JP2021138976A - Method for manufacturing three-dimensionally shaped molding - Google Patents

Method for manufacturing three-dimensionally shaped molding Download PDF

Info

Publication number
JP2021138976A
JP2021138976A JP2020034633A JP2020034633A JP2021138976A JP 2021138976 A JP2021138976 A JP 2021138976A JP 2020034633 A JP2020034633 A JP 2020034633A JP 2020034633 A JP2020034633 A JP 2020034633A JP 2021138976 A JP2021138976 A JP 2021138976A
Authority
JP
Japan
Prior art keywords
light beam
irradiation
layer
powder
solidified layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020034633A
Other languages
Japanese (ja)
Inventor
諭 阿部
Satoshi Abe
諭 阿部
暁史 中村
Akifumi Nakamura
暁史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020034633A priority Critical patent/JP2021138976A/en
Publication of JP2021138976A publication Critical patent/JP2021138976A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

To provide a method for manufacturing a three-dimensionally shaped molding having a ventilation part capable of favorably ventilating with the outside.SOLUTION: A method for manufacturing a three-dimensionally shaped molding comprises alternately and repeatedly laminating powder layers and solidified layers by performing a process (i) of irradiating a prescribed portion of a powder layer with light beam L and sintering or melting and solidifying powder in the prescribed portion so as to form a solidified layer, and a process (ii) of forming a new powder layer on the obtained solidified layer and irradiating the prescribed portion of the new powder layer with light beam to form a further solidified layer. Specifically, the method manufactures the three-dimensionally shaped molding having a high-density part and a low-density part, uses at least part of the low density part as a ventilation part, and re-irradiates an edge part forming a hole area at least composing part of the ventilation part with the light beam during or after formation of the solidified layer by irradiation of the light beam.SELECTED DRAWING: Figure 4

Description

本発明は、三次元形状造形物の製造方法に関する。より詳細には、本発明は、粉末層への光ビーム照射によって固化層を形成する三次元形状造形物の製造方法に関する。 The present invention relates to a method for manufacturing a three-dimensional shaped object. More specifically, the present invention relates to a method for producing a three-dimensional shaped object that forms a solidified layer by irradiating a powder layer with a light beam.

光ビームを粉末材料に照射することを通じて三次元形状造形物を製造する方法(一般的には「粉末床溶融結合法」と称される)は、従来より知られている。かかる方法は、以下の工程(i)および(ii)に基づいて粉末層形成と固化層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
(i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
(ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
A method of producing a three-dimensional shaped object by irradiating a powder material with a light beam (generally referred to as a "powder bed melt bonding method") has been conventionally known. In such a method, powder layer formation and solidification layer formation are alternately and repeatedly carried out based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or melt-solidifying the powder at the predetermined portion to form a solidified layer.
(Ii) A step of forming a new powder layer on the obtained solidified layer and similarly irradiating with a light beam to form a further solidified layer.

このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物を金型として使用することができる。一方、粉末材料として有機質の樹脂粉末を用いる場合、得られる三次元形状造形物を各種モデルとして使用することができる。 According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time. When an inorganic metal powder is used as the powder material, the obtained three-dimensional shaped object can be used as a mold. On the other hand, when an organic resin powder is used as the powder material, the obtained three-dimensional shaped model can be used as various models.

粉末材料として金属粉末を用い、それによって得られる三次元形状造形物を金型として使用する場合を例にとる。図12に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図12(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図12(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図12(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。最下層として形成される固化層24は造形プレート21と結合した状態になるので、三次元形状造形物と造形プレート21とは一体化物を成すことになり、その一体化物を金型として使用できる。 Take, for example, a case where a metal powder is used as a powder material and a three-dimensional shaped object obtained by the metal powder is used as a mold. As shown in FIG. 12, first, the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 12A). Next, a predetermined portion of the powder layer 22 is irradiated with a light beam L to form a solidified layer 24 from the powder layer 22 (see FIG. 12B). Subsequently, a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer. When the powder layer formation and the solidified layer formation are alternately and repeatedly performed in this way, the solidified layer 24 is laminated (see FIG. 12 (c)), and finally, the three-dimensional structure composed of the laminated solidified layer 24 is formed. A shaped object can be obtained. Since the solidified layer 24 formed as the lowermost layer is in a state of being bonded to the modeling plate 21, the three-dimensional shaped model and the modeling plate 21 form an integrated product, and the integrated product can be used as a mold.

特表平1−502890号公報Special Table No. 1-502890

例えば、上記粉末床溶融結合法に従い、低密度部分100a’と高密度部分200a’を有して成る三次元形状造形物300’を製造し、金型として用いる場合がある。この場合、金型キャビティ内にガスを供給したり、金型キャビティから発生ガスを外部へ除去するために、低密度部分100a’を、外部と通気可能に所定方向に延在する通気部100’として用いる場合がある(図15(a)〜(d)参照)。 For example, according to the powder bed melt-bonding method, a three-dimensional shaped object 300' having a low-density portion 100a'and a high-density portion 200a' may be manufactured and used as a mold. In this case, in order to supply gas into the mold cavity or remove the generated gas from the mold cavity to the outside, the low-density portion 100a'extends in a predetermined direction so as to be ventilated to the outside. (See FIGS. 15 (a) to 15 (d)).

ここで、本願発明者は、得られる三次元形状造形物300’が通気部100’を有する場合に、以下の技術的課題が生じ得ることを新たに見出した。具体的には、成型時における樹脂材料が通気部100’内へと侵入すること等を回避する観点から、通気部100’は微細な空間を形成するところ、かかる微細な空間が所定のサイズより小さくなっている場合があり得る。これは、通気部100’の一部を構成する低密度領域を含む固化層形成時において、光ビームの未照射部分に位置する粉末等が溶融固化する部分に付着すること等に起因する。その結果として、通気部を介して金型キャビティ内にガスを好適に供給したり、金型キャビティから発生ガスを外部へと好適に除去することが容易ではなくなるおそれがある。 Here, the inventor of the present application has newly found that the following technical problems may occur when the obtained three-dimensional shaped object 300'has a venting portion 100'. Specifically, from the viewpoint of preventing the resin material from entering the ventilation portion 100'during the molding, the ventilation portion 100'forms a fine space, and the fine space is larger than a predetermined size. It can be smaller. This is due to the fact that powder or the like located in the unirradiated portion of the light beam adheres to the melt-solidified portion when the solidified layer including the low-density region forming a part of the ventilation portion 100'is formed. As a result, it may not be easy to suitably supply the gas into the mold cavity through the ventilation portion or to appropriately remove the generated gas from the mold cavity to the outside.

本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、外部と好適に通気可能な通気部を有して成る三次元形状造形物の製造方法を供することである。 The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide a method for manufacturing a three-dimensional shaped object having a venting portion that is suitably ventilated to the outside.

