JP2021136948A - Guidance method of marine fish larval fish, and feeding method of marine fish larval fish using the guidance method - Google Patents

Guidance method of marine fish larval fish, and feeding method of marine fish larval fish using the guidance method Download PDF

Info

Publication number
JP2021136948A
JP2021136948A JP2020038460A JP2020038460A JP2021136948A JP 2021136948 A JP2021136948 A JP 2021136948A JP 2020038460 A JP2020038460 A JP 2020038460A JP 2020038460 A JP2020038460 A JP 2020038460A JP 2021136948 A JP2021136948 A JP 2021136948A
Authority
JP
Japan
Prior art keywords
larvae
light
less
fish
marine fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020038460A
Other languages
Japanese (ja)
Inventor
晴高 大島
Harutaka Oshima
晴高 大島
大佑 安田
Daisuke Yasuda
大佑 安田
忠 安藤
Tadashi Ando
忠 安藤
祐一郎 藤浪
Yuichiro Fujinami
祐一郎 藤浪
利宣 高志
Toshinori Takashi
利宣 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPN Corp
Japan Fisheries Research and Education Agency
Original Assignee
NIPPN Corp
Japan Fisheries Research and Education Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPN Corp, Japan Fisheries Research and Education Agency filed Critical NIPPN Corp
Priority to JP2020038460A priority Critical patent/JP2021136948A/en
Publication of JP2021136948A publication Critical patent/JP2021136948A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures

Landscapes

  • Feed For Specific Animals (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

To provide a method for guiding marine fish larval fish to a desired direction.SOLUTION: Larval fish of marine fish is irradiated with light in which a content of a light component having a wavelength in a range of 360 nm or more and 425 nm or less is 30% or more of a light component having a wavelength in a range of 360 nm or more and 780 nm or less, to thereby repel the larval fish from the irradiation light, and to guide the larval fish so as to be separated from a light source of the irradiation light.SELECTED DRAWING: None

Description

本発明は、海産魚類仔魚の誘導方法、及び、当該誘導方法を用いる海産魚類仔魚の給餌方法に関する。 The present invention relates to a method for inducing marine fish larvae and a method for feeding marine fish larvae using the induction method.

仔魚期の生物餌料としては、主にシオミズツボワムシを生産現場で培養して使用することが主流となっている。しかしながら、ワムシを餌料として安定的に生産するには、専用の設備、並びに高度な技術、労力、及びコストが求められる。 As a biological feed for the larval stage, it is the mainstream to cultivate and use Brachionus plicatilis mainly at the production site. However, stable production of rotifers as feed requires dedicated equipment, advanced technology, labor, and cost.

そのため、仔魚用飼料(人工の餌)の開発が進められてきたが、一般的に人工飼料は沈降性であり、多くの場合、仔魚には摂餌されないか、されても微量である。孵化して間もない仔魚は、遊泳力が未発達であることから、成魚に比較し索餌能力が著しく低く、通常の飼育条件では、摂餌対象物となるのは仔魚周辺に浮遊している餌に限られるためである。 Therefore, the development of feed for larvae (artificial feed) has been promoted, but artificial feed is generally sedimentary, and in many cases, it is not fed by larvae, or even if it is in a trace amount. Newly hatched larvae have an underdeveloped swimming ability, so their feeding ability is significantly lower than that of adult fish. Under normal breeding conditions, the target for feeding is floating around the larvae. This is because it is limited to the food that is available.

特許文献1には、数十ルクス以上の照度条件下で水槽の底に密集するウナギ仔魚の性質を利用して、サメ卵に種々の原料を添加し調製したペースト状の沈降性飼料を水槽底面に給餌する方法が開示されている。 Patent Document 1 describes a paste-like sedimentary feed prepared by adding various raw materials to shark eggs by utilizing the properties of eel larvae that are densely packed at the bottom of the water tank under an illuminance condition of several tens of lux or more. The method of feeding the eel is disclosed.

特許文献2には、ゲル形成物質70%、飼料成分20%、及び油状成分を10%配合した浮遊性の人工飼料が開示されている。 Patent Document 2 discloses a floating artificial feed containing 70% of a gel-forming substance, 20% of a feed component, and 10% of an oil component.

非特許文献1には、発光波長が異なる4種(赤618nm、緑524nm、青471nm、UV 386nm)の点滅光を利用した侵入抑制装置を用いて、マダイ稚魚に対する侵入抑制効果が検討されている。非特許文献1には、マダイ稚魚に対する侵入抑制効果は、青が一番高く、緑、赤、UVの順となること記載されている。 In Non-Patent Document 1, the invasion suppression effect on red sea bream fry is examined by using an intrusion suppression device using blinking light of four species (red 618 nm, green 524 nm, blue 471 nm, UV 386 nm) having different emission wavelengths. .. Non-Patent Document 1 describes that the effect of suppressing invasion of red sea bream fry is highest in blue, followed by green, red, and UV.

特開平11-253111号公報Japanese Unexamined Patent Publication No. 11-253111 特開平5-219901号公報Japanese Patent Application Laid-Open No. 5-219901

日本水産学会誌、第71巻、pp.188-197、2005Journal of Japanese Society of Fisheries Science, Vol. 71, pp. 188-197, 2005

本発明者らは、特許文献1に記載の給餌方法を、ウナギ以外の海産魚類仔魚に適用しようと試みたが、ウナギ以外の海産魚類仔魚は自然光に対する負の走光性を示さず、試みはうまくいかなかった。また、本発明者らは、非特許文献1に記載された特定の波長の光に対するマダイ稚魚の忌避特性を、海産魚類仔魚が有するか検討したが、そのような忌避特性は海産魚類仔魚には認められなかった。 The present inventors have attempted to apply the feeding method described in Patent Document 1 to marine fish larvae other than eels, but the marine fish larvae other than eels do not show negative luminous properties with respect to natural light, and the attempt was successful. I did not go. In addition, the present inventors examined whether the marine fish larvae have the repellent property of red sea bream fry to the light of a specific wavelength described in Non-Patent Document 1, but such repellent property is found in the marine fish larvae . I was not able to admit.

