JP2021139818A - Luminance meter state determination system, luminance meter state determination device, and program - Google Patents

Luminance meter state determination system, luminance meter state determination device, and program Download PDF

Info

Publication number
JP2021139818A
JP2021139818A JP2020039202A JP2020039202A JP2021139818A JP 2021139818 A JP2021139818 A JP 2021139818A JP 2020039202 A JP2020039202 A JP 2020039202A JP 2020039202 A JP2020039202 A JP 2020039202A JP 2021139818 A JP2021139818 A JP 2021139818A
Authority
JP
Japan
Prior art keywords
luminance meter
measurement
measured
value
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020039202A
Other languages
Japanese (ja)
Other versions
JP7415676B2 (en
Inventor
伸明 繁永
Nobuaki Shigenaga
伸明 繁永
孝仁 原田
Takahito Harada
孝仁 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2020039202A priority Critical patent/JP7415676B2/en
Publication of JP2021139818A publication Critical patent/JP2021139818A/en
Application granted granted Critical
Publication of JP7415676B2 publication Critical patent/JP7415676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a luminance meter state determination system or the like capable of determining a state of a plurality of luminance meters while performing measurement on a measuring object such as a display without stopping a production process or the like for the plurality of luminance meters incorporated in a production process or the like.SOLUTION: A luminance meter state determination system includes: a plurality of luminance meters 1; a reference luminance meter 2; comparison means 46 for comparing measured results of measuring objects by plurality of luminance meters 1 with the measured results of the measuring objects by the reference luminance meter 2, which are selected from among the measuring objects whose measured values are measured by the luminance meters 1; and determination means 47 for determining whether or not to adjust the luminance meters 1 based on a result of comparison by the comparison means 46.SELECTED DRAWING: Figure 2

Description

この発明は、例えば複数の刺激値型輝度計を用いて、複数のディスプレイなどの測定対象物の輝度測定を行う場合に、輝度計の状態を判定する状態判定システム及び状態判定装置、並びにプログラムに関する。 The present invention relates to a state determination system, a state determination device, and a program for determining the state of a luminance meter when measuring the luminance of a measurement object such as a plurality of displays using, for example, a plurality of stimulation value type luminance meters. ..

測定対象物である例えばディスプレイの工場等において、複数の刺激値型輝度計を用いて生産されたディスプレイの輝度(分光放射特性)を測定し監視することで、ディスプレイの品質を保持することが行われている。 It is possible to maintain the quality of the display by measuring and monitoring the brightness (spectral radiation characteristics) of the display produced by using a plurality of stimulation value type luminance meters in, for example, a display factory, which is the object to be measured. It has been.

しかしながら、刺激値型輝度計はセンサ等の分光応答度の誤差によって真の測定値から誤差を生じ、一般的にその誤差は刺激値型輝度計毎にばらつく。つまり器差を有する。このため、刺激値型輝度計の器差を低減するために、事前に基準光源を用いて分光測色方式によるスペクトル型輝度計で基準値を取得し、その基準値に合わせて刺激値型輝度計の出力値を補正することが行われている。 However, the stimulus value type luminance meter causes an error from the true measured value due to the error of the spectral response degree of the sensor or the like, and the error generally varies from stimulus value type luminance meter to each stimulus value type luminance meter. That is, it has an instrumental error. Therefore, in order to reduce the instrumental error of the stimulus value type luminance meter, the reference value is acquired in advance by the spectral luminance meter by the spectroscopic color measurement method using the reference light source, and the stimulus value luminance meter is adjusted to the reference value. The output value of the total is corrected.

この場合、安定した測定条件を整えて測定誤差を極力減らすため、刺激値型輝度計を通常の稼働環境から移して、安定した環境条件下で基準光源の測定が実施される。そのため、刺激値型輝度計の移送や基準光源測定の手間がかかる問題が生じる。 In this case, in order to prepare stable measurement conditions and reduce measurement errors as much as possible, the stimulation value type luminance meter is moved from the normal operating environment, and the measurement of the reference light source is performed under stable environmental conditions. Therefore, there arises a problem that it takes time and effort to transfer the stimulus value type luminance meter and measure the reference light source.

この問題に対して、各刺激値型輝度計の付近に基準光源を設置することも考えられるが、複数の基準光源自体の不確かさが増加するため、器差の増大が生じる。 To solve this problem, it is conceivable to install a reference light source near each stimulus value type luminance meter, but since the uncertainty of the plurality of reference light sources themselves increases, an increase in instrumental error occurs.

なお、特許文献1には、複数の生産拠点と開発部門等の間で、ホワイトバランス調整に使用する計測器が異なっている場合でも、計測器のずれ分を校正してより精度の高い計測データを提供する校正システムが提案されている。 In Patent Document 1, even if the measuring instruments used for white balance adjustment are different between a plurality of production bases and the development department, the deviation of the measuring instruments is calibrated to provide more accurate measurement data. A calibration system has been proposed to provide.

具体的には、拠点サーバ23は、分光放射輝度計12によりホワイトバランス調整を行った標準サンプル11に対して、分光放射輝度計12による第1の計測データと、カラーアナライザ22による第2の計測データとのずれに基づく校正用データを算出し、製品21に対してカラーアナライザ22によりホワイトバランス調整を行ったときの拠点計測データ及び校正用データをセンターサーバ30にアップロードする。センターサーバ30は、拠点サーバ23からアップロードされた拠点計測データ及び校正用データを生産拠点毎に記憶し、端末装置13からの要求に応じて、記憶した拠点計測データを校正用データにより校正し、校正後の拠点計測データを端末装置13に送信する、というものである。 Specifically, the base server 23 receives the first measurement data by the spectral radiation brightness meter 12 and the second measurement by the color analyzer 22 with respect to the standard sample 11 whose white balance is adjusted by the spectral radiation brightness meter 12. The calibration data based on the deviation from the data is calculated, and the base measurement data and the calibration data when the white balance is adjusted by the color analyzer 22 for the product 21 are uploaded to the center server 30. The center server 30 stores the base measurement data and the calibration data uploaded from the base server 23 for each production base, and calibrates the stored base measurement data with the calibration data in response to a request from the terminal device 13. The base measurement data after calibration is transmitted to the terminal device 13.

特開2014−87037号公報Japanese Unexamined Patent Publication No. 2014-87037

しかし、特許文献1に記載の技術は、標準サンプルを用いて定期的にカラーアナライザと基準輝度計とによる計測データのずれを監視し補正する必要があり、測定対象物の生産プロセス等に一旦組み込まれたカラーアナライザや刺激値型輝度計を取り出してこの作業を行うのは手間がかかるとともに、カラーアナライザの調整中は生産プロセスが停止するため効率的でない。 However, the technique described in Patent Document 1 needs to periodically monitor and correct the deviation of the measurement data between the color analyzer and the reference luminance meter using a standard sample, and is once incorporated into the production process of the object to be measured. It is troublesome to take out the color analyzer and the stimulation value type luminance meter and perform this work, and it is not efficient because the production process is stopped during the adjustment of the color analyzer.

この発明は、このような技術的背景に鑑みてなされたものであって、生産プロセス等に組み込まれた複数個の輝度計について、生産プロセス等を停止することなくディスプレイ等の測定対象物の計測を行いながら、複数の輝度計について状態を判定することができる輝度計状態判定システム、輝度計状態判定装置及びプログラムを提供することを目的とする。 The present invention has been made in view of such a technical background, and for a plurality of luminance meters incorporated in a production process or the like, measurement of a measurement object such as a display without stopping the production process or the like. It is an object of the present invention to provide a luminance meter state determination system, a luminance meter state determination device, and a program capable of determining the state of a plurality of luminance meters while performing the above.