上記目的を達成するために、本発明の一実施形態では、
(i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層および固化層を交互に繰り返して積層させることで三次元形状造形物を製造する方法であって、
高密度部分および低密度部分を有して成る前記三次元形状造形物を製造し、
前記低密度部分の少なくとも一部を通気部として用い、
前記光ビームの照射による前記固化層の形成途中又は該固化層の形成後において、少なくとも前記通気部の一部を構成する孔領域を形作る縁部分に対して、前記光ビームの再照射を実施する、三次元形状造形物の製造方法が供される。
In order to achieve the above object, in one embodiment of the present invention,
(I) A step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder at the predetermined portion to form a solidified layer, and (ii) a new powder on the obtained solidified layer. A three-dimensional shaped product is manufactured by alternately and repeatedly laminating the powder layer and the solidified layer by forming a layer and irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer. How to do
Manufacture the three-dimensional shaped object having a high-density portion and a low-density portion,
At least a part of the low density part is used as a ventilation part.
During the formation of the solidified layer by the irradiation of the light beam or after the formation of the solidified layer, the re-irradiation of the light beam is performed on at least the edge portion forming the hole region forming a part of the ventilation portion. , A method for manufacturing a three-dimensional shaped object is provided.

本発明の一実施形態に従えば、外部と好適に通気可能な通気部を有して成る三次元形状造形物を製造することが可能である。 According to one embodiment of the present invention, it is possible to manufacture a three-dimensional shaped object having a venting portion that is suitably ventilated to the outside.

粉末層の形成態様を示す模式断面図Schematic cross-sectional view showing the formation mode of the powder layer 固化層の形成態様を示す模式断面図Schematic cross-sectional view showing the formation mode of the solidified layer 粉末除去態様の模式断面図Schematic cross-sectional view of powder removal mode 光ビームの再照射態様の模式断面図Schematic cross-sectional view of the re-irradiation mode of the light beam 光ビームの再照射態様の模式断面図Schematic cross-sectional view of the re-irradiation mode of the light beam 光ビームの再照射態様の模式平面図Schematic plan view of the re-irradiation mode of the light beam 光ビームの逐次再照射態様の模式平面図Schematic plan view of the sequential re-irradiation mode of the light beam 光ビームの照射パス方向の模式図Schematic diagram of the irradiation path direction of the light beam 光ビームの逐次再照射態様の模式平面図Schematic plan view of the sequential re-irradiation mode of the light beam 光ビームの一括再照射態様の模式平面図Schematic plan view of the batch re-irradiation mode of the light beam 光ビームの一括再照射態様の模式斜視図Schematic perspective view of the batch re-irradiation mode of the light beam 光ビームの再照射よる付着物の切り落とし態様の模式平面図Schematic plan view of the mode of cutting off deposits by re-irradiation of the light beam 光ビームの再照射よる付着物の蒸発態様の模式平面図Schematic plan view of the evaporation mode of deposits due to re-irradiation of the light beam 粉末床溶融結合法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図12(a):粉末層形成時、図12(b):固化層形成時、図12(c):積層途中)A cross-sectional view schematically showing a process mode of stereolithography composite processing in which the powder bed melt-bonding method is carried out (FIG. 12 (a): at the time of forming a powder layer, FIG. 12 (b): at the time of forming a solidified layer, FIG. c): During stacking) 光造形複合加工機の構成を模式的に示した斜視図Perspective view schematically showing the configuration of the stereolithography multi-tasking machine 光造形複合加工機の一般的な動作を示すフローチャートFlowchart showing general operation of stereolithography multi-tasking machine 本願の技術的課題を示した模式図(図15(a):通気部を含む三次元形状造形物の模式全体斜視図、図15(b):通気部の模式上面図、図15(c):通気部の模式断面図、図15(d):通気部の模式部分拡大図)Schematic diagram showing the technical problems of the present application (FIG. 15 (a): schematic overall perspective view of a three-dimensional shaped object including a vent, FIG. 15 (b): schematic top view of the vent, FIG. 15 (c). : Schematic cross-sectional view of the vent, FIG. 15 (d): Enlarged view of the schematic portion of the vent)

以下では、図面を参照して本発明の一実施形態をより詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。 Hereinafter, one embodiment of the present invention will be described in more detail with reference to the drawings. The forms and dimensions of the various elements in the drawings are merely examples and do not reflect the actual forms and dimensions.

本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」または「樹脂粉末から成る樹脂粉末層」を意味している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に指している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物を構成することになる。 As used herein, the term "powder layer" means, for example, a "metal powder layer made of metal powder" or a "resin powder layer made of resin powder". Further, the “predetermined location of the powder layer” substantially refers to the region of the three-dimensional shaped object to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melt-solidified to form a three-dimensional shaped object.

また、本明細書で直接的または間接的に説明される“上下”の方向は、例えば造形プレートと三次元形状造形物との位置関係に基づく方向であって、造形プレートを基準にして三次元形状造形物が製造される側を「上方向」とし、その反対側を「下方向」とする。 Further, the "up and down" direction described directly or indirectly in the present specification is, for example, a direction based on the positional relationship between the modeling plate and the three-dimensional shaped object, and is three-dimensional with respect to the modeling plate. The side on which the shaped object is manufactured is referred to as "upward", and the opposite side is referred to as "downward".

[粉末床溶融結合法]
まず、本発明の製造方法の前提となる粉末床溶融結合法について説明する。特に粉末床溶融結合法において三次元形状造形物の切削処理を付加的に行う光造形複合加工を例として挙げる。図12は、光造形複合加工のプロセス態様を模式的に示しており、図13および図14は、粉末床溶融結合法と切削処理とを実施できる光造形複合加工機の主たる構成および動作のフローチャートをそれぞれ示している。
[Powder bed melt bonding method]
First, the powder bed melt-bonding method, which is the premise of the production method of the present invention, will be described. In particular, the stereolithography composite processing in which the cutting process of the three-dimensional shaped object is additionally performed in the powder bed fusion bonding method will be given as an example. FIG. 12 schematically shows a process mode of stereolithography composite processing, and FIGS. 13 and 14 are flowcharts of main configurations and operations of a stereolithography composite processing machine capable of performing a powder bed melt bonding method and a cutting process. Are shown respectively.

光造形複合加工機1は、図13に示すように、粉末層形成部2、光ビーム照射部3および切削部4を備えている。 As shown in FIG. 13, the stereolithography composite processing machine 1 includes a powder layer forming portion 2, a light beam irradiating portion 3, and a cutting portion 4.

