one that can increase the surface area and further improve the heat radiating property by forming a large number of columnar or flat plate-shaped projecting portions using a metal having high thermal conductivity (for example, aluminum). Since it is a member, it is widely used as a heat-dissipating component (see Patent Document 1).

ところで、現在、世界中で、地球環境への負荷軽減を目的として、従来からのガソリン車あるいはディーゼル車を徐々に電気自動車に転換しようとする動きが活発化している。特に、フランス、オランダ、ドイツをはじめとする欧州諸国の他、中国でも、電気自動車が普及してきている。電気自動車の普及には、高性能バッテリーの開発の他、多数の充電スタンドの設置等が必要となる。特に、リチウム系の自動車用バッテリーの充放電機能を高めるための技術開発が重要である。上記自動車バッテリーは、摂氏60度以上の高温下では充放電の機能を十分に発揮できないことが良く知られている。このため、先に説明した回路基板と同様、バッテリーにおいても、放熱性を高めることが重要視されている。 By the way, at present, there are active movements around the world to gradually convert conventional gasoline-powered vehicles or diesel-powered vehicles to electric vehicles for the purpose of reducing the burden on the global environment. In particular, electric vehicles are becoming widespread in China as well as in European countries such as France, the Netherlands, and Germany. In order to popularize electric vehicles, it is necessary to develop high-performance batteries and install a large number of charging stations. In particular, it is important to develop technology to enhance the charge / discharge function of lithium-based automobile batteries. It is well known that the above-mentioned automobile battery cannot fully exert its charge / discharge function at a high temperature of 60 degrees Celsius or higher. For this reason, it is important to improve the heat dissipation of the battery as well as the circuit board described above.

バッテリーの速やかな放熱を実現するには、アルミニウム等の熱伝導性に優れた金属製の筐体に水冷パイプを配置し、当該筐体にバッテリーセルを多数配置し、バッテリーセルと筐体の底面との間に密着性のゴムシートを挟んだ構造が採用されている。このような構造のバッテリーでは、バッテリーセルは、ゴムシートを通じて筐体に伝熱して、水冷によって効果的に除熱される。 In order to quickly dissipate heat from the battery, place the water cooling pipe in a metal housing with excellent thermal conductivity such as aluminum, place a large number of battery cells in the housing, and place the battery cell and the bottom of the housing. A structure in which an adhesive rubber sheet is sandwiched between the two is adopted. In a battery having such a structure, the battery cell transfers heat to the housing through a rubber sheet and is effectively removed by water cooling.

特開2008−243999Japanese Patent Application Laid-Open No. 2008-24399

しかし、上述のような従来のバッテリーにおいて、ゴムシートは、アルミニウムやグラファイトと比べて熱伝導性が低いため、バッテリーセルから筐体に効率よく熱を移動させることが難しい。また、ゴムシートに代えてグラファイト等のスペーサを挟む方法も考えられるが、複数のバッテリーセルの下面が平らではなく段差を有することから、バッテリーセルとスペーサとの間に隙間が生じ、伝熱効率が低下する。かかる一例にもみられるように、バッテリーセルは種々の形態(段差等の凹凸あるいは非平滑な表面状態を含む)をとり得ることから、バッテリーセルの種々の形態に順応可能であって高い蓄熱効果によってバッテリーセルのピーク温度を下げることの要望が高まっている。また、バッテリーセルの容器の材質をより弾性変形しやすくすることが要望されており、バッテリーセルを除去したときに元の形状に近い形状に戻る放熱構造体が望まれている。これは、バッテリーセルのみならず、回路基板、電子部品あるいは電子機器本体のような他の熱源にも通じる。 However, in the conventional battery as described above, since the rubber sheet has lower thermal conductivity than aluminum or graphite, it is difficult to efficiently transfer heat from the battery cell to the housing. A method of sandwiching a spacer such as graphite instead of the rubber sheet is also conceivable, but since the lower surfaces of the plurality of battery cells are not flat and have steps, a gap is generated between the battery cells and the spacer, and the heat transfer efficiency is improved. descend. As can be seen in such an example, since the battery cell can take various forms (including unevenness such as a step or a non-smooth surface state), it can be adapted to various forms of the battery cell and has a high heat storage effect. There is an increasing demand for lowering the peak temperature of battery cells. Further, it is required that the material of the container of the battery cell is more easily elastically deformed, and a heat radiating structure that returns to a shape close to the original shape when the battery cell is removed is desired. This leads not only to battery cells, but also to other heat sources such as circuit boards, electronic components or electronics bodies.

本発明は、上記課題に鑑みてなされたものであり、熱源の種々の形態に順応可能であって、弾性変形性に富み、蓄熱効果を通じて熱源の放熱を高めることのできる放熱構造体、および当該放熱構造体を備えるバッテリーを提供することを目的とする。 The present invention has been made in view of the above problems, and is a heat dissipation structure that is adaptable to various forms of a heat source, is highly elastically deformable, and can enhance heat dissipation of the heat source through a heat storage effect. It is an object of the present invention to provide a battery having a heat dissipation structure.

(1)上記目的を達成するための一実施形態に係る放熱構造体は、熱源と冷却部材との間にあって前記熱源から前記冷却部材に熱を伝導させて前記熱源からの放熱を可能とする放熱構造体であって、ゴム状弾性体から構成されるクッション部材に、相転移によって蓄熱を行う蓄熱材をマイクロカプセル内に封入してなる蓄熱カプセルを含有する。
(2)別の実施形態に係る放熱構造体では、好ましくは、前記クッション部材を備える複数の放熱部材が連結して構成され、前記クッション部材は、その長さ方向に中空部を有する筒形状の長尺の部材である。
(3)別の実施形態に係る放熱構造体では、好ましくは、前記放熱部材は、金属、炭素若しくはセラミックスの少なくとも1つを含む熱伝導シートをさらに備え、前記クッション部材は、前記熱伝導シートに比べて前記熱源の表面形状に合わせて変形容易であり、前記熱伝導シートは、前記熱源からの熱を伝えるためのシートであって、前記クッション部材の筒外周に備えられる。
(4)別の実施形態に係る放熱構造体では、好ましくは、前記熱伝導シートは、前記蓄熱カプセルを含有している。
(5)別の実施形態に係る放熱構造体では、好ましくは、前記熱伝導シートは、スパイラル状に巻回しながら進行する形状で前記クッション部材の筒外周に備えられる。
(6)別の実施形態に係る放熱構造体では、好ましくは、前記熱伝導シートは、前記クッション部材の長さ方向に沿う第1隙間であって前記熱伝導シートの厚さ分の前記第1隙間を有する状態で前記クッション部材の筒外周を覆うよう備えられ、前記第1隙間は、複数の前記放熱部材を連結する方向以外の方向に形成される。
(7)別の実施形態に係る放熱構造体では、好ましくは、前記クッション部材は、前記熱伝導シートの前記第1隙間の位置に、前記中空部につながる第2隙間を有する。
(8)別の実施形態に係る放熱構造体では、好ましくは、複数の前記放熱部材は、その長さ方向と直交する方向にて糸で連結されている。
(9)別の実施形態に係る放熱構造体では、好ましくは、複数の前記放熱部材は、枠体の開口部を橋渡しする状態で、前記枠体に固定されている。
(10)別の実施形態に係る放熱構造体では、好ましくは、前記枠体は、その厚さが、前記熱源からの押圧により変形した前記放熱部材の厚さより薄くなるよう形成される。
(11)別の実施形態に係る放熱構造体では、好ましくは、前記熱伝導シートの表面に、当該表面に接触する前記熱源から当該表面への熱伝導性を高めるための熱伝導性オイルを有する。
(12)別の実施形態に係る放熱構造体では、好ましくは、前記熱伝導性オイルは、シリコーンオイルと、前記シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。
(13)一実施形態に係るバッテリーは、冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、上述のいずれか1項に記載の放熱構造体を備える。
(1) The heat dissipation structure according to the embodiment for achieving the above object is between the heat source and the cooling member, and heat is conducted from the heat source to the cooling member to enable heat dissipation from the heat source. A heat storage capsule in which a heat storage material that stores heat by a phase transition is enclosed in a microcapsule is contained in a cushion member that is a structure and is composed of a rubber-like elastic body.
(2) In the heat radiating structure according to another embodiment, preferably, a plurality of heat radiating members including the cushion member are connected to each other, and the cushion member has a tubular shape having a hollow portion in the length direction thereof. It is a long member.
(3) In the heat radiating structure according to another embodiment, preferably, the heat radiating member further includes a heat conductive sheet containing at least one of metal, carbon, or ceramics, and the cushion member is attached to the heat conductive sheet. In comparison, it is easily deformed according to the surface shape of the heat source, and the heat conductive sheet is a sheet for transferring heat from the heat source and is provided on the outer periphery of the cylinder of the cushion member.
(4) In the heat radiating structure according to another embodiment, preferably, the heat conductive sheet contains the heat storage capsule.
(5) In the heat radiating structure according to another embodiment, preferably, the heat conductive sheet is provided on the outer periphery of the cylinder of the cushion member in a shape that advances while being wound in a spiral shape.
(6) In the heat radiating structure according to another embodiment, preferably, the heat conductive sheet is a first gap along the length direction of the cushion member, and the first one corresponding to the thickness of the heat conductive sheet. It is provided so as to cover the outer periphery of the cylinder of the cushion member with a gap, and the first gap is formed in a direction other than the direction in which the plurality of heat radiating members are connected.
(7) In the heat radiating structure according to another embodiment, preferably, the cushion member has a second gap connected to the hollow portion at the position of the first gap of the heat conductive sheet.
(8) In the heat radiating structure according to another embodiment, preferably, the plurality of the heat radiating members are connected by a thread in a direction orthogonal to the length direction thereof.
(9) In the heat radiating structure according to another embodiment, preferably, the plurality of the heat radiating members are fixed to the frame body in a state of bridging the openings of the frame body.
(10) In the heat radiating structure according to another embodiment, the frame is preferably formed so that its thickness is thinner than the thickness of the heat radiating member deformed by pressing from the heat source.
(11) In the heat radiating structure according to another embodiment, preferably, the surface of the heat conductive sheet has a heat conductive oil for increasing the heat conductivity from the heat source in contact with the surface to the surface. ..
(12) In the heat radiating structure according to another embodiment, preferably, the heat conductive oil has higher heat conductivity than the silicone oil and the silicone oil, and is composed of one or more of metal, ceramics or carbon. Includes with sex filler.
(13) The battery according to one embodiment is a battery having one or more battery cells as heat sources in a housing having a structure for flowing a cooling member, and is between the battery cells and the housing. The heat radiating structure according to any one of the above items is provided.

本発明によれば、熱源の種々の形態に順応可能であって、弾性変形性に富み、蓄熱効果を通じて熱源の放熱を高めることのできる放熱構造体、および当該放熱構造体を備えるバッテリーを提供できる。 According to the present invention, it is possible to provide a heat radiating structure that is adaptable to various forms of a heat source, is rich in elastic deformability, and can enhance heat dissipation of the heat source through a heat storage effect, and a battery provided with the heat radiating structure. ..

図1は、第1実施形態に係る放熱構造体をバッテリーセルの直下に配置する状態の斜視図(1A)および当該(1A)におけるA−A線断面図(1B)をそれぞれ示す。FIG. 1 shows a perspective view (1A) in a state where the heat radiating structure according to the first embodiment is arranged directly under the battery cell, and a sectional view taken along line AA (1B) in the (1A). 図2は、第1実施形態に係る放熱構造体を備えるバッテリーの縦断面図を示す。FIG. 2 shows a vertical cross-sectional view of a battery including the heat radiating structure according to the first embodiment. 図3は、第1実施形態に係る放熱構造体を備えるバッテリーの変形例1の縦断面図を示す。FIG. 3 shows a vertical cross-sectional view of a modified example 1 of a battery including the heat radiating structure according to the first embodiment. 図4は、第2実施形態に係る放熱構造体の斜視図(4A)、当該放熱構造体を構成する放熱部材の縦断面図(4B)、および当該断面図中の領域Bの拡大図(4C)をそれぞれ示す。FIG. 4 is a perspective view (4A) of the heat radiating structure according to the second embodiment, a vertical cross-sectional view (4B) of a heat radiating member constituting the heat radiating structure, and an enlarged view (4C) of a region B in the cross-sectional view. ) Are shown respectively. 図5は、第2実施形態に係る放熱構造体を備えるバッテリーの縦断面図(5A)およびバッテリーセルによって放熱構造体を圧縮した場合の放熱構造体を備えるバッテリーの縦断面図(5B)をそれぞれ示す。FIG. 5 is a vertical cross-sectional view (5A) of the battery including the heat-dissipating structure according to the second embodiment and a vertical cross-sectional view (5B) of the battery including the heat-dissipating structure when the heat-dissipating structure is compressed by the battery cell. show. 図6は、第3実施形態に係る放熱構造体の平面図(6A)、当該(6A)におけるC−C線断面図(6B)、および当該断面図中の領域Dの拡大図(6C)をそれぞれ示す。FIG. 6 is a plan view (6A) of the heat radiating structure according to the third embodiment, a sectional view taken along line CC (6B) in the (6A), and an enlarged view (6C) of a region D in the sectional view. Each is shown. 図7は、第3実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーの縦断面図(7A)および当該(7A)中のバッテリーセルによって放熱構造体を圧縮する前後の放熱構造体の形態変化の断面図(7B)をそれぞれ示す。FIG. 7 shows a vertical cross-sectional view (7A) of the heat radiating structure according to the third embodiment and a battery including the heat radiating structure, and the heat radiating structure before and after compressing the heat radiating structure by the battery cell in the (7A). The cross-sectional view (7B) of the morphological change is shown respectively. 図8は、第3実施形態に係る放熱構造体の製造方法の一部を説明するための図を示す。FIG. 8 shows a diagram for explaining a part of the method for manufacturing the heat radiating structure according to the third embodiment. 図9は、第4実施形態に係る放熱構造体の平面図を示す。FIG. 9 shows a plan view of the heat radiating structure according to the fourth embodiment. 図10は、図9に示す放熱構造体を矢印E方向から見た側面図(10A)、当該図9に示す放熱構造体を矢印F方向から見た側面図(10B)、および当該側面図(10B)中の領域Gの拡大図(10C)をそれぞれ示す。10A is a side view (10A) of the heat radiating structure shown in FIG. 9 viewed from the direction of arrow E, a side view (10B) of the heat radiating structure shown in FIG. 9 seen from the direction of arrow F, and the side view (10B). An enlarged view (10C) of the region G in 10B) is shown. 図11は、第5実施形態に係る放熱構造体の平面図を示す。FIG. 11 shows a plan view of the heat radiating structure according to the fifth embodiment. 図12は、図11の放熱構造体の一部の斜視図(12A)および図11の領域Hの拡大図であって放熱構造体を圧縮する前後の形態の変化(12B)をそれぞれ示す。FIG. 12 is a perspective view (12A) of a part of the heat radiating structure of FIG. 11 and an enlarged view of the region H of FIG. 11, showing a change in form (12B) before and after compressing the heat radiating structure. 図13は、第5実施形態に係る放熱構造体の変形例2を、図12(12B)と同様の視野にて示す。FIG. 13 shows a modified example 2 of the heat radiating structure according to the fifth embodiment in the same field of view as in FIG. 12 (12B). 図14は、第5実施形態に係る放熱構造体を備えるバッテリーの縦断面図を示す。FIG. 14 shows a vertical cross-sectional view of a battery including the heat radiating structure according to the fifth embodiment. 図15は、図14の領域Iの拡大図を示す。FIG. 15 shows an enlarged view of the region I of FIG. 図16は、第5実施形態に係る放熱構造体を備えるバッテリーの変形例3を、図15と同様の視野にて示す。FIG. 16 shows a modified example 3 of the battery including the heat radiating structure according to the fifth embodiment in the same field of view as in FIG. 図17は、第6実施形態に係る放熱構造体の平面図を示す。FIG. 17 shows a plan view of the heat radiating structure according to the sixth embodiment. 図18は、第3実施形態および第4実施形態に係る放熱構造体の変形例4およびその製造方法を説明するための図を示す。FIG. 18 shows a diagram for explaining a modified example 4 of the heat radiating structure according to the third embodiment and the fourth embodiment and a method for manufacturing the same.

次に、本発明の各実施形態について、図面を参照して説明する。なお、以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。 Next, each embodiment of the present invention will be described with reference to the drawings. It should be noted that each of the embodiments described below does not limit the invention according to the claims, and all of the elements and combinations thereof described in each embodiment are the means for solving the present invention. Is not always required.

(第1実施形態)
図1は、第1実施形態に係る放熱構造体をバッテリーセルの直下に配置する状態の斜視図(1A)および当該(1A)におけるA−A線断面図(1B)をそれぞれ示す。図2は、第1実施形態に係る放熱構造体を備えるバッテリーの縦断面図を示す。
(First Embodiment)
FIG. 1 shows a perspective view (1A) in a state where the heat radiating structure according to the first embodiment is arranged directly under the battery cell, and a sectional view taken along line AA (1B) in the (1A). FIG. 2 shows a vertical cross-sectional view of a battery including the heat radiating structure according to the first embodiment.

(1)バッテリーの概略構成
バッテリー40は、図2に示すように、冷却部材45を流す構造を持つ筐体41内に、1または2以上の熱源としてのバッテリーセル50を備えた構造を有する。放熱構造体1は、好ましくは、バッテリーセル50の冷却部材45に近い側の端部(下端部)と冷却部材45に近い側の筐体41の一部(底部42)との間に備えられている。図2では、放熱構造体1は、11個のバッテリーセル50を載置しているが、放熱構造体1に載置するバッテリーセル50の個数は11個に限定されない。なお、本願では、「断面」あるいは「縦断面」とは、バッテリー40の筐体41の内部44における上方開口面から底部42へと垂直に切断する方向の断面を意味する。
(1) Outline of Battery As shown in FIG. 2, the battery 40 has a structure in which one or more battery cells 50 as heat sources are provided in a housing 41 having a structure for flowing a cooling member 45. The heat radiating structure 1 is preferably provided between the end portion (lower end portion) of the battery cell 50 on the side closer to the cooling member 45 and a part (bottom portion 42) of the housing 41 on the side closer to the cooling member 45. ing. In FIG. 2, 11 battery cells 50 are mounted on the heat radiating structure 1, but the number of battery cells 50 mounted on the heat radiating structure 1 is not limited to 11. In the present application, the "cross section" or "vertical cross section" means a cross section in the inner 44 of the housing 41 of the battery 40 in the direction of vertically cutting from the upper opening surface to the bottom 42.