上記目的は以下の手段によって達成される。
(1)複数個の輝度計と、基準輝度計と、前記複数個の輝度計による測定対象物の測定結果と、前記輝度計により測定値を測定された測定対象物の中から選択された測定対象物の前記基準輝度計による測定結果とを比較する比較手段と、前記比較手段による比較の結果、前記輝度計の調整の要否を判定する判定手段と、を備えたことを特徴とする輝度計状態判定システム。
(2)前記比較手段による比較結果に基づいて、前記複数の輝度計毎に、前記基準輝度計との測定値差のばらつきを演算する演算手段を備え、前記判定手段は、前記演算手段で演算された測定値差のばらつきが許容値を超えた輝度計について、調整が必要と判定する前項1に記載の輝度計状態判定システム。
(3)前記許容値は、前記基準輝度計による測定対象物の測定値のばらつきよりも大きな値に設定される前項2に記載の輝度計状態判定システム。
(4)前記許容値は、前記測定値差から統計的手法により不確かさを求めることにより設定される前項2に記載の輝度計状態判定システム。
(5)前記判定手段により、前記輝度計の調整が不要と判定され、補正行列の変更が必要と判定された場合、複数の測定対象物についての前記輝度計による測定結果と前記基準輝度計による測定結果から新たな補正行列を生成する生成手段と、前記生成手段で生成された補正行列を用いて出力値の補正を行う補正手段と、をさらに備えている前項1〜4のいずれかに記載の輝度計状態判定システム。
(6)前記生成手段は、複数の測定対象物についての測定結果に基づく複数の補正行列の中から選択することにより、新たな補正行列を生成する前項5に記載の輝度計状態判定システム。
(7)前記生成手段は、複数の測定対象物についての測定結果に基づく複数の補正行列から、平均化または内挿近似によって新たな補正行列を生成する前項5に記載の輝度計状態判定システム。
(8)複数個の輝度計による測定対象物の測定結果を取得するとともに、前記輝度計により測定値を測定された測定対象物の中から選択された測定対象物の基準輝度計による測定結果を取得する取得手段と、前記取得手段により取得した前記輝度計による測定結果と前記基準輝度計による測定結果を比較する比較手段と、前記比較手段による比較の結果、前記輝度計の調整の要否を判定する判定手段と、を備えたことを特徴とする輝度計状態判定装置。
(9)前記比較手段による比較結果に基づいて、前記複数の輝度計毎に、前記基準輝度計との測定値差のばらつきを演算する演算手段を備え、前記判定手段は、前記演算手段で演算された測定値差のばらつきが許容値を超えた輝度計について、調整が必要と判定する前項8に記載の輝度計状態判定装置。
(10)前記許容値は、前記基準輝度計による測定対象物の測定値のばらつきよりも大きな値に設定される前項9に記載の輝度計状態判定装置。
(11)前記許容値は、前記測定値差から統計的手法により不確かさを求めることにより設定される前項9に記載の輝度計状態判定装置。
(12)前記判定手段により、前記輝度計の調整が不要と判定され、補正行列の変更が必要と判定された場合、複数の測定対象物についての前記輝度計による測定結果と前記基準輝度計による測定結果から新たな補正行列を生成する生成手段と、前記生成手段で生成された補正行列を用いて出力値の補正を行う補正手段と、をさらに備えている前項8〜11のいずれかに記載の輝度計状態判定装置。
(13)前記生成手段は、複数の測定対象物についての測定結果に基づく複数の補正行列の中から選択することにより、新たな補正行列を生成する前項12に記載の輝度計状態判定装置。
(14)前記生成手段は、複数の測定対象物についての測定結果に基づく複数の補正行列から、平均化または内挿近似によって新たな補正行列を生成する前項12に記載の輝度計状態判定装置。
(15)複数個の輝度計による測定対象物の測定結果を取得するとともに、前記輝度計により測定値を測定された測定対象物の中から選択された測定対象物の基準輝度計による測定結果を取得する取得ステップと、前記取得ステップにより取得した前記輝度計による測定結果と前記基準輝度計による測定結果を比較する比較ステップと、前記比較ステップによる比較の結果、前記輝度計の調整の要否を判定する判定ステップと、をコンピュータに実行させるためのプログラム。
(16)前記比較ステップによる比較結果に基づいて、前記複数の輝度計毎に、前記基準輝度計との測定値差のばらつきを演算する演算ステップを前記コンピュータにさらに実行させ、前記判定ステップでは、前記演算ステップで演算された測定値差のばらつきが許容値を超えた輝度計について、調整が必要と判定する前項15に記載のプログラム。
(17)前記許容値は、前記基準輝度計による測定対象物の測定値のばらつきよりも大きな値に設定される前項16に記載のプログラム。
(18)前記許容値は、前記測定値差から統計的手法により不確かさを求めることにより設定される前項16に記載のプログラム。
(19)前記判定ステップにより、前記輝度計の調整が不要と判定され、補正行列の変更が必要と判定された場合、複数の測定対象物についての前記輝度計による測定結果と前記基準輝度計による測定結果から新たな補正行列を生成する生成ステップと、前記生成ステップで生成された補正行列を用いて出力値の補正を行う補正ステップと、を前記コンピュータにさらに実行させる前項15〜18のいずれかに記載のプログラム。
(20)前記生成ステップでは、複数の測定対象物についての測定結果に基づく複数の補正行列の中から選択することにより、新たな補正行列を生成する前項19に記載のプログラム。
(21)前記生成ステップでは、複数の測定対象物についての測定結果に基づく複数の補正行列から、平均化または内挿近似によって新たな補正行列を生成する前項19に記載のプログラム。
The above object is achieved by the following means.
(1) Measurement selected from a plurality of luminance meters, a reference luminance meter, a measurement result of a measurement object by the plurality of luminance meters, and a measurement object whose measurement value is measured by the luminance meter. Brightness characterized by comprising a comparison means for comparing a measurement result of an object with the reference luminance meter, and a determination means for determining the necessity of adjustment of the luminance meter as a result of comparison by the comparison means. Measurement status judgment system.
(2) A calculation means for calculating the variation in the measured value difference from the reference luminance meter is provided for each of the plurality of luminance meters based on the comparison result by the comparison means, and the determination means is calculated by the calculation means. The luminance meter state determination system according to item 1 above, which determines that adjustment is necessary for a luminance meter in which the variation in the measured value difference exceeds the permissible value.
(3) The luminance meter state determination system according to item 2 above, wherein the allowable value is set to a value larger than the variation in the measured values of the object to be measured by the reference luminance meter.
(4) The luminance meter state determination system according to item 2 above, wherein the allowable value is set by obtaining uncertainty from the measured value difference by a statistical method.
(5) When it is determined by the determination means that the adjustment of the luminance meter is unnecessary and it is necessary to change the correction matrix, the measurement results of the plurality of measurement objects by the luminance meter and the reference luminance meter are used. Described in any one of the above items 1 to 4, further comprising a generation means for generating a new correction matrix from the measurement result and a correction means for correcting the output value using the correction matrix generated by the generation means. Luminance meter status judgment system.
(6) The luminance meter state determination system according to item 5 above, wherein the generation means generates a new correction matrix by selecting from a plurality of correction matrices based on measurement results of a plurality of measurement objects.
(7) The luminance meter state determination system according to item 5 above, wherein the generation means generates a new correction matrix by averaging or interpolation approximation from a plurality of correction matrices based on measurement results of a plurality of measurement objects.
(8) Acquire the measurement results of the measurement object by a plurality of luminance meters, and obtain the measurement results of the measurement object selected from the measurement objects whose measurement values are measured by the luminance meters by the reference luminance meter. The acquisition means to be acquired, the comparison means for comparing the measurement result by the luminance meter acquired by the acquisition means and the measurement result by the reference luminance meter, and the comparison result by the comparison means, the necessity of adjusting the luminance meter is determined. A luminance meter state determination device including a determination unit for determination.
(9) A calculation means for calculating the variation in the measured value difference from the reference luminance meter is provided for each of the plurality of luminance meters based on the comparison result by the comparison means, and the determination means is calculated by the calculation means. The luminance meter state determination device according to item 8 above, which determines that adjustment is necessary for a luminance meter in which the variation in the measured value difference exceeds the permissible value.
(10) The luminance meter state determination device according to item 9 above, wherein the allowable value is set to a value larger than the variation in the measured value of the object to be measured by the reference luminance meter.
(11) The luminance meter state determination device according to item 9 above, wherein the allowable value is set by obtaining uncertainty from the measured value difference by a statistical method.
(12) When it is determined by the determination means that the adjustment of the luminance meter is unnecessary and it is necessary to change the correction matrix, the measurement results of the plurality of measurement objects by the luminance meter and the reference luminance meter are used. Item 8. Luminance meter status judgment device.
(13) The luminance meter state determination device according to item 12 above, wherein the generation means generates a new correction matrix by selecting from a plurality of correction matrices based on measurement results of a plurality of measurement objects.
(14) The luminance meter state determination device according to item 12 above, wherein the generation means generates a new correction matrix by averaging or interpolation approximation from a plurality of correction matrices based on measurement results of a plurality of measurement objects.
(15) The measurement result of the measurement object by a plurality of luminance meters is acquired, and the measurement result by the reference luminance meter of the measurement object selected from the measurement objects whose measurement values are measured by the luminance meter is obtained. The acquisition step to be acquired, the comparison step for comparing the measurement result by the luminance meter acquired by the acquisition step and the measurement result by the reference luminance meter, and the comparison result by the comparison step, the necessity of adjusting the luminance meter is determined. A decision step and a program for causing a computer to execute.
(16) Based on the comparison result by the comparison step, the computer is further executed to calculate the variation of the measured value difference from the reference luminance meter for each of the plurality of luminance meters, and in the determination step, the determination step is performed. The program according to item 15 above, which determines that adjustment is necessary for a luminance meter in which the variation in the measured value difference calculated in the calculation step exceeds the permissible value.
(17) The program according to item 16 above, wherein the permissible value is set to a value larger than the variation in the measured value of the object to be measured by the reference luminance meter.
(18) The program according to item 16 above, wherein the allowable value is set by obtaining uncertainty from the measured value difference by a statistical method.
(19) When it is determined by the determination step that the adjustment of the luminance meter is unnecessary and it is determined that the correction matrix needs to be changed, the measurement results of the plurality of measurement objects by the luminance meter and the reference luminance meter are used. Any one of items 15 to 18 above, which causes the computer to further perform a generation step of generating a new correction matrix from the measurement results and a correction step of correcting the output value using the correction matrix generated in the generation step. The program described in.
(20) The program according to item 19 above, in which in the generation step, a new correction matrix is generated by selecting from a plurality of correction matrices based on measurement results for a plurality of measurement objects.
(21) The program according to the previous item 19 in which in the generation step, a new correction matrix is generated by averaging or interpolation approximation from a plurality of correction matrices based on measurement results for a plurality of measurement objects.