粉末層形成部2は、金属粉末または樹脂粉末などの粉末を所定厚みで敷くことによって粉末層を形成するためのものである。光ビーム照射部3は、粉末層の所定箇所に光ビームLを照射するためのものである。切削部4は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るためのものである。 The powder layer forming portion 2 is for forming a powder layer by laying a powder such as a metal powder or a resin powder with a predetermined thickness. The light beam irradiating unit 3 is for irradiating a predetermined portion of the powder layer with the light beam L. The cutting portion 4 is for cutting the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.

粉末層形成部2は、図12に示すように、粉末テーブル25、スキージング・ブレード23、造形テーブル20および造形プレート21を主に有して成る。粉末テーブル25は、外周が壁26で囲まれた粉末材料タンク28内にて上下に昇降できるテーブルである。スキージング・ブレード23は、粉末テーブル25上の粉末19を造形テーブル20上へと供して粉末層22を得るべく水平方向に移動できるブレードである。造形テーブル20は、外周が壁27で囲まれた造形タンク29内にて上下に昇降できるテーブルである。そして、造形プレート21は、造形テーブル20上に配され、三次元形状造形物の土台となるプレートである。 As shown in FIG. 12, the powder layer forming portion 2 mainly includes a powder table 25, a squeezing blade 23, a modeling table 20, and a modeling plate 21. The powder table 25 is a table that can be raised and lowered in a powder material tank 28 whose outer circumference is surrounded by a wall 26. The squeezing blade 23 is a blade capable of horizontally moving the powder 19 on the powder table 25 onto the modeling table 20 to obtain the powder layer 22. The modeling table 20 is a table that can be raised and lowered in a modeling tank 29 whose outer circumference is surrounded by a wall 27. The modeling plate 21 is a plate that is arranged on the modeling table 20 and serves as a base for a three-dimensionally shaped object.

光ビーム照射部3は、図13に示すように、光ビーム発振器30およびガルバノミラー31を主に有して成る。光ビーム発振器30は、光ビームLを発する機器である。ガルバノミラー31は、発せられた光ビームLを粉末層22にスキャニングする手段、すなわち、光ビームLの走査手段である。 As shown in FIG. 13, the light beam irradiation unit 3 mainly includes a light beam oscillator 30 and a galvanometer mirror 31. The optical beam oscillator 30 is a device that emits an optical beam L. The galvanometer mirror 31 is a means for scanning the emitted light beam L on the powder layer 22, that is, a means for scanning the light beam L.

切削部4は、図13に示すように、エンドミル40および駆動機構41を主に有して成る。エンドミル40は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るための切削工具である。駆動機構41は、エンドミル40を所望の切削すべき箇所へと移動させるものである。 As shown in FIG. 13, the cutting portion 4 mainly includes an end mill 40 and a drive mechanism 41. The end mill 40 is a cutting tool for scraping the surface of a laminated solidified layer, that is, the surface of a three-dimensional shaped object. The drive mechanism 41 moves the end mill 40 to a desired position to be cut.

光造形複合加工機1の動作について詳述する。光造形複合加工機1の動作は、図14のフローチャートに示すように、粉末層形成ステップ(S1)、固化層形成ステップ(S2)および切削ステップ(S3)から構成されている。粉末層形成ステップ(S1)は、粉末層22を形成するためのステップである。かかる粉末層形成ステップ(S1)では、まず造形テーブル20をΔt下げ(S11)、造形プレート21の上面と造形タンク29の上端面とのレベル差がΔtとなるようにする。次いで、粉末テーブル25をΔt上げた後、図12(a)に示すようにスキージング・ブレード23を粉末材料タンク28から造形タンク29に向かって水平方向に移動させる。これによって、粉末テーブル25に配されていた粉末19を造形プレート21上へと移送させることができ(S12)、粉末層22の形成が行われる(S13)。粉末層22を形成するための粉末材料としては、例えば「平均粒径5μm〜100μm程度の金属粉末」および「平均粒径30μm〜100μm程度のナイロン、ポリプロピレンまたはABS等の樹脂粉末」を挙げることができる。粉末層22が形成されたら、固化層形成ステップ(S2)へと移行する。固化層形成ステップ(S2)は、光ビーム照射によって固化層24を形成するステップである。かかる固化層形成ステップ(S2)においては、光ビーム発振器30から光ビームLを発し(S21)、ガルバノミラー31によって粉末層22上の所定箇所へと光ビームLをスキャニングする(S22)。これによって、粉末層22の所定箇所の粉末を焼結又は溶融固化させ、図12(b)に示すように固化層24を形成する(S23)。光ビームLとしては、炭酸ガスレーザ、Nd:YAGレーザ、ファイバレーザまたは紫外線などを用いてよい。 The operation of the stereolithography compound processing machine 1 will be described in detail. As shown in the flowchart of FIG. 14, the operation of the stereolithography composite processing machine 1 is composed of a powder layer forming step (S1), a solidified layer forming step (S2), and a cutting step (S3). The powder layer forming step (S1) is a step for forming the powder layer 22. In the powder layer forming step (S1), first, the modeling table 20 is lowered by Δt (S11) so that the level difference between the upper surface of the modeling plate 21 and the upper end surface of the modeling tank 29 is Δt. Next, after raising the powder table 25 by Δt, the squeezing blade 23 is moved horizontally from the powder material tank 28 toward the modeling tank 29 as shown in FIG. 12 (a). As a result, the powder 19 arranged on the powder table 25 can be transferred onto the modeling plate 21 (S12), and the powder layer 22 is formed (S13). Examples of the powder material for forming the powder layer 22 include "metal powder having an average particle size of about 5 μm to 100 μm" and "resin powder such as nylon, polypropylene, or ABS having an average particle size of about 30 μm to 100 μm". can. After the powder layer 22 is formed, the process proceeds to the solidified layer forming step (S2). The solidified layer forming step (S2) is a step of forming the solidified layer 24 by irradiation with a light beam. In the solidified layer forming step (S2), the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined position on the powder layer 22 by the galvanometer mirror 31 (S22). As a result, the powder at a predetermined position in the powder layer 22 is sintered or melt-solidified to form the solidified layer 24 as shown in FIG. 12 (b) (S23). As the light beam L, a carbon dioxide gas laser, an Nd: YAG laser, a fiber laser, ultraviolet rays, or the like may be used.

粉末層形成ステップ(S1)および固化層形成ステップ(S2)は、交互に繰り返して実施する。これにより、図12(c)に示すように複数の固化層24が積層化する。 The powder layer forming step (S1) and the solidified layer forming step (S2) are alternately and repeatedly carried out. As a result, as shown in FIG. 12 (c), a plurality of solidified layers 24 are laminated.

