JP2021136920A - Antibody against glycation end product, and use of the same - Google Patents

Antibody against glycation end product, and use of the same Download PDF

Info

Publication number
JP2021136920A
JP2021136920A JP2020037254A JP2020037254A JP2021136920A JP 2021136920 A JP2021136920 A JP 2021136920A JP 2020037254 A JP2020037254 A JP 2020037254A JP 2020037254 A JP2020037254 A JP 2020037254A JP 2021136920 A JP2021136920 A JP 2021136920A
Authority
JP
Japan
Prior art keywords
amino acid
acid sequence
antibody
ages
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020037254A
Other languages
Japanese (ja)
Inventor
哲郎 山本
Tetsuo Yamamoto
哲郎 山本
翔太 土田
Shota TSUCHIDA
翔太 土田
友明 重田
Tomoaki Shigeta
友明 重田
一美 佐々本
Kazumi Sasamoto
一美 佐々本
麻美 池鯉鮒
Asami Chirifu
麻美 池鯉鮒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bloom Tech Corp
Bloom Technology
Bloom Technology Corp
Original Assignee
Bloom Tech Corp
Bloom Technology
Bloom Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bloom Tech Corp, Bloom Technology, Bloom Technology Corp filed Critical Bloom Tech Corp
Priority to JP2020037254A priority Critical patent/JP2021136920A/en
Publication of JP2021136920A publication Critical patent/JP2021136920A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

To provide a monoclonal antibody having high selectivity and affinity to AGEs, particularly glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs, and an analytic method utilizing the antibody, and furthermore to provide a diagnostic method, a therapeutic method and a prevention method of a disease using the monoclonal antibody.SOLUTION: There is provide a monoclonal antibody and an analytic method using the antibody, and a diagnostic method, a therapeutic method and a prevention method of a disease.SELECTED DRAWING: Figure 30

Description

本発明は、終末糖化産物(AGEs)、特にグリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合するモノクローナル抗体またはその抗原結合断片に関する。 The present invention relates to advanced glycation end products (AGEs), particularly monoclonal antibodies or antigen-binding fragments thereof that bind to epitopes of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs.

終末糖化産物(AGEs)は、生体内でアミノ酸、主にリシンのアミノ基が還元糖によって非酵素的に修飾された後、酸化・脱水・縮合などの複雑な反応を経て生成する物質の総称である。加齢や高血糖状態で生成するAGEsは糖尿病合併症や動脈硬化などの生活習慣病と関連していると考えられている。特に、糖代謝中間体のグリセルアルデヒドに由来するAGEs(グリセルAGEs;Glycer−AGEs)は、診断、予防において有用なバイオマーカーとして注目されている(非特許文献1〜3)。 Advanced glycation end products (AGEs) are a general term for substances produced in vivo through complex reactions such as oxidation, dehydration, and condensation after the amino groups of amino acids, mainly lysine, are non-enzymatically modified by reducing sugars. be. AGEs produced by aging and hyperglycemia are considered to be associated with lifestyle-related diseases such as diabetic complications and arteriosclerosis. In particular, AGEs (advanced glycation end products; Glycer-AGEs) derived from glyceraldehyde, which is a sugar metabolism intermediate, are attracting attention as useful biomarkers in diagnosis and prevention (Non-Patent Documents 1 to 3).

AGEsに含まれる構造はいくつか特定されており、その一つであるカルボキシメチルリシン(Nε−(カルボキシメチル)リシン、CML)は、グルコースとリシンの反応で生成するアマドリ化合物の糖部分が遷移金属の存在下で酸化的に解裂してエリスロン酸とともに生成される物質として同定されている。AGEs研究の歴史から、AGEsの定量は構造が明らかになっているCMLの定量で代替されてきた。In vitroにおけるCMLの主な生成経路は、シッフ塩基あるいはアマドリ化合物の酸化的開裂によると考えられている。また、CMLはグリオキサール(GO)およびグリコールアルデヒドを前駆体とする分子内カニッツァロ反応やグルコースの自動酸化によっても生成することが知られている。タンパク質中のCMLは酸加水分解に安定なこともあり、高速液体クロマトグラフィー(HPLC)法やガスクロマトグラフィー/質量分析(GC/MS)法で定量することが可能である(非特許文献1)。AGEsに含まれる構造についていくつかの報告がされている(特許文献1〜3)。 Several structures contained in AGEs have been identified, and one of them, carboxymethyl lysine (N ε- (carboxymethyl) lysine, CML), has a transition of the sugar portion of the Amadori compound produced by the reaction of glucose and lysine. It has been identified as a substance that oxidatively cleaves in the presence of a metal and is produced with erythronic acid. From the history of AGEs research, quantification of AGEs has been replaced by quantification of CML whose structure has been clarified. The main pathway for CML production in vitro is believed to be due to oxidative cleavage of Schiff bases or Amadori compounds. It is also known that CML is also produced by an intramolecular cannizzaro reaction using glyoxal (GO) and glycolaldehyde as precursors and autoxidation of glucose. CML in protein may be stable to acid hydrolysis and can be quantified by high performance liquid chromatography (HPLC) method or gas chromatography / mass spectrometry (GC / MS) method (Non-Patent Document 1). .. Several reports have been made on the structures contained in AGEs (Patent Documents 1 to 3).