前項(1)、(8)及び(15)に記載の発明によれば、複数個の輝度計による測定対象物の測定結果と、輝度計により測定値を測定された測定対象物の中から選択された測定対象物の基準輝度計による測定結果とを比較し、比較の結果、輝度計の調整の要否を判定するから、生産ライン等において複数の測定対象物の測定を行いながら、輝度計の調整の要否を判定することができる。従って、標準サンプルを用いて定期的に輝度計と標準輝度計との測定データのずれを監視し補正する場合のように、標準サンプルの測定のために生産プロセス等を停止する必要は無いから、効率低下も抑制することができる。 According to the inventions described in the preceding paragraphs (1), (8) and (15), the measurement result of the object to be measured by a plurality of brightness meters and the measurement object whose measured value is measured by the brightness meter are selected. Since the measurement result of the measured object to be measured by the reference luminometer is compared and the comparison result determines the necessity of adjusting the luminometer, the luminometer is measured while measuring a plurality of measurement objects on a production line or the like. It is possible to determine the necessity of adjustment of. Therefore, it is not necessary to stop the production process or the like for the measurement of the standard sample as in the case of periodically monitoring and correcting the deviation of the measurement data between the luminance meter and the standard luminance meter using the standard sample. The decrease in efficiency can also be suppressed.

前項(2)、(9)及び(16)に記載の発明によれば、複数個の輝度計による測定対象物の測定結果と、基準輝度計による測定結果との比較結果に基づいて、複数の輝度計毎に、基準輝度計との測定値差のばらつきを演算し、測定値差のばらつきが許容値を超えた輝度計については、調整が必要と判定される。 According to the inventions described in the preceding paragraphs (2), (9) and (16), a plurality of measurement results of an object to be measured by a plurality of luminance meters are compared with the measurement results of a reference luminance meter. For each luminance meter, the variation in the measured value difference from the reference luminance meter is calculated, and it is determined that the luminance meter in which the variation in the measured value difference exceeds the permissible value needs to be adjusted.

前項(3)、(10)及び(17)に記載の発明によれば、許容値は、基準輝度計による測定対象物の測定値のばらつきよりも大きな値に設定されるから、確実性の高い判定を行うことができる。 According to the inventions described in the preceding paragraphs (3), (10) and (17), the permissible value is set to a value larger than the variation in the measured value of the object to be measured by the reference luminance meter, and therefore the certainty is high. Judgment can be made.

前項(4)、(11)及び(18)に記載の発明によれば、許容値は、測定値差から統計的手法により不確かさを求めることにより設定されるから、確実性の高い判定を行うことができる。 According to the inventions described in the preceding paragraphs (4), (11) and (18), the allowable value is set by obtaining the uncertainty from the measured value difference by a statistical method, so that a highly reliable determination is made. be able to.

前項(5)、(12)及び(19)に記載の発明によれば、輝度計の調整が不要と判定され、補正行列による補正が必要と判定された場合、複数の測定対象物についての輝度計による測定結果と基準輝度計による測定結果から新たな補正行列が生成され、この生成された補正行列を用いて出力値が補正される。 According to the inventions described in the preceding paragraphs (5), (12) and (19), when it is determined that the luminance meter adjustment is unnecessary and it is determined that the correction by the correction matrix is necessary, the luminance of a plurality of measurement objects is determined. A new correction matrix is generated from the measurement result by the meter and the measurement result by the reference luminance meter, and the output value is corrected by using the generated correction matrix.

前項(6)、(13)及び(20)に記載の発明によれば、複数の測定対象物についての測定結果に基づく複数の補正行列の中から選択することにより、新たな補正行列が生成される。 According to the inventions described in the preceding paragraphs (6), (13) and (20), a new correction matrix is generated by selecting from a plurality of correction matrices based on the measurement results for a plurality of measurement objects. NS.

前項(7)、(14)及び(21)に記載の発明によれば、複数の測定対象物についての測定結果に基づく複数の補正行列から、平均化または内挿近似によって新たな補正行列が生成される。 According to the inventions described in the preceding paragraphs (7), (14) and (21), a new correction matrix is generated by averaging or interpolation approximation from a plurality of correction matrices based on measurement results for a plurality of measurement objects. Will be done.

この発明の一実施形態に係る輝度計状態判定システムが適用される測定対象物の生産プロセスの概略構成を示す図である。It is a figure which shows the schematic structure of the production process of the measurement object to which the luminance meter state determination system which concerns on one Embodiment of this invention is applied. この発明の一実施形態に係る輝度計状態判定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the luminance meter state determination apparatus which concerns on one Embodiment of this invention. 輝度計と基準輝度計で同一の基準光源を時間を変えて測定したときの輝度計の経時変化の様子を示すグラフである。It is a graph which shows the state of the time-dependent change of the luminance meter when the same reference light source is measured by the luminance meter and the reference luminometer at different times. 輝度計と基準輝度計で測定対象物を測定したときのY値の変化を示すグラフである。It is a graph which shows the change of the Y value when the measurement object is measured by the luminance meter and the reference luminance meter. 1個の輝度計と1個の基準輝度計で複数の測定対象物を測定したときのY値の測定値差を示すグラフである。It is a graph which shows the measured value difference of the Y value when a plurality of measurement objects are measured by one luminance meter and one reference luminance meter. (A)は、3個の輝度計と1個の基準輝度計で複数の測定対象物を測定したときのY値の測定値差を示すグラフであり、(B)は測定値差の頻度をヒストグラムで表した図である。(A) is a graph showing the measured value difference of the Y value when a plurality of measurement objects are measured with three luminance meters and one reference luminance meter, and (B) is a graph showing the frequency of the measured value difference. It is a figure represented by a histogram. (A)(B)は、ばらつきの許容値を決定する方法を説明するための図である。(A) and (B) are diagrams for explaining a method of determining a permissible value of variation. ばらつきの許容値を決定する他の方法を説明するための図である。It is a figure for demonstrating another method of determining the permissible value of variation. 新たな補正行列を生成する方法を説明するための図である。It is a figure for demonstrating the method of generating a new correction matrix. 輝度計状態判定装置によって実行される輝度計の状態変化を判定する処理を示すフローチャートである。It is a flowchart which shows the process of determining the state change of the luminance meter executed by the luminance meter state determination apparatus.

以下、この発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、この発明の一実施形態に係る輝度計状態判定システムが適用される測定対象物の生産プロセスの概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of a production process of a measurement object to which the luminance meter state determination system according to the embodiment of the present invention is applied.

図1において、輝度計状態判定システムは複数の刺激値型輝度計1と、1個の基準輝度計2を備えている。 In FIG. 1, the luminance meter state determination system includes a plurality of stimulation value type luminance meters 1 and one reference luminance meter 2.