積層化した固化層24が所定厚みに達すると(S24)、切削ステップ(S3)へと移行する。切削ステップ(S3)は、積層化した固化層24の表面、すなわち、三次元形状造形物の表面を削るためのステップである。エンドミル40(図12(c)および図13参照)を駆動させることによって切削ステップが開始される(S31)。例えば、エンドミル40が3mmの有効刃長さを有する場合、三次元形状造形物の高さ方向に沿って3mmの切削処理を行うことができるので、Δtが0.05mmであれば60層分の固化層24が積層した時点でエンドミル40を駆動させる。具体的には駆動機構41によってエンドミル40を移動させながら、積層化した固化層24の表面を切削処理に付すことになる(S32)。このような切削ステップ(S3)の最終では、所望の三次元形状造形物が得られているか否かを判断する(S33)。所望の三次元形状造形物が依然得られていない場合では、粉末層形成ステップ(S1)へと戻る。以降、粉末層形成ステップ(S1)〜切削ステップ(S3)を繰り返し実施して更なる固化層の積層化および切削処理を実施することによって、最終的に所望の三次元形状造形物が得られる。 When the laminated solidified layer 24 reaches a predetermined thickness (S24), the process proceeds to the cutting step (S3). The cutting step (S3) is a step for cutting the surface of the laminated solidified layer 24, that is, the surface of the three-dimensional shaped object. The cutting step is started by driving the end mill 40 (see FIGS. 12 (c) and 13) (S31). For example, when the end mill 40 has an effective blade length of 3 mm, a cutting process of 3 mm can be performed along the height direction of the three-dimensional shaped object. Therefore, if Δt is 0.05 mm, it is equivalent to 60 layers. The end mill 40 is driven when the solidified layers 24 are laminated. Specifically, the surface of the laminated solidified layer 24 is subjected to a cutting process while the end mill 40 is moved by the drive mechanism 41 (S32). At the final stage of such a cutting step (S3), it is determined whether or not a desired three-dimensional shaped object is obtained (S33). If the desired three-dimensional shaped object has not yet been obtained, the process returns to the powder layer forming step (S1). After that, by repeating the powder layer forming step (S1) to the cutting step (S3) to further stack the solidified layer and perform the cutting process, a desired three-dimensional shaped product is finally obtained.

[本発明の特徴部分]
以下、本発明の一実施形態に係る三次元形状造形物の製造方法について説明する。なお、本発明の一実施形態は、低密度部分と高密度部分とを有して成る三次元形状造形物を製造し、当該低密度部分の少なくとも一部を通気部として用いることを前提とする。
[Characteristic part of the present invention]
Hereinafter, a method for manufacturing a three-dimensional shaped object according to an embodiment of the present invention will be described. It is premised that one embodiment of the present invention manufactures a three-dimensional shaped object having a low-density portion and a high-density portion, and uses at least a part of the low-density portion as a ventilation portion. ..

本願発明者らは、外部と好適に通気可能な通気部を有して成る三次元形状造形物の製造方法について鋭意検討した。その結果、本願発明者らは以下の技術的思想を有する本発明を案出するに至った。 The inventors of the present application have diligently studied a method for producing a three-dimensional shaped object having a venting portion that is suitably ventilated to the outside. As a result, the inventors of the present application have come up with the present invention having the following technical ideas.

(本発明の技術的思想)
具体的には、本願発明者らは「三次元形状造形物の構成要素である固化層の形成途中又は当該固化層の形成後において、少なくとも通気部の一部を構成する孔領域を形作る縁部分に対して、光ビームの再照射を実施する」という技術的思想を有する本発明を案出するに至った(図4等参照)。
(Technical Idea of the Present Invention)
Specifically, the inventors of the present application stated, "The edge portion forming a hole region forming at least a part of the ventilation portion during the formation of the solidified layer which is a component of the three-dimensional shape model or after the formation of the solidified layer. However, we have come up with the present invention having the technical idea of "re-irradiating the light beam" (see FIG. 4 and the like).

かかる技術的思想に従えば、少なくとも通気部の一部を構成する孔領域を形作る縁部分に対して光ビームの再照射を実施する。そのため、かかる光ビームの再照射により、孔領域を形作る縁部分を再溶融させることができる。これにより、固化層形成時にて溶融固化する部分に対して付着する、光ビームLの未照射部分に位置する粉末等の付着物を再溶融させることができる。その結果、最終的に得られる外部と通気可能な通気部の微細な空間を所定のサイズとすることができ、通気部を介して金型キャビティ内にガスを好適に供給したり、金型キャビティから発生ガスを外部へと好適に除去することが可能となる。 According to such a technical idea, the light beam is re-irradiated to at least the edge portion forming the hole region forming a part of the ventilation portion. Therefore, by re-irradiating the light beam, the edge portion forming the pore region can be remelted. As a result, it is possible to remelt the deposits such as powder located in the unirradiated portion of the light beam L, which adheres to the portion that melts and solidifies when the solidified layer is formed. As a result, the finally obtained fine space between the outside and the ventilated portion can be made into a predetermined size, and gas can be suitably supplied into the mold cavity through the vented portion, or the mold cavity can be used. It is possible to suitably remove the generated gas to the outside.

なお、本明細書でいう「高密度部分」とは固化密度95〜100%であるものを指し、「低密度部分」とは固化密度0〜95%であるものを指す。本明細書でいう「低密度部分」とは、三次元形状造形物の構成要素であり、その構成要素である低密度部分の全てのうちの少なくとも一部が通気部として用いられるものを指す。すなわち、本明細書でいう「低密度部分」とは、通気部以外の他の用途に用いられる低密度部分も含む。 The "high density portion" as used herein refers to a solidification density of 95 to 100%, and the "low density portion" refers to a solidification density of 0 to 95%. The "low-density portion" as used herein refers to a component of a three-dimensional shaped object, and at least a part of all of the low-density parts that are the component is used as a ventilation portion. That is, the "low-density portion" as used herein also includes a low-density portion used for purposes other than the ventilation portion.

本明細書でいう「孔領域」とは、最終的に得られる三次元形状造形物内に形成される通気部の構成要素であり、かつ所定の固化層内に形成されるものを指す。本明細書でいう「孔領域」とは、低密度部分に相当するものであり、固化密度が0%から40%である領域を指す。本明細書でいう「孔領域を形作る縁部分」とは、固化層内に形成される孔領域の輪郭部分又はその外縁部分を指す。 The "hole region" as used herein refers to a component of a ventilation portion formed in a finally obtained three-dimensional shaped object and formed in a predetermined solidified layer. The “pore region” as used herein refers to a region corresponding to a low density portion and having a solidification density of 0% to 40%. As used herein, the "edge portion forming the pore region" refers to the contour portion of the pore region formed in the solidified layer or the outer edge portion thereof.