エンザイムイムノアッセイ(EIA)法によるAGEsの定量として、ウシ血清アルブミン(BSA)を用いて作製したAGEs(AGEs含有ウシ血清アルブミン、AGEs−BSA)を抗原とする、抗AGEs−BSA抗体を用いた競合enzyme−linked immunosorbent assay(ELISA)法に始まるが、後にこれらの抗体はCML構造をエピトープとする抗CML抗体であることが判明した(非特許文献1)。一方で、ウサギ血清アルブミン(RSA)にグリセルアルデヒド、グリコールアルデヒド、メチルグリオキサール、またはグリオキサールを添加してそれぞれ作製したAGEsを抗原として抗血清を調製し、得られた抗血清を精製してCML非結合性の画分を得たとの報告がされている(非特許文献4)。当該画分として得られたポリクローナル抗体を用いたELISAアッセイが行われており、CML以外のAGEsの定量方法として利用されている(非特許文献5および6)。 As a quantification of AGEs by an enzyme-linked immunosorbent assay (EIA) method, a competitive enzyme using an anti-AGEs-BSA antibody using AGEs (AGEs-containing bovine serum albumin, AGEs-BSA) prepared using bovine serum albumin (BSA) as an antigen. Starting with the -linked immunosorbent assay (ELISA) method, these antibodies were later found to be anti-CML antibodies having a CML structure as an epitope (Non-Patent Document 1). On the other hand, antisera are prepared using AGEs prepared by adding glyceraldehyde, glycolaldehyde, methylglyoxal, or glyoxal to rabbit serum albumin (RSA) as an antigen, and the obtained antiserum is purified to be non-CML. It has been reported that a binding fraction was obtained (Non-Patent Document 4). An ELISA assay using the polyclonal antibody obtained as the fraction has been performed, and it is used as a method for quantifying AGEs other than CML (Non-Patent Documents 5 and 6).

例えば、不妊治療の成否とグリセルアルデヒド由来AGEs(Glycer−AGEs)との相関についての研究がされており、血中のGlycer−AGEs量が高いと継続妊娠率が不良であるとの報告がされている(非特許文献1〜3、5および6)。また、AGEsが内皮間葉転換(endothelial-to-mesenchymal transition)を誘導すること、および内皮間葉転換が心血管疾患や線維性疾患の発生に関与することが報告されている(非特許文献13および14)。そういった研究においては、上述のポリクローナル抗体のうちの抗グリセルアルデヒド由来AGEs抗体を用いたELISAアッセイが利用されている(非特許文献5および6)。AGEsに結合活性を有する抗体についていくつかの報告がされている(特許文献4〜6)。 For example, studies have been conducted on the correlation between the success or failure of fertility treatment and glyceraldehyde-derived AGEs (Glycer-AGEs), and it has been reported that a high amount of Glycer-AGEs in the blood results in a poor continuous pregnancy rate. (Non-Patent Documents 1, 3, 5 and 6). It has also been reported that AGEs induce endothelial-to-mesenchymal transitions, and that epithelial-mesenchymal transitions are involved in the development of cardiovascular diseases and fibrotic diseases (Non-Patent Document 13). And 14). In such studies, ELISA assays using anti-glyceraldehyde-derived AGEs antibodies among the above-mentioned polyclonal antibodies are utilized (Non-Patent Documents 5 and 6). Several reports have been made on antibodies having binding activity to AGEs (Patent Documents 4 to 6).

各種AGEsの具体的な化学構造について多くの報告がされている(例えば、非特許文献8〜12および15)。また、グリセルアルデヒド由来のAGEsを抗原としたモノクローナル抗体の作製について報告がされている(非特許文献7)。 Many reports have been made on the specific chemical structures of various AGEs (for example, Non-Patent Documents 8 to 12 and 15). In addition, there has been a report on the production of monoclonal antibodies using AGEs derived from glyceraldehyde as antigens (Non-Patent Document 7).

特開2001−316389号公報;Japanese Unexamined Patent Publication No. 2001-316389; 特開2003−300961号公報;Japanese Patent Application Laid-Open No. 2003-30961; 特開2004−250404号公報;Japanese Unexamined Patent Publication No. 2004-250404; 特開2006−312621号公報;Japanese Unexamined Patent Publication No. 2006-31621; 特開2017−043595号公報;JP-A-2017-043595; 特開2019−041668号公報;JP-A-2019-041668;

金沢医科大学雑誌、37(4):141−161、2012;Kanazawa Medical University Magazine, 37 (4): 141-161, 2012; 金沢医科大学雑誌、40(2/3):95−103、2015;Kanazawa Medical University Magazine, 40 (2/3): 95-103, 2015; Diagnostics 6(2), 23, 2016; doi:10.3390;Diagnostics 6 (2), 23, 2016; doi: 10.3390; Molecular Medicine, 6(2): 114-125, 2000;Molecular Medicine, 6 (2): 114-125, 2000; Human Reproduction, 26(3), 604-610, 2011;Human Reproduction, 26 (3), 604-610, 2011; 日本未病システム学会雑誌、21(1):93−96、2015;Journal of Japan Society for Mibyou Systems, 21 (1): 93-96, 2015; Immunology Letters 167(2), 141-146, 2015;Immunology Letters 167 (2), 141-146, 2015; Biosci. Biotechnol. Biochem. 67(4), 930-932, 2003;Biosci. Biotechnol. Biochem. 67 (4), 930-932, 2003; J. Agric. Food Chem. 47(2), 379-390, 1999;J. Agric. Food Chem. 47 (2), 379-390, 1999; J. Agric. Food Chem. 25(6),1282-1287, 1977;J. Agric. Food Chem. 25 (6), 1282-1287, 1977; Agric. Biol. Chem.49(11),3131-3137;Agric. Biol. Chem.49 (11), 3131-3137; Biochem. J. 369(3), 705-719, 2003;Biochem. J. 369 (3), 705-719, 2003; Biomed. Res. Int. 684242,2015;Biomed. Res. Int. 684242,2015; Int. J. Mol. Sci. 18(10), 2017。Int. J. Mol. Sci. 18 (10), 2017. Free Radic. Biol. Med. 29(6), 557-567, 2000。Free Radic. Biol. Med. 29 (6), 557-567, 2000.