一方、特許文献2に記載の飼料では、仔魚の栄養になり得る原料の約33%(乾燥重量)もの脂質分を配合する必要があり、栄養面で問題があった。 On the other hand, the feed described in Patent Document 2 needs to contain as much as 33% (dry weight) of the lipid content of the raw material that can be used as nutrition for larvae, which causes a nutritional problem.

本発明は、このような実情に即して行われたものであり、海産魚類仔魚を所望の方向へ誘導する方法;海産魚類仔魚を餌場に誘導することにより飼料に容易に遭遇させ、摂餌させる方法を提供することを目的とする。 The present invention has been carried out in accordance with such circumstances, and is a method of guiding marine fish larvae in a desired direction; by guiding marine fish larvae to a feeding ground, the feed can be easily encountered and consumed. The purpose is to provide a method of feeding.

本発明者らは、上記課題を解決するべく鋭意検討を行ったところ、海産魚類の仔魚は、360nm以上425nm以下の波長域の光成分を豊富に含む光に対して負の走光性を有しており、この特性を利用することにより、海産魚類仔魚を、所望の餌場に誘導できることを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors have found that larvae of marine fish have negative phototaxis to light containing abundant light components in the wavelength range of 360 nm or more and 425 nm or less. We have found that larvae of marine fish can be guided to a desired feeding ground by utilizing this property, and have completed the present invention.

即ち、本発明は以下に関する。
[1]海産魚類の仔魚に、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光を照射し、前記仔魚を前記照射光から忌避させることにより、前記仔魚を前記照射光の光源から離れる方向に誘導することを特徴とする、海産魚類の仔魚の誘導方法。
[2]前記照射光が、360nm以上425nm以下の範囲にピーク波長を有する、[1]の方法。
[3]前記海産魚類が、ブリ、マダイ、ヒラメ及びクロマグロからなる群から選択されるいずれかである、[1]又は[2]の方法。
[4]以下の工程を含む、海産魚類の仔魚の給餌方法:
1.飼料を飼育水槽底部に配置すること;
2.前記飼育水槽の水面側から底部側方向へ、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光を照射して、前記海産魚類の仔魚を飼育水槽底部に誘導すること;及び
3.前記飼育水槽底部において、工程2で誘導した前記仔魚に、工程1で給餌した飼料を摂餌させること。
[5]工程1の後で工程2を行う、[4]の方法。
[6]工程1の前に工程2を行う、[4]の方法。
[7]工程1と同時に工程2を行う、[4]の方法。
[8]前記照射光が、360nm以上425nm以下の範囲にピーク波長を有する、[4]〜[7]のいずれかの方法。
[9]前記海産魚類が、ブリ、マダイ、ヒラメ及びクロマグロからなる群から選択されるいずれかである、[4]〜[8]のいずれかの方法。
[10]前記飼料が沈降性飼料である、[4]〜[9]のいずれかの方法。
That is, the present invention relates to the following.
[1] The larvae of marine fish are irradiated with light having a wavelength light component in the range of 360 nm or more and 425 nm or less, which is 30% or more of the light component having a wavelength in the range of 360 nm or more and 780 nm or less. A method for guiding marine fish larvae, which comprises guiding the larvae in a direction away from the light source of the irradiation light by repelling the larvae from the irradiation light.
[2] The method of [1], wherein the irradiation light has a peak wavelength in the range of 360 nm or more and 425 nm or less.
[3] The method of [1] or [2], wherein the marine fish is selected from the group consisting of yellowtail, red sea bream, flounder and bluefin tuna.
[4] Feeding method for marine larvae, including the following steps:
1. 1. Place feed at the bottom of the aquarium;
2. Irradiate the breeding aquarium from the water surface side to the bottom side with light having a wavelength in the range of 360 nm or more and 425 nm or less, which is 30% or more of the light component having a wavelength in the range of 360 nm or more and 780 nm or less. Then, guide the larvae of the marine fish to the bottom of the breeding aquarium;
3. 3. At the bottom of the breeding aquarium, the larvae induced in step 2 are fed with the feed fed in step 1.
[5] The method of [4], in which step 2 is performed after step 1.
[6] The method of [4] in which step 2 is performed before step 1.
[7] The method of [4], in which step 2 is performed at the same time as step 1.
[8] The method according to any one of [4] to [7], wherein the irradiation light has a peak wavelength in the range of 360 nm or more and 425 nm or less.
[9] The method according to any one of [4] to [8], wherein the marine fish is selected from the group consisting of yellowtail, red sea bream, flounder and bluefin tuna.
[10] The method according to any one of [4] to [9], wherein the feed is a sedimentary feed.

本発明によれば、特定波長の光照射を用いて海産魚類仔魚を所望の方向へ誘導することが可能となる。また、特定波長の光照射を用いて海産魚類仔魚を水槽底部に誘導することにより、沈降性飼料への遭遇が容易となるので、海産魚類仔魚へ効率的に給餌することが可能となる。 According to the present invention, it is possible to guide marine fish larvae in a desired direction by using light irradiation of a specific wavelength. Further, by guiding the marine fish larvae to the bottom of the aquarium by using light irradiation of a specific wavelength, it becomes easy to encounter the sedimentary feed, so that the marine fish larvae can be efficiently fed.

分光放射照度計によるLEDライトの照射光の光スペクトル測定の模式図を示す。A schematic diagram of the optical spectrum measurement of the irradiation light of the LED light by the spectral irradiance meter is shown. 水面上方からカップ底面に向けて、紫外線(376nm)ライトを照射する様子を示す。A state of irradiating an ultraviolet (376 nm) light from above the water surface toward the bottom of the cup is shown. 紫外線ライト照射により、ブリ仔魚の大部分が水面からカップ底面に移動した様子を示す。It shows how most of the yellowtail larvae moved from the surface of the water to the bottom of the cup by irradiation with ultraviolet light. ブリ仔魚が摂餌した飼料を示す。Shows the feed fed by yellowtail larvae. ブリ仔魚の腸管後部に観察されたワムシを示す。The rotifer observed in the posterior intestinal tract of yellowtail larvae is shown.