各刺激値型輝度計1は、それぞれ測定対象物3の生産プロセスに組み込まれ、図示しない移送装置により搬送されてくる測定対象物3を、それぞれ順次測定する。この実施形態では測定対象物3がディスプレイである場合を示すが、測定対象物3はディスプレイに限定されることはない。以下の説明では、測定対象物をディスプレイともいう。 Each stimulus value type luminance meter 1 is incorporated into the production process of the measurement object 3, and sequentially measures the measurement object 3 conveyed by a transfer device (not shown). In this embodiment, the case where the measurement object 3 is a display is shown, but the measurement object 3 is not limited to the display. In the following description, the object to be measured is also referred to as a display.

また、この実施形態において、ディスプレイ3は各刺激値型輝度計1による測定を一旦実施された後、発光状態の調整が行われており、図1に示した生産プロセスは、調整後に刺激値型輝度計1により出荷前の再度の検査測定を行うプロセスである。 Further, in this embodiment, the display 3 is once measured by each stimulus value type luminance meter 1, and then the light emitting state is adjusted, and the production process shown in FIG. 1 is the stimulus value type after the adjustment. This is a process in which the luminance meter 1 is used to perform inspection and measurement again before shipment.

基準輝度計2は、この実施形態では分光測色方式によるスペクトル型輝度計によって構成されている。基準輝度計2は、各刺激値型輝度計1で輝度を測定されたディスプレイ3の中から選択されたディスプレイ3を測定する。従って、基準輝度計2で輝度を測定されるディスプレイ3の数は、各刺激値型輝度計1で測定されたディスプレイ3の合計数よりも少ない。 In this embodiment, the reference luminance meter 2 is configured by a spectral luminance meter by a spectrophotometric method. The reference luminance meter 2 measures the display 3 selected from the displays 3 whose luminance has been measured by each stimulus value type luminance meter 1. Therefore, the number of displays 3 whose brightness is measured by the reference luminance meter 2 is smaller than the total number of displays 3 measured by each stimulation value type luminance meter 1.

図2は、この発明の一実施形態に係る輝度計状態判定装置4の構成を示すブロック図である。状態判定装置4は、CPU41とRAM42とハードディスク装置等からなる記憶部43等を備えたパーソナルコンピュータによって構成されている。 FIG. 2 is a block diagram showing a configuration of a luminance meter state determination device 4 according to an embodiment of the present invention. The state determination device 4 is composed of a personal computer including a storage unit 43 including a CPU 41, a RAM 42, a hard disk device, and the like.

さらに、輝度計状態判定装置4は図2に示すように、入力部44と、ばらつき演算部45と、比較部46と、判定部47と、補正行列生成部48と、補正部49を備えているが、これらはCPU41の機能によって構成されても良い。 Further, as shown in FIG. 2, the luminance meter state determination device 4 includes an input unit 44, a variation calculation unit 45, a comparison unit 46, a determination unit 47, a correction matrix generation unit 48, and a correction unit 49. However, these may be configured by the function of the CPU 41.

入力部44は、各刺激値型輝度計1及び基準輝度計2の測定値を入力・取得する。入力された測定値は刺激値型輝度計1の種類、ディスプレイ3の識別情報等と関連付けて、記憶部43に保存される。なお、ディスプレイ3が測定値を記憶可能なメモリを備えており、各刺激値型輝度計1及び基準輝度計2による測定時点で測定値がメモリに記憶されている場合は、入力部44はメモリから読み出して測定値を取得しても良い。 The input unit 44 inputs and acquires the measured values of each stimulus value type luminance meter 1 and the reference luminance meter 2. The input measured value is stored in the storage unit 43 in association with the type of the stimulus value type luminance meter 1, the identification information of the display 3, and the like. If the display 3 has a memory capable of storing the measured value and the measured value is stored in the memory at the time of measurement by each stimulus value type brightness meter 1 and the reference brightness meter 2, the input unit 44 is stored in the memory. The measured value may be obtained by reading from.

ばらつき演算部45は、各刺激値型輝度計1毎に、基準輝度計2との測定値差のばらつきを演算する。 The variation calculation unit 45 calculates the variation of the measured value difference from the reference luminance meter 2 for each stimulation value type luminance meter 1.

比較部46は、ばらつき演算部45で演算された各刺激値型輝度計1についてのばらつきを、それぞれ許容値と比較する。 The comparison unit 46 compares the variation of each stimulus value type luminance meter 1 calculated by the variation calculation unit 45 with the permissible value.

判定部47は、比較部46による比較結果に基づいて、各刺激値型輝度計1毎に調整の要否を判定する。 The determination unit 47 determines the necessity of adjustment for each stimulus value type luminance meter 1 based on the comparison result by the comparison unit 46.

補正行列生成部は、判定部による判定の結果、刺激値型輝度計1の数値補正で対応可能と判定された場合、新たな補正行列を生成する。 The correction matrix generation unit generates a new correction matrix when it is determined as a result of the determination by the determination unit that the numerical correction of the stimulus value type luminance meter 1 can be applied.

補正部は、補正行列(新たな補正行列が生成された場合は新たな補正行列)により、刺激値型輝度計1の出力値を補正する。 The correction unit corrects the output value of the stimulus value type luminance meter 1 by using a correction matrix (a new correction matrix when a new correction matrix is generated).

次に、輝度計状態判定装置4によって実行される、具体的な状態判定処理について説明する。 Next, a specific state determination process executed by the luminance meter state determination device 4 will be described.

図3は、刺激値型輝度計1と基準輝度計2であるスペクトル型輝度計で、同一の基準光源を時間を変えて測定したときの、刺激値型輝度計1の経時変化の様子を示すグラフであり、Y値の変化を例示したものである。この例及び以降の例では、刺激値型輝度計1として、コニカミノルタ株式会社製のCA-410、基準輝度計(スペクトル型輝度計)2として、同じくコニカミノルタ株式会社製のCS-2000を使用した。 FIG. 3 shows a change over time of the stimulus value type luminance meter 1 when the same reference light source is measured at different times with the stimulus value type luminance meter 1 and the reference luminance meter 2. It is a graph and illustrates the change of the Y value. In this example and subsequent examples, CA-410 manufactured by Konica Minolta Co., Ltd. is used as the stimulation value type luminance meter 1, and CS-2000 also manufactured by Konica Minolta Corporation is used as the reference luminance meter (spectral luminance meter) 2. bottom.

図3において、白丸は基準輝度計2の測定値を、黒丸は刺激値型輝度計1の測定値をそれぞれ示している。図3において、基準輝度計2の測定値は経時的に変化している。通常この微小な変化を”不確かさ”として測定器は管理されている。また、基準輝度計2の測定値を基準値として、刺激値型輝度計1の測定値との差は誤差として扱われる。 In FIG. 3, white circles indicate the measured values of the reference luminance meter 2, and black circles indicate the measured values of the stimulation value type luminance meter 1. In FIG. 3, the measured value of the reference luminance meter 2 changes with time. Normally, the measuring instrument is managed with this minute change as "uncertainty". Further, the measured value of the reference luminance meter 2 is used as a reference value, and the difference from the measured value of the stimulation value type luminance meter 1 is treated as an error.

実際の生産プロセスでは、上述したように、刺激値型輝度計1の測定結果に基づいてディスプレイ3を調整後、再度、刺激値型輝度計1で測定値を測定され、さらにディスプレイ3のいくつかは、基準輝度計2で測定されることになる。 In the actual production process, as described above, the display 3 is adjusted based on the measurement result of the stimulation value type luminance meter 1, the measured value is measured again by the stimulation value type luminance meter 1, and some of the displays 3 are further measured. Will be measured by the reference luminance meter 2.

刺激値型輝度計1と基準輝度計2で、ディスプレイ3を測定したときのY値の変化を図4に示す。図4において、白丸は基準輝度計2の測定値を、黒丸は刺激値型輝度計1の測定値をそれぞれ示している。また、縦方向に並ぶ測定値は同一のディスプレイ(図4ではDisplay panelと記している)3についての測定値であり、横方向に異なるディスプレイ3の測定値を示している。 FIG. 4 shows a change in the Y value when the display 3 is measured by the stimulus value type luminance meter 1 and the reference luminance meter 2. In FIG. 4, white circles indicate the measured values of the reference luminance meter 2, and black circles indicate the measured values of the stimulation value type luminance meter 1. Further, the measured values arranged in the vertical direction are the measured values for the same display (denoted as Display panel in FIG. 4) 3, and the measured values of the different displays 3 in the horizontal direction are shown.