本発明の目的は、AGEs、特にグリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsに対して高い選択性および親和性を有するモノクローナル抗体、およびそれを利用した分析方法を提供することである。本発明のさらなる目的は、生体に障害を与えるか疾患の原因となるAGEsに含まれる化学構造をエピトープとするモノクローナル抗体、およびそれを利用した分析方法を提供することである。さらに本発明の目的は、前記モノクローナル抗体を用いた疾患の診断方法、治療方法および予防方法、特に不妊症または眼疾患の診断方法、治療方法、および予防方法を提供することである。 An object of the present invention is to provide a monoclonal antibody having high selectivity and affinity for AGEs, particularly AGEs derived from glyceraldehyde or AGEs derived from glycolaldehyde, and an analysis method using the same. A further object of the present invention is to provide a monoclonal antibody having a chemical structure contained in AGEs that damages a living body or causes a disease as an epitope, and an analysis method using the same. Furthermore, an object of the present invention is to provide a method for diagnosing, treating and preventing a disease using the monoclonal antibody, particularly a method for diagnosing, treating and preventing an infertility or an eye disease.

本発明者らは、研究の結果、特定のモノクローナル抗体が、良好な選択性および抗原への高い結合性を有し、分析方法や診断方法、治療方法および予防方法に利用可能であることを見いだし、本発明を完成させるに至った。 As a result of research, the present inventors have found that a specific monoclonal antibody has good selectivity and high binding property to an antigen and can be used for analytical methods, diagnostic methods, therapeutic methods and preventive methods. , The present invention has been completed.

本発明により、以下の発明が提供される。 The present invention provides the following inventions.

[1](1)重鎖可変領域の相補性決定領域(VH CDR1、VH CDR2、およびVH CDR3)または軽鎖可変領域の相補性決定領域(VL CDR1、VL CDR2、およびVL CDR3)のアミノ酸配列が、
(1−3H)
(a)VH CDR1:配列番号:23に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(b)VH CDR2:配列番号:24に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(c)VH CDR3:配列番号:25に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;もしくは
(1−3L)
(d)VL CDR1:配列番号:29に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(e)VL CDR2:配列番号:30に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(f)VL CDR3:配列番号:31に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
を含む、モノクローナル抗体またはその抗原結合断片。
[1] (1) Amino acid sequences of complementarity determining regions (VH CDR1, VH CDR2, and VH CDR3) of heavy chain variable regions or complementarity determining regions (VL CDR1, VL CDR2, and VL CDR3) of light chain variable regions. but,
(1-3H)
(A) VH CDR1: The amino acid sequence shown in SEQ ID NO: 23, or an amino acid sequence substantially the same as that;
(B) VH CDR2: Amino acid sequence shown in SEQ ID NO: 24, or an amino acid sequence substantially identical thereto; and (c) VH CDR3: Amino acid sequence shown in SEQ ID NO: 25, or an amino acid sequence substantially identical thereto. ; Or (1-3L)
(D) VL CDR1: The amino acid sequence shown in SEQ ID NO: 29, or an amino acid sequence substantially the same as that;
(E) VL CDR2: Amino acid sequence shown in SEQ ID NO: 30, or an amino acid sequence substantially the same as that; and (f) VL CDR3: Amino acid sequence shown in SEQ ID NO: 31 or an amino acid sequence substantially the same thereof. ;
A monoclonal antibody or antigen-binding fragment thereof, which comprises.

[2](1)重鎖可変領域の相補性決定領域(VH CDR1、VH CDR2、およびVH CDR3)および軽鎖可変領域の相補性決定領域(VL CDR1、VL CDR2、およびVL CDR3)のアミノ酸配列が、
(a)VH CDR1:配列番号:23に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(b)VH CDR2:配列番号:24に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(c)VH CDR3:配列番号:25に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(d)VL CDR1:配列番号:29に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(e)VL CDR2:配列番号:30に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(f)VL CDR3:配列番号:31に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
を含む、[1]に記載のモノクローナル抗体またはその抗原結合断片。
[2] (1) Amino acid sequences of the complementarity determining regions (VH CDR1, VH CDR2, and VH CDR3) of the heavy chain variable region and the complementarity determining regions (VL CDR1, VL CDR2, and VL CDR3) of the light chain variable region. but,
(A) VH CDR1: The amino acid sequence shown in SEQ ID NO: 23, or an amino acid sequence substantially the same as that;
(B) VH CDR2: Amino acid sequence shown in SEQ ID NO: 24, or an amino acid sequence substantially the same as that;
(C) VH CDR3: Amino acid sequence shown in SEQ ID NO: 25, or an amino acid sequence substantially the same as that;
(D) VL CDR1: The amino acid sequence shown in SEQ ID NO: 29, or an amino acid sequence substantially the same as that;
(E) VL CDR2: Amino acid sequence shown in SEQ ID NO: 30, or an amino acid sequence substantially the same as that; and (f) VL CDR3: Amino acid sequence shown in SEQ ID NO: 31 or an amino acid sequence substantially the same thereof. ;
The monoclonal antibody or antigen-binding fragment thereof according to [1], which comprises.

[3](1)重鎖可変領域および軽鎖可変領域のアミノ酸配列が、
配列番号:26のアミノ酸配列またはそれと実質的に同一のアミノ酸配列、および配列番号:32のアミノ酸配列またはそれと実質的に同一のアミノ酸配列;
配列番号:27のアミノ酸配列またはそれと実質的に同一のアミノ酸配列、および/または配列番号:33のアミノ酸配列またはそれと実質的に同一のアミノ酸配列;
配列番号:28のアミノ酸配列またはそれと実質的に同一のアミノ酸配列、および/または配列番号:34のアミノ酸配列またはそれと実質的に同一のアミノ酸配列;
を含む、[1]または[2]に記載のモノクローナル抗体またはその抗原結合断片。
[3] (1) The amino acid sequences of the heavy chain variable region and the light chain variable region are
The amino acid sequence of SEQ ID NO: 26 or substantially the same amino acid sequence, and the amino acid sequence of SEQ ID NO: 32 or substantially the same amino acid sequence;
The amino acid sequence of SEQ ID NO: 27 or substantially the same amino acid sequence and / or the amino acid sequence of SEQ ID NO: 33 or substantially the same amino acid sequence;
The amino acid sequence of SEQ ID NO: 28 or substantially the same amino acid sequence and / or the amino acid sequence of SEQ ID NO: 34 or substantially the same amino acid sequence;
The monoclonal antibody or antigen-binding fragment thereof according to [1] or [2], which comprises.