本明細書でいう「固化密度(%)」とは、三次元形状造形物の断面写真を画像処理することによって求めた固化断面密度(固化材料の占有率)を実質的に意味している。使用する画像処理ソフトはScion Image ver. 4.0.2(Scion社製のフリーウェア)であって、断面画像を固化部(白)と空孔部(黒)とに二値化した後、画像の全画素数Pxallおよび固化部(白)の画素数Pxwhiteをカウントすることで、以下の式1により固化断面密度ρを求めることができる。
[式1]

Figure 2021138976
The "solidification density (%)" as used herein substantially means the solidification cross-sectional density (occupancy rate of the solidification material) obtained by performing image processing on a cross-sectional photograph of a three-dimensional shaped object. The image processing software used is Scion Image ver. 4.0.2 (freeware manufactured by Scion), and after binarizing the cross-sectional image into a solidified part (white) and a hole (black), the image is displayed. By counting the total number of pixels P x all and the number of pixels P x white in the solidified portion (white), the solidified cross-sectional density ρ S can be obtained by the following equation 1.
[Equation 1]

Figure 2021138976

以下、本発明の一実施形態に係る製造方法について図面を用いて具体的に説明する。 Hereinafter, the manufacturing method according to the embodiment of the present invention will be specifically described with reference to the drawings.

(粉末層の形成)
まず、図1に示すように、スキージング・ブレード23を水平方向に移動させて、既に形成した固化層24上又は所定の造形プレート上に所定厚さの粉末層22を新たに形成する。図示する態様は、新たな粉末層22の形成前において、通気部の前駆体100X(低密度部分に相当)と造形物のボディ部分の前駆体200X(高密度部分に相当)を既に形成した段階を指す。具体的には、図示する態様では、新たな粉末層22の形成前において、高密度部分24Aおよび低密度部分24Bを有して成る固化層24上に粉末層22を新たに形成する。
(Formation of powder layer)
First, as shown in FIG. 1, the squeezing blade 23 is moved in the horizontal direction to newly form a powder layer 22 having a predetermined thickness on the solidified layer 24 already formed or on a predetermined modeling plate. In the illustrated embodiment, the precursor 100X (corresponding to the low-density portion) of the ventilation portion and the precursor 200X (corresponding to the high-density portion) of the body portion of the modeled object have already been formed before the formation of the new powder layer 22. Point to. Specifically, in the illustrated embodiment, the powder layer 22 is newly formed on the solidified layer 24 having the high-density portion 24A 1 and the low-density portion 24B 1 before the formation of the new powder layer 22.

(固化層の形成)
次に、図2に示すように、粉末層22を新たに形成した後、光ビームLを粉末層22の所定箇所に照射して、高密度部分24Aおよび低密度部分24Bを有して成る新たな固化層24を形成する。
(Formation of solidified layer)
Next, as shown in FIG. 2, after the powder layer 22 is newly formed, the light beam L is irradiated to a predetermined portion of the powder layer 22 to have a high-density portion 24A 2 and a low-density portion 24B 2. A new solidified layer 24 is formed.

次に、図3に示すように、新たな固化層24の形成後、通気部として用いる低密度部分の固化密度が0%である場合、固化層24内に位置する粉末19を除去する。除去する方法としては、例えば吸引部50Aおよび/または磁石部50Bを用いて上記粉末19を除去する。 Next, as shown in FIG. 3, after the formation of the new solidified layer 24, when the solidified density of the low-density portion used as the ventilation portion is 0%, the powder 19 located in the solidified layer 24 is removed. As a method for removing the powder 19, for example, the suction unit 50A and / or the magnet unit 50B is used to remove the powder 19.

(光ビームの再照射)
次に、図4、図5Aおよび図5Bに示すように、少なくとも通気部の一部を構成する孔領域60を形作る縁部分61に対して、光ビームLの再照射を実施する。
(Re-irradiation of light beam)
Next, as shown in FIGS. 4, 5A and 5B, the light beam L is re-irradiated to the edge portion 61 forming the hole region 60 forming at least a part of the ventilation portion.

かかる光ビームの再照射により、孔領域を形作る縁部分を再溶融させて、固化層形成時にて溶融固化する部分に対して付着する、光ビームLの未照射部分に位置する粉末19等の付着物を再溶融させることができる。その結果、最終的に得られる外部と通気可能な通気部の微細な空間を所定のサイズとすることができる。これにより、通気部を介して金型キャビティ内にガスを好適に供給したり、金型キャビティから発生ガスを外部へと好適に除去することが可能となる。 By re-irradiating the light beam, the edge portion forming the pore region is remelted, and the powder 19 or the like located in the unirradiated portion of the light beam L is attached, which adheres to the portion that melts and solidifies when the solidified layer is formed. The kimono can be remelted. As a result, the finally obtained fine space between the outside and the ventilated portion can be made into a predetermined size. As a result, the gas can be suitably supplied into the mold cavity through the ventilation portion, and the generated gas can be suitably removed from the mold cavity to the outside.

光ビームLの再照射対象としては、低密度部分と高密度部分とを備える新たな固化層24のうちの低密度部分24Bの孔領域、および低密度領域から構成される新たな固化層24のうちの低密度部分24Bの孔領域であることができる。 The target of re-irradiation of the light beam L is a new solidified layer 24 composed of a pore region of the low density portion 24B 2 of the new solidified layer 24 having a low density portion and a high density portion, and a low density region. It can be the pore region of the low density portion 24B 2 of the.

上記光ビームの再照射後においては、造形テーブルを一段下げて上記の粉末層形成、固化層の形成、および光ビーム照射を順に繰り返して行う。以上により、最終的に本発明の一実施形態に係る三次元形状造形物を製造することができる。 After the re-irradiation of the light beam, the modeling table is lowered by one step, and the above-mentioned powder layer formation, solidification layer formation, and light beam irradiation are repeated in this order. As described above, the three-dimensional shaped object according to the embodiment of the present invention can be finally manufactured.

以下、上記の光ビームの再照射態様について具体的に説明する。上記の光ビームの再照射態様としては、大きく分けて逐次再照射する態様と、一括再照射する態様とに分けることができる。 Hereinafter, the re-irradiation mode of the above-mentioned light beam will be specifically described. The re-irradiation mode of the light beam can be roughly divided into a mode of sequentially re-irradiating and a mode of batch re-irradiation.

1.逐次再照射する態様
まず、逐次再照射する態様について説明する。
1. 1. Sequential re-irradiation mode First, a mode of sequential re-irradiation will be described.

かかる態様では、孔領域60を形作る縁部分61に沿って光ビームL1の再照射を逐次実施する(図6〜図8参照)。 In such an embodiment, the light beam L1 is sequentially re-irradiated along the edge portion 61 forming the pore region 60 (see FIGS. 6 to 8).