図4において、基準輝度計2による測定値が、現場での真値(基準値)として扱われる。この値はディスプレイ3の特性変化の影響は受けない。刺激値型輝度計1との測定誤差がバラツキとして表れる。 In FIG. 4, the value measured by the reference luminance meter 2 is treated as the true value (reference value) in the field. This value is not affected by changes in the characteristics of the display 3. The measurement error with the stimulus value type luminance meter 1 appears as a variation.

なお、ディスプレイ3は発光状態を既に調整済みなので、刺激値型輝度計1による測定値のばらつきは小さく見える。刺激値型輝度計1による測定値には、輝度計の経時変化以外に、ディスプレイ3の特性(分光発光スペクトルなど)が影響する。 Since the light emitting state of the display 3 has already been adjusted, the variation in the measured values by the stimulation value type luminance meter 1 seems to be small. In addition to the time course of the luminance meter, the characteristics of the display 3 (spectral emission spectrum, etc.) affect the values measured by the stimulation value type luminance meter 1.

この実施形態では、前述したように、基準輝度計2による測定値と刺激値型輝度計1の測定値との測定値差(測定誤差)のばらつきを、複数の刺激値型輝度計1のそれぞれについて演算する。 In this embodiment, as described above, the variation in the measured value difference (measurement error) between the measured value by the reference luminance meter 2 and the measured value of the stimulation value type luminance meter 1 is measured by each of the plurality of stimulation value type luminance meters 1. Calculate about.

図5に、1個の刺激値型輝度計1(CA-410)と1個の基準輝度計2(CS-2000)で複数のディスプレイ3を測定したときのY値の測定値差(Y(CA-410)−Y(CS-2000))を示す。測定値差はばらついているが、測定値差が大きくなった時、原因特定のためそれが刺激値型輝度計1の出力の問題か、ディスプレイ3の特性変化の問題かを判断する必要がある。 In FIG. 5, the difference between the measured values of the Y values (Y (Y (Y)) when a plurality of displays 3 are measured by one stimulus value type luminance meter 1 (CA-410) and one reference luminance meter 2 (CS-2000). CA-410) -Y (CS-2000)) is shown. The difference in measured values varies, but when the difference in measured values becomes large, it is necessary to determine whether it is a problem with the output of the stimulation value type luminance meter 1 or a problem with changes in the characteristics of the display 3 in order to identify the cause. ..

図6(A)は、3個の刺激値型輝度計1(CA-410)と1個の基準輝度計2(CS-2000)で複数のディスプレイ3を測定したときのY値の測定値差(Y(CA-410)−Y(CS-2000))を示すグラフであり、同図(B)は測定値差の頻度をヒストグラムで表した図である。3個の刺激値型輝度計1をそれぞれID=001、ID=002、ID=003で示す。 FIG. 6A shows the difference in the measured value of the Y value when a plurality of displays 3 are measured by three stimulation value type luminance meters 1 (CA-410) and one reference luminance meter 2 (CS-2000). It is a graph which shows (Y (CA-410) -Y (CS-2000)), and the figure (B) is the figure which showed the frequency of the measured value difference by a histogram. The three stimulation value type brightness meters 1 are indicated by ID = 001, ID = 002, and ID = 003, respectively.

ID001及びID002の刺激値型輝度計1は、いずれも、測定値差が予め設定された誤差限界値を超える場合があった。ただし、ID001の刺激値型輝度計1は、輝度計そのものまたはディスプレイ3が不安定で、測定再現性が低く、このため刺激値型輝度計1の修理、ディスプレイ3の駆動条件見直し等の対策が必要であった。ID002の刺激値型輝度計1は、測定再現性は高いが、ディスプレイ3に適した補正行列が選択されておらず、出力値に対する数値補正の実施で解決できるものであった。ID003の刺激値型輝度計1は問題がなかった。 In both the stimulation value type luminance meter 1 of ID001 and ID002, the measured value difference may exceed a preset error limit value. However, in the stimulation value type luminance meter 1 of ID001, the luminance meter itself or the display 3 is unstable and the measurement reproducibility is low. Therefore, measures such as repairing the stimulation value type luminance meter 1 and reviewing the driving conditions of the display 3 are taken. It was necessary. The stimulation value type luminance meter 1 of ID002 has high measurement reproducibility, but a correction matrix suitable for the display 3 has not been selected, and it can be solved by performing numerical correction on the output value. There was no problem with the stimulation value type luminance meter 1 of ID003.

そこで、ID001の刺激値型輝度計1とID002の刺激値型輝度計1を区別するために、この実施形態では、以下のような手法を採用する。 Therefore, in order to distinguish between the stimulation value type luminance meter 1 of ID001 and the stimulation value type luminance meter 1 of ID002, the following method is adopted in this embodiment.

即ち、それぞれの輝度計の誤差のばらつきを標準偏差で表す。ID=001、ID=002、ID=003の各刺激値型輝度計1の標準偏差を、それぞれσ001、σ002、σ003とする。そして、標準偏差が許容値σTHを超えている刺激値型輝度計1については、数値補正で解決できず、調整が必要と判定する。上記の例では、ID=001の刺激値型輝度計1の標準偏差σ001が許容値σTHを超えており、修理か測定条件の見直しを行う。 That is, the variation in the error of each luminance meter is represented by the standard deviation. Let the standard deviation of each stimulus value type brightness meter 1 of ID = 001, ID = 002, and ID = 003 be σ001, σ002, and σ003, respectively. Then, it is determined that the stimulation value type luminance meter 1 whose standard deviation exceeds the permissible value σTH cannot be solved by the numerical correction and needs to be adjusted. In the above example, the standard deviation σ001 of the stimulation value type luminance meter 1 with ID = 001 exceeds the permissible value σTH, and repair or review the measurement conditions.

また、誤差限界値を超えた測定値差が存在していても、標準偏差が許容値σTHを超えていなければ、刺激値型輝度計1の出力の数値補正で解決できる問題であると判定する。上記の例では、ID=002の刺激値型輝度計1が該当する。この場合、適切な補正行列に書き換えて、刺激値型輝度計1の測定値を補正する。この点については後述する。 Further, even if there is a measured value difference exceeding the error limit value, if the standard deviation does not exceed the permissible value σTH, it is determined that the problem can be solved by numerical correction of the output of the stimulation value type luminance meter 1. .. In the above example, the stimulus value type brightness meter 1 with ID = 002 is applicable. In this case, the measured value of the stimulation value type luminance meter 1 is corrected by rewriting with an appropriate correction matrix. This point will be described later.

次に、許容値σTHの決定方法について説明する。 Next, a method for determining the allowable value σTH will be described.

第1の決定方法として、基準輝度計2によるディスプレス3の測定値のばらつきよりも大きな値に設定する。適切な基準ディスプレイ3で刺激値型輝度計1の校正が実施されていなければ、適切な補正行列が生成されない。刺激値型輝度計1自体に問題はない(経時変化がない)状態で、ディスプレイ3が変動したことが原因で誤差が生じているとして、補正行列の変更をすべきかどうかの判断をする場合、図7(A)に示すように、基準輝度計2による複数のディスプレス3の分光スペクトルの測定結果から、ディスプレス3の測定値のばらつきを求める。そして、図7(B)のX、Y、Z値に矢印で示すように、刺激値型輝度計1の誤差を見積もってマージンを加え、許容値σTHを決定する。図7(B)において縦軸は許容誤差である。つまり、既定の誤差限界値を超える測定値が存在する場合、ディスプレイ3の測定ばらつきを超えるばらつきを生じる刺激値型輝度計1は、数値補正では解決できないと判断し、ディスプレイ3の測定ばらつきを超えないばらつきを生じる刺激値型輝度計1は、数値補正で解決できると判断する。 As the first determination method, a value larger than the variation in the measured value of the display 3 by the reference luminance meter 2 is set. If the stimulation value type luminance meter 1 is not calibrated on the appropriate reference display 3, the appropriate correction matrix cannot be generated. When determining whether or not to change the correction matrix, assuming that an error has occurred due to fluctuations in the display 3 while there is no problem with the stimulus value type luminance meter 1 itself (no change over time). As shown in FIG. 7A, the variation in the measured value of the display 3 is obtained from the measurement results of the spectral spectra of the plurality of displays 3 by the reference luminance meter 2. Then, as shown by arrows, the error of the stimulation value type luminance meter 1 is estimated and a margin is added to the X, Y, and Z values in FIG. 7B to determine the permissible value σTH. In FIG. 7B, the vertical axis is the margin of error. That is, when there is a measured value exceeding a predetermined error limit value, the stimulus value type brightness meter 1 that causes a variation exceeding the measurement variation of the display 3 determines that it cannot be solved by numerical correction, and exceeds the measurement variation of the display 3. It is judged that the stimulus value type brightness meter 1 that causes no variation can be solved by numerical correction.