[4]グリセルアルデヒド由来AGEsに含まれるエピトープと結合する、[1]〜[5]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。 [4] The monoclonal antibody according to any one of [1] to [5] or an antigen-binding fragment thereof, which binds to an epitope contained in glyceraldehyde-derived AGEs.

[5]式(I)または(II):

Figure 2021136920
[式中、R、R、RおよびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択され、
およびXは、−O−、または−NH−を表し;
およびYは、水素原子、保護基、または基:
Figure 2021136920
を表し;
およびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択される]
の化合物、そのカチオンラジカル、またはそのジカチオンと結合する、[1]〜[5]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。 [5] Equation (I) or (II):
Figure 2021136920
[In the formula, R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a protecting group, and a peptide group having 1 to 1000 amino acid residues.
X 1 and X 2 represent -O-, or -NH-;
Y 1 and Y 2 are hydrogen atoms, protecting groups, or groups:
Figure 2021136920
Represents;
R 5 and R 6 are independently selected from hydrogen atoms, protecting groups, and peptide groups with 1 to 1000 amino acid residues]
The monoclonal antibody or antigen-binding fragment thereof according to any one of [1] to [5], which binds to the compound, its cation radical, or its dication.

[6]完全長抗体、Fab、Fab’、F(ab’)、Fv、scFv、dsFv、ダイアボディ、またはsc(Fv)である、[1]〜[6]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。 [6] The full-length antibody, Fab, Fab', F (ab') 2 , Fv, scFv, dsFv, diabody, or sc (Fv) 2 , according to any one of [1] to [6]. Monoclonal antibody or antigen-binding fragment thereof.

[7]マウス抗体、ヒト化抗体、ヒト抗体、キメラ抗体、またはその抗原結合断片である、[1]〜[6]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。 [7] The monoclonal antibody or an antigen-binding fragment thereof according to any one of [1] to [6], which is a mouse antibody, a humanized antibody, a human antibody, a chimeric antibody, or an antigen-binding fragment thereof.

[8]1×10−5M以下の解離定数(K値)でグリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合する、[1]〜[7]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。 [8] The monoclonal antibody according to any one of [1] to [7], which binds to an epitope of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs with a dissociation constant (K d value) of 1 × 10 -5 M or less. Or its antigen-binding fragment.

[9][1]〜[8]のいずれかに記載のモノクローナル抗体またはその抗原結合断片を含む医薬組成物。 [9] A pharmaceutical composition containing the monoclonal antibody according to any one of [1] to [8] or an antigen-binding fragment thereof.

[10]肥満、糖尿病、糖尿病網膜症、糖尿病白内障、糖尿病神経障害、糖尿病心筋症、糖尿病血管合併症、糖尿病性腎症、糖尿病性腎臓疾患、糖尿病足病変、糖尿病ケトアシドーシス、歯周病、加齢黄斑変性症、肺線維症、特発性肺線維症、細気管支周囲線維症、間質性肺疾患、肺がん、がん線維性肺疾患、慢性閉塞性肺疾患、急性下肢動脈塞栓症、末梢動脈疾患、末梢気道疾患、肺気腫、腎盂腎炎、糸球体硬化症、糸球体腎炎、メサンギウム増殖糸球体腎炎、糖尿病性ネフロパシー、腎性全身性線維症、慢性腎臓病、特発性後腹膜線維症、腎疾患、強皮症、腎間質線維症、女性不妊症、多嚢胞性卵巣症候群、卵巣機能不全、早期卵巣機能不全、卵巣がん、乳がん、子宮体がん、前立腺がん、男性不妊症、肝疾患、肝硬変、非アルコール性脂肪肝炎、肝がん、アテローム血栓性脳梗塞、アテローム性動脈硬化症、内頸動脈狭窄症、大動脈弁狭窄症、大動脈弁閉鎖不全症、心血管疾患、狭心症、うっ血性心不全、急性心不全、慢性心不全、虚血性心疾患、拡張型心筋症、心サルコイドーシス、高血圧、肺動脈性肺高血圧症、肺性心、心筋炎、血管狭窄心線維症、心筋梗塞後心線維症、心筋梗塞後左心室肥大、関節リウマチ、生活習慣病、脂質異常症、アルツハイマー病、血管性認知症、脳梗塞、脳腫瘍、脳血管障害、ぶどう膜炎、内分泌疾患、骨粗しょう症、舌がん、口腔がん、咽頭がん、食道がん、胃がん、大腸がん、直腸がん、膵臓がん、網膜色素変性症、糖尿病黄斑浮腫、レーバー先天性黒内障、シュタルガルト症、アッシャー症候群、コロイデレミア、桿体錐体ジストロフィー、錐体ジストロフィー、進行性網膜萎縮、黄斑ジストロフィー症、脈絡膜硬化症、全脈絡膜萎縮症、類嚢胞黄斑浮腫、ブドウ膜炎、網膜剥離、黄斑円孔、黄斑部毛細血管拡張症、緑内障、視神経症、虚血性網膜疾患、未熟児網膜症、網膜血管閉塞症、および網膜細動脈瘤から選択される疾患の診断、治療、または予防に用いるための、[9]に記載の医薬組成物。 [10] Obesity, diabetes, diabetic retinopathy, diabetic cataract, diabetic neuropathy, diabetic myocardium, diabetic vascular complications, diabetic nephropathy, diabetic kidney disease, diabetic foot lesions, diabetic ketoacidosis, periodontal disease, addition Age-yellow spot degeneration, pulmonary fibrosis, idiopathic pulmonary fibrosis, peribronchial fibrosis, interstitial lung disease, lung cancer, cancer fibrosis, chronic obstructive pulmonary disease, acute lower extremity arterial embolism, peripheral arteries Diseases, peripheral airway disease, pulmonary emphysema, nephritis, glomerulosclerosis, glomerulonephritis, mesangial proliferative glomerulonephritis, diabetic nephropathy, renal systemic fibrosis, chronic kidney disease, idiopathic retroperitoneal fibrosis, renal disease , Strong skin disease, renal interstitial fibrosis, female infertility, polycystic ovary syndrome, ovarian insufficiency, early ovarian insufficiency, ovarian cancer, breast cancer, uterine body cancer, prostate cancer, male infertility, liver Diseases, liver cirrhosis, non-alcoholic steatosis, liver cancer, atherosclerotic cerebral infarction, atherosclerosis, internal carotid artery stenosis, aortic valve stenosis, aortic valve insufficiency, cardiovascular disease, angina , Congestive heart failure, acute heart failure, chronic heart failure, ischemic heart disease, dilated cardiomyopathy, cardiac sarcoidosis, hypertension, pulmonary arterial pulmonary hypertension, pulmonary heart, myocarditis, vascular stenosis heart fibrosis, post-myocardial infarction heart fiber Disease, left ventricular hypertrophy after myocardial infarction, rheumatoid arthritis, lifestyle disease, dyslipidemia, Alzheimer's disease, vascular dementia, cerebral infarction, brain tumor, cerebrovascular disorder, fibrosis, endocrine disease, osteoporosis, tongue Oral cancer, pharyngeal cancer, esophageal cancer, gastric cancer, colon cancer, rectal cancer, pancreatic cancer, retinal pigment degeneration, diabetic luteal edema, Labor congenital melanosis, Stargart's disease, Asher syndrome, colloideremia, Rod pyramidal dystrophy, pyramidal dystrophy, progressive retinal atrophy, luteal dystrophy, choroidal sclerosis, total choroidal atrophy, cystic edema, vegetitis, retinal detachment, luteal foramen, luteal capillary dilatation The medicament according to [9], which is used for diagnosing, treating, or preventing a disease selected from glaucoma, optic neuropathy, ischemic retinal disease, premature infant retinosis, retinal vascular occlusion, and retinal aneurysm. Composition.