本態様では、縁部分61に焦点をあてて光ビームの再照射を逐次実施する。すなわち、縁部分61には光ビームの逐次再照射を行うが、孔領域60には光ビームの再照射を実施しない。好ましくは縁部分61“のみ”に焦点をあてて光ビームの逐次再照射を実施する。かかる逐次再照射は縁部分61に焦点をあてた再照射であるため、縁部分61を重点的にかつ局所的に再溶融させることができる。これにより、固化層形成時にて溶融固化する部分に対して付着する、光ビームLの未照射部分に位置する粉末19等の付着物を重点的にかつ局所的に再溶融させることができる。その結果、最終的に得られる外部と通気可能な通気部の微細な空間を好適に所定のサイズとすることができる。 In this embodiment, the edge portion 61 is focused and the re-irradiation of the light beam is sequentially performed. That is, the edge portion 61 is sequentially re-irradiated with the light beam, but the hole region 60 is not re-irradiated with the light beam. Preferably, the light beam is sequentially re-irradiated by focusing on the edge portion 61 “only”. Since such sequential re-irradiation is re-irradiation focusing on the edge portion 61, the edge portion 61 can be remelted intensively and locally. As a result, deposits such as powder 19 located in the unirradiated portion of the light beam L, which adheres to the portion that melts and solidifies when the solidified layer is formed, can be remelted intensively and locally. As a result, the finally obtained fine space of the ventilated portion with the outside can be preferably made into a predetermined size.

本態様は縁部分61に焦点をあてた再照射態様であるため、特に再溶融を要しない孔領域60に光ビームが照射されない。そのため、不要な光ビーム照射を回避することができ、それによって不要な光ビームエネルギーの消費/使用を回避することができる。 Since this aspect is a re-irradiation mode focusing on the edge portion 61, the light beam is not irradiated to the hole region 60 which does not particularly require remelting. Therefore, it is possible to avoid unnecessary light beam irradiation, thereby avoiding consumption / use of unnecessary light beam energy.

縁部分61に焦点をあてた再照射を好適に行うため、逐次再照射時における光ビームL1の集光径を、逐次再照射前の光ビームの集光径よりも相対的に小さくすることが好ましい。これに限定されることなく、光ビームの操作速度を上げたり、光ビームの操作ピッチを拡げることで、縁部分61に焦点をあてた再照射を行うことができる。 In order to preferably perform re-irradiation focusing on the edge portion 61, the focusing diameter of the light beam L1 at the time of sequential re-irradiation may be made relatively smaller than the focusing diameter of the light beam before sequential re-irradiation. preferable. Without being limited to this, by increasing the operation speed of the light beam or widening the operation pitch of the light beam, it is possible to perform re-irradiation focusing on the edge portion 61.

光ビームを照射すると得られる固化層内に残留応力が生じ得るところ、かかる残留応力が作用する方向とは反対方向に作用する応力を生じさせることで、全体として固化層内に生じ得る残留応力を緩和させることができる。かかる緩和を実現するために、例えば、固化層24形成のために用いる光ビームの照射パスの方向と上記逐次再照射のために用いる光ビームの照射パスの方向とを相互に反対方向とすることが好ましい(図7参照)。 Where residual stress can be generated in the solidified layer obtained by irradiating a light beam, by generating a stress that acts in the direction opposite to the direction in which the residual stress acts, the residual stress that can be generated in the solidified layer as a whole is generated. It can be relaxed. In order to realize such relaxation, for example, the direction of the irradiation path of the light beam used for forming the solidified layer 24 and the direction of the irradiation path of the light beam used for the sequential re-irradiation are opposite to each other. Is preferable (see FIG. 7).

又、平面視で、少なくとも2つの孔領域60を所定の間隔をおいて縦方向および横方向の少なくとも一方の方向に形成する場合を例に採る(図8参照)。すなわち、平面視で通気部の一部(又は構成要素)をなす孔領域を取り囲むボディ部分(例えば高密度部分)は格子構造(つまり、ラティス構造)を成す場合を例に採る。この場合、隣り合う一方の孔領域60Aと他方の孔領域60Bとの間に位置する固化層のボディ部分の少なくとも一方の側に対して、光ビームL1の逐次再照射を実施してよい。 Further, in a plan view, a case where at least two hole regions 60 are formed in at least one of the vertical direction and the horizontal direction at a predetermined interval is taken as an example (see FIG. 8). That is, a case where the body portion (for example, a high-density portion) surrounding the hole region forming a part (or a component) of the ventilation portion in a plan view forms a lattice structure (that is, a lattice structure) is taken as an example. In this case, the light beam L1 may be sequentially re-irradiated on at least one side of the body portion of the solidified layer located between the adjacent hole regions 60A and the other pore regions 60B.

かかる態様では、図8に示すように、固化層24のボディ部分(例えば、高密度部分24A)の両側を少なくとも2本の照射パスに沿って略同時に逐次再照射してよい。少なくとも2つの光ビームを用いて略同時に逐次再照射するように調整すれば、1つの光ビームを用いる場合と比べて、全体として光ビーム再照射時間の短縮化を図ることができる。 In such an embodiment, as shown in FIG. 8, both sides of the body portion (for example, the high-density portion 24A) of the solidified layer 24 may be sequentially re-irradiated substantially simultaneously along at least two irradiation paths. By adjusting so that at least two light beams are used and re-irradiated substantially at the same time, the light beam re-irradiation time can be shortened as a whole as compared with the case where one light beam is used.

これに限定されることなく、固化層24のボディ部分の両側を1本の照射パスに沿って逐次再照射してもよい。この場合、当初の固化層24のボディ部分(例えば、高密度部分24A)の形成時に用いた照射条件と略同一の照射条件の光ビームを固化層24のボディ部分になぞるように照射すれば、固化層24のボディ部分の両側を1本の照射パスに沿って逐次再照射することができる。これにより、1つの光ビームにより、固化層24のボディ部分の両側を照射することで、2つの光ビームを用いる場合と比べて、使用する照射エネルギーの低減化を相対的に図ることができる。 Without being limited to this, both sides of the body portion of the solidified layer 24 may be sequentially re-irradiated along one irradiation path. In this case, if a light beam having irradiation conditions substantially the same as those used when forming the body portion of the solidified layer 24 (for example, the high-density portion 24A) is irradiated so as to trace the body portion of the solidified layer 24, Both sides of the body portion of the solidified layer 24 can be sequentially re-irradiated along one irradiation path. As a result, by irradiating both sides of the body portion of the solidified layer 24 with one light beam, it is possible to relatively reduce the irradiation energy used as compared with the case of using two light beams.

2.一括再照射する態様
次に、一括再照射する態様について説明する。
2. A mode of batch re-irradiation Next, a mode of batch re-irradiation will be described.

かかる態様では、孔領域60を形作る縁部分61の全体に対して一括して光ビームL2の再照射を実施する(図9A参照)。 In such an embodiment, the entire edge portion 61 forming the hole region 60 is collectively re-irradiated with the light beam L2 (see FIG. 9A).