この実施形態において、バッテリー40は、例えば、電気自動車用のバッテリーであって、多数のバッテリーセル(単に、セルと称しても良い。)50を備える。バッテリー40は、一方に開口する有底型の筐体41を備える。筐体41は、好ましくは、アルミニウム若しくはアルミニウム基合金から成る。バッテリーセル50は、筐体41の内部44に配置される。バッテリーセル50の上方には、電極51,52(図1参照)が突出して設けられている。複数のバッテリーセル50は、好ましくは、筐体41内において、その両側からネジ等を利用して圧縮する方向に力を与えられて、互いに密着するようになっている(不図示)。筐体41の底部42には、冷却部材45の一例である冷却水を流すために、1または複数の水冷パイプ43が備えられている。冷却部材は、冷却媒体あるいは冷却剤と称しても良い。バッテリーセル50は、底部42との間に、放熱構造体1を挟むようにして筐体41内に配置されている。このような構造のバッテリー40では、バッテリーセル50は、放熱構造体1を通じて筐体41に伝熱して、水冷によって効果的に除熱される。なお、冷却部材45は、冷却水に限定されず、液体窒素、エタノール等の有機溶剤も含むように解釈される。冷却部材45は、冷却に用いられる状況下にて、液体であるとは限らず、気体あるいは固体でも良い。 In this embodiment, the battery 40 is, for example, a battery for an electric vehicle and includes a large number of battery cells (which may be simply referred to as cells) 50. The battery 40 includes a bottomed housing 41 that opens to one side. The housing 41 is preferably made of aluminum or an aluminum-based alloy. The battery cell 50 is arranged inside 44 of the housing 41. Electrodes 51 and 52 (see FIG. 1) are provided so as to project above the battery cell 50. The plurality of battery cells 50 are preferably brought into close contact with each other in the housing 41 by applying a force in the direction of compression from both sides thereof using screws or the like (not shown). The bottom 42 of the housing 41 is provided with one or more water cooling pipes 43 for flowing cooling water, which is an example of the cooling member 45. The cooling member may be referred to as a cooling medium or a cooling agent. The battery cell 50 is arranged in the housing 41 so as to sandwich the heat radiating structure 1 with the bottom portion 42. In the battery 40 having such a structure, the battery cell 50 transfers heat to the housing 41 through the heat radiating structure 1 and is effectively removed by water cooling. The cooling member 45 is not limited to cooling water, but is interpreted to include an organic solvent such as liquid nitrogen and ethanol. The cooling member 45 is not limited to a liquid under the conditions used for cooling, and may be a gas or a solid.

(2)放熱構造体の概略構成
第1実施形態に係る放熱構造体1は、バッテリーセル50と冷却部材45との間にあって、バッテリーセル50から冷却部材45に熱を伝導させてバッテリーセル50からの放熱を可能とする構造体である。放熱構造体1は、ゴム状弾性体から構成されるクッション部材11に、相転移によって蓄熱を行う蓄熱材をマイクロカプセル内に封入してなる蓄熱カプセル3を含有する構造体である(図1(1B)参照)。
(2) Schematic configuration of the heat radiating structure The heat radiating structure 1 according to the first embodiment is located between the battery cell 50 and the cooling member 45, and heat is conducted from the battery cell 50 to the cooling member 45 to be transmitted from the battery cell 50 to the cooling member 45. It is a structure that enables heat dissipation. The heat radiation structure 1 is a structure containing a heat storage capsule 3 formed by enclosing a heat storage material that stores heat by phase transition in a microcapsule in a cushion member 11 composed of a rubber-like elastic body (FIG. 1 (FIG. 1). See 1B)).

(3)クッション部材
クッション部材11の重要な機能は変形容易性と回復力である。変形容易性は、バッテリーセル50の形状に追従するために必要な特性であり、特にリチウムイオンバッテリーなどの半固形物、液体的性状も持つ内容物などを変形しやすいパッケージに収めてあるようなバッテリーセル50の場合には、設計寸法的にも不定形または寸法精度があげられない場合が多い。このため、クッション部材11の変形容易性や追従力を保持するための回復力の保持は重要である。
(3) Cushion member The important functions of the cushion member 11 are deformability and resilience. Deformability is a characteristic necessary to follow the shape of the battery cell 50, and in particular, semi-solid materials such as lithium-ion batteries and contents having liquid properties are contained in a package that is easily deformable. In the case of the battery cell 50, there are many cases where the design dimensions are irregular or the dimensional accuracy cannot be improved. Therefore, it is important to maintain the deformability of the cushion member 11 and the resilience for maintaining the following force.

クッション部材11は、好ましくは、シリコーンゴム、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、ニトリルゴム(NBR)あるいはスチレンブタジエンゴム(SBR)等の熱硬化性エラストマー; ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系、フッ素系等の熱可塑性エラストマー、あるいはそれらの複合物等を含むように構成される。クッション部材11は、バッテリーセル50からの放熱によって溶融あるいは分解等せずにその形態を維持できる程度の耐熱性の高い材料から構成されることが好ましい。この実施形態では、クッション部材11は、より好ましくは、ウレタン系エラストマー中にシリコーンを含浸したもの、あるいはシリコーンゴムにより構成される。クッション部材11は、その熱伝導性を高めるために、上述のようなゴム中に、AlN、cBN、hBN、ダイヤモンドの粒子等に代表されるフィラーを分散して構成されていても良い。クッション部材11は、その内部に気泡を含むものの他、気泡を含まないものでも良い。また、「クッション部材」は、柔軟性に富み、熱源の表面に密着可能に弾性変形可能な部材を意味し、かかる意味では「ゴム状弾性体」と読み替えることもできる。クッション部材11は、樹脂やゴム等から形成されたスポンジあるいはソリッド(スポンジのような多孔質ではない構造のもの)で構成することも可能である。 The cushion member 11 is preferably a thermosetting elastomer such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR) or styrene butadiene rubber (SBR); urethane-based , Ester-based, styrene-based, olefin-based, butadiene-based, fluorine-based and other thermoplastic elastomers, or composites thereof. The cushion member 11 is preferably made of a material having high heat resistance that can maintain its shape without being melted or decomposed by heat radiation from the battery cell 50. In this embodiment, the cushion member 11 is more preferably made of a urethane-based elastomer impregnated with silicone or silicone rubber. The cushion member 11 may be configured by dispersing fillers typified by AlN, cBN, hBN, diamond particles, etc. in the rubber as described above in order to enhance its thermal conductivity. The cushion member 11 may contain air bubbles or may not contain air bubbles. Further, the "cushion member" means a member that is highly flexible and can be elastically deformed so as to be in close contact with the surface of a heat source, and in this sense, it can be read as a "rubber-like elastic body". The cushion member 11 can also be made of a sponge or a solid (a non-porous structure such as a sponge) formed of resin, rubber, or the like.

(4)蓄熱カプセル
蓄熱カプセル3は、蓄熱物質を含む芯物質の周囲に、被膜(カプセル)が形成されたものである。蓄熱カプセル3は、被膜からの蓄熱物質の漏出を防ぐために、芯物質にエラストマーを含有することが好ましい。なお、この実施形態においては、蓄熱物質、エラストマー、およびその他の添加剤等を併せて「芯物質」とも称する。また、蓄熱カプセル3は、好ましくは、直径50〜200μmであり、より好ましくは、直径150μmである。この実施形態において、蓄熱カプセル3は、芯物質が70重量%、被膜が30重量%となるよう構成されることが好ましい。また、この実施形態において、蓄熱カプセル3は、芯物質が77体積%、被膜が23体積%となるよう構成されることが好ましい。蓄熱カプセル3のクッション部材11に対する質量含有率は、好ましくは30〜70質量%、より好ましくは40〜60質量%、さらにより好ましくは46〜53質量%である。他の実施形態でも同様である。
(4) Heat storage capsule The heat storage capsule 3 has a film (capsule) formed around a core substance containing a heat storage substance. The heat storage capsule 3 preferably contains an elastomer in the core material in order to prevent the heat storage material from leaking from the coating film. In this embodiment, the heat storage substance, the elastomer, and other additives are also collectively referred to as a "core substance". The heat storage capsule 3 preferably has a diameter of 50 to 200 μm, and more preferably 150 μm in diameter. In this embodiment, the heat storage capsule 3 is preferably configured so that the core substance is 70% by weight and the coating film is 30% by weight. Further, in this embodiment, the heat storage capsule 3 is preferably configured so that the core substance is 77% by volume and the coating is 23% by volume. The mass content of the heat storage capsule 3 with respect to the cushion member 11 is preferably 30 to 70% by mass, more preferably 40 to 60% by mass, and even more preferably 46 to 53% by mass. The same applies to other embodiments.

(4−1)蓄熱物質
この施形態において、蓄熱物質は、例えば、パラフィン化合物、脂肪酸、脂肪酸エステル化合物、脂肪族エーテル類、脂肪族ケトン類、脂肪族アルコール等の潜熱蓄熱物質が好ましく、化学的および物理的に安定な化合物であり、且つ高い蓄熱容量を有する脂肪酸エステル化合物がより好ましい。脂肪酸エステル化合物としては、例えば、炭素数8〜30の長鎖脂肪酸エステルを用いることができ、具体的には、ステアリン酸ビニル、セバシン酸ジメチル、ステアリン酸ブチル、ステアリン酸イソプロピル、パルミチン酸イソプロピル、パルミチン酸プロピルが挙げられる。蓄熱物質の融点が外気温度よりも低い場合、常時、蓄熱物質は相転移した後の状態(液体の状態)となるため、バッテリーセル50からの熱を受けても蓄熱を行わない。一方、蓄熱物質の融点があまりに高い場合、バッテリーセル50の温度が融点温度付近に上昇するまで相転移による吸熱を行わない。これらの点から、蓄熱物質の融点および凝固点は、20〜100℃の範囲にあることが好ましく、35℃〜60℃の範囲にあることがより好ましい。
(4-1) Heat storage substance In this embodiment, the heat storage substance is preferably a latent heat storage substance such as a paraffin compound, a fatty acid, a fatty acid ester compound, an aliphatic ether, an aliphatic ketone, or an aliphatic alcohol, and is chemically chemically. And a fatty acid ester compound which is a physically stable compound and has a high heat storage capacity is more preferable. As the fatty acid ester compound, for example, a long-chain fatty acid ester having 8 to 30 carbon atoms can be used, and specifically, vinyl stearate, dimethyl sebacate, butyl stearate, isopropyl stearate, isopropyl palmitate, and palmitin. Examples include propyl acid. When the melting point of the heat storage substance is lower than the outside air temperature, the heat storage substance is always in the state after the phase transition (liquid state), so that the heat storage is not performed even if the heat from the battery cell 50 is received. On the other hand, when the melting point of the heat storage substance is too high, heat absorption by the phase transition is not performed until the temperature of the battery cell 50 rises to near the melting point temperature. From these points, the melting point and the freezing point of the heat storage substance are preferably in the range of 20 to 100 ° C, more preferably in the range of 35 ° C to 60 ° C.

(4−2)エラストマー
この実施形態において、エラストマーは、例えば、共役ジエンゴム(ただし、水添共役ジエン(共)重合体を除く)、エチレン・α−オレフィン共重合体ゴム、水添共役ジエン(共)重合体、エチレン・酢酸ビニル共重合体等であることが好ましい。これらは、1種単独で使用しても良いし、2種以上を併用しても良い。エラストマーは、ゴム弾性を有し、蓄熱物質を良好に包接するバインダー成分として働くため、被膜からの蓄熱物質の漏出を防ぐことができる。特に、熱可塑性エラストマーは、製造時において成型加工を繰り返し行うことが可能であるため好ましく、蓄熱物質のブリード(染出し)防止および長期耐久性の観点から、水添共役ジエン(共)重合体がより好ましい。
(4-2) Elastomer In this embodiment, the elastomer is, for example, a conjugated diene rubber (excluding a hydrogenated conjugated diene (co) polymer), an ethylene / α-olefin copolymer rubber, and a hydrogenated conjugated diene (co). ) A polymer, an ethylene / vinyl acetate copolymer, or the like is preferable. These may be used alone or in combination of two or more. Since the elastomer has rubber elasticity and acts as a binder component that satisfactorily encapsulates the heat storage substance, it is possible to prevent the heat storage substance from leaking from the coating film. In particular, thermoplastic elastomers are preferable because they can be repeatedly molded during production, and from the viewpoint of preventing bleeding (bleeding) of heat storage substances and long-term durability, hydrogenated conjugated diene (co) polymers are used. More preferred.

(4−3)被膜
この実施形態において、被膜は、例えば、メラミン樹脂、尿素樹脂、ポリスチレン樹脂、アクリル樹脂、スチレン−(メタ)アクリル酸エステル共重合樹脂、ポリアクリロニトリル、アクリロニトリル−スチレン共重合樹脂(AS樹脂)等、バッテリーセル50からの放熱によって溶融あるいは分解等せずにその形態を維持できる程度の耐熱性の高い硬質樹脂から構成されることが好ましい。なお、これらのポリマーは、蓄熱用途に求められる効果を維持しうる範囲で、機能付与の目的で他のモノマーが含まれていても良いし、これらのポリマーが架橋されていても良い。
(4-3) Coating In this embodiment, the coating is, for example, a melamine resin, a urea resin, a polystyrene resin, an acrylic resin, a styrene- (meth) acrylic acid ester copolymer resin, a polyacrylonitrile, an acrylonitrile-styrene copolymer resin ( It is preferably composed of a hard resin having high heat resistance such as AS resin) that can maintain its form without being melted or decomposed by heat radiation from the battery cell 50. In addition, these polymers may contain other monomers for the purpose of imparting functions, or these polymers may be crosslinked, as long as the effects required for heat storage applications can be maintained.

(4−4)その他の添加剤
蓄熱カプセル3は、その他の添加剤として、AlN、cBN、hBN、ダイヤモンドの粒子等に代表されるフィラーを含有していても良い。フィラーの含有量は、加工時の充填性を維持するという観点から、芯物質がエラストマーの融点以上において流動性を維持できる含有量であることが好ましい。具体的には、芯物質100質量%に対して、0.01〜50質量%であることが好ましく、1〜30質量%であることがより好ましい。なお、このような添加剤は、放熱構造体1あるいはバッテリー40にとって必須の構成ではなく、好適に備えることのできる追加的な構成である。これは、第2実施形態以降でも同様である。
(4-4) Other Additives The heat storage capsule 3 may contain fillers typified by AlN, cBN, hBN, diamond particles and the like as other additives. The content of the filler is preferably such that the core material can maintain the fluidity above the melting point of the elastomer from the viewpoint of maintaining the filling property at the time of processing. Specifically, it is preferably 0.01 to 50% by mass, and more preferably 1 to 30% by mass with respect to 100% by mass of the core substance. It should be noted that such an additive is not an essential configuration for the heat dissipation structure 1 or the battery 40, but is an additional configuration that can be suitably provided. This also applies to the second and subsequent embodiments.

このように、放熱構造体1は、バッテリーセル50と冷却部材45との間に配置され、蓄熱カプセル3を含有するクッション部材11から構成されるため、バッテリーセル50からの熱を蓄熱カプセル3に蓄えることができる。このため、放熱構造体1は、バッテリーセル50を好適に冷却しながら、外部に対する放熱を抑制あるいは遅延させることができるため、バッテリーセル50、ひいてはバッテリー40の急激な温度上昇を抑制することができる。また、放熱構造体1は、クッション部材11を備えるため、バッテリーセル50で圧縮された状態においてはバッテリーセル50の表面に追従して上下左右方向に潰れ、且つ、バッテリーセル50を除いた状態においてはクッション部材11の弾性力により元の形状に戻ることができる。よって、放熱構造体1は、バッテリーセル50の種々の形態に順応可能であって、弾性変形性に富み、且つ、蓄熱効果を通じてバッテリーセル50の放熱を高めることができる。 As described above, since the heat radiating structure 1 is arranged between the battery cell 50 and the cooling member 45 and is composed of the cushion member 11 containing the heat storage capsule 3, the heat from the battery cell 50 is transferred to the heat storage capsule 3. Can be stored. Therefore, the heat dissipation structure 1 can suppress or delay heat dissipation to the outside while suitably cooling the battery cell 50, so that a rapid temperature rise of the battery cell 50 and eventually the battery 40 can be suppressed. .. Further, since the heat radiating structure 1 includes the cushion member 11, when it is compressed by the battery cell 50, it follows the surface of the battery cell 50 and is crushed in the vertical and horizontal directions, and the battery cell 50 is removed. Can return to its original shape by the elastic force of the cushion member 11. Therefore, the heat radiating structure 1 can adapt to various forms of the battery cell 50, is highly elastically deformable, and can enhance the heat radiating of the battery cell 50 through the heat storage effect.

(第1実施形態の変形例1)
図3は、第1実施形態に係る放熱構造体を備えるバッテリーの変形例1の縦断面図を示す。
(Modification 1 of the first embodiment)
FIG. 3 shows a vertical cross-sectional view of a modified example 1 of a battery including the heat radiating structure according to the first embodiment.

変形例1に係るバッテリー40aは、図3に示すように、放熱構造体1を、バッテリーセル50と底部42との間に加え、隣り合うバッテリーセル50同士の間、および、バッテリーセル50と筐体41の側面との間に挟むようにして配置されている。なお、放熱構造体1の配置以外の構成については、第1実施形態と共通するので、説明を省略する。このような構造のバッテリー40aにおいても、第1実施形態に係るバッテリー40と同様に、バッテリーセル50は、放熱構造体1を通じて筐体41に伝熱し、水冷によって効率的に除熱される。特に、バッテリー40aは、バッテリーセル50を囲むように、バッテリーセル50の側面および底面に放熱構造体1が配置されるため、より高い放熱効率を実現することができる。なお、変形例1において、バッテリー40aは、図3に示すように、隣り合うバッテリーセル50同士の間、および、バッテリーセル50と筐体41の側面との間の全ての箇所に放熱構造体1が配置されているが、本発明はこれに限定されない。バッテリー40aは、隣り合うバッテリーセル50同士の間、および、バッテリーセル50と筐体41の側面のうち少なくとも1の箇所に、放熱構造体1が配置されていれば良い。 In the battery 40a according to the first modification, as shown in FIG. 3, the heat radiating structure 1 is added between the battery cells 50 and the bottom 42, and between the adjacent battery cells 50 and between the battery cells 50 and the housing. It is arranged so as to be sandwiched between the side surface of the body 41. The configuration other than the arrangement of the heat radiating structure 1 is the same as that of the first embodiment, and thus the description thereof will be omitted. In the battery 40a having such a structure, the battery cell 50 transfers heat to the housing 41 through the heat radiating structure 1 and is efficiently removed by water cooling, as in the battery 40 according to the first embodiment. In particular, in the battery 40a, since the heat radiating structure 1 is arranged on the side surface and the bottom surface of the battery cell 50 so as to surround the battery cell 50, higher heat radiating efficiency can be realized. In the first modification, as shown in FIG. 3, the battery 40a has a heat radiating structure 1 at all locations between the adjacent battery cells 50 and between the battery cells 50 and the side surface of the housing 41. Is arranged, but the present invention is not limited to this. The battery 40a may have the heat radiating structure 1 arranged between adjacent battery cells 50 and at least one of the side surfaces of the battery cells 50 and the housing 41.