[11]糖尿病、耐糖能異常、網膜症、腎症、糖尿病に伴う合併症、末梢神経障害、下肢壊疽、動脈硬化、血栓症、非アルコール性脂肪性肝疾患、非アルコール性脂肪肝炎、がん、不妊症、多嚢胞性卵巣症候群、卵巣機能障害、中枢神経障害、およびアルツハイマー病を含む神経変性疾患から選択される疾患の診断、治療、または予防に用いるための、[9]に記載の医薬組成物。 [11] Diabetes mellitus, impaired glucose tolerance, retinopathy, nephropathy, complications associated with diabetes mellitus, peripheral neuropathy, lower limb necrosis, arteriosclerosis, thrombosis, non-alcoholic fatty liver disease, non-alcoholic steatosis, cancer The medicament according to [9], which is used for diagnosing, treating, or preventing a disease selected from neurodegenerative diseases including infertility, polycystic ovary syndrome, ovarian dysfunction, central neuropathy, and Alzheimer's disease. Composition.

[12]疾患が、メラノーマ、肺がん、および肝臓がんから選択されるがんである、[11]に記載の医薬組成物。 [12] The pharmaceutical composition according to [11], wherein the disease is cancer selected from melanoma, lung cancer, and liver cancer.

[13]糖尿病腎症、腎盂腎炎、糸球体硬化症、糸球体腎炎、腎性全身性線維症、慢性腎臓病、腎間質線維症から選択される疾患の診断、治療、または予防に用いるための、[9]に記載の医薬組成物。
[14]眼疾患の診断、治療、または予防に用いるための、[9]に記載の医薬組成物。
[13] For use in diagnosis, treatment, or prevention of diseases selected from diabetic nephropathy, nephritis, glomerulonephritis, glomerulonephritis, renal systemic fibrosis, chronic kidney disease, and renal interstitial fibrosis. The pharmaceutical composition according to [9].
[14] The pharmaceutical composition according to [9] for use in the diagnosis, treatment, or prevention of eye diseases.

[15]眼疾患が、糖尿病網膜症、糖尿病白内障、網膜色素変性症、糖尿病黄斑浮腫、レーバー先天性黒内障、シュタルガルト症、アッシャー症候群、コロイデレミア、桿体錐体ジストロフィー、錐体ジストロフィー、進行性網膜萎縮、加齢黄斑変性症、黄斑ジストロフィー症、脈絡膜硬化症、全脈絡膜萎縮症、類嚢胞黄斑浮腫、ブドウ膜炎、網膜剥離、黄斑円孔、黄斑部毛細血管拡張症、緑内障、視神経症、虚血性網膜疾患、未熟児網膜症、網膜血管閉塞症、および網膜細動脈瘤から選択される、[14]に記載の医薬組成物。 [15] Eye diseases include diabetic retinopathy, diabetic cataract, retinal pigment degeneration, diabetic macular edema, Labor congenital melanosis, Stargart's disease, Asher syndrome, colloideremia, rod pyramidal dystrophy, pyramidal dystrophy, progressive retinal atrophy. , Age-related macular degeneration, macular dystrophy, choriosclerosis, total choroidal atrophy, cystic macular edema, vaginitis, retinal detachment, macular foramen, macular capillary dilatation, glaucoma, optic neuropathy, ischemic The pharmaceutical composition according to [14], which is selected from retinal diseases, premature infant retina, retinal vascular occlusion, and retinal macula.

[16][1]〜[8]のいずれかに記載のモノクローナル抗体またはその抗原結合断片をコードする、核酸。
[17][16]に記載の核酸を含む発現ベクター。
[18][17]の発現ベクターを含む宿主細胞。
[16] A nucleic acid encoding the monoclonal antibody according to any one of [1] to [8] or an antigen-binding fragment thereof.
[17] An expression vector containing the nucleic acid according to [16].
[18] A host cell containing the expression vector of [17].