1.海産魚類の仔魚の誘導方法
本発明は、海産魚類の仔魚に、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光を照射し、前記仔魚を前記照射光から忌避させることにより、前記仔魚を前記照射光の光源から離れる方向に誘導することを特徴とする、海産魚類の仔魚の誘導方法(以下、本発明の誘導方法という。)を提供するものである。
1. 1. Method for inducing larvae of marine fish In the present invention, the content of light components having a wavelength in the range of 360 nm or more and 425 nm or less in marine fish larvae is 30% or more of the light components having a wavelength in the range of 360 nm or more and 780 nm or less. A method for inducing larvae of marine fish, which comprises guiding the larvae in a direction away from the light source of the irradiation light by irradiating the larvae with the light of the above and repelling the larvae from the irradiation light (hereinafter referred to as the present invention). It is referred to as a method for inducing the invention).

本発明の誘導方法を適用することができる海産魚類としては、特に限定されないが、例えば、タイ類(例、マダイ)、ブリ類(例、ブリ、ヒラマサ、カンパチ)、ヒラメ類(例、ヒラメ)、マグロ類(例、クロマグロ)、カレイ類(例、カレイ)、フグ類(例、トラフグ)、ハタ類、ウナギ類等を例示することができる。海産魚類は、好ましくは、タイ類、ブリ類、ヒラメ類又はマグロ類であり、より好ましくは、マダイ、ブリ、ヒラメ又はクロマグロである。 The marine fish to which the induction method of the present invention can be applied is not particularly limited, but for example, Thais (eg, redfish), yellowtails (eg, yellowtail, flatfish, amberjack), flatfish (eg, flatfish). , Tuna (eg, black tuna), flatfish (eg, flatfish), puffer fish (eg, puffer fish), flounder, eel and the like can be exemplified. The marine fish is preferably Thai, yellowtail, flounder or tuna, and more preferably red sea bream, yellowtail, flounder or bluefin tuna.

本明細書において、「仔魚」とは、卵から孵化して、各鰭の鰭条の本数が一定数に達するまでの成長段階の魚を意味する。本発明の誘導方法においては、好ましくは、摂餌可能な段階の仔魚が使用される。各海産魚類の仔魚が摂餌可能となる日齢は、水産養殖学の分野において周知である。例えば、マダイの仔魚は、通常3日齢において摂餌可能となる。 As used herein, the term "larva" means a fish in the growth stage from which it hatches from an egg until the number of fins on each fin reaches a certain number. In the induction method of the present invention, larvae at a feedable stage are preferably used. The age at which larvae of each marine fish can be fed is well known in the field of aquaculture. For example, red sea bream larvae are usually ready to feed at 3 days of age.

本発明の誘導方法は、海産魚類の仔魚に対して、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光を照射することを特徴とする。該方法においては、誘導することを意図した海産魚類の仔魚が感受する光が、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上となるように、光が照射される。以下、本明細書において、「照射する」光の性質を記載するが、これを海産魚類の仔魚が「感受する」光の性質として、適宜読み替え可能である。 In the induction method of the present invention, the content of the light component having a wavelength in the range of 360 nm or more and 425 nm or less is 30% or more of the light component having a wavelength in the range of 360 nm or more and 780 nm or less with respect to the larvae of marine fish. It is characterized by irradiating light. In this method, the light perceived by the larvae of marine fish intended to be induced has a wavelength in the range of 360 nm or more and 425 nm or less, and the content of the light component has a wavelength in the range of 360 nm or more and 780 nm or less. Light is irradiated so that it becomes 30% or more of. Hereinafter, the property of light to be “irradiated” will be described in the present specification, which can be appropriately read as the property of light to be “sensed” by larvae of marine fish.

本明細書において、「360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光」とは、該光を分光放射照度計で解析し取得したスペクトル(縦軸は光強度(単位:W/m2/nm)を示し、横軸は波長(nm)を示す。)において、360nm以上425nm以下の波長範囲のスペクトルの積分値(積分強度)が、360nm以上780nm以下の範囲にある波長範囲のスペクトルの積分値(積分強度)の30%以上であることを意味する。 In the present specification, "light in which the content of the light component having a wavelength in the range of 360 nm or more and 425 nm or less is 30% or more of the light component having a wavelength in the range of 360 nm or more and 780 nm or less" means that the light is dispersed. A spectrum in the wavelength range of 360 nm or more and 425 nm or less in the spectrum analyzed and acquired by the irradiance meter (the vertical axis indicates the light intensity (unit: W / m 2 / nm) and the horizontal axis indicates the wavelength (nm)). It means that the integrated value (integrated intensity) of is 30% or more of the integrated value (integrated intensity) of the spectrum in the wavelength range in the range of 360 nm or more and 780 nm or less.

本発明の誘導方法において照射する光においては、360nm以上425nm以下の波長範囲の積分強度が、360nm以上780nm以下の波長範囲の積分強度の、通常30%以上(例、35%以上、40%以上、44.2%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上、96.4%以上、100%等)を占める。 In the light irradiated by the induction method of the present invention, the integrated intensity in the wavelength range of 360 nm or more and 425 nm or less is usually 30% or more (eg, 35% or more, 40% or more) of the integrated intensity in the wavelength range of 360 nm or more and 780 nm or less. , 44.2% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more, 96.4% or more, 100%, etc.).

本発明の誘導方法において照射する光のピーク波長は、通常、360nm以上425nm以下、好ましくは、376nm以上425nm以下であり、より好ましくは、376nm以上403nm以下(例、376nm)である。 The peak wavelength of the light irradiated in the induction method of the present invention is usually 360 nm or more and 425 nm or less, preferably 376 nm or more and 425 nm or less, and more preferably 376 nm or more and 403 nm or less (eg, 376 nm).

好ましくは、本発明の誘導方法において照射する光においては、360nm以上425nm以下の範囲にある波長の光成分の含有量が、全光成分の30%以上(例、35%以上、40%以上、44.2%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上、96.4%以上、100%等)を占める。 Preferably, in the light irradiated by the induction method of the present invention, the content of the light component having a wavelength in the range of 360 nm or more and 425 nm or less is 30% or more (eg, 35% or more, 40% or more) of the total light component. 44.2% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more, 96.4% or more, 100%, etc.).