(第2実施形態)
次に、第2実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーについて説明する。先の実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Second Embodiment)
Next, the heat radiating structure according to the second embodiment and the battery including the heat radiating structure will be described. The same reference numerals are given to the parts common to the above embodiments, and duplicate description will be omitted.

図4は、第2実施形態に係る放熱構造体の斜視図(4A)、当該放熱構造体を構成する放熱部材の縦断面図(4B)、および当該断面図中の領域Bの拡大図(4C)をそれぞれ示す。図5は、第2実施形態に係る放熱構造体を備えるバッテリーの縦断面図(5A)およびバッテリーセルによって放熱構造体を圧縮した場合の放熱構造体を備えるバッテリーの縦断面図(5B)をそれぞれ示す。 FIG. 4 is a perspective view (4A) of the heat radiating structure according to the second embodiment, a vertical cross-sectional view (4B) of a heat radiating member constituting the heat radiating structure, and an enlarged view (4C) of a region B in the cross-sectional view. ) Are shown respectively. FIG. 5 is a vertical cross-sectional view (5A) of the battery including the heat-dissipating structure according to the second embodiment and a vertical cross-sectional view (5B) of the battery including the heat-dissipating structure when the heat-dissipating structure is compressed by the battery cell. show.

第2実施形態に係る放熱構造体1aは、第1実施形態に係る放熱構造体1と異なり、複数の放熱部材5が連結されて構成されている。より具体的には、放熱構造体1aは、好ましくは、バッテリーセル50と冷却部材45との間に配置される熱伝導シート4の上に、クッション部材11を備える複数の放熱部材5が配置されることにより、複数の放熱部材5が熱伝導シート4により連結されて構成されている(図4(4A)、図5参照)。なお、第2実施形態に係るバッテリー40bにおいて、放熱構造体1a以外の構成は、第1実施形態と共通するので、詳細な説明を省略する。 Unlike the heat radiating structure 1 according to the first embodiment, the heat radiating structure 1a according to the second embodiment is configured by connecting a plurality of heat radiating members 5. More specifically, in the heat radiating structure 1a, a plurality of heat radiating members 5 including the cushion member 11 are preferably arranged on the heat conductive sheet 4 arranged between the battery cell 50 and the cooling member 45. As a result, a plurality of heat radiating members 5 are connected by the heat conductive sheet 4 (see FIGS. 4 (4A) and 5). In the battery 40b according to the second embodiment, the configurations other than the heat radiating structure 1a are the same as those in the first embodiment, so detailed description thereof will be omitted.

(熱伝導シート)
熱伝導シート4は、好ましくは炭素を含むシートであり、さらに好ましくは炭素フィラーと樹脂とを含むシートである。樹脂を合成繊維とすることもでき、その場合には、好適に、アラミド繊維を用いることもできる。本願でいう「炭素」は、グラファイト、グラファイトより結晶性の低いカーボンブラック、膨張黒鉛、ダイヤモンド、ダイヤモンドに近い構造を持つダイヤモンドライクカーボン等の炭素(元素記号:C)から成る如何なる構造のものも含むように広義に解釈される。熱伝導シート4は、この実施形態では、樹脂に、グラファイト繊維やカーボン粒子を配合分散した材料を硬化させた薄いシートとすることができる。熱伝導シート4は、メッシュ状に編んだカーボンファイバーであっても良く、さらには混紡してあっても混編みしてあっても良い。なお、グラファイト繊維、カーボン粒子あるいはカーボンファイバーといった各種フィラーも、すべて、炭素フィラーの概念に含まれる。
(Heat conduction sheet)
The heat conductive sheet 4 is preferably a sheet containing carbon, and more preferably a sheet containing a carbon filler and a resin. The resin can be a synthetic fiber, and in that case, an aramid fiber can be preferably used. The term "carbon" as used in the present application includes any structure composed of carbon (element symbol: C) such as graphite, carbon black having lower crystallinity than graphite, expanded graphite, diamond, and diamond-like carbon having a structure similar to diamond. Is interpreted in a broad sense. In this embodiment, the heat conductive sheet 4 can be a thin sheet obtained by curing a material obtained by blending and dispersing graphite fibers and carbon particles in a resin. The heat conductive sheet 4 may be carbon fibers knitted in a mesh shape, and may be blended or knitted. Various fillers such as graphite fibers, carbon particles and carbon fibers are all included in the concept of carbon fillers.

熱伝導シート4に樹脂を含む場合には、当該樹脂が熱伝導シート4の全質量に対して50質量%を超えていても、あるいは50質量%以下であっても良い。すなわち、熱伝導シート4は、熱伝導に大きな支障が無い限り、樹脂を主材とするか否かを問わない。樹脂としては、例えば、熱可塑性樹脂を好適に使用できる。熱可塑性樹脂としては、熱源の一例であるバッテリーセル50からの熱を伝導する際に溶融しない程度の高融点を備える樹脂が好ましく、例えば、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、芳香族ポリアミド(アラミド繊維)等を好適に挙げることができる。樹脂は、熱伝導シート4の成形前の状態において、炭素フィラーの隙間に、例えば粒子状あるいは繊維状に分散している。熱伝導シート4は、炭素フィラー、樹脂の他、熱伝導をより高めるためのフィラーとして、AlNあるいはダイヤモンドを分散していても良い。また、樹脂に代えて、樹脂よりも柔軟なエラストマーを用いても良い。熱伝導シート4は、また、上述のような炭素に代えて若しくは炭素と共に、金属および/またはセラミックスを含むシートとすることができる。金属としては、アルミニウム、銅、それらの内の少なくとも1つを含む合金などの熱伝導性の比較的高いものを選択できる。また、セラミックスとしては、Al、AlN、cBN、hBNなどの熱伝導性の比較的高いものを選択できる。 When the heat conductive sheet 4 contains a resin, the resin may exceed 50% by mass or 50% by mass or less with respect to the total mass of the heat conductive sheet 4. That is, it does not matter whether or not the heat conductive sheet 4 uses resin as the main material as long as there is no major problem in heat conduction. As the resin, for example, a thermoplastic resin can be preferably used. As the thermoplastic resin, a resin having a high melting point that does not melt when conducting heat from the battery cell 50, which is an example of a heat source, is preferable. For example, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), and the like. Polyamideimide (PAI), aromatic polyamide (aramid fiber) and the like can be preferably mentioned. The resin is dispersed in the gaps between the carbon fillers, for example, in the form of particles or fibers in the state before molding of the heat conductive sheet 4. In addition to the carbon filler and the resin, the heat conductive sheet 4 may be dispersed with AlN or diamond as a filler for further enhancing the heat conduction. Further, instead of the resin, an elastomer that is more flexible than the resin may be used. The heat conductive sheet 4 can also be a sheet containing metals and / or ceramics in place of or with carbon as described above. As the metal, those having relatively high thermal conductivity such as aluminum, copper, and alloys containing at least one of them can be selected. Further, as the ceramics, ceramics having relatively high thermal conductivity such as Al 2 O 3 , AlN, cBN, and hBN can be selected.

熱伝導シート4は、導電性に優れるか否かは問わない。熱伝導シート4の熱伝導率は、好ましくは10W/mK以上である。この実施形態では、熱伝導シート4は、好ましくは、グラファイト、アルミニウム、アルミニウム合金、銅あるいはステンレススチールの帯状の板であり、熱伝導性と導電性に優れる材料から成る。熱伝導シート4は、湾曲性(若しくは屈曲性)に優れるシートであるのが好ましく、その厚さに制約はないが、0.02〜3mmが好ましく、0.03〜0.5mmがより好ましい。ただし、熱伝導シート4の熱伝導率は、その厚さが増加するほど低下するため、シートの強度、可撓性および熱伝導性を総合的に考慮して、その厚さを決定するのが好ましい。 It does not matter whether the heat conductive sheet 4 is excellent in conductivity or not. The thermal conductivity of the heat conductive sheet 4 is preferably 10 W / mK or more. In this embodiment, the heat conductive sheet 4 is preferably a strip of graphite, aluminum, aluminum alloy, copper or stainless steel, and is made of a material having excellent heat conductivity and conductivity. The heat conductive sheet 4 is preferably a sheet having excellent curvature (or flexibility), and the thickness thereof is not limited, but 0.02 to 3 mm is preferable, and 0.03 to 0.5 mm is more preferable. However, since the thermal conductivity of the heat conductive sheet 4 decreases as the thickness increases, it is necessary to determine the thickness by comprehensively considering the strength, flexibility and heat conductivity of the sheet. preferable.

(放熱部材)
放熱部材5は、クッション部材11aを備える部材である。クッション部材11aは、その長さ方向に中空部12を有する筒形状の長尺の部材である(図4参照)。放熱部材5は、クッション部材11aに蓄熱カプセル3を含有する(図4(4C)参照)。クッション部材11aは、複数のバッテリーセル50の下端部が平坦でない場合でも、熱伝導シート4と当該下端部との接触を良好にする。さらに、中空部12は、クッション部材11aの変形を容易にし、加えて放熱構造体1aの軽量化に寄与し、また、熱伝導シート4とバッテリーセル50の下端部との接触を高める機能を有する。クッション部材11aは、バッテリーセル50と底部42との間にあってクッション性を発揮させる機能の他に、熱伝導シート4に加わる荷重によって熱伝導シート4が破損等しないようにする保護部材としての機能も有する。この実施形態では、クッション部材11aは、熱伝導シート4に比べて低熱伝導性の部材である。なお、この実施形態では、中空部12は、断面円形状に形成されているが、中空部12の断面形状は円に限定されず、例えば、多角形、楕円形、半円形、頂点が丸みを帯びた略多角形等であっても良い。また、中空部12は、例えば、断面円形状が上下または左右に2つに分割された2の断面半円形状の中空部等、複数の中空部から構成されていても良い。
(Heat dissipation member)
The heat radiating member 5 is a member including the cushion member 11a. The cushion member 11a is a long tubular member having a hollow portion 12 in the length direction thereof (see FIG. 4). The heat radiating member 5 contains the heat storage capsule 3 in the cushion member 11a (see FIG. 4 (4C)). The cushion member 11a improves the contact between the heat conductive sheet 4 and the lower end portions even when the lower end portions of the plurality of battery cells 50 are not flat. Further, the hollow portion 12 has a function of facilitating the deformation of the cushion member 11a, contributing to the weight reduction of the heat radiating structure 1a, and enhancing the contact between the heat conductive sheet 4 and the lower end portion of the battery cell 50. .. The cushion member 11a has a function of exerting cushioning property between the battery cell 50 and the bottom portion 42, and also has a function of a protective member for preventing the heat conductive sheet 4 from being damaged by a load applied to the heat conductive sheet 4. Have. In this embodiment, the cushion member 11a is a member having a lower thermal conductivity than the heat conductive sheet 4. In this embodiment, the hollow portion 12 is formed in a circular cross-sectional shape, but the cross-sectional shape of the hollow portion 12 is not limited to a circle, for example, a polygon, an ellipse, a semicircle, and a rounded apex. It may be a substantially polygonal shape or the like. Further, the hollow portion 12 may be composed of a plurality of hollow portions, for example, a hollow portion having a semicircular cross section of two having a circular cross section divided into two vertically or horizontally.

放熱構造体1aは、図4(4A)に示すように、熱伝導シート4上に、複数の放熱部材5が、その長さ方向に直交する方向に並んで配置されている。すなわち、放熱構造体1aは、熱伝導シート4上に、バッテリーセル50の長手方向(図5の奥行方向)に平行に、複数の放熱部材5が配置されている。なお、ここでは、熱伝導シート4上に19個の放熱部材5が配置されているが(図5参照)、熱伝導シート4に配置される放熱部材5の個数は19個に限定されない。 In the heat radiating structure 1a, as shown in FIG. 4A, a plurality of heat radiating members 5 are arranged side by side on the heat conductive sheet 4 in a direction orthogonal to the length direction thereof. That is, in the heat radiating structure 1a, a plurality of heat radiating members 5 are arranged on the heat conductive sheet 4 in parallel with the longitudinal direction of the battery cell 50 (depth direction in FIG. 5). Here, 19 heat radiating members 5 are arranged on the heat conductive sheet 4 (see FIG. 5), but the number of heat radiating members 5 arranged on the heat conductive sheet 4 is not limited to 19.

放熱構造体1aを構成する複数の放熱部材5は、バッテリーセル50を載置していない状態では略円筒形状を有しているが、バッテリーセル50を載置するとその重さで圧縮され扁平の形態になる。図5に示すように、バッテリー40bに備えられる放熱構造体1aは、バッテリーセル50の下端部と接触し、当該下端部と筐体41の底部42との間で、上下方向に圧縮された状態となる。この状態において、図5(5B)に示すように、放熱部材5が変形するため、バッテリーセル50の下端部と熱伝導シート4との接触が良好になる。バッテリー40bの充電若しくは放電時に発する熱は、バッテリーセル50の下端部から放熱部材5、熱伝導シート4、筐体41の底部42、冷却部材45へと伝わる。このようにして、バッテリーセル50の効果的な除熱が実現する。なお、放熱構造体1aは、放熱部材5を冷却部材45側(底部42側と称しても良い)に、熱伝導シート4をバッテリーセル50側にそれぞれ向けて筐体41内に配置されても良い。 The plurality of heat radiating members 5 constituting the heat radiating structure 1a have a substantially cylindrical shape when the battery cell 50 is not mounted, but when the battery cell 50 is mounted, the heat radiating member 5 is compressed by its weight and is flat. Become a form. As shown in FIG. 5, the heat radiating structure 1a provided in the battery 40b is in contact with the lower end portion of the battery cell 50 and is compressed in the vertical direction between the lower end portion and the bottom portion 42 of the housing 41. It becomes. In this state, as shown in FIG. 5B, the heat radiating member 5 is deformed, so that the lower end portion of the battery cell 50 and the heat conductive sheet 4 are in good contact with each other. The heat generated when the battery 40b is charged or discharged is transmitted from the lower end of the battery cell 50 to the heat radiating member 5, the heat conductive sheet 4, the bottom 42 of the housing 41, and the cooling member 45. In this way, effective heat removal of the battery cell 50 is realized. In the heat radiating structure 1a, the heat radiating member 5 may be arranged in the housing 41 with the heat radiating member 5 facing the cooling member 45 side (may be referred to as the bottom 42 side) and the heat conductive sheet 4 facing the battery cell 50 side. good.

このように構成された放熱構造体1aは、クッション部材11aに起因して、バッテリーセル50の種々の形態に順応可能であって、高い弾性変形性を有することができる。また、放熱構造体1aは、クッション部材11aに含有される蓄熱カプセル3に、バッテリーセル50からの熱を蓄えることができるため、バッテリーセル50を好適に冷却しながら、外部に対する放熱を抑制あるいは遅延させることができる。よって、放熱構造体1aは、バッテリー40bの急激な温度上昇を抑制することができ、蓄熱効果を通じてバッテリーセル50の放熱を高めることができる。また、放熱構造体1aは、中空部12に起因してより軽量となる。 The heat radiating structure 1a configured in this way can adapt to various forms of the battery cell 50 due to the cushion member 11a, and can have high elastic deformability. Further, since the heat radiating structure 1a can store the heat from the battery cell 50 in the heat storage capsule 3 contained in the cushion member 11a, the heat radiating to the outside is suppressed or delayed while the battery cell 50 is appropriately cooled. Can be made to. Therefore, the heat radiating structure 1a can suppress a rapid temperature rise of the battery 40b, and can enhance the heat radiating of the battery cell 50 through the heat storage effect. Further, the heat radiating structure 1a becomes lighter due to the hollow portion 12.

(第3実施形態)
次に、第3実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーについて説明する。先の各実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Third Embodiment)
Next, the heat radiating structure according to the third embodiment and the battery including the heat radiating structure will be described. The parts common to each of the above embodiments are designated by the same reference numerals, and duplicate description will be omitted.

図6は、第3実施形態に係る放熱構造体の平面図(6A)、当該(6A)におけるC−C線断面図(6B)、および当該断面図中の領域Dの拡大図(6C)をそれぞれ示す。図7は、第3実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーの縦断面図(7A)および当該(7A)中のバッテリーセルによって放熱構造体を圧縮する前後の放熱構造体の形態変化の断面図(7B)をそれぞれ示す。 FIG. 6 is a plan view (6A) of the heat radiating structure according to the third embodiment, a sectional view taken along line CC (6B) in the (6A), and an enlarged view (6C) of a region D in the sectional view. Each is shown. FIG. 7 shows a vertical cross-sectional view (7A) of the heat radiating structure according to the third embodiment and a battery including the heat radiating structure, and the heat radiating structure before and after compressing the heat radiating structure by the battery cell in the (7A). The cross-sectional view (7B) of the morphological change is shown respectively.

第3実施形態に係る放熱構造体1bは、第2実施形態に係る放熱構造体1aと異なり、複数の放熱部材5aが、その長さ方向と直交する方向にて糸15で連結されている。また、放熱部材5aは、第2実施形態に係る放熱部材5と異なり、クッション部材11aに加え、熱伝導シート10をさらに備える。なお、第3実施形態に係るバッテリー40cにおいて、放熱構造体1b以外の構成は、先述の実施形態と共通するので、詳細な説明を省略する。 Unlike the heat radiating structure 1a according to the second embodiment, the heat radiating structure 1b according to the third embodiment has a plurality of heat radiating members 5a connected by threads 15 in a direction orthogonal to the length direction thereof. Further, unlike the heat radiating member 5 according to the second embodiment, the heat radiating member 5a further includes a heat conductive sheet 10 in addition to the cushion member 11a. In the battery 40c according to the third embodiment, the configurations other than the heat radiating structure 1b are the same as those in the above-described embodiment, so detailed description thereof will be omitted.

放熱部材5aは、クッション部材11aの筒外周に熱伝導シート10を備える部材である。熱伝導シート10は、スパイラル状に巻回しながら進行する形状で、クッション部材11aに備えられる帯状のシートである。放熱部材5aは、第2実施形態と同様に、クッション部材11aに蓄熱カプセル3を含有する。また、熱伝導シート10の表面には、好ましくは、当該表面に接触するバッテリーセル50から当該表面への熱伝導性を高めるための熱伝導性オイルを有する。なお、第3実施形態において、クッション部材11aは、第2実施形態のクッション部材11aと同様の構成であるため、詳細な説明を省略する。また、第3実施形態において、熱伝導シート10は、その形状以外の構成について、第2実施形態の熱伝導シート4と同様であるため、詳細な説明を省略する。 The heat radiating member 5a is a member provided with a heat conductive sheet 10 on the outer periphery of the cylinder of the cushion member 11a. The heat conductive sheet 10 is a strip-shaped sheet provided on the cushion member 11a in a shape that advances while being wound in a spiral shape. The heat radiating member 5a contains the heat storage capsule 3 in the cushion member 11a as in the second embodiment. Further, the surface of the heat conductive sheet 10 preferably has a heat conductive oil for increasing the heat conductivity from the battery cell 50 in contact with the surface to the surface. Since the cushion member 11a has the same configuration as the cushion member 11a of the second embodiment in the third embodiment, detailed description thereof will be omitted. Further, in the third embodiment, the heat conductive sheet 10 has the same configuration as the heat conductive sheet 4 of the second embodiment except for its shape, and therefore detailed description thereof will be omitted.