本態様では、孔領域60を形作る縁部分61の全体に対して一括して光ビームの再照射を実施する。すなわち、縁部分61にも光ビームの再照射を行い、孔領域60にも光ビームの再照射を行う。かかる再照射は一括再照射であるため、縁部分61を一度に全体的に再溶融させることができる。これにより、固化層形成時にて溶融固化する部分に対して付着する、光ビームLの未照射部分に位置する粉末19等の付着物を一度に全体的に再溶融させることができる。そのため、付着物の全てを再溶融させるのに要する時間を、縁部分に沿って逐次再溶融させる場合と比べて短縮することができる。 In this embodiment, the entire edge portion 61 forming the hole region 60 is collectively re-irradiated with the light beam. That is, the edge portion 61 is also re-irradiated with the light beam, and the hole region 60 is also re-irradiated with the light beam. Since such re-irradiation is a batch re-irradiation, the edge portion 61 can be totally remelted at one time. As a result, deposits such as powder 19 located in the unirradiated portion of the light beam L, which adheres to the portion that melts and solidifies when the solidified layer is formed, can be totally remelted at once. Therefore, the time required to remelt all of the deposits can be shortened as compared with the case of sequentially remelting along the edge portion.

なお、縁部分61の全体を一括して一度に再照射するために、一括再照射時における光ビームL2の集光径を、一括再照射前の光ビームの集光径よりも相対的に大きくすることが好ましい。これに限定されることなく、光ビームの操作速度を下げたり、光ビームの操作ピッチを狭くすることで、縁部分61の全体に対する一括再照射を行うことができる。 In addition, in order to re-irradiate the entire edge portion 61 at once, the focusing diameter of the light beam L2 at the time of batch re-irradiation is relatively larger than the focusing diameter of the light beam before batch re-irradiation. It is preferable to do so. Without being limited to this, by lowering the operation speed of the light beam or narrowing the operation pitch of the light beam, it is possible to perform batch re-irradiation of the entire edge portion 61.

孔領域60は空間又は空隙部分であるため、かかる領域に光ビームL2の再照射を行っても上記再溶融に直接寄与するものではないため、一括再照射時には、縁部分61に対する光ビームの照射エネルギーを孔領域60に対する光ビームの照射エネルギーよりも相対的に大きくすることがよい(図9B参照)。換言すれば、孔領域60に対する光ビームの照射エネルギーを縁部分61に対する光ビームの照射エネルギーよりも相対的に小さくすることがよい。これにより、縁部分61に対する一括再照射を効果的かつ効率的に行うことができる。 Since the hole region 60 is a space or a void portion, even if the light beam L2 is re-irradiated in such a region, it does not directly contribute to the remelting. Therefore, at the time of batch re-irradiation, the edge portion 61 is irradiated with the light beam. The energy may be made relatively larger than the irradiation energy of the light beam with respect to the pore region 60 (see FIG. 9B). In other words, the irradiation energy of the light beam on the hole region 60 may be made relatively smaller than the irradiation energy of the light beam on the edge portion 61. Thereby, the batch re-irradiation of the edge portion 61 can be effectively and efficiently performed.

又、上記逐次再照射および一括再照射のいずれにおいても、縁部分61に対する照射エネルギーが固化層形成時に用いる光ビームの照射エネルギーと略同一又はそれよりも相対的に大きいと、以下の懸念事項が生じ得る。具体的には、溶融固化する部分に対して、光ビームLの未照射部分に位置する粉末19等の付着物が再度付着する可能性がある。そのため、光ビームの再照射時における光ビームの照射エネルギーについては、再照射前の光ビームの照射エネルギーよりも相対的に小さくすることが好ましい。 Further, in both the sequential re-irradiation and the batch re-irradiation, if the irradiation energy for the edge portion 61 is substantially the same as or relatively larger than the irradiation energy of the light beam used for forming the solidified layer, the following concerns arise. Can occur. Specifically, there is a possibility that deposits such as powder 19 located in the unirradiated portion of the light beam L may reattach to the melt-solidified portion. Therefore, it is preferable that the irradiation energy of the light beam at the time of re-irradiation of the light beam is relatively smaller than the irradiation energy of the light beam before the re-irradiation.

以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 Although one embodiment of the present invention has been described above, it merely illustrates a typical example of the scope of application of the present invention. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modifications can be made.

例えば、図10に示すように、光ビームにより付着物を再溶融させる態様に限定されることない。例えば、最終的に得られる外部と通気可能な通気部の微細な空間を好適に所定のサイズとする観点から、光ビームLにより孔領域60を形作る縁部分61に位置する付着物を切り落としてもよい。又、図11に示すように、例えば、最終的に得られる外部と通気可能な通気部の微細な空間を好適に所定のサイズとする観点から、光ビームLにより孔領域60を形作る縁部分61に位置する付着物を照射エネルギーの高い光ビームによりレーザー蒸発させてもよい。 For example, as shown in FIG. 10, the mode is not limited to the mode in which the deposit is remelted by the light beam. For example, even if the deposits located at the edge portion 61 forming the hole region 60 are cut off by the light beam L from the viewpoint of preferably setting the fine space of the ventilated portion that can be ventilated with the outside finally obtained to a predetermined size. good. Further, as shown in FIG. 11, for example, the edge portion 61 forming the hole region 60 by the light beam L from the viewpoint of preferably setting the fine space of the ventilated portion that can be ventilated with the outside finally obtained to a predetermined size. The deposits located in may be laser-evaporated by a light beam having high irradiation energy.

300’ 三次元形状造形物
200a’ 高密度部分
100a’ 低密度部分
100 通気部(低密度部分)
22 粉末層
24 固化層
24A、24A 固化層の高密度部分
24B、24B 固化層の低密度部分
60 三次元形状造形物の通気部の一部を成し、かつ固化層の低密度部分に形成された孔領域
61 孔領域を形作る縁部分
L、L1、L2 光ビーム
300'Three-dimensional shape model 200a' High density part 100a' Low density part 100 Ventilation part (low density part)
22 Powder layer 24 Solidified layer 24A 1 , 24A 2 High-density part of solidified layer
24B 1 , 24B 2 Low density part of solidified layer
60 Pore area formed in the low-density part of the solidified layer and forming a part of the ventilation part of the three-dimensional shape model 61 Edge part L, L1, L2 light beam forming the hole area

Claims (13)