[A1]1)重鎖可変領域の相補性決定領域(VH CDR1、VH CDR2、およびVH CDR3)および軽鎖可変領域の相補性決定領域(VL CDR1、VL CDR2、およびVL CDR3)のアミノ酸配列が、
(a)VH CDR1:配列番号:1に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(b)VH CDR2:配列番号:2に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(c)VH CDR3:配列番号:3に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(d)VL CDR1:配列番号:5に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(e)VL CDR2:配列番号:6に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(f)VL CDR3:配列番号:7に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列
を含む、モノクローナル抗体またはその抗原結合断片。
または
2)グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープとの結合について、前記抗体またはその抗原結合断片と交差競合する抗体またはその抗原結合断片である、
グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合するモノクローナル抗体またはその抗原結合断片。
[A1] 1) The amino acid sequences of the complementarity determining regions (VH CDR1, VH CDR2, and VH CDR3) of the heavy chain variable region and the complementarity determining regions (VL CDR1, VL CDR2, and VL CDR3) of the light chain variable region are ,
(A) The amino acid sequence shown in VH CDR1: SEQ ID NO: 1 or an amino acid sequence substantially the same as that;
(B) VH CDR2: Amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence substantially the same as that;
(C) VH CDR3: Amino acid sequence shown in SEQ ID NO: 3, or an amino acid sequence substantially the same as that;
(D) VL CDR1: The amino acid sequence shown in SEQ ID NO: 5, or an amino acid sequence substantially the same as that;
(E) VL CDR2: Amino acid sequence shown in SEQ ID NO: 6, or an amino acid sequence substantially the same as that;
(F) VL CDR3: A monoclonal antibody or an antigen-binding fragment thereof, which comprises the amino acid sequence shown in SEQ ID NO: 7, or an amino acid sequence substantially identical thereto.
Or 2) An antibody or an antigen-binding fragment thereof that cross-competes with the antibody or an antigen-binding fragment thereof with respect to binding to an epitope of AGEs derived from glyceraldehyde or AGEs derived from glycolaldehyde.
A monoclonal antibody or an antigen-binding fragment thereof that binds to an epitope of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs.

[A2]式(I)または(II):

Figure 2021136920
[式中、R、R、RおよびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択され、
およびXは、−O−、または−NH−を表し;
およびYは、水素原子、保護基、または基:
Figure 2021136920
を表し;
およびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択される]
の化合物、そのカチオンラジカル、またはそのジカチオンと結合するモノクローナル抗体またはその抗原結合断片。 [A2] Formula (I) or (II):
Figure 2021136920
[In the formula, R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a protecting group, and a peptide group having 1 to 1000 amino acid residues.
X 1 and X 2 represent -O-, or -NH-;
Y 1 and Y 2 are hydrogen atoms, protecting groups, or groups:
Figure 2021136920
Represents;
R 5 and R 6 are independently selected from hydrogen atoms, protecting groups, and peptide groups with 1 to 1000 amino acid residues]
Compound, its cation radical, or a monoclonal antibody or its antigen-binding fragment that binds to its dication.

[A3]1)重鎖可変領域および軽鎖可変領域のアミノ酸配列が、
配列番号:4のアミノ酸配列またはそれと実質的に同一のアミノ酸配列、および配列番号:8のアミノ酸配列またはそれと実質的に同一のアミノ酸配列;または
2)グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープとの結合について、前記抗体またはその抗原結合断片と交差競合する抗体またはその抗原結合断片である、[A1]に記載のモノクローナル抗体またはその抗原結合断片。
[A3] 1) The amino acid sequences of the heavy chain variable region and the light chain variable region are
SEQ ID NO: 4 or substantially the same amino acid sequence, and SEQ ID NO: 8 or substantially the same amino acid sequence; or 2) Glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs epitopes The monoclonal antibody or antigen-binding fragment thereof according to [A1], which is an antibody or antigen-binding fragment thereof that cross-competes with the antibody or antigen-binding fragment thereof with respect to binding to.

[A4]前記エピトープがグリセルアルデヒド由来AGEsのエピトープである、[A1]〜[A3]のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片。
[A5]完全長抗体、Fab、Fab’、F(ab’)、Fv、scFv、dsFv、ダイアボディ、またはsc(Fv)である、[A1]〜[A4]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。
[A4] The monoclonal antibody or antigen-binding fragment thereof according to any one of [A1] to [A3], wherein the epitope is an epitope of AGEs derived from glyceraldehyde.
[A5] The full-length antibody, Fab, Fab', F (ab') 2 , Fv, scFv, dsFv, diabody, or sc (Fv) 2 , according to any one of [A1] to [A4]. Monoclonal antibody or antigen-binding fragment thereof.

[A6]マウス抗体、ヒト化抗体、ヒト抗体、キメラ抗体、またはその抗原結合断片である、[A1]〜[A5]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。
[A7]1×10−5M以下の解離定数(K値)でグリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合する、[A1]〜[A6]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。
[A6] The monoclonal antibody or the antigen-binding fragment thereof according to any one of [A1] to [A5], which is a mouse antibody, a humanized antibody, a human antibody, a chimeric antibody, or an antigen-binding fragment thereof.
[A7] The monoclonal antibody according to any one of [A1] to [A6], which binds to an epitope of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs with a dissociation constant (K d value) of 1 × 10-5 M or less. Or its antigen-binding fragment.