(糸)
糸15は、バッテリーセル50からの放熱による温度上昇に耐え得る糸であることが好ましい。より具体的には、糸15は、120℃程度の高温に耐え得る糸であって、天然繊維、合成繊維、カーボン繊維、金属繊維等の繊維からなる撚糸で構成されることが好ましい。糸15は、放熱部材5a同士を自由に動かないように規制する連結部材の一例である。糸15は、放熱部材5aの本数に対応する数の輪を備えている。放熱部材5aは、当該輪の中に挿入されている。複数の輪の連結部分には、輪の拡がりを規制する規制部17が設けられている(図6(6C)参照)。規制部17は、糸15の結び目、あるいは糸15とは別体の樹脂、金属、セラミックスあるいは木材等から成る部材でも良い。放熱構造体1bは、放熱部材5aがバッテリーセル50により圧縮され扁平した形態となっても、放熱部材5aの変形に追従して糸15が撓むため、バッテリーセル50の表面に追従・密着することができる。また、放熱構造体1bは、複数の放熱部材5aの間に規制部17を備えることにより、バッテリーセル50の表面への追従・密着性をより高めることができる。なお、糸15は、必ずしも、規制部17を有していなくても良い。
(thread)
The thread 15 is preferably a thread that can withstand a temperature rise due to heat dissipation from the battery cell 50. More specifically, the yarn 15 is a yarn that can withstand a high temperature of about 120 ° C., and is preferably composed of twisted yarns made of fibers such as natural fibers, synthetic fibers, carbon fibers, and metal fibers. The thread 15 is an example of a connecting member that regulates the heat radiating members 5a so as not to move freely with each other. The thread 15 includes a number of rings corresponding to the number of heat radiating members 5a. The heat radiating member 5a is inserted into the ring. A regulation unit 17 that regulates the spread of the wheels is provided at the connecting portion of the plurality of wheels (see FIG. 6 (6C)). The regulating unit 17 may be a knot of the thread 15 or a member made of a resin, metal, ceramics, wood, or the like separate from the thread 15. Even if the heat radiating member 5a is compressed by the battery cell 50 and becomes flat, the heat radiating structure 1b follows and adheres to the surface of the battery cell 50 because the thread 15 bends following the deformation of the heat radiating member 5a. be able to. Further, the heat radiating structure 1b is provided with the regulating portion 17 between the plurality of heat radiating members 5a, so that the follow-up / adhesion to the surface of the battery cell 50 can be further improved. The thread 15 does not necessarily have to have the regulation unit 17.

(熱伝導性オイル)
熱伝導性オイルは、好ましくは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。熱伝導シート10は、微視的に、隙間(孔あるいは凹部)を有する。通常、当該隙間には空気が存在し、熱伝導性に悪影響を及ぼす可能性が有る。熱伝導性オイルは、その隙間を埋めて、空気に代わって存在することになり、熱伝導シート10の熱伝導性を向上させる機能を有する。
(Thermal conductive oil)
The thermally conductive oil preferably contains a silicone oil and a thermally conductive filler having a higher thermal conductivity than the silicone oil and consisting of one or more of metal, ceramics or carbon. The heat conductive sheet 10 has a gap (hole or recess) microscopically. Normally, air is present in the gap, which may adversely affect the thermal conductivity. The heat conductive oil fills the gap and exists in place of air, and has a function of improving the heat conductivity of the heat conductive sheet 10.

熱伝導性オイルは、熱伝導シート10の表面、少なくともバッテリーセル50と熱伝導シート10とが接触する面に備えられている。本願において、熱伝導性オイルの「オイル」は、非水溶性の常温(20〜25℃の範囲の任意の温度)で液状若しくは半固形状の可燃物質をいう。「オイル」という文言に代え、「グリース」あるいは「ワックス」を用いることもできる。熱伝導性オイルは、バッテリーセル50から熱伝導シート10に熱を伝える際に熱伝導の障害にならない性質のオイルである。熱伝導性オイルには、炭化水素系のオイル、シリコーンオイルを用いることができる。熱伝導性オイルは、好ましくは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。 The heat conductive oil is provided on the surface of the heat conductive sheet 10, at least the surface where the battery cell 50 and the heat conductive sheet 10 come into contact with each other. In the present application, the "oil" of the thermally conductive oil refers to a combustible substance that is liquid or semi-solid at room temperature (any temperature in the range of 20 to 25 ° C.) that is water-insoluble. Instead of the word "oil", "grease" or "wax" can also be used. The heat conductive oil is an oil having a property that does not interfere with heat conduction when heat is transferred from the battery cell 50 to the heat conductive sheet 10. As the heat conductive oil, a hydrocarbon-based oil or a silicone oil can be used. The thermally conductive oil preferably contains a silicone oil and a thermally conductive filler having a higher thermal conductivity than the silicone oil and consisting of one or more of metal, ceramics or carbon.

シリコーンオイルは、好ましくは、シロキサン結合が2000以下の直鎖構造の分子から成る。シリコーンオイルは、ストレートシリコーンオイルと、変性シリコーンオイルとに大別される。ストレートシリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルを例示できる。変性シリコーンオイルとしては、反応性シリコーンオイル、非反応性シリコーンオイルを例示できる。反応性シリコーンオイルは、例えば、アミノ変性タイプ、エポキシ変性タイプ、カルボキシ変性タイプ、カルビノール変性タイプ、メタクリル変性タイプ、メルカプト変性タイプ、フェノール変性タイプ等の各種シリコーンオイルを含む。非反応性シリコーンオイルは、ポリエーテル変性タイプ、メチルスチリル変性タイプ、アルキル変性タイプ、高級脂肪酸エステル変性タイプ、親水性特殊変性タイプ、高級脂肪酸含有タイプ、フッ素変性タイプ等の各種シリコーンオイルを含む。シリコーンオイルは、耐熱性、耐寒性、粘度安定性、熱伝導性に優れたオイルであるため、熱伝導シート10の表面に塗布して、バッテリーセル50と熱伝導シート10との間に介在させる熱伝導性オイルとして特に好適である。 Silicone oils preferably consist of molecules with a linear structure having a siloxane bond of 2000 or less. Silicone oils are roughly classified into straight silicone oils and modified silicone oils. Examples of the straight silicone oil include dimethyl silicone oil, methyl phenyl silicone oil, and methyl hydrogen silicone oil. Examples of the modified silicone oil include reactive silicone oil and non-reactive silicone oil. Reactive silicone oils include, for example, various silicone oils such as amino-modified type, epoxy-modified type, carboxy-modified type, carbinol-modified type, methacryl-modified type, mercapto-modified type, and phenol-modified type. The non-reactive silicone oil includes various silicone oils such as a polyether-modified type, a methylstyryl-modified type, an alkyl-modified type, a higher fatty acid ester-modified type, a hydrophilic special-modified type, a higher fatty acid-containing type, and a fluorine-modified type. Since silicone oil is an oil having excellent heat resistance, cold resistance, viscosity stability, and thermal conductivity, it is applied to the surface of the thermal conductive sheet 10 and interposed between the battery cell 50 and the thermal conductive sheet 10. It is particularly suitable as a thermally conductive oil.

熱伝導性オイルは、好ましくは、油分以外に、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーを含む。金属としては、金、銀、銅、アルミニウム、ベリリウム、タングステンなどを例示できる。セラミックスとしては、アルミナ、窒化アルミニウム、キュービック窒化ホウ素、ヘキサゴナル窒化ホウ素などを例示できる。炭素としては、ダイヤモンド、グラファイト、ダイヤモンドライクカーボン、アモルファスカーボン、カーボンナノチューブなどを例示できる。 The thermally conductive oil preferably contains, in addition to the oil, a thermally conductive filler composed of one or more of metal, ceramics or carbon. Examples of the metal include gold, silver, copper, aluminum, beryllium, and tungsten. Examples of ceramics include alumina, aluminum nitride, cubic boron nitride, and hexagonal boron nitride. Examples of carbon include diamond, graphite, diamond-like carbon, amorphous carbon, and carbon nanotubes.

熱伝導性オイルは、バッテリーセル50と熱伝導シート10との間に介在する他、熱伝導シート10と筐体41との間に介在する方が好ましい。熱伝導性オイルは、熱伝導シート10の全面に塗布されていても、熱伝導シート10の一部分に塗布されていても良い。熱伝導性オイルを熱伝導シート10に存在させる方法は、特に制約はなく、スプレーを用いた噴霧、刷毛等を用いた塗布、熱伝導性オイル中への熱伝導シート10の浸漬など、如何なる方法によるものでも良い。なお、熱伝導性オイルは、放熱構造体1bあるいはバッテリー40cにとって必須の構成ではなく、好適に備えることのできる追加的な構成である。これは、第4実施形態以降でも同様である。 The heat conductive oil is preferably interposed between the battery cell 50 and the heat conductive sheet 10 as well as between the heat conductive sheet 10 and the housing 41. The heat conductive oil may be applied to the entire surface of the heat conductive sheet 10 or may be applied to a part of the heat conductive sheet 10. The method for allowing the heat conductive oil to exist in the heat conductive sheet 10 is not particularly limited, and any method such as spraying with a spray, coating with a brush, or immersing the heat conductive sheet 10 in the heat conductive oil. It may be due to. The heat conductive oil is not an essential configuration for the heat radiating structure 1b or the battery 40c, but is an additional configuration that can be suitably provided. This also applies to the fourth and subsequent embodiments.

放熱部材5a間の距離L1は、放熱部材5aがバッテリーセル50からの押圧を受けて潰れる際に、狭くなる。放熱部材5aがほとんど潰れない場合には、熱伝導シート10とバッテリーセル50および底部42との密着性が低くなる可能性がある。かかるリスクを低減するのに適切な放熱部材5aの上下方向、すなわちバッテリーセル50の底から底部42の面に向かう垂線方向に圧縮されたときの厚みは、少なくとも、放熱部材5aの管径(=円換算直径:D)の80%である。ここで、「円換算直径」とは、放熱部材5aをその長さ方向と垂直に切断したときの管断面の面積と同じ面積の真円の直径を意味する。放熱部材5aが真円の断面をもった円筒の場合には、その直径は円換算直径と同一である。放熱部材5aは、上記の圧縮を受けると、バッテリーセル50および底部42と接する面を平面とし、放熱部材5a間の距離L1の方向を略円弧断面とするように変形するとみなすことができる(図6(6C)を参照)。放熱部材5aが円換算直径Dの80%に相当する0.8Dの厚さに潰れた場合、放熱部材5aがどの程度、距離L1の方向に拡がるかを計算する。図6(6C)に示すように、潰れた放熱部材5aにおいて、その左右方向に存在する半円弧の長さの総長は、0.8πDである。また、底部42に接する平面の長さは、放熱部材5aの管円周から、上記の半円弧の長さの総長を差し引いた長さの半分であるから、(πD−0.8πD)/2=0.314Dである。平面の左右方向に拡張した円弧部分の長さは、0.4D×2=0.8Dである。したがって、潰れた放熱部材5aが元の放熱部材5aから距離L1の方向に拡がった距離は、0.314D+0.8D−D=0.114Dとなる。距離L1を十分に大きくすれば、放熱部材5aは隣の放熱部材5aと接触しない。逆に、距離L1が小さすぎると、放熱部材5aが上下方向に圧縮されても、隣の放熱部材5aに接触して、それ以上に潰れなくなる可能性がある。距離L1を放熱部材5aの円換算直径Dの11.4%以上にすれば、放熱部材5aが円換算直径Dの80%の厚さに圧縮されて変形する際に、放熱部材5a同士が接触して、当該変形の障害となることを防止できる。なお、この実施形態では、距離L1を0.6Dとしている。 The distance L1 between the heat radiating members 5a becomes narrow when the heat radiating member 5a is crushed by being pressed by the battery cell 50. If the heat radiating member 5a is hardly crushed, the adhesion between the heat conductive sheet 10 and the battery cell 50 and the bottom portion 42 may be low. The thickness of the heat radiating member 5a suitable for reducing such risk when compressed in the vertical direction, that is, in the vertical direction from the bottom of the battery cell 50 toward the surface of the bottom 42 is at least the pipe diameter of the heat radiating member 5a (=). Yen-equivalent diameter: 80% of D). Here, the "circle-equivalent diameter" means the diameter of a perfect circle having the same area as the cross-sectional area of the pipe when the heat radiating member 5a is cut perpendicular to the length direction thereof. When the heat radiating member 5a is a cylinder having a perfect circular cross section, its diameter is the same as the circle-equivalent diameter. Upon receiving the above compression, the heat radiating member 5a can be regarded as being deformed so that the surface in contact with the battery cell 50 and the bottom portion 42 is a flat surface and the direction of the distance L1 between the heat radiating members 5a is a substantially arc cross section (FIG. 6 (6C)). When the heat radiating member 5a is crushed to a thickness of 0.8D corresponding to 80% of the circle-equivalent diameter D, how much the heat radiating member 5a expands in the direction of the distance L1 is calculated. As shown in FIG. 6 (6C), in the crushed heat radiating member 5a, the total length of the semi-arcs existing in the left-right direction is 0.8πD. Further, since the length of the plane in contact with the bottom portion 42 is half the length obtained by subtracting the total length of the above-mentioned semicircular arc from the circumference of the pipe of the heat radiating member 5a, (πD-0.8πD) / 2 = 0.314D. The length of the arc portion extended in the left-right direction of the plane is 0.4D × 2 = 0.8D. Therefore, the distance that the crushed heat radiating member 5a extends from the original heat radiating member 5a in the direction of the distance L1 is 0.314D + 0.8D−D = 0.114D. If the distance L1 is made sufficiently large, the heat radiating member 5a does not come into contact with the adjacent heat radiating member 5a. On the contrary, if the distance L1 is too small, even if the heat radiating member 5a is compressed in the vertical direction, it may come into contact with the adjacent heat radiating member 5a and not be further crushed. If the distance L1 is set to 11.4% or more of the circle-equivalent diameter D of the heat-dissipating member 5a, the heat-dissipating members 5a come into contact with each other when the heat-dissipating member 5a is compressed to a thickness of 80% of the circle-equivalent diameter D and deformed. Therefore, it is possible to prevent the deformation from becoming an obstacle. In this embodiment, the distance L1 is set to 0.6D.

図8は、第3実施形態に係る放熱構造体の製造方法の一部を説明するための図を示す。図8では、見やすさを優先して、熱伝導シート10同士に隙間を描いているが、隙間は無くても良い。 FIG. 8 shows a diagram for explaining a part of the method for manufacturing the heat radiating structure according to the third embodiment. In FIG. 8, a gap is drawn between the heat conductive sheets 10 in order to give priority to visibility, but the gap may not be provided.

まず、蓄熱カプセル3が含有されたクッション部材11aを成形する。次に、帯状の熱伝導シート10をクッション部材11aの外側面にスパイラル状に巻く。このとき、クッション部材11aが完全には硬化していない未硬化状態で、熱伝導シート10をクッション部材11aの外側面に巻き、その後、加温によりクッション部材11aを完全に硬化させる。そして、帯状の熱伝導シート10のクッション部材11aの両端からはみ出した部分があればカットする。最後に、熱伝導シート10の表面に、熱伝導性オイルを塗布する。放熱部材5aをこのように製造することにより、熱伝導シート10の微視的な隙間に未硬化状態のクッション部材11aが入り込んだ状態で硬化されるため、接着剤等を使用しなくともクッション部材11aと熱伝導シート10とを強固に固定することができる。 First, the cushion member 11a containing the heat storage capsule 3 is molded. Next, the strip-shaped heat conductive sheet 10 is spirally wound around the outer surface of the cushion member 11a. At this time, in an uncured state in which the cushion member 11a is not completely cured, the heat conductive sheet 10 is wound around the outer surface of the cushion member 11a, and then the cushion member 11a is completely cured by heating. Then, if there is a portion protruding from both ends of the cushion member 11a of the band-shaped heat conductive sheet 10, it is cut. Finally, the heat conductive oil is applied to the surface of the heat conductive sheet 10. By manufacturing the heat radiating member 5a in this way, the uncured cushion member 11a is cured in the microscopic gap of the heat conductive sheet 10, so that the cushion member does not need to use an adhesive or the like. The 11a and the heat conductive sheet 10 can be firmly fixed.

こうして出来上がった放熱部材5aは、クッション部材11aの外側面よりも熱伝導シート10の厚さ分だけ突出した形態を有する。ただし、熱伝導シート10とクッション部材11aとは、面一であっても良い。また、熱伝導性オイルは、熱伝導シート10のうち少なくともバッテリーセル50と接触する面に塗布されれば良い。熱伝導シート20のクッション部材11aの両端からはみ出した部分をカットする工程および熱伝導性オイルを塗布する工程は、上述のタイミングで行うことに限定されず、少なくともクッション部材11aに熱伝導シート10を巻いた後であれば、いつ行ってもよい。また、熱伝導シート10は、クッション部材11aを完全に硬化させた状態で、その外側面に巻いてもよい。この場合、クッション部材11aの外側面が粘着性を有していなければ、接着剤等を使用して熱伝導シート10をクッション部材11aに固定してもよい。 The heat radiating member 5a thus completed has a form protruding from the outer surface of the cushion member 11a by the thickness of the heat conductive sheet 10. However, the heat conductive sheet 10 and the cushion member 11a may be flush with each other. Further, the heat conductive oil may be applied to at least the surface of the heat conductive sheet 10 in contact with the battery cell 50. The step of cutting the portion of the heat conductive sheet 20 protruding from both ends of the cushion member 11a and the step of applying the heat conductive oil are not limited to those performed at the above timings, and at least the heat conductive sheet 10 is attached to the cushion member 11a. You may go anytime after winding. Further, the heat conductive sheet 10 may be wound around the outer surface of the cushion member 11a in a completely cured state. In this case, if the outer surface of the cushion member 11a does not have adhesiveness, the heat conductive sheet 10 may be fixed to the cushion member 11a using an adhesive or the like.