本発明の誘導方法において照射する光のスペクトル半値幅は、特に限定されないが、好ましくは、40nm以下(例、35nm以下、30nm以下、25nm以下、20nm以下、15nm以下、又は10nm以下)である。また、本発明の誘導方法において照射する光のスペクトル半値幅は、好ましくは、1nm以上(例、3nm以上)である。 The spectrum half width of the light irradiated in the induction method of the present invention is not particularly limited, but is preferably 40 nm or less (eg, 35 nm or less, 30 nm or less, 25 nm or less, 20 nm or less, 15 nm or less, or 10 nm or less). The spectrum half-value width of the light irradiated in the induction method of the present invention is preferably 1 nm or more (eg, 3 nm or more).

本発明の誘導方法において照射する光は、1つの単色光であってもよいし、複色光であってもよいし、また、2以上の単色光であってもよいが、好ましくは、1つの単色光である。本明細書において、「単色光」とは、スペクトル半値幅が40nm以下の光を意味する。 The light to be irradiated in the induction method of the present invention may be one monochromatic light, may be multicolor light, or may be two or more monochromatic lights, but preferably one. It is monochromatic light. As used herein, the term "monochromatic light" means light having a spectrum half-value width of 40 nm or less.

本発明の誘導方法において光照射に使用する発光装置は、特に限定されないが、例えば、LEDライト、水銀ランプ、メタルハライドランプ、キセノンランプ等を挙げることが出来る。好ましくは、LEDライトが使用される。 The light emitting device used for light irradiation in the induction method of the present invention is not particularly limited, and examples thereof include an LED light, a mercury lamp, a metal halide lamp, and a xenon lamp. Preferably, an LED light is used.

海産魚類の仔魚に、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光を照射すると、海産魚類の仔魚はその照射光から忌避しようと、照射光の光源から離れる方向に移動する(誘導される)。例えば、海産魚類の仔魚を飼育水槽に入れ、その水槽の水面側から底部側方向へ、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光を照射すると、海産魚類の仔魚は、その光源から離れる方向へ(即ち、水面側から底部側に向かって)と移動する(誘導される)。その結果、海産魚類の仔魚を飼育水槽の所望の箇所(例、底部)に集めることが可能となる。 When the larvae of marine fish are irradiated with light having a light component having a wavelength in the range of 360 nm or more and 425 nm or less, which is 30% or more of the light component having a wavelength in the range of 360 nm or more and 780 nm or less, the larvae of marine fish are irradiated. Moves (guides) away from the light source of the irradiation light in an attempt to avoid it. For example, larvae of marine fish are placed in a breeding aquarium, and the content of the optical component having a wavelength in the range of 360 nm or more and 425 nm or less from the water surface side to the bottom side of the aquarium has a wavelength in the range of 360 nm or more and 780 nm or less. When irradiated with light that is 30% or more of the light component, the larvae of marine fish move (induce) away from the light source (that is, from the water surface side to the bottom side). As a result, larvae of marine fish can be collected at a desired location (eg, bottom) in the breeding aquarium.

2.海産魚類の仔魚の給餌方法
また、本発明は、上記本発明の誘導方法を利用した、海産魚類の仔魚の給餌方法(以下、本発明の給餌方法という。)を提供するものである。本発明の給餌方法は、以下の工程を含む:
1.飼料を飼育水槽底部に配置すること;
2.前記飼育水槽の水面側から底部側方向へ、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光を照射して、前記海産魚類の仔魚を飼育水槽底部に誘導すること;及び
3.前記飼育水槽底部において、工程2で誘導した前記仔魚に、工程1で給餌した飼料を摂餌させること。
2. A method for feeding larvae of marine fish The present invention also provides a method for feeding larvae of marine fish (hereinafter referred to as the feeding method of the present invention) using the above-mentioned induction method of the present invention. The feeding method of the present invention includes the following steps:
1. 1. Place feed at the bottom of the aquarium;
2. Irradiate the breeding aquarium from the water surface side to the bottom side with light having a wavelength in the range of 360 nm or more and 425 nm or less, which is 30% or more of the light component having a wavelength in the range of 360 nm or more and 780 nm or less. Then, guide the larvae of the marine fish to the bottom of the breeding aquarium;
3. 3. At the bottom of the breeding aquarium, the larvae induced in step 2 are fed with the feed fed in step 1.

本発明の給餌方法についての各用語の定義は、特に断りのない限り、本発明の誘導方法についてのものと同一である。 Unless otherwise specified, the definition of each term for the feeding method of the present invention is the same as that for the induction method of the present invention.

工程1においては、海産魚類の仔魚を飼育している水槽底部に飼料を配置する。「飼料の水槽底部への配置」とは、給餌した飼料の50%以上を、水槽の底面から上部4cmまでの層に存在させることを意味する。使用する飼料としては、水槽内の海産魚類の仔魚が摂食可能なものであれば、特に限定されないが、例えば、人工飼料、ワムシ等の生物飼料等を挙げることができる。飼料は、海産魚類の仔魚が摂食しやすいように、その粒子径を、該仔魚の口の短径を下回る粒子径に調製することが好ましい。 In step 1, the feed is placed at the bottom of the aquarium where the larvae of marine fish are bred. "Placement of feed on the bottom of the aquarium" means that 50% or more of the fed feed is present in the layer from the bottom of the aquarium to the top 4 cm. The feed to be used is not particularly limited as long as the larvae of marine fish in the aquarium can be eaten, and examples thereof include artificial feeds and biological feeds such as rotifers. The feed preferably has a particle size smaller than the minor axis of the larvae's mouth so that the larvae of marine fish can easily eat the feed.

使用する飼料は、水槽底部に安定して配置され得るように、沈降性飼料を用いることが好ましい。沈降性飼料は、例えば、小麦粉、魚粉、カゼイン、ゼラチン、卵蛋白、ミルク蛋白、デンプン、ビタミン等の栄養源を配合し、成型することにより調製することが出来る。沈降性飼料としては、おとひめシリーズのA、B1、B2(日清丸紅飼料株式会社)等を挙げることができるが、これに限定されない。 As the feed to be used, it is preferable to use a sedimentary feed so that it can be stably arranged at the bottom of the aquarium. Precipitated feed can be prepared by blending and molding nutrient sources such as wheat flour, fish meal, casein, gelatin, egg protein, milk protein, starch and vitamins. Examples of the sedimentation feed include, but are not limited to, A, B1 and B2 (Nisshin Marubeni Feed Co., Ltd.) of the Otohime series.