許容値σTHの第2の決定方法として、各刺激値型輝度計1と基準輝度計2との測定値差から統計的手法により不確かさを求めることにより決定する方法を挙げることができる。つまり、図8に示すように、各刺激値型輝度計1の測定値差を基に、統計的手法により許容誤差の範囲(不確かさ)を特定することで、許容値σTHを決定する。 As a second method for determining the permissible value σTH, there is a method of determining the uncertainty by obtaining the uncertainty by a statistical method from the difference between the measured values of each stimulus value type luminance meter 1 and the reference luminance meter 2. That is, as shown in FIG. 8, the permissible value σTH is determined by specifying the range (uncertainty) of the permissible error by a statistical method based on the difference in the measured values of each stimulus value type luminance meter 1.

次に、誤差限界値を超えている測定値差が存在するが、測定値差の標準偏差が許容値σTHを超えない、例えば上述のID=002の刺激値型輝度計1の出力値の補正について説明する。 Next, although there is a measured value difference that exceeds the error limit value, the standard deviation of the measured value difference does not exceed the permissible value σTH. Will be described.

周知のように、刺激値型輝度計1は、光学フィルタやセンサの分光特性等に起因して測定誤差を生じ、この誤差を解消するために測定値を補正行列を用いて補正することが行われている。ID=002の刺激値型輝度計1については、この補正行列を適正な補正行列に変更することで、適正な測定値の算出が可能となる。 As is well known, the stimulation value type luminance meter 1 causes a measurement error due to the spectral characteristics of the optical filter and the sensor, and in order to eliminate this error, the measured value can be corrected by using a correction matrix. It has been. For the stimulation value type brightness meter 1 with ID = 002, by changing this correction matrix to an appropriate correction matrix, it is possible to calculate an appropriate measured value.

新たな補正行列は、複数のディスプレイ3についてのID=002の刺激値型輝度計1と基準輝度計2による測定結果から生成される。生成方法として次のような方法がある。 The new correction matrix is generated from the measurement results of the stimulus value type brightness meter 1 and the reference brightness meter 2 with ID = 002 for the plurality of displays 3. There are the following methods as the generation method.

まず、複数のディスプレイ3についての実際の測定結果に基づく複数の補正行列の中から、図9に示すように、測定値の中央値や平均値(図9に破線で示す)に近いものを選択して、新たな補正行列とする。 First, as shown in FIG. 9, a selection close to the median value or the average value (shown by a broken line in FIG. 9) of the measured values is selected from a plurality of correction matrices based on the actual measurement results of the plurality of displays 3. Then, a new correction matrix is used.

他の方法として、複数のディスプレイ3についての実際の測定結果、例えば前回の新たな補正行列の生成時から直前までの測定結果に基づく複数の補正行列を用い、それらの平均値や内挿近似により新たな補正行列を生成しても良い。 As another method, the actual measurement results for the plurality of displays 3, for example, a plurality of correction matrices based on the measurement results from the time of the previous generation of the new correction matrix to the immediately preceding are used, and the average value or the interpolation approximation thereof is used. A new correction matrix may be generated.

こうして生成された新たな補正行列を用いて、ID=002の刺激値型輝度計1による出力値を補正する。 Using the new correction matrix generated in this way, the output value of the stimulation value type luminance meter 1 with ID = 002 is corrected.

図10は、状態判定装置4によって実行される刺激値型輝度計1の状態変化を判定する処理を示すフローチャートである。この処理は、図2の輝度計状態判定装置4のCPU41が記憶部43等に格納された動作プログラムに従って動作することにより実行される。 FIG. 10 is a flowchart showing a process of determining a state change of the stimulus value type luminance meter 1 executed by the state determination device 4. This process is executed by the CPU 41 of the luminance meter state determination device 4 of FIG. 2 operating according to the operation program stored in the storage unit 43 or the like.

ステップS01では、各刺激値型輝度計1及び基準輝度計2から測定データを取得したのち、ステップS02で、取得した測定データを記憶部43等に保存する。 In step S01, the measurement data is acquired from each stimulus value type luminance meter 1 and the reference luminance meter 2, and then the acquired measurement data is stored in the storage unit 43 or the like in step S02.

ステップS03では、記憶部43等に保存された測定値を読み出し、ステップS04で、読み出した各刺激値型輝度計1と基準輝度計2による測定値差を算出し、ステップS05で、各刺激値型輝度計1毎にばらつき(標準偏差)を算出する。 In step S03, the measured values stored in the storage unit 43 or the like are read out, in step S04, the difference between the measured values measured by each of the read stimulus value type luminance meters 1 and the reference luminance meter 2 is calculated, and in step S05, each stimulus value is calculated. The variation (standard deviation) is calculated for each type luminance meter 1.

ステップS06では、算出したばらつきを許容値と比較し、ステップS07で、各刺激値型輝度計1毎に問題が無いかどうかを判定する。ばらつきが許容値を超えず、また各測定値が誤差限界値を超えていない場合は問題なしと判定され(ステップS07でYES)、ステップS10に進む。ステップS10では、問題なしと判定された刺激値型輝度計1の出力値を、従来通りの補正行列で補正して補正後の測定値とする。 In step S06, the calculated variation is compared with the permissible value, and in step S07, it is determined whether or not there is a problem for each stimulus value type luminance meter 1. If the variation does not exceed the permissible value and each measured value does not exceed the error limit value, it is determined that there is no problem (YES in step S07), and the process proceeds to step S10. In step S10, the output value of the stimulus value type luminance meter 1 determined to have no problem is corrected by the conventional correction matrix and used as the corrected measured value.

ステップS07で、ばらつきが許容値を超えるか、許容値を超えていなくても誤差限界値を超える測定値が存在する刺激値型輝度計1は、問題有りと判定され(ステップS07でNO)、ステップS08で数値補正で対応可能かどうかを判断する。ばらつきが許容値を超えている刺激値型輝度計1は数値補正で対応できないから、ステップS08でNOと判定され、ステップS11に進み、調整が必要と判定される。 In step S07, the stimulation value type luminance meter 1 in which the variation exceeds the permissible value or the measured value exceeds the error limit value even if the permissible value is not exceeded is determined to have a problem (NO in step S07). In step S08, it is determined whether or not the numerical correction can be applied. Since the stimulation value type luminance meter 1 whose variation exceeds the permissible value cannot be dealt with by the numerical correction, it is determined as NO in step S08, and the process proceeds to step S11, and it is determined that adjustment is necessary.

一方、誤差限界値を超える測定値差が存在していても、ばらつきが許容値を超えていなく刺激値型輝度計1は、数値補正で対応可能であるから(ステップS08でYES)、ステップS09に進み、新たな補正行列を生成する。そして、ステップS10では、生成した新たな補正行列で、出力値を補正する。 On the other hand, even if there is a measured value difference exceeding the error limit value, the variation does not exceed the permissible value and the stimulation value type luminance meter 1 can be dealt with by numerical correction (YES in step S08), so step S09. Proceed to to generate a new correction matrix. Then, in step S10, the output value is corrected by the generated new correction matrix.