放熱構造体1bは、上述の製造方法により製造された複数の放熱部材5aを、放熱部材5aの長さ方向と直交する方向に並べた状態で、糸15で連結することにより製造される。より具体的には、放熱構造体1bは、複数の放熱部材5aを並べた状態で、糸15を用いて手縫いで縫い付けることにより連結される。このとき、複数の放熱部材5aは、放熱部材5a間の距離L1を0.114D以上として並べられることが好ましい(図6(6C)参照)。また、複数の放熱部材5aの間に、規制部17が形成されるように縫い付けることが好ましい。 The heat radiating structure 1b is manufactured by connecting a plurality of heat radiating members 5a manufactured by the above-mentioned manufacturing method with a thread 15 in a state of arranging them in a direction orthogonal to the length direction of the heat radiating member 5a. More specifically, the heat radiating structure 1b is connected by hand-sewn with a thread 15 in a state where a plurality of heat radiating members 5a are arranged side by side. At this time, it is preferable that the plurality of heat radiating members 5a are arranged so that the distance L1 between the heat radiating members 5a is 0.114D or more (see FIG. 6 (6C)). Further, it is preferable to sew so that the regulating portion 17 is formed between the plurality of heat radiating members 5a.

このように、放熱構造体1bは、複数の放熱部材5aが簾状に連結されるため、バッテリーセル50で圧縮された状態においてはバッテリーセル50の表面に追従して放熱部材5aが上下左右方向に潰れ、且つ、バッテリーセル50を除いた状態においては放熱部材5aの弾性力により元の形状に戻ることができる(図7参照)。また、放熱構造体1bは、複数の放熱部材5aが簾状に連結されることにより位置決めされるため、各バッテリーセル50に放熱部材5aを確実に接触するようにできる。このため、放熱構造体1bは、例えば、自動車の振動等により放熱部材5aが偏在する事態を抑制でき、かつ多数のバッテリーセル50各々における放熱性の均一化を高めることができる。また、放熱構造体1bは、各放熱部材5aがクッション部材11aの外側面に熱伝導シート10をスパイラル状に巻いた構造を有しているため、クッション部材11aの変形を過度に拘束しない。 In this way, in the heat radiating structure 1b, since a plurality of heat radiating members 5a are connected in a bamboo blind shape, the heat radiating member 5a follows the surface of the battery cell 50 in the vertical and horizontal directions in the state of being compressed by the battery cell 50. When it is crushed and the battery cell 50 is removed, it can return to its original shape due to the elastic force of the heat radiating member 5a (see FIG. 7). Further, since the heat radiating structure 1b is positioned by connecting the plurality of heat radiating members 5a in a bamboo blind shape, the heat radiating member 5a can be surely brought into contact with each battery cell 50. Therefore, the heat radiating structure 1b can suppress a situation in which the heat radiating members 5a are unevenly distributed due to, for example, vibration of an automobile, and can improve the uniformity of heat radiating properties in each of a large number of battery cells 50. Further, since each heat radiating member 5a has a structure in which the heat conductive sheet 10 is spirally wound around the outer surface of the cushion member 11a, the heat radiating structure 1b does not excessively restrain the deformation of the cushion member 11a.

(第4実施形態)
次に、第4実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーについて説明する。先の各実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Fourth Embodiment)
Next, the heat radiating structure according to the fourth embodiment and the battery including the heat radiating structure will be described. The parts common to each of the above embodiments are designated by the same reference numerals, and duplicate description will be omitted.

図9は、第4実施形態に係る放熱構造体の平面図を示す。図10は、図9に示す放熱構造体を矢印E方向から見た側面図(10A)、当該図9に示す放熱構造体を矢印F方向から見た側面図(10B)、および当該側面図(10B)中の領域Gの拡大図(10C)をそれぞれ示す。 FIG. 9 shows a plan view of the heat radiating structure according to the fourth embodiment. 10A is a side view (10A) of the heat radiating structure shown in FIG. 9 viewed from the direction of arrow E, a side view (10B) of the heat radiating structure shown in FIG. 9 seen from the direction of arrow F, and the side view (10B). An enlarged view (10C) of the region G in 10B) is shown.

第4実施形態に係る放熱構造体1cは、複数の放熱部材5aと、放熱部材5a同士を連結する糸15と、複数の放熱部材5aを糸25にて固定する枠体30と、を備える。なお、第4実施形態に係る放熱構造体1cにおいて、放熱部材5aおよび糸15は、第3実施形態と同様のため、詳細な説明を省略する。なお、第4実施形態に係るバッテリー40dにおいて、放熱構造体1c以外の構成は、先述の実施形態と共通するので、図示および詳細な説明を省略する。 The heat radiating structure 1c according to the fourth embodiment includes a plurality of heat radiating members 5a, a thread 15 for connecting the heat radiating members 5a to each other, and a frame 30 for fixing the plurality of heat radiating members 5a with the thread 25. In the heat radiating structure 1c according to the fourth embodiment, the heat radiating member 5a and the thread 15 are the same as those in the third embodiment, so detailed description thereof will be omitted. In the battery 40d according to the fourth embodiment, the configurations other than the heat radiating structure 1c are the same as those in the above-described embodiment, so illustration and detailed description thereof will be omitted.

(枠体)
枠体30は、好ましくは、矩形の薄いシートであって、中央に、好ましくは矩形の開口部31を有する。枠体30は、バッテリーセル50からの放熱により変形しない材料であれば、熱硬化性樹脂若しくは熱可塑性樹脂に代表される樹脂、金属、セラミックスあるいは木材で構成されていても良い。開口部31は、バッテリーセル50によって放熱部材5aを底部42に向けて押圧可能な領域である。開口部31は、バッテリーセル50を挿通可能なほどに十分な大きさを有しているのが好ましい。しかし、開口部31は、バッテリーセル50を挿通不可な大きさであっても良い。複数の放熱部材5aは、枠体30の開口部31を橋渡しする状態で、枠体30に固定されている。より具体的には、複数の放熱部材5aは、その長さ方向の両端部を枠体30の対向辺上に載せた状態で、放熱部材5aの中空部12に糸25を到達するように縫って固定されている。
(Frame body)
The frame 30 is preferably a rectangular thin sheet with a preferably rectangular opening 31 in the center. The frame 30 may be made of a resin, metal, ceramics or wood typified by a thermosetting resin or a thermoplastic resin as long as it is a material that is not deformed by heat radiation from the battery cell 50. The opening 31 is a region where the battery cell 50 can press the heat radiating member 5a toward the bottom 42. The opening 31 is preferably large enough to allow the battery cell 50 to be inserted. However, the opening 31 may have a size that does not allow the battery cell 50 to be inserted. The plurality of heat radiating members 5a are fixed to the frame body 30 in a state of bridging the openings 31 of the frame body 30. More specifically, the plurality of heat radiating members 5a are sewn so that the thread 25 reaches the hollow portion 12 of the heat radiating member 5a with both ends in the length direction placed on the opposite sides of the frame body 30. Is fixed.

糸25は、その材料に特に制約はないが、バッテリーセル50からの放熱による温度上昇に耐え得る糸であることが好ましい。糸25は、好ましくは、ミシン等を用いて複数の放熱部材5aを上述の対向辺上に縫い付ける。糸25の縫い方は、特に限定されず、手縫い、本縫い、千鳥縫い、単環縫い、二重環縫い、縁かがり縫い、扁平縫い、安全縫い、オーバーロック等の如何なる縫い方でも良い。また、JIS L 0120の規定する表示記号によれば、好適な縫い方として、「101」、「209」、「301」、「304」、「401」、「406」、「407」、「410」、「501」、「502」、「503」、「504」、「505」、「509」、「512」、「514」、「602」および「605」の各種縫い目を構成する縫い方を例示できる。 The material of the thread 25 is not particularly limited, but the thread 25 is preferably a thread that can withstand a temperature rise due to heat dissipation from the battery cell 50. The thread 25 is preferably sewn with a plurality of heat radiating members 5a on the above-mentioned facing sides using a sewing machine or the like. The sewing method of the thread 25 is not particularly limited, and any sewing method such as hand sewing, lock stitching, zigzag stitching, single chain stitching, double chain stitching, overlock stitching, flat stitching, safety stitching, and overlock stitching may be used. Further, according to the display symbols specified by JIS L 0120, suitable sewing methods are "101", "209", "301", "304", "401", "406", "407", and "410". , "501", "502", "503", "504", "505", "509", "512", "514", "602" and "605" It can be illustrated.

放熱構造体1cは、枠体30に複数の放熱部材5aを固定することにより、放熱構造体1cにおける複数の放熱部材5aの位置決めを可能とし、かつ複数の放熱部材5aを連結する役割を担う。高い伝熱効率を実現するためには、多数のバッテリーセル50各々の温度が均一となるように、多数のバッテリーセル50各々から均一に放熱させることが望ましい。そのためには、各バッテリーセル50に接触する放熱部材5aの数が均一となるように、複数の放熱部材5aを配置することが好ましい。放熱構造体1cは、枠体30により複数の放熱部材5aが位置決めされるため、各バッテリーセル50に放熱部材5aを確実に接触するようにできる。したがって、放熱構造体1cは、多数のバッテリーセル50各々における放熱性の均一化を高めることができ、高い伝熱効率を実現できる。なお、放熱部材5aの長さ方向の一端のみを枠体30の一辺に固定しても良い。 The heat radiating structure 1c enables positioning of the plurality of heat radiating members 5a in the heat radiating structure 1c by fixing the plurality of heat radiating members 5a to the frame body 30, and also plays a role of connecting the plurality of heat radiating members 5a. In order to realize high heat transfer efficiency, it is desirable to dissipate heat uniformly from each of the large number of battery cells 50 so that the temperature of each of the large number of battery cells 50 becomes uniform. For that purpose, it is preferable to arrange a plurality of heat radiating members 5a so that the number of heat radiating members 5a in contact with each battery cell 50 is uniform. In the heat radiating structure 1c, since the plurality of heat radiating members 5a are positioned by the frame body 30, the heat radiating members 5a can be surely brought into contact with each battery cell 50. Therefore, the heat dissipation structure 1c can enhance the uniformity of heat dissipation in each of a large number of battery cells 50, and can realize high heat transfer efficiency. Only one end of the heat radiating member 5a in the length direction may be fixed to one side of the frame body 30.

枠体30は、好ましくは、その厚さTが、バッテリーセル50からの押圧により変形した放熱部材5aの厚さ(0.8D)より薄くなるよう形成される(図10(10C)参照)。このように放熱構造体1cを構成することにより、バッテリーセル50からの押圧により放熱部材5aが上下方向に圧縮されても、バッテリーセル50が枠体30に接触してそれ以上に潰れなくなる虞を抑制でき、放熱部材5aが円換算直径Dの80%の厚さに圧縮されて変形する際に、当該変形の障害となることを防止できる。なお、放熱部材5aの長さ方向両端は枠体30の上に載って固定されているので、当該両端は、筐体41の底部42に接触しない。しかし、放熱部材5aの上記両端の間の領域は、底部42に接するので、十分な放熱効果を得ることができる。また、放熱部材5aの底部42側の面は、枠体30の底部42側の面と同じ高さか、若しくは底部42側に若干突出させているのが好ましい。枠体30を底部12に接触させやすいからである。 The frame body 30 is preferably formed so that its thickness T is thinner than the thickness (0.8D) of the heat radiating member 5a deformed by pressing from the battery cell 50 (see FIG. 10 (10C)). By configuring the heat radiating structure 1c in this way, even if the heat radiating member 5a is compressed in the vertical direction by pressing from the battery cell 50, there is a risk that the battery cell 50 will come into contact with the frame 30 and will not be further crushed. It can be suppressed, and when the heat radiating member 5a is compressed to a thickness of 80% of the circle-equivalent diameter D and deformed, it can be prevented from becoming an obstacle to the deformation. Since both ends of the heat radiating member 5a in the length direction are placed and fixed on the frame body 30, both ends do not come into contact with the bottom portion 42 of the housing 41. However, since the region between both ends of the heat radiating member 5a is in contact with the bottom portion 42, a sufficient heat radiating effect can be obtained. Further, it is preferable that the surface of the heat radiating member 5a on the bottom 42 side is at the same height as the surface of the frame 30 on the bottom 42 side, or slightly protrudes toward the bottom 42 side. This is because the frame body 30 can be easily brought into contact with the bottom portion 12.

放熱構造体1cは、複数の放熱部材5aの長さ方向(図9のY方向)の両端部を枠体30に糸25で縫い付けて、固定されている。放熱構造体1cをバッテリーセル50と冷却部材45との間に挟むと、放熱部材5aの中位領域(糸25によって枠体30に固定されている両端部の中間に位置する領域)は、バッテリーセル50等の加重を受ける。この結果、当該中位領域は、上記両端部の固定側から開口部31に向かって沈み込み、当該固定側の反対側のシート面と同一若しくはそれ以上に突出する。したがって、放熱部材5aは、複数のバッテリーセル50の下端部が平坦でない場合であっても、バッテリーセル50と冷却部材45との両方に接触できる。なお、放熱構造体1cは、放熱部材5aの中位領域がバッテリーセル50からの押圧を受けて潰れるため、当該中位領域にバッテリーセル50を接触させるように、配置することが好ましい。放熱部材5aは枠体30により位置決めされているので、バッテリーセル50からの押圧を受けて潰れた際にも放熱部材5a間の距離L1のばらつきが小さくなり、多数のバッテリーセル50各々における放熱性の均一化を高めることができる。なお、複数の放熱部材5aは、放熱部材5a間の距離L1が等間隔となるよう配置されることに限定されない。放熱構造体1cは、複数のバッテリーセル50のうち温度の高いバッテリーセル50の位置に放熱部材5aを密集させるように、放熱部材5a間の距離L1を変化させて配置しても良い。すなわち、放熱構造体1cは、温度の高いバッテリーセル50に接触する放熱部材5aの数がその他のバッテリーセル50に接触する放熱部材5aの数より多くなるように、当該温度の高いバッテリーセル50に接触する放熱部材5a間の距離L1を小さくしても良い。このように構成することにより、バッテリー40dは、多数のバッテリーセル50各々における放熱性の均一化をさらに高めることができる。 The heat radiating structure 1c is fixed by sewing both ends of the plurality of heat radiating members 5a in the length direction (Y direction in FIG. 9) to the frame body 30 with a thread 25. When the heat radiating structure 1c is sandwiched between the battery cell 50 and the cooling member 45, the middle region of the heat radiating member 5a (the region located between both ends fixed to the frame 30 by the thread 25) becomes the battery. Receives the weight of cell 50 and the like. As a result, the middle region sinks from the fixed side of both ends toward the opening 31, and projects equal to or more than the seat surface on the opposite side of the fixed side. Therefore, the heat radiating member 5a can come into contact with both the battery cell 50 and the cooling member 45 even when the lower ends of the plurality of battery cells 50 are not flat. Since the middle region of the heat radiating member 5a is crushed by being pressed by the battery cell 50, the heat radiating structure 1c is preferably arranged so that the battery cell 50 is in contact with the middle region. Since the heat radiating member 5a is positioned by the frame 30, the variation of the distance L1 between the heat radiating members 5a becomes small even when the heat radiating member 5a is crushed by being pressed by the battery cell 50, and the heat radiating property of each of the large number of battery cells 50 is reduced. It is possible to increase the homogenization of. The plurality of heat radiating members 5a are not limited to being arranged so that the distances L1 between the heat radiating members 5a are evenly spaced. The heat radiating structure 1c may be arranged by changing the distance L1 between the heat radiating members 5a so that the heat radiating members 5a are densely packed at the position of the battery cell 50 having a high temperature among the plurality of battery cells 50. That is, the heat radiating structure 1c is provided in the battery cell 50 having a high temperature so that the number of heat radiating members 5a in contact with the battery cell 50 having a high temperature is larger than the number of heat radiating members 5a in contact with the other battery cells 50. The distance L1 between the heat radiating members 5a that come into contact with each other may be reduced. With such a configuration, the battery 40d can further enhance the uniformity of heat dissipation in each of a large number of battery cells 50.

このように、放熱構造体1cは、複数の放熱部材5aが簾状に連結されるため、バッテリーセル50で圧縮された状態においてはバッテリーセル50の表面に追従して放熱部材5aが上下左右方向に潰れ、且つ、バッテリーセル50を除いた状態においては放熱部材5aの弾性力により元の形状に戻ることができる。また、放熱構造体1cは、複数の放熱部材5aが簾状に連結され、かつ枠体30により位置決めされる。これにより、各バッテリーセル50に放熱部材5aを確実に接触するようにできる。このため、放熱構造体1cは、例えば、自動車の振動等により放熱部材5aが偏在する事態を抑制でき、かつ多数のバッテリーセル50各々における放熱性の均一化を高めることができる。また、放熱構造体1cは枠体30を備えるため、作業者は枠体30を持ってバッテリー40dに放熱構造体1cを取り付けることができ、作業性が向上する。 In this way, in the heat radiating structure 1c, since a plurality of heat radiating members 5a are connected in a bamboo blind shape, the heat radiating member 5a follows the surface of the battery cell 50 in the vertical and horizontal directions in the state of being compressed by the battery cell 50. In the state of being crushed and the battery cell 50 is removed, the original shape can be restored by the elastic force of the heat radiating member 5a. Further, in the heat radiating structure 1c, a plurality of heat radiating members 5a are connected in a bamboo blind shape, and the heat radiating structure 1c is positioned by the frame body 30. As a result, the heat radiating member 5a can be surely brought into contact with each battery cell 50. Therefore, the heat radiating structure 1c can suppress a situation in which the heat radiating members 5a are unevenly distributed due to, for example, vibration of an automobile, and can improve the uniformity of heat radiating properties in each of a large number of battery cells 50. Further, since the heat radiating structure 1c includes the frame body 30, the operator can hold the frame body 30 and attach the heat radiating structure 1c to the battery 40d, which improves workability.

(第5実施形態)
次に、第5実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーについて説明する。先の各実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Fifth Embodiment)
Next, the heat radiating structure according to the fifth embodiment and the battery including the heat radiating structure will be described. The parts common to each of the above embodiments are designated by the same reference numerals, and duplicate description will be omitted.

図11は、第5実施形態に係る放熱構造体の平面図を示す。図12は、図11の放熱構造体の一部の斜視図(12A)および図11の領域Hの拡大図であって放熱構造体を圧縮する前後の形態の変化(12B)をそれぞれ示す。 FIG. 11 shows a plan view of the heat radiating structure according to the fifth embodiment. FIG. 12 is a perspective view (12A) of a part of the heat radiating structure of FIG. 11 and an enlarged view of the region H of FIG. 11, showing a change in form (12B) before and after compressing the heat radiating structure.