工程2においては、海産魚類の仔魚を飼育している水槽の水面側から底部側方向へ、360nm以上425nm以下の範囲にある波長範囲の光成分の含有量が、360nm以上780nm以下の範囲にある波長範囲の光成分の30%以上である光を照射する。その結果、海産魚類の仔魚は、その光源から離れる方向へ(即ち、水面側から底部側に向かって)と移動し(誘導され)、飼育水槽の底部に濃密に集まる。 In step 2, the content of the optical component in the wavelength range of 360 nm or more and 425 nm or less is in the range of 360 nm or more and 780 nm or less from the water surface side to the bottom side of the aquarium in which the larvae of marine fish are bred. Irradiate light that is 30% or more of the light component in the wavelength range. As a result, the larvae of marine fish move (guide) away from the light source (ie, from the surface side to the bottom side) and gather densely at the bottom of the breeding aquarium.

光を水面側から底部側方向へ照射する際、発光装置を水面の上方に配置して、そこから水槽底部側方向へ照射してもよいし、発光装置を水没した状態で、水面側から底部側方向へ照射してもよい。 When irradiating light from the water surface side to the bottom side, the light emitting device may be arranged above the water surface and irradiated from there to the bottom side of the aquarium, or the light emitting device may be submerged from the water surface side to the bottom. It may be irradiated laterally.

好ましくは、工程2においては、海産魚類の仔魚が水槽底部に誘導され、水槽底部に集まるまで、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長範囲の光成分の30%以上である光を照射する。照射時間は、通常10秒以上(例、30秒以上、1分以上、2分以上)であるが、特に限定されない。海産魚類の仔魚が水槽底部に誘導され、集まった段階で、照射を止めてもよいし、照射を継続してもよい。「海産魚類の仔魚が水槽底部に集まる」とは、例えば、水槽中の生きた仔魚の5%以上(例、10%以上、20%以上、30%以上、40%以上、50%以上、60以上、70%以上、80%以上、90%以上)が、水槽の底面から上部4cmまでの層に存在することを意味する。 Preferably, in step 2, the content of the optical component having a wavelength in the range of 360 nm or more and 425 nm or less is in the range of 360 nm or more and 780 nm or less until the larvae of marine fish are guided to the bottom of the aquarium and gather at the bottom of the aquarium. Irradiate light that is 30% or more of the light component in the wavelength range. The irradiation time is usually 10 seconds or longer (eg, 30 seconds or longer, 1 minute or longer, 2 minutes or longer), but is not particularly limited. Irradiation may be stopped or continued when the larvae of marine fish are guided to the bottom of the aquarium and gathered. "Marine larvae gather at the bottom of the aquarium" means, for example, 5% or more (eg, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60) of live larvae in the aquarium. Above, 70% or more, 80% or more, 90% or more) means that it exists in the layer from the bottom of the aquarium to the top 4 cm.

工程1と工程2との前後関係は特に限定されず、工程1の後で工程2を行ってもよいし、工程1の前に工程2を行ってもよいし、工程1と同時に工程2を行ってもよい。 The context of step 1 and step 2 is not particularly limited, and step 2 may be performed after step 1, step 2 may be performed before step 1, and step 2 may be performed at the same time as step 1. You may go.

工程1の後で工程2を行う場合、水槽底部に配置された飼料に向かって、海産魚類の仔魚が誘導され、集められることになる。工程1において飼料の配置を完了してから、工程2において光照射を開始するまでのタイムラグは、特に限定されないが、配置した飼料が拡散したり、崩壊したりしないよう、短い方が好ましく、例えば、20分以内(例、10分以内、5分以内、4分以内、3分以内、2分以内、1分以内)である。 When step 2 is performed after step 1, larvae of marine fish are guided and collected toward the feed placed at the bottom of the aquarium. The time lag from the completion of the placement of the feed in step 1 to the start of light irradiation in step 2 is not particularly limited, but it is preferably short so that the placed feed does not diffuse or collapse, for example. , Within 20 minutes (eg, within 10 minutes, within 5 minutes, within 4 minutes, within 3 minutes, within 2 minutes, within 1 minute).

工程1の前に工程2を行う場合、まず、光照射により、海産魚類の仔魚を、水槽底部へと移動させ(誘導し)、集めた上で、仔魚が集まった水槽底部へ飼料を配置する。水槽底部への海産魚類仔魚の集積を完了してから、水槽底部への飼料の配置を開始するまでのタイムラグは、特に限定されないが、水槽底部に集まった仔魚が拡散しないよう、短い方が好ましく、例えば、20分以内(例、10分以内、5分以内、4分以内、3分以内、2分以内、1分以内)である。水槽底部に集まった仔魚が拡散しないよう、水槽底部への海産魚類仔魚の集積を完了してから、水槽底部への飼料の配置を開始するまでの間、工程2の光照射を継続してもよい。 When step 2 is performed before step 1, first, the larvae of marine fish are moved (guided) to the bottom of the aquarium by light irradiation, collected, and then the feed is placed at the bottom of the aquarium where the larvae are gathered. .. The time lag from the completion of the accumulation of marine fish larvae to the bottom of the aquarium to the start of the placement of feed on the bottom of the aquarium is not particularly limited, but a shorter time is preferable so that the larvae collected at the bottom of the aquarium do not spread. For example, within 20 minutes (eg, within 10 minutes, within 5 minutes, within 4 minutes, within 3 minutes, within 2 minutes, within 1 minute). Even if the light irradiation of step 2 is continued from the completion of the accumulation of marine fish larvae to the bottom of the aquarium to the start of the placement of feed on the bottom of the aquarium so that the larvae collected at the bottom of the aquarium do not diffuse. good.

工程1と同時に工程2を行う場合、光照射により、海産魚類の仔魚を、水槽底部へと移動させ(誘導し)、集めながら、水槽底部への飼料の配置を行う。 When step 2 is performed at the same time as step 1, the larvae of marine fish are moved (guided) to the bottom of the aquarium by light irradiation, and the feed is placed on the bottom of the aquarium while being collected.