[A8][A1]〜[A7]のいずれかに記載のモノクローナル抗体またはその抗原結合断片を含む医薬組成物。
[A9]肥満、糖尿病、糖尿病網膜症、糖尿病白内障、糖尿病神経障害、糖尿病心筋症、糖尿病血管合併症、糖尿病性腎症、糖尿病性腎臓疾患、糖尿病足病変、糖尿病ケトアシドーシス、歯周病、加齢黄斑変性症、肺線維症、特発性肺線維症、細気管支周囲線維症、間質性肺疾患、肺がん、がん線維性肺疾患、慢性閉塞性肺疾患、急性下肢動脈塞栓症、末梢動脈疾患、末梢気道疾患、肺気腫、腎盂腎炎、糸球体硬化症、糸球体腎炎、メサンギウム増殖糸球体腎炎、糖尿病性ネフロパシー、腎性全身性線維症、慢性腎臓病、特発性後腹膜線維症、腎疾患、強皮症、腎間質線維症、女性不妊症、多嚢胞性卵巣症候群、卵巣機能不全、早期卵巣機能不全、卵巣がん、乳がん、子宮体がん、前立腺がん、男性不妊症、肝疾患、肝硬変、非アルコール性脂肪肝炎、肝がん、アテローム血栓性脳梗塞、アテローム性動脈硬化症、内頸動脈狭窄症、大動脈弁狭窄症、大動脈弁閉鎖不全症、心血管疾患、狭心症、うっ血性心不全、急性心不全、慢性心不全、虚血性心疾患、拡張型心筋症、心サルコイドーシス、高血圧、肺動脈性肺高血圧症、肺性心、心筋炎、血管狭窄心線維症、心筋梗塞後心線維症、心筋梗塞後左心室肥大、関節リウマチ、生活習慣病、脂質異常症、アルツハイマー病、血管性認知症、脳梗塞、脳腫瘍、脳血管障害、ぶどう膜炎、内分泌疾患、骨粗しょう症、舌がん、口腔がん、咽頭がん、食道がん、胃がん、大腸がん、直腸がん、膵臓がんから選択される疾患の診断、治療、または予防に用いるための、[A8]に記載の医薬組成物。
[A8] A pharmaceutical composition containing the monoclonal antibody according to any one of [A1] to [A7] or an antigen-binding fragment thereof.
[A9] Obesity, diabetes, diabetic retinopathy, diabetic cataract, diabetic neuropathy, diabetic myocardium, diabetic vascular complications, diabetic nephropathy, diabetic kidney disease, diabetic foot lesions, diabetic ketoacidosis, periodontal disease, addition Age-yellow spot degeneration, pulmonary fibrosis, idiopathic pulmonary fibrosis, peribronchial fibrosis, interstitial lung disease, lung cancer, cancer fibrosis, chronic obstructive pulmonary disease, acute lower extremity arterial embolism, peripheral arteries Diseases, peripheral airway disease, pulmonary emphysema, nephritis, glomerulosclerosis, glomerulonephritis, mesangial proliferative glomerulonephritis, diabetic nephropathy, renal systemic fibrosis, chronic kidney disease, idiopathic retroperitoneal fibrosis, renal disease , Strong skin disease, renal interstitial fibrosis, female infertility, polycystic ovary syndrome, ovarian dysfunction, early ovarian dysfunction, ovarian cancer, breast cancer, uterine body cancer, prostate cancer, male infertility, liver Diseases, liver cirrhosis, non-alcoholic steatosis, liver cancer, atherosclerotic cerebral infarction, atherosclerosis, internal carotid artery stenosis, aortic valve stenosis, aortic valve insufficiency, cardiovascular disease, angina , Congestive heart failure, acute heart failure, chronic heart failure, ischemic heart disease, dilated cardiomyopathy, cardiac sarcoidosis, hypertension, pulmonary arterial pulmonary hypertension, pulmonary heart, myocarditis, vascular stenosis heart fibrosis, post-myocardial infarction heart fiber Disease, left ventricular hypertrophy after myocardial infarction, rheumatoid arthritis, lifestyle disease, dyslipidemia, Alzheimer's disease, vascular dementia, cerebral infarction, brain tumor, cerebrovascular disorder, fibrosis, endocrine disease, osteoporosis, tongue Described in [A8] for use in diagnosing, treating, or preventing a disease selected from oral cancer, pharyngeal cancer, esophageal cancer, gastric cancer, colon cancer, rectal cancer, and pancreatic cancer. Pharmaceutical composition.

[A10]糖尿病、耐糖能異常、網膜症、腎症、糖尿病に伴う合併症、末梢神経障害、下肢壊疽、動脈硬化、血栓症、非アルコール性脂肪性肝疾患、非アルコール性脂肪肝炎、がん、不妊症、多嚢胞性卵巣症候群、卵巣機能障害、中枢神経障害、およびアルツハイマー病
を含む神経変性疾患から選択される疾患の診断、治療、または予防に用いるための、[A8]に記載の医薬組成物。
[A10] Diabetes mellitus, impaired glucose tolerance, retinopathy, nephropathy, diabetic complications, peripheral neuropathy, lower limb necrosis, arteriosclerosis, thrombosis, non-alcoholic fatty liver disease, non-alcoholic steatosis, cancer The medicament according to [A8] for use in diagnosing, treating, or preventing a disease selected from neurodegenerative diseases including infertility, polycystic ovary syndrome, ovarian dysfunction, central neuropathy, and Alzheimer's disease. Composition.

[A11]疾患が、メラノーマ、肺がん、および肝臓がんから選択されるがんである、[A8]に記載の医薬組成物。
[A12][A1]〜[A7]のいずれかに記載のモノクローナル抗体またはその抗原結合断片をコードする、核酸。
[A13][A12]に記載の核酸を含む発現ベクター。
[A14][A13]の発現ベクターを含む宿主細胞。
[A11] The pharmaceutical composition according to [A8], wherein the disease is cancer selected from melanoma, lung cancer, and liver cancer.
[A12] A nucleic acid encoding the monoclonal antibody according to any one of [A1] to [A7] or an antigen-binding fragment thereof.
[A13] An expression vector containing the nucleic acid according to [A12].
[A14] A host cell containing the expression vector of [A13].

[A15]式(I)または(II):

Figure 2021136920
[式中、R、R、RおよびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択され、
およびXは、−O−、または−NH−を表し;
およびYは、水素原子、保護基、または基:
Figure 2021136920
を表し;
およびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択される]
の化合物、そのカチオンラジカル、またはそのジカチオン、またはその塩。 [A15] Formula (I) or (II):
Figure 2021136920
[In the formula, R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a protecting group, and a peptide group having 1 to 1000 amino acid residues.
X 1 and X 2 represent -O-, or -NH-;
Y 1 and Y 2 are hydrogen atoms, protecting groups, or groups:
Figure 2021136920
Represents;
R 5 and R 6 are independently selected from hydrogen atoms, protecting groups, and peptide groups with 1 to 1000 amino acid residues]
Compound, its cation radical, or its dication, or its salt.