第5実施形態に係る放熱構造体1dは、複数の放熱部材5bが間をあけて連結されている。放熱部材5bは、クッション部材11aの筒外周に熱伝導シート10aを備える略円筒形状の部材である。ただし、放熱部材5bは、その長さ方向の端面形状を、楕円形状、三角以上の多角形状とする筒状部材であっても良い。放熱部材5bは、先述の実施形態と同様に、クッション部材11aに蓄熱カプセル3を含有する。なお、第5実施形態において、クッション部材11aは、先述の実施形態のクッション部材11aと同様の構成であるため、詳細な説明を省略する。 In the heat radiating structure 1d according to the fifth embodiment, a plurality of heat radiating members 5b are connected with a gap. The heat radiating member 5b is a substantially cylindrical member provided with a heat conductive sheet 10a on the outer periphery of the cylinder of the cushion member 11a. However, the heat radiating member 5b may be a cylindrical member having an elliptical shape or a polygonal shape having a triangle or more in the end face shape in the length direction. The heat radiating member 5b contains the heat storage capsule 3 in the cushion member 11a as in the above-described embodiment. In the fifth embodiment, since the cushion member 11a has the same configuration as the cushion member 11a of the above-described embodiment, detailed description thereof will be omitted.

熱伝導シート10aは、クッション部材11aの長さ方向に沿う第1隙間100であって熱伝導シート10aの厚さ分の第1隙間100を有する状態で、クッション部材11aの筒外周を覆っている(図12(12A)参照)。第1隙間100は、複数の放熱部材5bを連結する方向(図11では左右方向)以外の方向に形成されている。より好ましくは、第1隙間100は、熱伝導シート10aにおいて、放熱部材5b同士の連結方向と略直角方向(図11では、上下方向)に形成されている。第1隙間100は、放熱部材5bの外側面(筒外周)において放熱部材5bの長さ方向に沿って形成されている。第1隙間100は、「切れ目」と称しても良く、クッション部材11aの外側面を完全に被覆しない部分である。この実施形態では、第1隙間100は、クッション部材11aの外側面の一部を露出する長尺状の窓である。第1隙間100は、放熱部材5bの外から圧縮力が与えられた際に、熱伝導シート10aの変形を容易にして、割れるのを抑制する機能を有する。熱伝導シート10aの表面には、好ましくは、当該表面に接触するバッテリーセル50から当該表面への熱伝導性を高めるための熱伝導性オイルを有する。クッション部材11aは、熱伝導シート10aに比べてバッテリーセル50の表面形状に合わせて変形容易であって中空部12を有する。図11では、放熱構造体1dは、18本の放熱部材5bを備えているが、2本以上であれば放熱部材5bの数を問わない。また、熱伝導シート10aは、その形状以外の構成について、先述の実施形態の熱伝導シート10と同様であるため、詳細な説明を省略する。 The heat conductive sheet 10a covers the outer periphery of the cylinder of the cushion member 11a in a state where the first gap 100 is along the length direction of the cushion member 11a and has the first gap 100 corresponding to the thickness of the heat conductive sheet 10a. (See FIG. 12 (12A)). The first gap 100 is formed in a direction other than the direction in which the plurality of heat radiating members 5b are connected (the left-right direction in FIG. 11). More preferably, the first gap 100 is formed in the heat conductive sheet 10a in a direction substantially perpendicular to the connecting direction of the heat radiating members 5b (in the vertical direction in FIG. 11). The first gap 100 is formed on the outer surface (outer circumference of the cylinder) of the heat radiating member 5b along the length direction of the heat radiating member 5b. The first gap 100 may be referred to as a “cut” and is a portion that does not completely cover the outer surface of the cushion member 11a. In this embodiment, the first gap 100 is a long window that exposes a part of the outer surface of the cushion member 11a. The first gap 100 has a function of facilitating deformation of the heat conductive sheet 10a and suppressing cracking when a compressive force is applied from the outside of the heat radiating member 5b. The surface of the heat conductive sheet 10a preferably has a heat conductive oil for increasing the heat conductivity from the battery cell 50 in contact with the surface to the surface. The cushion member 11a is more easily deformed according to the surface shape of the battery cell 50 than the heat conductive sheet 10a, and has a hollow portion 12. In FIG. 11, the heat radiating structure 1d includes 18 heat radiating members 5b, but the number of heat radiating members 5b does not matter as long as it is two or more. Further, since the heat conductive sheet 10a has the same configuration as the heat conductive sheet 10 of the above-described embodiment except for its shape, detailed description thereof will be omitted.

複数の放熱部材5bは、第3実施形態の放熱部材5aと同様に、放熱部材5bの長さ方向の1か所若しくは2か所以上を、放熱部材5bの長さ方向と直交する方向にて糸15で連結されている。糸15は、第3実施形態の糸15と同様の構成であるため、詳細な説明を省略する。 Similar to the heat radiating member 5a of the third embodiment, the plurality of heat radiating members 5b have one or two or more heat radiating members 5b in the length direction orthogonal to the length direction of the heat radiating member 5b. It is connected by a thread 15. Since the thread 15 has the same structure as the thread 15 of the third embodiment, detailed description thereof will be omitted.

(第5実施形態の変形例2)
図13は、第5実施形態に係る放熱構造体の変形例2を、図12(12B)と同様の視野にて示す。
(Modification 2 of the fifth embodiment)
FIG. 13 shows a modified example 2 of the heat radiating structure according to the fifth embodiment in the same field of view as in FIG. 12 (12B).

変形例2に係る放熱構造体1eは、複数の放熱部材5cを連結して成る。放熱部材5cは、第1隙間100を備える筒状の熱伝導シート10aの内部にクッション部材11bを備える。クッション部材11bは、熱伝導シート10aの第1隙間100の位置に、中空部12につながる第2隙間110を有する。第2隙間110は、クッション部材11bの厚さ分を切れ込む開口部である。この結果、中空部12は、第2隙間110および第1隙間100を経て外界に通じている。このように、放熱構造体1eにおいて、クッション部材11bは、熱伝導シート10aと同様に、外側面の一部を開口した筒形状を有する。このため、クッション部材11bの変形容易性はより高まる。なお、第2隙間110は、第1隙間100と連通していない開口部でも良い。 The heat radiating structure 1e according to the second modification is formed by connecting a plurality of heat radiating members 5c. The heat radiating member 5c includes a cushion member 11b inside a cylindrical heat conductive sheet 10a having a first gap 100. The cushion member 11b has a second gap 110 connected to the hollow portion 12 at the position of the first gap 100 of the heat conductive sheet 10a. The second gap 110 is an opening that cuts the thickness of the cushion member 11b. As a result, the hollow portion 12 communicates with the outside world through the second gap 110 and the first gap 100. As described above, in the heat radiating structure 1e, the cushion member 11b has a tubular shape with a part of the outer surface opened, similarly to the heat conductive sheet 10a. Therefore, the deformability of the cushion member 11b is further enhanced. The second gap 110 may be an opening that does not communicate with the first gap 100.

第5実施形態に係るバッテリーについて説明する。 The battery according to the fifth embodiment will be described.

図14は、第5実施形態に係る放熱構造体を備えるバッテリーの縦断面図を示す。図15は、図14の領域Iの拡大図を示す。なお、図15では、放熱構造体1d,1eのうち放熱構造体1dを例に挙げて示す。また、図15では、一部の放熱部材5bを拡大して示す。 FIG. 14 shows a vertical cross-sectional view of a battery including the heat radiating structure according to the fifth embodiment. FIG. 15 shows an enlarged view of the region I of FIG. In FIG. 15, of the heat radiating structures 1d and 1e, the heat radiating structure 1d is shown as an example. Further, in FIG. 15, a part of the heat radiating member 5b is enlarged and shown.

第5実施形態に係るバッテリー40eは、先述の実施形態と同様に、冷却部材45を流す構造を持つ筐体41内に、1または2以上の熱源としてのバッテリーセル50を備え、バッテリーセル50と筐体41との間に、放熱構造体1d,1eを備える。熱伝導シート10aにおける第1隙間100の両側がバッテリーセル50若しくは筐体41(具体的には、この実施形態では底部42)のいずれかに接触するように、放熱構造体1d,1eは、バッテリーセル50と筐体41との間に備えられている。 Similar to the above-described embodiment, the battery 40e according to the fifth embodiment includes a battery cell 50 as one or two or more heat sources in a housing 41 having a structure for flowing the cooling member 45, and the battery cell 50 and the battery cell 50. The heat radiating structures 1d and 1e are provided between the housing 41 and the housing 41. The heat radiating structures 1d and 1e are made of batteries so that both sides of the first gap 100 in the heat conductive sheet 10a come into contact with either the battery cell 50 or the housing 41 (specifically, the bottom 42 in this embodiment). It is provided between the cell 50 and the housing 41.

放熱構造体1d,1eは、放熱部材5b,5cの第1隙間100をバッテリーセル50側に向けて、バッテリーセル50と底部42との間に挟持された状態で筐体41内に備えられる。このため、バッテリーセル50からの熱は、熱伝導シート10aの第1隙間100から両側の周に沿って底部42へと伝わる(図中のJ1およびJ2のルートを参照)。したがって、第1隙間100の片側部分だけをバッテリーセル50に接触させる位置に第1隙間100を形成している場合と比べて、熱の伝達ルートを増大させることができ、もって、バッテリーセル50からの放熱性をより高めることができる。 The heat radiating structures 1d and 1e are provided in the housing 41 in a state of being sandwiched between the battery cell 50 and the bottom portion 42 with the first gap 100 of the heat radiating members 5b and 5c facing the battery cell 50 side. Therefore, the heat from the battery cell 50 is transferred from the first gap 100 of the heat conductive sheet 10a to the bottom 42 along the circumferences on both sides (see the routes of J1 and J2 in the figure). Therefore, the heat transfer route can be increased as compared with the case where the first gap 100 is formed at a position where only one side portion of the first gap 100 is in contact with the battery cell 50, and thus the heat transfer route can be increased from the battery cell 50. The heat dissipation of the battery can be further improved.

(第5実施形態の変形例3)
図16は、第5実施形態に係る放熱構造体を備えるバッテリーの変形例3を、図15と同様の視野にて示す。なお、図16では、放熱構造体1d,1eのうち放熱構造体1dを例に挙げて示す。また、図16では、一部の放熱部材5bを拡大して示す。
(Modification 3 of the fifth embodiment)
FIG. 16 shows a modified example 3 of the battery including the heat radiating structure according to the fifth embodiment in the same field of view as in FIG. In FIG. 16, of the heat radiating structures 1d and 1e, the heat radiating structure 1d is shown as an example. Further, in FIG. 16, a part of the heat radiating member 5b is enlarged and shown.

変形例3に係るバッテリー40fにおいて、放熱構造体1d,1eは、放熱部材5b,5cの第1隙間100が底部42側を向くように、配置されている。このような配置形式であっても、バッテリーセル50からの熱は、第1隙間100の両側の周を伝って底部42へと伝わる(図中のJ1およびJ2のルートを参照)。よって、第5実施形態に係るバッテリー40eと同様、バッテリーセル50からの放熱性をより高めることができる。 In the battery 40f according to the third modification, the heat radiating structures 1d and 1e are arranged so that the first gap 100 of the heat radiating members 5b and 5c faces the bottom 42 side. Even in such an arrangement type, the heat from the battery cell 50 is transmitted to the bottom 42 along the circumferences on both sides of the first gap 100 (see the routes of J1 and J2 in the figure). Therefore, similar to the battery 40e according to the fifth embodiment, the heat dissipation from the battery cell 50 can be further improved.

(第6実施形態)
次に、第6実施形態に係る放熱構造体および当該放熱構造体を備えるバッテリーについて説明する。先の各実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Sixth Embodiment)
Next, the heat radiating structure according to the sixth embodiment and the battery including the heat radiating structure will be described. The parts common to each of the above embodiments are designated by the same reference numerals, and duplicate description will be omitted.

図17は、第6実施形態に係る放熱構造体の平面図を示す。 FIG. 17 shows a plan view of the heat radiating structure according to the sixth embodiment.

第6実施形態に係る放熱構造体1fは、複数の放熱部材5bと、放熱部材5b同士を連結する糸25と、複数の放熱部材5bを糸25にて固定する枠体30と、を備える。なお、第6実施形態に係る放熱構造体1fにおいて、放熱部材5bは、第5実施形態と同様のため、詳細な説明を省略する。また、枠体30および糸25は、第4実施形態と同様のため、詳細な説明を省略する。なお、第6実施形態に係るバッテリー40gにおいて、放熱構造体1f以外の構成は、先述の実施形態と共通するので、図示および詳細な説明を省略する。 The heat radiating structure 1f according to the sixth embodiment includes a plurality of heat radiating members 5b, a thread 25 for connecting the heat radiating members 5b to each other, and a frame 30 for fixing the plurality of heat radiating members 5b with the thread 25. In the heat radiating structure 1f according to the sixth embodiment, the heat radiating member 5b is the same as that of the fifth embodiment, and therefore detailed description thereof will be omitted. Further, since the frame body 30 and the thread 25 are the same as those in the fourth embodiment, detailed description thereof will be omitted. In the battery 40g according to the sixth embodiment, the configurations other than the heat radiating structure 1f are the same as those in the above-described embodiment, so illustration and detailed description thereof will be omitted.

複数の放熱部材5bは、枠体30の開口部31を橋渡しする状態で、枠体30に固定されている。より具体的には、複数の放熱部材5bは、その長さ方向の両端部を枠体30の対向辺上に載せた状態で糸25により固定されている。また、複数の放熱部材5bは、その長さ方向の両端部に加え、放熱部材5の中位領域(糸25によって枠体30に固定されている両端部の中間に位置する領域)においても、放熱部材5bの中空部12に糸25を到達するように縫って連結させている。 The plurality of heat radiating members 5b are fixed to the frame body 30 in a state of bridging the openings 31 of the frame body 30. More specifically, the plurality of heat radiating members 5b are fixed by the threads 25 in a state where both ends in the length direction are placed on the opposite sides of the frame body 30. Further, the plurality of heat radiating members 5b are provided not only at both ends in the length direction thereof, but also in the middle region of the heat radiating member 5 (a region located in the middle of both ends fixed to the frame 30 by the thread 25). The thread 25 is sewn and connected to the hollow portion 12 of the heat radiating member 5b so as to reach the hollow portion 12.

枠体30は、第4実施形態と同様に、好ましくは、その厚さTが、バッテリーセル50からの押圧により変形した放熱部材5bの厚さ(0.8D)より薄くなるよう形成される。このように放熱構造体1fを構成することにより、第4実施形態に係る放熱構造体1cと同様、バッテリーセル50からの押圧により放熱部材5bが上下方向に圧縮されても、バッテリーセル50が枠体30に接触してそれ以上に潰れなくなる虞を抑制でき、放熱部材5bが円換算直径Dの80%の厚さに圧縮されて変形する際に、当該変形の障害となることを防止できる。 Similar to the fourth embodiment, the frame body 30 is preferably formed so that its thickness T is thinner than the thickness (0.8D) of the heat radiating member 5b deformed by pressing from the battery cell 50. By configuring the heat radiating structure 1f in this way, as in the case of the heat radiating structure 1c according to the fourth embodiment, even if the heat radiating member 5b is compressed in the vertical direction by pressing from the battery cell 50, the battery cell 50 is framed. It is possible to suppress the possibility that the heat radiating member 5b will come into contact with the body 30 and not be further crushed, and it will be possible to prevent the heat radiating member 5b from becoming an obstacle to the deformation when it is compressed to a thickness of 80% of the circle-equivalent diameter D and deformed.

このように放熱構造体1fを構成することにより、第4実施形態に係る放熱構造体1cと同様、多数のバッテリーセル50各々における放熱性の均一化を高めることができ、高い伝熱効率を実現できる。また、放熱構造体1fは枠体30を備えるため、作業者は枠体30を持ってバッテリー40gに放熱構造体1fを取り付けることができ、作業性が向上する。なお、放熱部材5bの長さ方向の一端のみを枠体30の一辺に固定しても良い。 By configuring the heat dissipation structure 1f in this way, it is possible to improve the uniformity of heat dissipation in each of a large number of battery cells 50, and to realize high heat transfer efficiency, as in the case of the heat dissipation structure 1c according to the fourth embodiment. .. Further, since the heat radiating structure 1f includes the frame body 30, the operator can hold the frame body 30 and attach the heat radiating structure 1f to the battery 40 g, which improves workability. Only one end of the heat radiating member 5b in the length direction may be fixed to one side of the frame body 30.

(各実施形態の作用・効果)
以上説明したように、放熱構造体1,1a,1b,1c,1d,1e,1f(放熱構造体1,1a,1b,1c,1d,1e,1fを総称する場合には、「放熱構造体1等」とも称する)は、バッテリーセル50と冷却部材45との間にあってバッテリーセル50から冷却部材45に熱を伝導させてバッテリーセル50からの放熱を可能とする放熱構造体であって、ゴム状弾性体から構成されるクッション部材11,11a,11b(クッション部材を総称する場合には、「クッション部材11等」とも称する)に、相転移によって蓄熱を行う蓄熱材をマイクロカプセル内に封入してなる蓄熱カプセル3を含有する。
(Action / effect of each embodiment)
As described above, when the heat radiating structures 1,1a, 1b, 1c, 1d, 1e, 1f (heat radiating structures 1,1a, 1b, 1c, 1d, 1e, 1f are collectively referred to, "heat radiating structure" (Also referred to as "1st class") is a heat dissipation structure located between the battery cell 50 and the cooling member 45, which conducts heat from the battery cell 50 to the cooling member 45 to enable heat dissipation from the battery cell 50, and is made of rubber. A heat storage material that stores heat by phase transition is enclosed in microcapsules in cushion members 11, 11a, 11b (also referred to as "cushion member 11 and the like" when the cushion members are collectively referred to) composed of a state elastic body. Contains the heat storage capsule 3.

放熱構造体1等をこのように構成することによって、バッテリーセル50からの熱を蓄熱カプセル3に蓄えることができる。よって、放熱構造体1等は、バッテリーセル50を好適に冷却しながら、外部に対する放熱を抑制あるいは遅延させることができるため、バッテリー40,40a,40b,40c,40d,40e,40f,40g(バッテリーを総称する場合には、「バッテリー40等」とも称する)の急激な温度上昇を抑制することができる。また、放熱構造体1等は、クッション部材11等で構成されるため、バッテリーセル50で圧縮された状態においてはバッテリーセル50の表面に追従して上下左右方向に潰れ、且つ、バッテリーセル50を除いた状態においてはクッション部材11等の弾性力により元の形状に戻ることができる。よって、放熱構造体1等は、バッテリーセル50の種々の形態に順応可能であって、弾性変形性に富み、且つ、蓄熱効果を通じてバッテリーセル50の放熱を高めることができる。 By configuring the heat radiating structure 1 and the like in this way, the heat from the battery cell 50 can be stored in the heat storage capsule 3. Therefore, the heat dissipation structure 1 and the like can suppress or delay heat dissipation to the outside while appropriately cooling the battery cell 50, so that the batteries 40, 40a, 40b, 40c, 40d, 40e, 40f, 40g (battery). In the case of generically, it is possible to suppress a rapid temperature rise of (also referred to as "battery 40 or the like"). Further, since the heat radiating structure 1 and the like are composed of the cushion member 11 and the like, in the state of being compressed by the battery cell 50, the heat radiating structure 1 and the like follow the surface of the battery cell 50 and are crushed in the vertical and horizontal directions, and the battery cell 50 is crushed. In the removed state, the original shape can be restored by the elastic force of the cushion member 11 or the like. Therefore, the heat radiating structure 1 and the like can adapt to various forms of the battery cell 50, are highly elastically deformable, and can enhance the heat radiating of the battery cell 50 through the heat storage effect.