このようにして、上記工程1と工程2とを組み合わせることにより、海産魚類の仔魚が飼料に遭遇する機会が増加し、水槽底部において、工程2で誘導した海産魚類の仔魚に、工程1で給餌した飼料を効率的に摂餌させることが可能となる(工程3)。 By combining the above steps 1 and 2 in this way, the chances that the larvae of the marine fish encounter the feed are increased, and the larvae of the marine fish induced in the step 2 are fed in the step 1 at the bottom of the aquarium. It becomes possible to efficiently feed the prepared feed (step 3).

刊行物、特許文献等を含む、本明細書に引用されたすべての参考文献は、引用により、それらが個々に具体的に参考として援用されかつその内容全体が具体的に記載されているのと同程度まで、本明細書に援用される。 All references cited in this specification, including publications, patent documents, etc., are individually and specifically incorporated as references and the entire contents are specifically described. To the same extent, incorporated herein.

以下に、実施例により本発明を更に具体的に説明するが、本発明はそれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

<参考例1>
分光放射照度計(波長校正済み、コニカミノルタCL-500A、測定可能な波長範囲:360nm〜780nm)を用いて、本実施例で使用したLEDライトの照射光のスペクトル(縦軸を光強度(単位:W/m2/nm)、横軸を波長(nm)とする。)を取得し、各照射光のピーク波長;半値幅;360nm以上425nm以下、及び425nm超780nm以下の波長の積算強度を測定した。積算強度は、全測定範囲(360nm〜780nm)の積算強度に占める割合(%)として求めた。分光放射照度計のセンサーより198mm離れた位置からLEDライトを照射し、光スペクトルを取得した(図1)。結果を表1に示す。
<Reference example 1>
Using a spectral irradiance meter (wavelength calibrated, Konica Minolta CL-500A, measurable wavelength range: 360 nm to 780 nm), the spectrum of the irradiation light of the LED light used in this example (vertical axis is the light intensity (unit). : W / m 2 / nm), the horizontal axis is the wavelength (nm)), and the peak wavelength of each irradiation light; half-value width; 360 nm or more and 425 nm or less, and the integrated intensity of wavelengths over 425 nm and 780 nm or less It was measured. The integrated intensity was determined as a percentage (%) of the integrated intensity in the entire measurement range (360 nm to 780 nm). The LED light was radiated from a position 198 mm away from the sensor of the spectral irradiance meter, and the optical spectrum was acquired (Fig. 1). The results are shown in Table 1.

Figure 2021136948
Figure 2021136948

実際に測定されたピーク波長は、メーカーが表示したピーク波長と異なっていた。以下の実施例においては、ピーク波長として、本試験において実際に測定された値を記載した。尚、室内光としてはパナソニック製昼白色LED NNW4611ENK LE9(425nm以下の波長の積算強度が全波長の積算強度の5%未満)を使用した。 The actually measured peak wavelength was different from the peak wavelength displayed by the manufacturer. In the following examples, the value actually measured in this test is described as the peak wavelength. As the room light, Panasonic's neutral white LED NNW4611ENK LE9 (integrated intensity of wavelengths below 425 nm is less than 5% of integrated intensity of all wavelengths) was used.

<実施例1>
3日齢(摂餌可能初日)のマダイ仔魚を20尾ずつ、直径5cm、高さ20cmの円柱状の水槽にそれぞれ入れ、10分間静置し、上中層、底層にいる仔魚数をそれぞれ計数した。次に、ピーク波長が、それぞれ、376nm(NSPU510CS(日亜化学工業)を3基搭載したハンディライト)、403nm(HLK-2AA-3LED-390-400NM ホルキン)、425nm(HLK-2AA-3LED-430-440nm ホルキン)、455nm(HLK-2AA-3LED-BLUE ホルキン)、496nm(HLK-2AA-3LED-500nm ホルキン)、605nm(HLK-2AA-3LED-595nm ホルキン)、662nm(NM-X12-690-700 ホルキン)及び850nm(HLK-2AA-3LED-IR850 ホルキン)であるLEDライトを水槽から5cm上部よりそれぞれ1分間照射した。また、比較例として室内光を用いて同様の試験を実施した。照射後、水槽内の仔魚数を照射前と同様に計測し、上中層から底層へ移動した個体の割合(移動率)を求めた。なお、上中層とは、水槽底面より上部4cm以上の層を指し、底層とは底面から上部4cmまでの層とした。その結果、ピーク波長455nm以上では底層への移動が認められなかったが、376-425nmの波長において底層への移動が認められた。特にピーク波長376nmの効果が優れていた。
<Example 1>
Twenty 3-day-old (first day of feeding) red sea bream larvae were placed in a columnar aquarium with a diameter of 5 cm and a height of 20 cm, left to stand for 10 minutes, and the number of larvae in the upper middle layer and bottom layer was counted. .. Next, the peak wavelengths are 376nm (handy light equipped with 3 NSPU510CS (Nichia)), 403nm (HLK-2AA-3LED-390-400NM Holkin), 425nm (HLK-2AA-3LED-430), respectively. -440nm Holkin), 455nm (HLK-2AA-3LED-BLUE Holkin), 496nm (HLK-2AA-3LED-500nm Holkin), 605nm (HLK-2AA-3LED-595nm Holkin), 662nm (NM-X12-690-700) LED lights of Holkin) and 850 nm (HLK-2AA-3LED-IR850 Holkin) were irradiated from the water tank 5 cm above each for 1 minute. In addition, a similar test was conducted using room light as a comparative example. After the irradiation, the number of larvae in the aquarium was measured in the same manner as before the irradiation, and the proportion (migration rate) of the individuals that moved from the upper middle layer to the bottom layer was determined. The upper middle layer refers to a layer 4 cm or more above the bottom surface of the water tank, and the bottom layer is a layer 4 cm above the bottom surface. As a result, no movement to the bottom layer was observed above the peak wavelength of 455 nm, but movement to the bottom layer was observed at wavelengths of 376-425 nm. In particular, the effect of the peak wavelength of 376 nm was excellent.