(i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層および固化層を交互に繰り返して積層させることで三次元形状造形物を製造する方法であって、
高密度部分および低密度部分を有して成る前記三次元形状造形物を製造し、
前記低密度部分の少なくとも一部を通気部として用い、
前記光ビームの照射による前記固化層の形成途中又は該固化層の形成後において、少なくとも前記通気部の一部を構成する孔領域を形作る縁部分に対して、前記光ビームの再照射を実施する、三次元形状造形物の製造方法。
(I) A step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder at the predetermined portion to form a solidified layer, and (ii) a new powder on the obtained solidified layer. A three-dimensional shaped product is manufactured by alternately and repeatedly laminating the powder layer and the solidified layer by forming a layer and irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer. How to do
Manufacture the three-dimensional shaped object having a high-density portion and a low-density portion,
At least a part of the low density part is used as a ventilation part.
During the formation of the solidified layer by the irradiation of the light beam or after the formation of the solidified layer, the re-irradiation of the light beam is performed on at least the edge portion forming the hole region forming a part of the ventilation portion. , A method for manufacturing a three-dimensional shaped object.
前記光ビームの再照射により、前記孔領域を形作る前記縁部分を再溶融させる、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the edge portion forming the pore region is remelted by re-irradiation of the light beam. 前記通気部として用いる前記低密度部分の固化密度が0%である場合、前記光ビームの再照射に先立ち、前記固化層内に位置する前記粉末を除去する、請求項1又は2に記載の製造方法。 The production according to claim 1 or 2, wherein when the solidification density of the low-density portion used as the ventilation portion is 0%, the powder located in the solidification layer is removed prior to re-irradiation of the light beam. Method. 前記孔領域を形作る前記縁部分に沿って前記光ビームの再照射を逐次実施する、請求項1〜3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the re-irradiation of the light beam is sequentially carried out along the edge portion forming the hole region. 平面視で、少なくとも2つの前記孔領域を所定の間隔をおいて縦方向および横方向の少なくとも一方の方向に形成し、
隣り合う前記孔領域の間に位置する前記固化層のボディ部分の少なくとも一方の側に対して、前記光ビームの逐次再照射を実施する、請求項4に記載の製造方法。
In a plan view, at least two of the hole regions are formed at a predetermined interval in at least one of the vertical direction and the horizontal direction.
The manufacturing method according to claim 4, wherein at least one side of the body portion of the solidified layer located between the adjacent pore regions is sequentially re-irradiated with the light beam.
前記固化層の前記ボディ部分の両側を1本の照射パスに沿って逐次再照射する、請求項4又は5に記載の製造方法。 The production method according to claim 4 or 5, wherein both sides of the body portion of the solidified layer are sequentially re-irradiated along one irradiation path. 前記固化層の前記ボディ部分の両側を、少なくとも2本の照射パスに沿って略同時に逐次再照射する、請求項5に記載の製造方法。 The production method according to claim 5, wherein both sides of the body portion of the solidified layer are sequentially re-irradiated substantially simultaneously along at least two irradiation paths. 前記光ビームの逐次再照射時における前記光ビームの集光径を、逐次再照射前の前記光ビームの集光径よりも相対的に小さくする、請求項4〜7のいずれかに記載の製造方法。 The production according to any one of claims 4 to 7, wherein the focusing diameter of the light beam at the time of sequential re-irradiation of the light beam is relatively smaller than the focusing diameter of the light beam before sequential re-irradiation. Method. 前記固化層形成のために用いる前記光ビームの照射パスの方向と前記逐次再照射のために用いる前記光ビームの照射パスの方向とを相互に反対方向とする、請求項4〜8のいずれかに記載の製造方法。 Any of claims 4 to 8, wherein the direction of the irradiation path of the light beam used for forming the solidified layer and the direction of the irradiation path of the light beam used for the sequential re-irradiation are opposite to each other. The manufacturing method described in. 前記孔領域を形作る前記縁部分の全体に対して一括して前記光ビームの再照射を実施する、請求項1〜3のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the entire edge portion forming the hole region is collectively re-irradiated with the light beam. 前記光ビームの一括再照射時における前記光ビームの集光径を、該一括再照射前の前記光ビームの集光径よりも相対的に大きくする、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein the focusing diameter of the light beam at the time of batch re-irradiation of the light beam is made relatively larger than the focusing diameter of the light beam before the batch re-irradiation. 前記光ビームの再照射時における前記光ビームの照射エネルギーを、該再照射前の前記光ビームの照射エネルギーよりも相対的に小さくする、請求項1〜11のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 11, wherein the irradiation energy of the light beam at the time of re-irradiation of the light beam is made relatively smaller than the irradiation energy of the light beam before the re-irradiation. 前記通気部を、外部と通気可能に所定方向に延在するように形成する、請求項1〜12のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 12, wherein the venting portion is formed so as to extend in a predetermined direction so as to be ventilated to the outside.
JP2020034633A 2020-03-02 2020-03-02 Method for manufacturing three-dimensionally shaped molding Pending JP2021138976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020034633A JP2021138976A (en) 2020-03-02 2020-03-02 Method for manufacturing three-dimensionally shaped molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020034633A JP2021138976A (en) 2020-03-02 2020-03-02 Method for manufacturing three-dimensionally shaped molding

Publications (1)

Publication Number Publication Date
JP2021138976A true JP2021138976A (en) 2021-09-16

Family

ID=77667978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020034633A Pending JP2021138976A (en) 2020-03-02 2020-03-02 Method for manufacturing three-dimensionally shaped molding

Country Status (1)

Country Link
JP (1) JP2021138976A (en)

Similar Documents

Publication Publication Date Title
JP5584019B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5599957B2 (en) Manufacturing method of three-dimensional shaped object
JP5250338B2 (en) Manufacturing method of three-dimensional shaped object, manufacturing apparatus thereof, and three-dimensional shaped object
JP5877471B2 (en) Manufacturing method of three-dimensional shaped object
JP6347394B2 (en) Manufacturing method of three-dimensional shaped object
JP5764753B2 (en) Manufacturing method of three-dimensional shaped object
JP6531954B2 (en) Method of manufacturing three-dimensional shaped object and three-dimensional shaped object
CN107848212B (en) Method for manufacturing three-dimensional shaped object
JPWO2012124828A1 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP2017137563A (en) Manufacturing method of three-dimensional shape molded article
JP6414588B2 (en) Manufacturing method of three-dimensional shaped object
JP5456400B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
JP6628024B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP5612530B2 (en) Manufacturing method of three-dimensional shaped object
JP5588925B2 (en) Manufacturing method of three-dimensional shaped object
JP6857861B2 (en) Manufacturing method of three-dimensional shaped object
JP5186316B2 (en) Manufacturing method of three-dimensional shaped object
JP2021138976A (en) Method for manufacturing three-dimensionally shaped molding
JP6817561B2 (en) Manufacturing method of 3D shaped object
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object
JP6726858B2 (en) Method for manufacturing three-dimensional shaped object
JP3601535B1 (en) Manufacturing method of three-dimensional shaped object
JP2021138977A (en) Method for manufacturing three-dimensionally shaped molding and three-dimensionally shaped molding
WO2019151540A1 (en) Method for manufacturing three-dimensional molded object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240202