このように、この実施形態では、複数個の刺激値型輝度計1によるディスプレイ3の測定結果と、刺激値型輝度計1により測定値を測定されたディスプレイ3の中から選択されたディスプレイ3の基準輝度計2による測定結果とを比較し、比較の結果、刺激値型輝度計1の調整の要否を判定する。具体的には、複数個の刺激値型輝度計1によるディスプレイ3の測定結果と、基準輝度計2による測定結果との比較結果に基づいて、複数の刺激値型輝度計1毎に、基準輝度計2との測定値差のばらつきを演算し、測定値差のばらつきが許容値を超えた輝度計については、調整が必要と判定されるから、生産ライン等において複数のディスプレイ3の測定を行いながら、刺激値型輝度計1の調整の要否を判定することができる。従って、標準サンプルを用いて定期的に刺激値型輝度計1と標準輝度計2との測定データのずれを監視し補正する場合のように、標準サンプルの測定のために生産プロセス等を停止する必要は無いから、効率低下も抑制することができる。 As described above, in this embodiment, the measurement result of the display 3 by the plurality of stimulation value type luminance meters 1 and the display 3 selected from the displays 3 whose measured values are measured by the stimulation value type luminance meter 1 The measurement result by the reference luminance meter 2 is compared, and as a result of the comparison, it is determined whether or not the stimulation value type luminance meter 1 needs to be adjusted. Specifically, based on the comparison result between the measurement result of the display 3 by the plurality of stimulation value type luminance meters 1 and the measurement result by the reference luminance meter 2, the reference luminance is used for each of the plurality of stimulation value type luminance meters 1. The variation in the measured value difference from the total 2 is calculated, and it is determined that adjustment is necessary for the luminance meter whose variation in the measured value difference exceeds the permissible value. Therefore, a plurality of displays 3 are measured on the production line or the like. However, it is possible to determine whether or not the stimulation value type luminance meter 1 needs to be adjusted. Therefore, the production process or the like is stopped for the measurement of the standard sample, as in the case of periodically monitoring and correcting the deviation of the measurement data between the stimulation value type luminance meter 1 and the standard luminance meter 2 using the standard sample. Since it is not necessary, the decrease in efficiency can be suppressed.

以上、本発明の一実施形態を説明したが、本発明は上記実施形態に限定されることはない。例えば、基準輝度計2は1個としたが、複数個使用しても良い。この場合、基準輝度計2同士は、基準光源を用いてそれらの測定値差を把握しておくことが望ましい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, although the number of the reference luminance meter 2 is one, a plurality of reference luminance meters 2 may be used. In this case, it is desirable that the reference luminance meters 2 use a reference light source to grasp the difference between the measured values.

1 輝度計(刺激値型輝度計)
2 基準輝度計
3 ディスプレイ(測定対象物)
4 状態判定装置(コンピュータ)
41 CPU
42 RAM
43 記憶部
44 入力部(取得部)
45 ばらつき演算部
46 比較部
47 判定部
48 補正行列生成部
49 補正部
1 Luminance meter (stimulation value type luminance meter)
2 Reference luminance meter 3 Display (measurement object)
4 Status judgment device (computer)
41 CPU
42 RAM
43 Storage unit 44 Input unit (acquisition unit)
45 Variation calculation unit 46 Comparison unit 47 Judgment unit 48 Correction matrix generation unit 49 Correction unit

Claims (21)

複数個の輝度計と、
基準輝度計と、
前記複数個の輝度計による測定対象物の測定結果と、前記輝度計により測定値を測定された測定対象物の中から選択された測定対象物の前記基準輝度計による測定結果とを比較する比較手段と、
前記比較手段による比較の結果、前記輝度計の調整の要否を判定する判定手段と、
を備えたことを特徴とする輝度計状態判定システム。
With multiple luminance meters
With a reference luminance meter
Comparison between the measurement result of the measurement object by the plurality of luminance meters and the measurement result by the reference luminance meter of the measurement object selected from the measurement objects whose measured values were measured by the luminance meter. Means and
As a result of comparison by the comparison means, a determination means for determining the necessity of adjustment of the luminance meter, and
A luminance meter state determination system characterized by being equipped with.
前記比較手段による比較結果に基づいて、前記複数の輝度計毎に、前記基準輝度計との測定値差のばらつきを演算する演算手段を備え、
前記判定手段は、前記演算手段で演算された測定値差のばらつきが許容値を超えた輝度計について、調整が必要と判定する請求項1に記載の輝度計状態判定システム。
A calculation means for calculating the variation in the measured value difference from the reference luminance meter is provided for each of the plurality of luminance meters based on the comparison result by the comparison means.
The luminance meter state determination system according to claim 1, wherein the determination means determines that adjustment is necessary for a luminance meter in which the variation of the measured value difference calculated by the arithmetic means exceeds an allowable value.
前記許容値は、前記基準輝度計による測定対象物の測定値のばらつきよりも大きな値に設定される請求項2に記載の輝度計状態判定システム。 The luminance meter state determination system according to claim 2, wherein the allowable value is set to a value larger than a variation in the measured values of the object to be measured by the reference luminance meter. 前記許容値は、前記測定値差から統計的手法により不確かさを求めることにより設定される請求項2に記載の輝度計状態判定システム。 The luminance meter state determination system according to claim 2, wherein the allowable value is set by obtaining uncertainty from the measured value difference by a statistical method. 前記判定手段により、前記輝度計の調整が不要と判定され、補正行列の変更が必要と判定された場合、複数の測定対象物についての前記輝度計による測定結果と前記基準輝度計による測定結果から新たな補正行列を生成する生成手段と、
前記生成手段で生成された補正行列を用いて出力値の補正を行う補正手段と、
をさらに備えている請求項1〜4のいずれかに記載の輝度計状態判定システム。
When it is determined by the determination means that the adjustment of the luminance meter is unnecessary and it is necessary to change the correction matrix, the measurement result by the luminance meter and the measurement result by the reference luminance meter for a plurality of measurement objects are used. A generation means to generate a new correction matrix,
A correction means that corrects the output value using the correction matrix generated by the generation means, and a correction means.
The luminance meter state determination system according to any one of claims 1 to 4, further comprising.
前記生成手段は、複数の測定対象物についての測定結果に基づく複数の補正行列の中から選択することにより、新たな補正行列を生成する請求項5に記載の輝度計状態判定システム。 The luminance meter state determination system according to claim 5, wherein the generation means generates a new correction matrix by selecting from a plurality of correction matrices based on measurement results for a plurality of measurement objects. 前記生成手段は、複数の測定対象物についての測定結果に基づく複数の補正行列から、平均化または内挿近似によって新たな補正行列を生成する請求項5に記載の輝度計状態判定システム。 The luminance meter state determination system according to claim 5, wherein the generation means generates a new correction matrix by averaging or interpolation approximation from a plurality of correction matrices based on measurement results for a plurality of measurement objects. 複数個の輝度計による測定対象物の測定結果を取得するとともに、前記輝度計により測定値を測定された測定対象物の中から選択された測定対象物の基準輝度計による測定結果を取得する取得手段と、
前記取得手段により取得した前記輝度計による測定結果と前記基準輝度計による測定結果を比較する比較手段と、
前記比較手段による比較の結果、前記輝度計の調整の要否を判定する判定手段と、
を備えたことを特徴とする輝度計状態判定装置。
Acquire the measurement result of the measurement object by a plurality of luminance meters, and acquire the measurement result by the reference luminance meter of the measurement object selected from the measurement objects whose measured values are measured by the luminance meter. Means and
A comparison means for comparing the measurement result by the luminance meter acquired by the acquisition means and the measurement result by the reference luminance meter, and
As a result of comparison by the comparison means, a determination means for determining the necessity of adjustment of the luminance meter, and
A luminance meter state determination device characterized by being equipped with.
前記比較手段による比較結果に基づいて、前記複数の輝度計毎に、前記基準輝度計との測定値差のばらつきを演算する演算手段を備え、
前記判定手段は、前記演算手段で演算された測定値差のばらつきが許容値を超えた輝度計について、調整が必要と判定する請求項8に記載の輝度計状態判定装置。
A calculation means for calculating the variation in the measured value difference from the reference luminance meter is provided for each of the plurality of luminance meters based on the comparison result by the comparison means.
The luminance meter state determining apparatus according to claim 8, wherein the determining means determines that adjustment is necessary for a luminance meter in which the variation of the measured value difference calculated by the arithmetic means exceeds the permissible value.
前記許容値は、前記基準輝度計による測定対象物の測定値のばらつきよりも大きな値に設定される請求項9に記載の輝度計状態判定装置。 The luminance meter state determination device according to claim 9, wherein the allowable value is set to a value larger than a variation in the measured values of the object to be measured by the reference luminance meter. 前記許容値は、前記測定値差から統計的手法により不確かさを求めることにより設定される請求項9に記載の輝度計状態判定装置。 The luminance meter state determination device according to claim 9, wherein the allowable value is set by obtaining uncertainty from the measured value difference by a statistical method. 前記判定手段により、前記輝度計の調整が不要と判定され、補正行列の変更が必要と判定された場合、複数の測定対象物についての前記輝度計による測定結果と前記基準輝度計による測定結果から新たな補正行列を生成する生成手段と、
前記生成手段で生成された補正行列を用いて出力値の補正を行う補正手段と、
をさらに備えている請求項8〜11のいずれかに記載の輝度計状態判定装置。
When it is determined by the determination means that the adjustment of the luminance meter is unnecessary and it is necessary to change the correction matrix, the measurement result by the luminance meter and the measurement result by the reference luminance meter for a plurality of measurement objects are used. A generation means to generate a new correction matrix,
A correction means that corrects the output value using the correction matrix generated by the generation means, and a correction means.
The luminance meter state determination apparatus according to any one of claims 8 to 11.
前記生成手段は、複数の測定対象物についての測定結果に基づく複数の補正行列の中から選択することにより、新たな補正行列を生成する請求項12に記載の輝度計状態判定装置。 The luminance meter state determination device according to claim 12, wherein the generation means generates a new correction matrix by selecting from a plurality of correction matrices based on measurement results for a plurality of measurement objects. 前記生成手段は、複数の測定対象物についての測定結果に基づく複数の補正行列から、平均化または内挿近似によって新たな補正行列を生成する請求項12に記載の輝度計状態判定装置。 The luminance meter state determination device according to claim 12, wherein the generation means generates a new correction matrix by averaging or interpolation approximation from a plurality of correction matrices based on measurement results for a plurality of measurement objects. 複数個の輝度計による測定対象物の測定結果を取得するとともに、前記輝度計により測定値を測定された測定対象物の中から選択された測定対象物の基準輝度計による測定結果を取得する取得ステップと、
前記取得ステップにより取得した前記輝度計による測定結果と前記基準輝度計による測定結果を比較する比較ステップと、
前記比較ステップによる比較の結果、前記輝度計の調整の要否を判定する判定ステップと、
をコンピュータに実行させるためのプログラム。
Acquire the measurement result of the measurement object by a plurality of luminance meters, and acquire the measurement result by the reference luminance meter of the measurement object selected from the measurement objects whose measured values are measured by the luminance meter. Steps and
A comparison step for comparing the measurement result by the luminance meter acquired by the acquisition step with the measurement result by the reference luminance meter, and
As a result of the comparison by the comparison step, the determination step of determining the necessity of adjusting the luminance meter and the determination step
A program that lets your computer run.
前記比較ステップによる比較結果に基づいて、前記複数の輝度計毎に、前記基準輝度計との測定値差のばらつきを演算する演算ステップを前記コンピュータにさらに実行させ、
前記判定ステップでは、前記演算ステップで演算された測定値差のばらつきが許容値を超えた輝度計について、調整が必要と判定する請求項15に記載のプログラム。
Based on the comparison result by the comparison step, the computer is further made to perform a calculation step for calculating the variation in the measured value difference from the reference luminance meter for each of the plurality of luminance meters.
The program according to claim 15, wherein in the determination step, it is determined that adjustment is necessary for the luminance meter in which the variation in the measured value difference calculated in the calculation step exceeds the permissible value.
前記許容値は、前記基準輝度計による測定対象物の測定値のばらつきよりも大きな値に設定される請求項16に記載のプログラム。 The program according to claim 16, wherein the permissible value is set to a value larger than a variation in the measured values of the object to be measured by the reference luminance meter. 前記許容値は、前記測定値差から統計的手法により不確かさを求めることにより設定される請求項16に記載のプログラム。 The program according to claim 16, wherein the allowable value is set by obtaining uncertainty from the measured value difference by a statistical method. 前記判定ステップにより、前記輝度計の調整が不要と判定され、補正行列の変更が必要と判定された場合、複数の測定対象物についての前記輝度計による測定結果と前記基準輝度計による測定結果から新たな補正行列を生成する生成ステップと、
前記生成ステップで生成された補正行列を用いて出力値の補正を行う補正ステップと、
を前記コンピュータにさらに実行させる請求項15〜18のいずれかに記載のプログラム。
When it is determined by the determination step that the adjustment of the luminance meter is unnecessary and it is determined that the correction matrix needs to be changed, the measurement result by the luminance meter and the measurement result by the reference luminance meter for a plurality of measurement objects are used. A generation step to generate a new correction matrix,
A correction step that corrects the output value using the correction matrix generated in the generation step, and a correction step.
The program according to any one of claims 15 to 18, further causing the computer to execute the program.
前記生成ステップでは、複数の測定対象物についての測定結果に基づく複数の補正行列の中から選択することにより、新たな補正行列を生成する請求項19に記載のプログラム。 The program according to claim 19, wherein in the generation step, a new correction matrix is generated by selecting from a plurality of correction matrices based on measurement results for a plurality of measurement objects. 前記生成ステップでは、複数の測定対象物についての測定結果に基づく複数の補正行列から、平均化または内挿近似によって新たな補正行列を生成する請求項19に記載のプログラム。 The program according to claim 19, wherein in the generation step, a new correction matrix is generated by averaging or interpolation approximation from a plurality of correction matrices based on measurement results for a plurality of measurement objects.
JP2020039202A 2020-03-06 2020-03-06 Luminance meter status determination system, luminance meter status determination device and program Active JP7415676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020039202A JP7415676B2 (en) 2020-03-06 2020-03-06 Luminance meter status determination system, luminance meter status determination device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020039202A JP7415676B2 (en) 2020-03-06 2020-03-06 Luminance meter status determination system, luminance meter status determination device and program