Figure 2021136948
Figure 2021136948

<実施例2>
ピーク波長が376nmのLEDライト及び白色LEDライト(HLK-2AA-3LED-4000k-4500k)のそれぞれを実施例1と同様の方法で、7日齢のマダイ仔魚に照射し水槽内の上中層から底層へ移動した個体の割合(移動率)を求めた。その結果、白色LED光では底層への移動が認められなかったが、ピーク波長376nmのLED光では、底層への移動が認められた。
<Example 2>
The 7-day-old red sea bream larvae were irradiated with each of the LED light having a peak wavelength of 376 nm and the white LED light (HLK-2AA-3LED-4000k-4500k) in the same manner as in Example 1, and the upper middle layer to the bottom layer in the water tank. The percentage of individuals who moved to (movement rate) was calculated. As a result, no movement to the bottom layer was observed with the white LED light, but movement to the bottom layer was observed with the LED light having a peak wavelength of 376 nm.

Figure 2021136948
Figure 2021136948

<実施例3>
実施例1に、白色LED(HLK-2AA-3LED-4000k-4500k)照射区を加えた試験を6日齢のブリ仔魚を用いて行った。その結果、実施例1と同様に、ピーク波長375nmにおいて最大の移動率が示された。
<Example 3>
A test in which a white LED (HLK-2AA-3LED-4000k-4500k) irradiation group was added to Example 1 was carried out using 6-day-old yellowtail larvae. As a result, as in Example 1, the maximum migration rate was shown at the peak wavelength of 375 nm.

Figure 2021136948
Figure 2021136948

<実施例4>
実施例2と同様の試験を5日齢のヒラメ仔魚で実施した。その結果、実施例2と同様に白色LED光では底層への移動が認められなかったが、ピーク波長376nmのLED光では、底層への移動が認められた。
<Example 4>
The same test as in Example 2 was performed on 5-day-old flatfish larvae. As a result, as in Example 2, no movement to the bottom layer was observed with the white LED light, but movement to the bottom layer was observed with the LED light having a peak wavelength of 376 nm.

Figure 2021136948
Figure 2021136948

<実施例5>
実施例2と同様の試験を6日齢のクロマグロ仔魚で実施した。その結果、実施例2と同様に白色LED光では底層への移動が認められなかったが、ピーク波長376nmのLED光では、底層への移動が認められた。
<Example 5>
The same test as in Example 2 was performed on 6-day-old bluefin tuna larvae. As a result, as in Example 2, no movement to the bottom layer was observed with the white LED light, but movement to the bottom layer was observed with the LED light having a peak wavelength of 376 nm.

Figure 2021136948
Figure 2021136948

<実施例6>
おとひめA(日清丸紅飼料株式会社)を粉砕、篩分けし、仔魚の口に入りやすいように粒径を調製した。実施例1で用いた水槽に上記飼料を0.5g投入し、沈降するまで静置した。その後、4日齢のマダイ仔魚を30尾ずつ投入し、実施例1と同様に376、403、425、455、496、605、662及び850nmの波長のLED光をそれぞれ1分間照射したのち、2分間静置した。また、比較例として室内光にて同様の試験を実施した。実験後、飼料の摂餌状況を確認し、摂餌率を求めた。その結果、376nmのピーク波長において、高い摂餌個体率が示された。
<Example 6>
Otohime A (Nisshin Marubeni Feed Co., Ltd.) was crushed and sieved, and the particle size was adjusted so that it could easily enter the mouth of larvae. 0.5 g of the above feed was put into the water tank used in Example 1 and allowed to stand until it settled. After that, 30 4-day-old red sea bream larvae were added, and LED light having wavelengths of 376, 403, 425, 455, 496, 605, 662 and 850 nm was irradiated for 1 minute in the same manner as in Example 1, and then 2 Allowed to stand for minutes. Moreover, as a comparative example, a similar test was carried out in room light. After the experiment, the feeding status of the feed was confirmed and the feeding rate was determined. As a result, a high feeding population rate was shown at the peak wavelength of 376 nm.

Figure 2021136948
Figure 2021136948

<実施例7>
実施例6と同様の飼料を沈降させた200mlカップに、ワムシを摂餌した6日齢のブリ仔魚を投入し、375nmの波長のLED光を水面より2分間照射した(図2)。その結果、LED光照射により、大部分の個体が水面からカップ底面に移動し(図3)、ワムシ摂餌後の仔魚においても飼料の摂餌が認められた(図4及び5)。
<Example 7>
Six-day-old yellowtail larvae fed with rotifers were placed in a 200 ml cup in which the same feed as in Example 6 was settled, and LED light having a wavelength of 375 nm was irradiated from the water surface for 2 minutes (Fig. 2). As a result, most of the individuals moved from the surface of the water to the bottom of the cup by LED light irradiation (Fig. 3), and feeding was also observed in the larvae after feeding the rotifer (Figs. 4 and 5).

本発明によれば、特定波長の光照射を用いて海産魚類仔魚を誘導することが可能となる。また、本発明によれば、特定波長の光照射を用いて海産魚類仔魚を水槽底面に誘導し、沈降性飼料に遭遇させることにより、海産魚類仔魚へ効率的に給餌することが可能となる。 According to the present invention, it is possible to induce marine fish and larvae by using light irradiation of a specific wavelength. Further, according to the present invention, it is possible to efficiently feed the marine fish larvae by guiding the marine fish larvae to the bottom surface of the water tank by using light irradiation of a specific wavelength and causing them to encounter a sedimentary feed.