また、放熱構造体1a,1b,1c,1d,1e,1f(放熱構造体1a,1b,1c,1d,1e,1fを総称する場合には、「放熱構造体1a等」とも称する)は、クッション部材11a,11bを備える複数の放熱部材5,5a,5b,5cが連結して構成され、クッション部材11a,11bは、その長さ方向に中空部12を有する筒形状の長尺の部材である。このため、放熱構造体1a等は、クッション部材11a,11bに起因して、バッテリーセル50の種々の形態に順応可能であって、高い弾性変形性を有することができる。また、放熱構造体1a等は、クッション部材11a,11bに含有される蓄熱カプセル3に、バッテリーセル50からの熱を蓄えることができるため、バッテリーセル50を好適に冷却しながら、外部に対する放熱を抑制あるいは遅延させることができ、蓄熱効果を通じてバッテリーセル50の放熱を高めることができる。また、放熱構造体1a等は、中空部12に起因してより軽量となる。 Further, the heat radiating structures 1a, 1b, 1c, 1d, 1e, 1f (when the heat radiating structures 1a, 1b, 1c, 1d, 1e, 1f are collectively referred to as "heat radiating structure 1a, etc."), A plurality of heat radiating members 5, 5a, 5b, 5c provided with cushion members 11a, 11b are connected to each other, and the cushion members 11a, 11b are long tubular members having hollow portions 12 in the length direction thereof. be. Therefore, the heat radiating structure 1a and the like can adapt to various forms of the battery cell 50 due to the cushion members 11a and 11b, and can have high elastic deformability. Further, since the heat radiating structure 1a and the like can store the heat from the battery cell 50 in the heat storage capsule 3 contained in the cushion members 11a and 11b, the heat radiating to the outside is dissipated while appropriately cooling the battery cell 50. It can be suppressed or delayed, and the heat dissipation of the battery cell 50 can be enhanced through the heat storage effect. Further, the heat radiating structure 1a and the like are lighter due to the hollow portion 12.

また、放熱構造体1b,1c,1d,1e,1fを構成する放熱部材5a,5b,5cは、金属、炭素若しくはセラミックスの少なくとも1つを含む熱伝導シート10,10aをさらに備える。クッション部材11a,11bは、熱伝導シート10,10aに比べてバッテリーセル50の表面形状に合わせて変形容易である。熱伝導シート10,10aは、バッテリーセル50からの熱を伝えるためのシートであって、クッション部材11a,11bの筒外周に備えられる。このため、放熱構造体1b,1c,1d,1e,1fは、熱伝導シート10,10aがクッション部材11a,11bの筒外周に備えられるため、バッテリーセル50の種々の形態により順応し易く、高い放熱効率を実現することができる。 Further, the heat radiating members 5a, 5b, 5c constituting the heat radiating structures 1b, 1c, 1d, 1e, 1f further include heat conductive sheets 10, 10a containing at least one of metal, carbon, and ceramics. The cushion members 11a and 11b are more easily deformed according to the surface shape of the battery cell 50 than the heat conductive sheets 10 and 10a. The heat conductive sheets 10 and 10a are sheets for transferring heat from the battery cell 50, and are provided on the outer periphery of the cylinder of the cushion members 11a and 11b. Therefore, the heat radiating structures 1b, 1c, 1d, 1e, and 1f are high because the heat conductive sheets 10 and 10a are provided on the outer periphery of the cylinder of the cushion members 11a and 11b, so that they can easily adapt to various forms of the battery cell 50. Heat dissipation efficiency can be realized.

また、放熱構造体1b,1cを構成する熱伝導シート10は、スパイラル状に巻回しながら進行する形状でクッション部材11aの筒外周に備えられるため、クッション部材11aの変形を過度に拘束する事態を抑制できる。 Further, since the heat conductive sheet 10 constituting the heat radiating structures 1b and 1c is provided on the outer periphery of the cylinder of the cushion member 11a in a shape that advances while winding in a spiral shape, a situation in which the deformation of the cushion member 11a is excessively restrained is prevented. Can be suppressed.

また、放熱構造体1d,1e,1fを構成する熱伝導シート10aは、クッション部材11a,11bの長さ方向に沿う第1隙間100であって熱伝導シート10aの厚さ分の第1隙間100を有する状態でクッション部材11a,11bの筒外周を覆うよう備えられる。また、第1隙間100は、複数の放熱部材5bを連結する方向以外の方向に形成される。このため、放熱構造体1d,1e,1fは、第1隙間100により、放熱部材5bの外から圧縮力が与えられた際に、熱伝導シート10aが容易に変形され、割れるのを抑制することができる。 Further, the heat conductive sheet 10a constituting the heat radiating structures 1d, 1e, 1f is a first gap 100 along the length direction of the cushion members 11a, 11b, and is a first gap 100 corresponding to the thickness of the heat conductive sheet 10a. The cushion members 11a and 11b are provided so as to cover the outer periphery of the cylinder. Further, the first gap 100 is formed in a direction other than the direction in which the plurality of heat radiating members 5b are connected. Therefore, in the heat radiating structures 1d, 1e, 1f, the heat conductive sheet 10a is easily deformed and suppressed from cracking when a compressive force is applied from the outside of the heat radiating member 5b by the first gap 100. Can be done.

また、放熱構造体1eを構成するクッション部材11bは、熱伝導シート10aの第1隙間100の位置に、中空部12につながる第2隙間110を有するため、クッション部材11bの変形容易性はより高まり、放熱部材5cの外から圧縮力が与えられた際に、熱伝導シート10aが割れるのを抑制することができる。 Further, since the cushion member 11b constituting the heat radiating structure 1e has a second gap 110 connected to the hollow portion 12 at the position of the first gap 100 of the heat conductive sheet 10a, the deformability of the cushion member 11b is further enhanced. It is possible to prevent the heat conductive sheet 10a from cracking when a compressive force is applied from the outside of the heat radiating member 5c.

また、放熱構造体1b,1c,1d,1e,1fを構成する複数の放熱部材5a,5b,5cは、その長さ方向と直交する方向にて糸15,25で連結されているため、複数の放熱部材5a,5b,5cが簾状に連結されるため、例えば、自動車の振動等により放熱部材5a,5b,5cが偏在する事態を抑制でき、施工性が高くなる。 Further, since the plurality of heat radiating members 5a, 5b, 5c constituting the heat radiating structures 1b, 1c, 1d, 1e, 1f are connected by the threads 15 and 25 in the direction orthogonal to the length direction thereof, a plurality of the heat radiating members 5a, 5b, 5c are connected. Since the heat radiating members 5a, 5b, 5c are connected in a bamboo blind shape, for example, the situation where the heat radiating members 5a, 5b, 5c are unevenly distributed due to the vibration of an automobile or the like can be suppressed, and the workability is improved.

また、放熱構造体1c,1fを構成する複数の放熱部材5a,5bは、枠体30の開口部31を橋渡しする状態で、枠体30に固定されているため、作業者は枠体30を持ってバッテリー40d,40gに放熱構造体1c,1fを取り付けることができ、作業性が向上する。 Further, since the plurality of heat radiating members 5a and 5b constituting the heat radiating structures 1c and 1f are fixed to the frame body 30 in a state of bridging the opening 31 of the frame body 30, the operator can use the frame body 30. The heat dissipation structures 1c and 1f can be attached to the batteries 40d and 40g, improving workability.

また、放熱構造体1c,1fを構成する枠体30は、その厚さTが、バッテリーセル50からの押圧により変形した放熱部材5a,5bの厚さより薄くなるよう形成されるため、バッテリーセル50からの押圧により放熱部材5a,5bが上下方向に圧縮されても、バッテリーセル50が枠体30に接触してそれ以上に潰れなくなる虞を抑制できる。 Further, the frame body 30 constituting the heat radiating structures 1c and 1f is formed so that the thickness T thereof is thinner than the thickness of the heat radiating members 5a and 5b deformed by the pressing from the battery cell 50. Therefore, the battery cell 50 Even if the heat radiating members 5a and 5b are compressed in the vertical direction by the pressing from the battery cell 50, it is possible to suppress the possibility that the battery cell 50 comes into contact with the frame body 30 and is not further crushed.

また、熱伝導シート10,10aの表面に、当該表面に接触するバッテリーセル50から当該表面への熱伝導性を高めるための熱伝導性オイルを有する。熱伝導シート10,10aは、微視的に、隙間(孔あるいは凹部)を有する。通常、当該隙間には空気が存在し、熱伝導性に悪影響を及ぼす可能性が有る。熱伝導性オイルは、その隙間を埋めて、空気に代わって存在することになり、熱伝導シート10,10aの熱伝導性を向上させる機能を有する。 Further, the surface of the heat conductive sheets 10 and 10a has a heat conductive oil for increasing the heat conductivity from the battery cell 50 in contact with the surface to the surface. The heat conductive sheets 10 and 10a have gaps (holes or recesses) microscopically. Normally, air is present in the gap, which may adversely affect the thermal conductivity. The heat conductive oil fills the gap and exists in place of air, and has a function of improving the heat conductivity of the heat conductive sheets 10 and 10a.

また、熱伝導性オイルは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。シリコーンオイルは、耐熱性、耐寒性、粘度安定性、熱伝導性に優れたオイルであるため、熱伝導シート10,10aの表面に塗布して、バッテリーセル50と熱伝導シート10,10aとの間に介在させる熱伝導性オイルとして特に好適である。また、熱伝導性オイルは、熱伝導性フィラーを含むため、熱伝導シート10,10aの熱伝導性を高めることができる。 Further, the heat conductive oil includes a silicone oil and a heat conductive filler having a higher heat conductivity than the silicone oil and composed of one or more of metal, ceramics or carbon. Since silicone oil is an oil having excellent heat resistance, cold resistance, viscosity stability, and thermal conductivity, it is applied to the surface of the thermal conductive sheets 10 and 10a to form a battery cell 50 and the thermal conductive sheets 10 and 10a. It is particularly suitable as a heat conductive oil to be interposed between them. Further, since the heat conductive oil contains a heat conductive filler, the heat conductivity of the heat conductive sheets 10 and 10a can be enhanced.

バッテリー40等は、冷却部材45を流す構造を持つ筐体41内に、1または2以上の熱源としてのバッテリーセル50を備えたバッテリーであって、バッテリーセル50と筐体41との間に、上述の放熱構造体1等を備える。バッテリー40等をこのように構成することによって、バッテリーセル50からの熱を蓄熱カプセル3に蓄えることができるため、バッテリーセル50を好適に冷却しながら、外部に対する放熱を抑制あるいは遅延させることができ、バッテリー40等の急激な温度上昇を抑制することができる。また、バッテリー40等は、クッション部材11等に起因して、バッテリーセル50で圧縮された状態においてはバッテリーセル50の表面に追従して上下左右方向に潰れ、且つ、バッテリーセル50を除いた状態においてはクッション部材11等の弾性力により元の形状に戻ることができる。よって、バッテリー40等は、バッテリーセル50の種々の形態に順応可能であって、弾性変形性に富み、且つ、蓄熱効果を通じてバッテリーセル50の放熱を高めることができる。 The battery 40 or the like is a battery having one or more battery cells 50 as heat sources in a housing 41 having a structure for flowing a cooling member 45, and is located between the battery cells 50 and the housing 41. The above-mentioned heat dissipation structure 1 and the like are provided. By configuring the battery 40 and the like in this way, the heat from the battery cell 50 can be stored in the heat storage capsule 3, so that the heat dissipation to the outside can be suppressed or delayed while the battery cell 50 is appropriately cooled. , The sudden temperature rise of the battery 40 and the like can be suppressed. Further, the battery 40 and the like are crushed in the vertical and horizontal directions following the surface of the battery cell 50 in a state of being compressed by the battery cell 50 due to the cushion member 11 and the like, and the battery cell 50 is removed. In, the original shape can be restored by the elastic force of the cushion member 11 or the like. Therefore, the battery 40 and the like can adapt to various forms of the battery cell 50, are highly elastically deformable, and can enhance heat dissipation of the battery cell 50 through the heat storage effect.

(その他の実施形態)
上述のように、本発明の好適な各実施形態について説明したが、本発明は、これらに限定されることなく、種々変形して実施可能である。
(Other embodiments)
As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to these, and can be implemented in various modifications.

図18は、第3実施形態および第4実施形態に係る放熱構造体の変形例4およびその製造方法を説明するための図を示す。 FIG. 18 shows a diagram for explaining a modified example 4 of the heat radiating structure according to the third embodiment and the fourth embodiment and a method for manufacturing the same.

変形例4に係る放熱構造体は、第3実施形態および第4実施形態に係る放熱構造体1b,1cと異なる放熱部材5dを備える。変形例4に係る放熱構造体に備えられる放熱部材5dは、クッション部材11aを、筒状クッション部材とせずに、熱伝導シート10の裏側に備えられる帯状のクッション部材であって熱伝導シート10と共にスパイラル状に巻回されているスパイラル状のクッション部材とする。なお、放熱部材5d以外の構成は、放熱構造体1b,1cと同様のため、詳細な説明を省略する。 The heat radiating structure according to the fourth modification includes a heat radiating member 5d different from the heat radiating structures 1b and 1c according to the third embodiment and the fourth embodiment. The heat radiating member 5d provided in the heat radiating structure according to the fourth modification is a band-shaped cushion member provided on the back side of the heat conductive sheet 10 without using the cushion member 11a as a tubular cushion member, and together with the heat conductive sheet 10. A spiral cushion member that is wound in a spiral shape. Since the configurations other than the heat radiating member 5d are the same as those of the heat radiating structures 1b and 1c, detailed description thereof will be omitted.

上述のスパイラル状のクッション部材11a(「スパイラル状クッション部材11a」または単に「クッション部材11a」ともいう)を備える放熱構造体の製造方法の一例は、次の通りである。 An example of a method for manufacturing a heat radiating structure including the above-mentioned spiral cushion member 11a (also referred to as “spiral cushion member 11a” or simply “cushion member 11a”) is as follows.

まず、略同等の幅を持つ熱伝導シート10およびクッション部材11aの二層からなる積層体を製造する。次に、熱伝導シート10の表面に、熱伝導性オイルを塗布する。そして、熱伝導性オイルが塗布された積層体をスパイラル状(コイル状と称しても良い)に、一方向に進行するように巻回する。こうして、積層体をスパイラル状に巻回した細長い形状の放熱部材5dが完成する。なお、熱伝導性オイルは、積層体を製造する前に熱伝導シート10上に塗布しても良いし、最後に熱伝導シート10上に塗布しても良い。また、積層体は、好ましくは、クッション部材11aが完全には硬化していない未硬化状態で、熱伝導シート10をクッション部材11aに積層し、その後、加温によりクッション部材11aを完全に硬化させて形成される。 First, a laminate composed of two layers of a heat conductive sheet 10 and a cushion member 11a having substantially the same width is manufactured. Next, the heat conductive oil is applied to the surface of the heat conductive sheet 10. Then, the laminate coated with the heat conductive oil is wound in a spiral shape (may be called a coil shape) so as to proceed in one direction. In this way, the elongated heat-dissipating member 5d in which the laminated body is wound in a spiral shape is completed. The heat conductive oil may be applied on the heat conductive sheet 10 before the laminate is manufactured, or may be finally applied on the heat conductive sheet 10. Further, in the laminated body, preferably, the heat conductive sheet 10 is laminated on the cushion member 11a in an uncured state in which the cushion member 11a is not completely cured, and then the cushion member 11a is completely cured by heating. Is formed.

放熱構造体は、上述の製造方法により製造された複数の放熱部材5dを、熱伝導シート10の巻回しながら進行する方向(放熱部材5dの長さ方向)と直交する方向に並べた状態で、糸15で連結することにより製造される。また、第4実施形態に係る放熱構造体1cのように枠体30を備える場合は、糸15で連結された複数の放熱部材5dを、枠体30に糸25で縫い付けることにより製造される。 The heat radiating structure is a state in which a plurality of heat radiating members 5d manufactured by the above-mentioned manufacturing method are arranged in a direction orthogonal to the direction in which the heat conductive sheet 10 is wound and travels (the length direction of the heat radiating member 5d). It is manufactured by connecting with a thread 15. Further, when the frame body 30 is provided as in the heat radiating structure 1c according to the fourth embodiment, it is manufactured by sewing a plurality of heat radiating members 5d connected by the thread 15 to the frame body 30 with the thread 25. ..

放熱部材5dは、その長さ方向に中空部12aを備えているが、第3実施形態および第4実施形態に係る放熱部材5aが備える中空部12と異なり、放熱部材5dの外側面方向にも貫通している。放熱部材5dは、スパイラル状であるため、上述の放熱部材5aに比べて、放熱部材5dの長さ方向に伸縮容易である。 The heat radiating member 5d is provided with a hollow portion 12a in the length direction thereof, but unlike the hollow portion 12 included in the heat radiating member 5a according to the third embodiment and the fourth embodiment, the heat radiating member 5d is also provided in the outer surface direction of the heat radiating member 5d. It penetrates. Since the heat radiating member 5d has a spiral shape, it is easier to expand and contract in the length direction of the heat radiating member 5d than the heat radiating member 5a described above.

また、例えば、熱源は、バッテリーセル50のみならず、回路基板や電子機器本体などの熱を発する対象物を全て含む。例えば、熱源は、キャパシタおよびICチップ等の電子部品であっても良い。同様に、冷却部材45は、冷却用の水のみならず、有機溶剤、液体窒素、冷却用の気体であっても良い。また、放熱構造体1等は、バッテリー40等以外の構造物、例えば、電子機器、家電、発電装置等に配置されていても良い。 Further, for example, the heat source includes not only the battery cell 50 but also all objects that generate heat, such as a circuit board and an electronic device main body. For example, the heat source may be an electronic component such as a capacitor and an IC chip. Similarly, the cooling member 45 may be not only cooling water but also an organic solvent, liquid nitrogen, or a cooling gas. Further, the heat radiating structure 1 and the like may be arranged in a structure other than the battery 40 and the like, for example, an electronic device, a home appliance, a power generation device and the like.