Publications (2)

Publication Number Publication Date
JP2021139818A true JP2021139818A (en) 2021-09-16
JP7415676B2 JP7415676B2 (en) 2024-01-17

Family

ID=77668378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039202A Active JP7415676B2 (en) 2020-03-06 2020-03-06 Luminance meter status determination system, luminance meter status determination device and program

Country Status (1)

Country Link
JP (1) JP7415676B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589299B2 (en) 2009-04-10 2014-09-17 コニカミノルタ株式会社 Color measuring device and method, and liquid crystal display system
GB201022137D0 (en) 2010-12-31 2011-02-02 Barco Nv Display device and means to improve luminance uniformity
TWI494909B (en) 2011-11-16 2015-08-01 Joled Inc A signal processing device, a signal processing method, a program and an electronic device
US9952102B1 (en) 2017-04-19 2018-04-24 Datacolor, Inc. Method and apparatus for calibrating a color measurement instrument
JP6919339B2 (en) 2017-05-31 2021-08-18 コニカミノルタ株式会社 Two-dimensional colorimeter
US11114059B2 (en) 2018-11-02 2021-09-07 Portrait Displays, Inc. System and method for color calibration

Also Published As

Publication number Publication date
JP7415676B2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US10395587B2 (en) Method and apparatus for establishing luminance compensation model, method and apparatus for compensating for luminance of display screen, and display device
US20050018184A1 (en) Calibration system for a spectral luminometer and a method for calibrating a spectral luminometer
CN114485760B (en) Sensor calibration method, electronic device, medium and system
US6704687B2 (en) Historical results based method for automatically improving computer system performance
CN113256630B (en) Light spot monitoring method and system, dark field defect detection equipment and storage medium
CN114754676A (en) Line spectrum confocal calibration method, device, equipment and system and storage medium
JP2006214968A (en) Method for detecting wavelength shift, method and recording medium for correcting spectrometric data
JP2021139818A (en) Luminance meter state determination system, luminance meter state determination device, and program
US8416226B2 (en) Adaptive method for acquiring color measurements
US7015447B2 (en) Illuminance calibrating method of illuminator, illuminance calibration controller of illuminator, illuminance calibrating program of illuminator, recording medium storing the program and measuring tool
KR102619601B1 (en) Apparatus, system and method for analyzing thin films with improved precision
JP7118148B2 (en) Film thickness measuring device and correction method
US10592840B2 (en) Method for “real time” in-line quality audit of a digital ophthalmic lens manufacturing process
JP3976095B2 (en) Gamma value acquisition method for liquid crystal display device, gamma value acquisition system for realizing the same, computer for acquiring the same, and program used therefor
JP5082506B2 (en) Calibration support apparatus, calibration support method, program, and recording medium
US20160131526A1 (en) Spectroscopic Analysis System and Method
CN114530119A (en) Correction coefficient correction method, device and system based on gray scale
JP7459863B2 (en) Calibration systems, calibration devices and programs
WO2022153963A1 (en) Optical characteristics measurement device, wavelength shift correction device, wavelength shift correction method, and program
KR102642533B1 (en) Apparatus and method for optimizing process recipe for measuring thickness and OCD in semiconductor process
JP2001153802A (en) Method of measuring for reference
KR20080036907A (en) Calibration system currency technologies corporation
US20210065345A1 (en) Process control system and process control method
JP5240383B2 (en) Calibration support apparatus, calibration support method, program, and recording medium
JP2022118343A (en) Testing device and testing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7415676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150