Claims (10)

海産魚類の仔魚に、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光を照射し、前記仔魚を前記照射光から忌避させることにより、前記仔魚を前記照射光の光源から離れる方向に誘導することを特徴とする、海産魚類の仔魚の誘導方法。 The larvae of marine fish are irradiated with light having a light component having a wavelength in the range of 360 nm or more and 425 nm or less, which is 30% or more of the light component having a wavelength in the range of 360 nm or more and 780 nm or less. A method for guiding marine fish larvae, which comprises guiding the larvae in a direction away from the light source of the irradiation light by repelling the larvae from the irradiation light. 前記照射光が、360nm以上425nm以下の範囲にピーク波長を有する、請求項1記載の方法。 The method according to claim 1, wherein the irradiation light has a peak wavelength in the range of 360 nm or more and 425 nm or less. 前記海産魚類が、ブリ、マダイ、ヒラメ及びクロマグロからなる群から選択されるいずれかである、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the marine fish is any one selected from the group consisting of yellowtail, red sea bream, flounder and bluefin tuna. 以下の工程を含む、海産魚類の仔魚の給餌方法:
1.飼料を飼育水槽底部に配置すること;
2.前記飼育水槽の水面側から底部側方向へ、360nm以上425nm以下の範囲にある波長の光成分の含有量が、360nm以上780nm以下の範囲にある波長の光成分の30%以上である光を照射して、前記海産魚類の仔魚を飼育水槽底部に誘導すること;及び
3.前記飼育水槽底部において、工程2で誘導した前記仔魚に、工程1で給餌した飼料を摂餌させること。
How to feed marine larvae, including the following steps:
1. 1. Place feed at the bottom of the aquarium;
2. Irradiate the breeding aquarium from the water surface side to the bottom side with light having a wavelength in the range of 360 nm or more and 425 nm or less, which is 30% or more of the light component having a wavelength in the range of 360 nm or more and 780 nm or less. Then, guide the larvae of the marine fish to the bottom of the breeding aquarium;
3. 3. At the bottom of the breeding aquarium, the larvae induced in step 2 are fed with the feed fed in step 1.
工程1の後で工程2を行う、請求項4記載の方法。 The method according to claim 4, wherein step 2 is performed after step 1. 工程1の前に工程2を行う、請求項4記載の方法。 The method according to claim 4, wherein step 2 is performed before step 1. 工程1と同時に工程2を行う、請求項4記載の方法。 The method according to claim 4, wherein step 2 is performed at the same time as step 1. 前記照射光が、360nm以上425nm以下の範囲にピーク波長を有する、請求項4〜7のいずれか1項記載の方法。 The method according to any one of claims 4 to 7, wherein the irradiation light has a peak wavelength in the range of 360 nm or more and 425 nm or less. 前記海産魚類が、ブリ、マダイ、ヒラメ及びクロマグロからなる群から選択されるいずれかである、請求項4〜8のいずれか1項記載の方法。 The method according to any one of claims 4 to 8, wherein the marine fish is any one selected from the group consisting of yellowtail, red sea bream, flounder and bluefin tuna. 前記飼料が沈降性飼料である、請求項4〜9のいずれか1項記載の方法。 The method according to any one of claims 4 to 9, wherein the feed is a sedimentary feed.
JP2020038460A 2020-03-06 2020-03-06 Guidance method of marine fish larval fish, and feeding method of marine fish larval fish using the guidance method Pending JP2021136948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020038460A JP2021136948A (en) 2020-03-06 2020-03-06 Guidance method of marine fish larval fish, and feeding method of marine fish larval fish using the guidance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038460A JP2021136948A (en) 2020-03-06 2020-03-06 Guidance method of marine fish larval fish, and feeding method of marine fish larval fish using the guidance method

Publications (1)

Publication Number Publication Date
JP2021136948A true JP2021136948A (en) 2021-09-16

Family

ID=77666681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038460A Pending JP2021136948A (en) 2020-03-06 2020-03-06 Guidance method of marine fish larval fish, and feeding method of marine fish larval fish using the guidance method

Country Status (1)

Country Link
JP (1) JP2021136948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158495A (en) * 2021-11-30 2022-03-11 大连海洋大学 Illumination regulation and control method for promoting growth of juvenile fish of sebastes schlegeli hilgendorf

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158495A (en) * 2021-11-30 2022-03-11 大连海洋大学 Illumination regulation and control method for promoting growth of juvenile fish of sebastes schlegeli hilgendorf

Similar Documents

Publication Publication Date Title
Morais et al. New developments and biological insights into the farming of Solea senegalensis reinforcing its aquaculture potential
Bizeray et al. Early locomotor behaviour in genetic stocks of chickens with different growth rates
Cañavate et al. Feeding and development of Senegal sole (Solea senegalensis) larvae reared in different photoperiods
Dalton et al. Injurious pecking in domestic turkeys: development, causes, and potential solutions
Soliman et al. Light wavelengths/colors: Future prospects for broiler behavior and production
Willadino et al. Ingestion rate, survival and growth of newly released seahorse Hippocampus reidi fed exclusively on cultured live food items
Lu et al. Spawning and egg quality of the tilapia Oreochromis niloticus fed solely on raw Spirulina throughout three generations
Palińska-Żarska et al. Dynamics of yolk sac and oil droplet utilization and behavioural aspects of swim bladder inflation in burbot, Lota lota L., larvae during the first days of life, under laboratory conditions
JP6924474B2 (en) Breeding method
JP6986652B2 (en) Amberjack farmed fish breeding method and yellowtail farmed fish
Hamre et al. Roles of lipid‐soluble vitamins during ontogeny of marine fish larvae
You et al. Effects of different light sources and illumination methods on growth and body color of shrimp Litopenaeus vannamei
WO2017058803A1 (en) Alternating angle controlled wavelength lighting system to stimulate feeding in larval fish
Battaglene et al. Advances in the culture of striped trumpeter larvae: a review
JP2021525062A (en) Beetle powder and beetle breeding method with UV treatment to prepare such powder
Mohammed Assessment of the role of light in welfare of layers
JP2007525161A (en) Fish and their production
JP2021136948A (en) Guidance method of marine fish larval fish, and feeding method of marine fish larval fish using the guidance method
US20230165274A1 (en) Compositions comprising algae and methods of using same for increasing animal product production
KR20180102124A (en) Quantum dot-based illumination device for livestock and aquarium
Gisbert et al. European sea bass larval culture
Shawky et al. Evaluation of microalgae‐supplemented diets and enriched decapsulated artemia cyst powder as novel diets for post‐weaned common sole (Solea solea) larvae
Simsek et al. Effects of light color on growth performance, histomorphometric features of small intestine and some blood parameters in chukar partridges (Alectoris chukar)
JPH06197703A (en) Feed additive for livestock
US6959663B2 (en) Rearing of aquatic species with DHA-rich prey organisms

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323