また、熱伝導シート4,10,10aは、クッション部材11,11a,11bと同様に、蓄熱カプセル3を含有していても良い。 Further, the heat conductive sheets 4, 10 and 10a may contain the heat storage capsule 3 in the same manner as the cushion members 11, 11a and 11b.

また、第2実施形態において、放熱構造体1aは、熱伝導シート4上に複数の放熱部材5が配置されていたが、本発明はこれに限定されない。放熱構造体1aは、例えば、クッション部材11または第1実施形態に係る放熱構造体1(クッション部材11に蓄熱カプセル3を含有した部材)上に複数の放熱部材5が配置されていても良い。 Further, in the second embodiment, in the heat radiating structure 1a, a plurality of heat radiating members 5 are arranged on the heat conductive sheet 4, but the present invention is not limited to this. In the heat radiating structure 1a, for example, a plurality of heat radiating members 5 may be arranged on the cushion member 11 or the heat radiating structure 1 (a member in which the heat storage capsule 3 is contained in the cushion member 11) according to the first embodiment.

また、第2実施形態において、放熱構造体1aは、熱伝導シート4を備えず、複数の放熱部材5を糸15,25で連結した構成であっても良い。 Further, in the second embodiment, the heat radiating structure 1a may not include the heat conductive sheet 4 and may have a configuration in which a plurality of heat radiating members 5 are connected by threads 15 and 25.

また、第3実施形態および第5実施形態において、放熱構造体1b,1d,1eは、複数の放熱部材5a,5b,5cが糸15で連結されることに限定されず、例えば、第6実施形態に係る放熱構造体1fと同様に、複数の放熱部材5a,5b,5cが、中空部12に糸25を到達するように、例えば、ミシン等で縫って連結されていても良い。また、放熱構造体1b,1d,1eは、複数の放熱部材5a,5b,5cが2本の糸15で連結されていたが、本発明はこれに限定されず、少なくとも1本の糸15で連結されていれば良い。 Further, in the third embodiment and the fifth embodiment, the heat radiating structures 1b, 1d, 1e are not limited to the plurality of heat radiating members 5a, 5b, 5c being connected by the thread 15, for example, the sixth embodiment. Similar to the heat radiating structure 1f according to the embodiment, the plurality of heat radiating members 5a, 5b, 5c may be sewn and connected by, for example, a sewing machine or the like so that the thread 25 reaches the hollow portion 12. Further, in the heat radiating structure 1b, 1d, 1e, a plurality of heat radiating members 5a, 5b, 5c are connected by two threads 15, but the present invention is not limited to this, and at least one thread 15 is used. It suffices if they are connected.

また、第6実施形態において、放熱構造体1fは、放熱部材5bの中位領域を、中空部12に糸25を到達するようにミシン等で縫って連結されていたが、本発明はこれに限定されず、例えば、第4実施形態と同様に、糸15により手縫いで連結されていても良い。また、この場合、放熱構造体1fは、糸15が形成する複数の輪の連結部分に、規制部17が設けられていても良い。また、放熱構造体1fは、放熱部材5bの中位領域を1本の糸25で連結されていたが、本発明はこれに限定されず、当該中位領域を糸25で連結しなくても良いし、2本以上の糸25で連結されていても良い。 Further, in the sixth embodiment, the heat radiating structure 1f is connected by sewing the middle region of the heat radiating member 5b with a sewing machine or the like so as to reach the hollow portion 12 with the thread 25. The present invention is not limited, and for example, as in the fourth embodiment, the threads 15 may be hand-sewn together. Further, in this case, the heat radiating structure 1f may be provided with the regulating portion 17 at the connecting portion of the plurality of rings formed by the thread 15. Further, in the heat radiating structure 1f, the middle region of the heat radiating member 5b is connected by one thread 25, but the present invention is not limited to this, and the middle region is not connected by the thread 25. Alternatively, it may be connected by two or more threads 25.

また、第4実施形態および第6実施形態において、放熱構造体1c,1fは、糸25を備えなくても良い。さらに、第4実施形態に係る放熱構造体1cは、糸15も備えなくても良い。この場合、放熱構造体1c,1fを構成する複数の放熱部材5a,5bの長さ方向の両端部が枠体30に接着あるいは嵌め込み等の手法で固定されていることが好ましい。この場合、枠体30は、放熱構造体1c,1fにおける複数の放熱部材5a,5bの位置決めを行い、かつ複数の放熱部材5a,5bを連結する役割を担う。 Further, in the fourth embodiment and the sixth embodiment, the heat radiating structures 1c and 1f do not have to include the thread 25. Further, the heat radiating structure 1c according to the fourth embodiment does not have to include the thread 15. In this case, it is preferable that both ends of the plurality of heat radiating members 5a and 5b constituting the heat radiating structures 1c and 1f in the length direction are fixed to the frame body 30 by a method such as adhesion or fitting. In this case, the frame body 30 plays a role of positioning the plurality of heat radiating members 5a and 5b in the heat radiating structures 1c and 1f and connecting the plurality of heat radiating members 5a and 5b.

また、第5実施形態および第6実施形態に係る放熱構造体1d,1fにおいて、放熱部材5bは、第1隙間100を備えていなくても良い。 Further, in the heat radiating structures 1d and 1f according to the fifth embodiment and the sixth embodiment, the heat radiating member 5b does not have to include the first gap 100.

また、枠30は、その形状に特に制約はなく、複数の放熱部材5a,5bの長さ方向の少なくとも一端部を固定可能な形状であれば、例えば、平面視にて楕円、円、三角若しくは五角以上の多角形の外形であっても良い。第4実施形態および第6実施形態では、放熱部材5a,5bは、枠30の底部42側の面を放熱部材5a,5bの底部42側の面と同じ位置になるように枠30に固定されている。しかし、枠30のバッテリーセル50側の面を放熱部材5a,5bのバッテリーセル50側の面と同じ位置にするように、枠30と放熱部材5a,5bとを固定しても良い。さらに、放熱部材5a,5bの高さ方向(バッテリーセル50から底部42に向かう方向)の中位置に枠30を固定しても良い。 Further, the shape of the frame 30 is not particularly limited, and any shape as long as at least one end of the plurality of heat radiating members 5a and 5b in the length direction can be fixed is, for example, an ellipse, a circle, a triangle, or a frame 30 in a plan view. It may have a polygonal outer shape of pentagon or more. In the fourth and sixth embodiments, the heat radiating members 5a and 5b are fixed to the frame 30 so that the surface of the frame 30 on the bottom 42 side is at the same position as the surface of the heat radiating members 5a and 5b on the bottom 42 side. ing. However, the frame 30 and the heat radiating members 5a and 5b may be fixed so that the surface of the frame 30 on the battery cell 50 side is at the same position as the surface of the heat radiating members 5a and 5b on the battery cell 50 side. Further, the frame 30 may be fixed at a middle position in the height direction of the heat radiating members 5a and 5b (the direction from the battery cell 50 toward the bottom 42).

また、第2〜第6実施形態においては、バッテリーセル50を縦にしてその下端に放熱構造体1a等を接触せしめている状況について説明したが、バッテリーセル50の配置形態は、これに限定されない。例えば、バッテリーセル50の側面を放熱構造体1a等の各放熱部材5,5a,5b,5cに接触させるように、バッテリーセル50を配置しても良い。バッテリーセル50は、充電および放電の際に温度上昇する。バッテリーセル50の容器自体が柔軟性に富む材料にて形成されていると、バッテリーセル50の特に側面が膨らむ可能性がある。そのような場合でも、放熱構造体1a等を構成している各放熱部材5,5a,5b,5cがバッテリーセル50の外面の形状に合わせて変形できるので、充放電時にも放熱性を高く維持できる。 Further, in the second to sixth embodiments, the situation in which the battery cell 50 is vertically arranged and the heat radiating structure 1a or the like is brought into contact with the lower end thereof has been described, but the arrangement form of the battery cell 50 is not limited to this. .. For example, the battery cell 50 may be arranged so that the side surface of the battery cell 50 is in contact with the heat radiating members 5, 5a, 5b, 5c such as the heat radiating structure 1a. The temperature of the battery cell 50 rises during charging and discharging. If the container itself of the battery cell 50 is made of a flexible material, the side surface of the battery cell 50 may bulge in particular. Even in such a case, since the heat radiating members 5, 5a, 5b, 5c constituting the heat radiating structure 1a and the like can be deformed according to the shape of the outer surface of the battery cell 50, the heat radiating property is maintained high even during charging and discharging. can.

また、上述の各実施形態の複数の構成要素は、互いに組み合わせ不可能な場合を除いて、自由に組み合わせ可能である。例えば、第4実施形態に係る放熱構造体1cを、第1実施形態に係る放熱構造体1に代えて配置しても良い。 Further, the plurality of components of each of the above-described embodiments can be freely combined except when they cannot be combined with each other. For example, the heat radiating structure 1c according to the fourth embodiment may be arranged in place of the heat radiating structure 1 according to the first embodiment.

本発明に係る放熱構造体は、例えば、自動車用バッテリーの他、自動車、工業用ロボット、発電装置、PC、家庭用電化製品などの各種電子機器にも利用することができる。また、本発明に係るバッテリーは、自動車用のバッテリー以外に、家庭用の充放電可能なバッテリー、PC等の電子機器用のバッテリーにも利用できる。 The heat dissipation structure according to the present invention can be used not only for automobile batteries but also for various electronic devices such as automobiles, industrial robots, power generation devices, PCs, and household electric appliances. Further, the battery according to the present invention can be used not only as a battery for automobiles but also as a rechargeable battery for home use and a battery for electronic devices such as PCs.

1,1a,1b,1c,1d,1e,1f・・・放熱構造体、3・・・蓄熱カプセル、4,10,10a・・・熱伝導シート、5,5a,5b,5c,5d・・・放熱部材、11,11a,11b・・・クッション部材、12,12a・・・中空部、15,25・・・糸、30・・・枠体、31・・・開口部、40,40a,40b,40c,40d,40e,40f,40g・・・バッテリー、41・・・筐体、50・・・バッテリーセル(熱源の一例)、100・・・第1隙間、110・・・第2隙間、T・・・枠体の厚さ。

1,1a, 1b, 1c, 1d, 1e, 1f ... Heat dissipation structure, 3 ... Heat storage capsule, 4,10,10a ... Heat conduction sheet, 5,5a, 5b, 5c, 5d ... -Heat dissipation member, 11, 11a, 11b ... Cushion member, 12, 12a ... Hollow part, 15, 25 ... Thread, 30 ... Frame body, 31 ... Opening, 40, 40a, 40b, 40c, 40d, 40e, 40f, 40g ... Battery, 41 ... Housing, 50 ... Battery cell (an example of heat source), 100 ... First gap, 110 ... Second gap , T ... The thickness of the frame.

Claims (13)

熱源と冷却部材との間にあって前記熱源から前記冷却部材に熱を伝導させて前記熱源からの放熱を可能とする放熱構造体であって、
ゴム状弾性体から構成されるクッション部材に、相転移によって蓄熱を行う蓄熱材をマイクロカプセル内に封入してなる蓄熱カプセルを含有する放熱構造体。
A heat dissipation structure located between a heat source and a cooling member that conducts heat from the heat source to the cooling member to enable heat dissipation from the heat source.
A heat dissipation structure containing a heat storage capsule in which a heat storage material that stores heat by phase transition is enclosed in a microcapsule in a cushion member composed of a rubber-like elastic body.
前記クッション部材を備える複数の放熱部材が連結して構成され、
前記クッション部材は、その長さ方向に中空部を有する筒形状の長尺の部材である請求項1に記載の放熱構造体。
A plurality of heat radiating members including the cushion member are connected and configured.
The heat radiating structure according to claim 1, wherein the cushion member is a long tubular member having a hollow portion in the length direction thereof.
前記放熱部材は、金属、炭素若しくはセラミックスの少なくとも1つを含む熱伝導シートをさらに備え、
前記クッション部材は、前記熱伝導シートに比べて前記熱源の表面形状に合わせて変形容易であり、
前記熱伝導シートは、前記熱源からの熱を伝えるためのシートであって、前記クッション部材の筒外周に備えられる請求項2に記載の放熱構造体。
The heat radiating member further comprises a heat conductive sheet containing at least one of metal, carbon or ceramics.
The cushion member is more easily deformed according to the surface shape of the heat source than the heat conductive sheet.
The heat radiating structure according to claim 2, wherein the heat conductive sheet is a sheet for transferring heat from the heat source, and is provided on the outer periphery of the cylinder of the cushion member.
前記熱伝導シートは、前記蓄熱カプセルを含有している請求項3に記載の放熱構造体。 The heat radiating structure according to claim 3, wherein the heat conductive sheet contains the heat storage capsule. 前記熱伝導シートは、スパイラル状に巻回しながら進行する形状で前記クッション部材の筒外周に備えられる請求項3または4に記載の放熱構造体。 The heat radiating structure according to claim 3 or 4, wherein the heat conductive sheet is provided on the outer periphery of the cylinder of the cushion member in a shape that advances while being wound in a spiral shape. 前記熱伝導シートは、前記クッション部材の長さ方向に沿う第1隙間であって前記熱伝導シートの厚さ分の前記第1隙間を有する状態で前記クッション部材の筒外周を覆うよう備えられ、
前記第1隙間は、複数の前記放熱部材を連結する方向以外の方向に形成される請求項3または4に記載の放熱構造体。
The heat conductive sheet is provided so as to cover the outer periphery of the cylinder of the cushion member in a state of having the first gap along the length direction of the cushion member and having the first gap corresponding to the thickness of the heat conductive sheet.
The heat radiating structure according to claim 3 or 4, wherein the first gap is formed in a direction other than the direction in which the plurality of heat radiating members are connected.
前記クッション部材は、前記熱伝導シートの前記第1隙間の位置に、前記中空部につながる第2隙間を有する請求項6に記載の放熱構造体。 The heat radiating structure according to claim 6, wherein the cushion member has a second gap connected to the hollow portion at a position of the first gap of the heat conductive sheet. 複数の前記放熱部材は、その長さ方向と直交する方向にて糸で連結されている請求項2から7のいずれか1項に記載の放熱構造体。 The heat radiating structure according to any one of claims 2 to 7, wherein the plurality of heat radiating members are connected by a thread in a direction orthogonal to the length direction thereof. 複数の前記放熱部材は、枠体の開口部を橋渡しする状態で、前記枠体に固定されている請求項2から8のいずれか1項に記載の放熱構造体。 The heat-dissipating structure according to any one of claims 2 to 8, wherein the plurality of heat-dissipating members are fixed to the frame in a state of bridging the openings of the frame. 前記枠体は、その厚さが、前記熱源からの押圧により変形した前記放熱部材の厚さより薄くなるよう形成される請求項9に記載の放熱構造体。 The heat-dissipating structure according to claim 9, wherein the frame is formed so that its thickness is thinner than the thickness of the heat-dissipating member deformed by pressing from the heat source. 前記熱伝導シートの表面に、当該表面に接触する前記熱源から当該表面への熱伝導性を高めるための熱伝導性オイルを有する請求項3から10のいずれか1項に記載の放熱構造体。 The heat radiating structure according to any one of claims 3 to 10, wherein the surface of the heat conductive sheet has a heat conductive oil for increasing the heat conductivity from the heat source in contact with the surface to the surface. 前記熱伝導性オイルは、シリコーンオイルと、前記シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む請求項11に記載の放熱構造体。 The heat-dissipating structure according to claim 11, wherein the thermally conductive oil contains a silicone oil and a thermally conductive filler having a higher thermal conductivity than the silicone oil and composed of one or more of metal, ceramics or carbon. 冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、請求項1から12のいずれか1項に記載の放熱構造体を備えるバッテリー。


A battery having one or more battery cells as heat sources in a housing having a structure for flowing a cooling member, and any one of claims 1 to 12 between the battery cells and the housing. A battery with the heat dissipation structure described in the section.


JP2020038400A 2020-03-06 2020-03-06 Heat dissipation structure and battery equipped with the same Active JP7429566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020038400A JP7429566B2 (en) 2020-03-06 2020-03-06 Heat dissipation structure and battery equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038400A JP7429566B2 (en) 2020-03-06 2020-03-06 Heat dissipation structure and battery equipped with the same

Publications (2)

Publication Number Publication Date
JP2021140961A true JP2021140961A (en) 2021-09-16
JP7429566B2 JP7429566B2 (en) 2024-02-08

Family

ID=77668922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038400A Active JP7429566B2 (en) 2020-03-06 2020-03-06 Heat dissipation structure and battery equipped with the same

Country Status (1)

Country Link
JP (1) JP7429566B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073010A1 (en) * 2015-10-27 2017-05-04 ソニー株式会社 Electronic apparatus
WO2019181481A1 (en) * 2018-03-19 2019-09-26 信越ポリマー株式会社 Heat dissipating structure and battery provided with same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073010A1 (en) * 2015-10-27 2017-05-04 ソニー株式会社 Electronic apparatus
WO2019181481A1 (en) * 2018-03-19 2019-09-26 信越ポリマー株式会社 Heat dissipating structure and battery provided with same

Also Published As

Publication number Publication date
JP7429566B2 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
JP6894933B2 (en) Heat dissipation structure and battery with it
JP2020191171A (en) Heat dissipation structure and battery including the same
WO2021241161A1 (en) Heat radiation structure, and battery provided with same
JP2021015696A (en) Heat dissipation structure and battery having the same
JP2020113393A (en) Heat dissipation structure and battery with it
JP2021170497A (en) Heat dissipation structure and battery comprising the same
KR102644474B1 (en) Heat dissipation structure and battery comprising the same
JP2020187885A (en) Heat dissipation structure and battery including the same
KR102637678B1 (en) Heat dissipation structure and battery comprising the same
JP2021140961A (en) Heat dissipation structure and battery including the same
JP7402717B2 (en) Heat dissipation structure and battery equipped with the same
JP7376568B2 (en) Heat dissipation structure sheet and method for manufacturing heat dissipation structure
JP7254661B2 (en) Heat dissipation structure and battery with same
JP2021005582A (en) Heat dissipation structure and battery including the same
JP7394666B2 (en) Heat dissipation structure and battery equipped with the same
JP7399760B2 (en) Heat dissipation structure and battery equipped with the same
JP7399764B2 (en) Heat dissipation structure and battery equipped with the same
JP7402716B2 (en) Heat dissipation structure and battery equipped with the same
JP2021166127A (en) Heat dissipation structure and battery including the same
WO2022034759A1 (en) Heat dissipation member, heat dissipation structure, and battery
JP2020135952A (en) Heat radiation structure, and battery including the same
JP2020136607A (en) Heat radiation structure, and device including the same
JP2021096895A (en) Thermal conductor and battery including the same
JP2021166140A (en) Heat dissipation member, heat dissipation structure, and battery
JP2020113388A (en) Heat dissipation structure and battery with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7429566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150