[A16]1)α位のアミノ基が保護されたリシンおよびグリセルアルデヒドを反応させて、反応混合物を得ること;
2)反応混合物を分画し、式(Ia)、(Ib)、(IIa)」、または(IIb):

Figure 2021136920
[式中、R、R、およびRは、保護基である]
で表される化合物を含む画分を得ること
3)当該画分を動物への免疫を行い、当該画分を抗原とする抗体を得ること
を含む、抗体の製造方法。 [A16] 1) A reaction mixture is obtained by reacting lysine and glyceraldehyde in which the amino group at the α-position is protected;
2) Fractionate the reaction mixture and formula (Ia), (Ib), (IIa) ”, or (IIb) :.
Figure 2021136920
[In the formula, R 1 , R 3 , and R 6 are protecting groups]
3) A method for producing an antibody, which comprises immunizing an animal with the fraction and obtaining an antibody using the fraction as an antigen.

[B1]式(XI)または(XII):

Figure 2021136920
[式中、R、R、RおよびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択され、
は、水素原子、または基−CH−X−Yを表し;
は、水素原子、または基−CH−X−Yを表し;
およびXは、−O−、または−NH−を表し;
およびYは、水素原子、保護基、または基:
Figure 2021136920
を表し;
およびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択される]
の化合物、そのカチオンラジカル、またはそのジカチオンと結合するモノクローナル抗体またはその抗原結合断片。 [B1] Equation (XI) or (XII):
Figure 2021136920
[In the formula, R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a protecting group, and a peptide group having 1 to 1000 amino acid residues.
Q 1 represents a hydrogen atom or group -CH 2- X 1- Y 1 ;
Q 2 represents a hydrogen atom or group -CH 2- X 2- Y 2 ;
X 1 and X 2 represent -O-, or -NH-;
Y 1 and Y 2 are hydrogen atoms, protecting groups, or groups:
Figure 2021136920
Represents;
R 5 and R 6 are independently selected from hydrogen atoms, protecting groups, and peptide groups with 1 to 1000 amino acid residues]
Compound, its cation radical, or a monoclonal antibody or its antigen-binding fragment that binds to its dication.

[B2]式(I)または(II):

Figure 2021136920
[式中、R、R、RおよびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択され、
およびXは、−O−、または−NH−を表し;
およびYは、水素原子、保護基、または基:
Figure 2021136920
を表し;
およびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択される]
の化合物、そのカチオンラジカル、またはそのジカチオンと結合する、[B1]に記載のモノクローナル抗体またはその抗原結合断片。 [B2] Equation (I) or (II):
Figure 2021136920
[In the formula, R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a protecting group, and a peptide group having 1 to 1000 amino acid residues.
X 1 and X 2 represent -O-, or -NH-;
Y 1 and Y 2 are hydrogen atoms, protecting groups, or groups:
Figure 2021136920
Represents;
R 5 and R 6 are independently selected from hydrogen atoms, protecting groups, and peptide groups with 1 to 1000 amino acid residues]
The monoclonal antibody or antigen-binding fragment thereof according to [B1], which binds to the compound, its cation radical, or its dication.

[B3](1)重鎖可変領域の相補性決定領域(VH CDR1、VH CDR2、およびVH CDR3)または軽鎖可変領域の相補性決定領域(VL CDR1、VL CDR2、およびVL CDR3)のアミノ酸配列が、
(1−1H)
(a)VH CDR1:配列番号:1に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(b)VH CDR2:配列番号:2に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(c)VH CDR3:配列番号:3に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(1−1L)
(d)VL CDR1:配列番号:5に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(e)VL CDR2:配列番号:6に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(f)VL CDR3:配列番号:7に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(1−2H)
(g)VH CDR1:配列番号:15に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(h)VH CDR2:配列番号:16に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(i)VH CDR3:配列番号:17に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;または
(1−2L)
(j)VL CDR1:配列番号:19に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(k)VL CDR2:配列番号:20に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(l)VL CDR3:配列番号:21に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
を含む、モノクローナル抗体またはその抗原結合断片;
または
(2)グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープとの結合について、前記(1)のモノクローナル抗体またはその抗原結合断片と交差競合するモノクローナル抗体またはその抗原結合断片であり、
グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsに含まれるエピトープと結合する、モノクローナル抗体またはその抗原結合断片。
[B3] (1) Amino acid sequences of complementarity determining regions (VH CDR1, VH CDR2, and VH CDR3) of heavy chain variable regions or complementarity determining regions (VL CDR1, VL CDR2, and VL CDR3) of light chain variable regions. but,
(1-1H)
(A) The amino acid sequence shown in VH CDR1: SEQ ID NO: 1 or an amino acid sequence substantially the same as that;
(B) VH CDR2: Amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence substantially the same as that; and (c) VH CDR3: Amino acid sequence shown in SEQ ID NO: 3, or an amino acid sequence substantially the same as that. ;
(1-1L)
(D) VL CDR1: The amino acid sequence shown in SEQ ID NO: 5, or an amino acid sequence substantially the same as that;
(E) VL CDR2: Amino acid sequence shown in SEQ ID NO: 6, or an amino acid sequence substantially the same as that; and (f) VL CDR3: Amino acid sequence shown in SEQ ID NO: 7 or an amino acid sequence substantially the same as the amino acid sequence. ;
(1-2H)
(G) VH CDR1: The amino acid sequence shown in SEQ ID NO: 15, or an amino acid sequence substantially the same as that;
(H) VH CDR2: Amino acid sequence shown in SEQ ID NO: 16 or an amino acid sequence substantially identical thereto; and (i) VH CDR3: Amino acid sequence shown in SEQ ID NO: 17 or an amino acid sequence substantially identical thereto. ; Or (1-2L)
(J) VL CDR1: The amino acid sequence shown in SEQ ID NO: 19, or an amino acid sequence substantially the same as that;
(K) VL CDR2: Amino acid sequence shown in SEQ ID NO: 20, or an amino acid sequence substantially the same as that;
(L) VL CDR3: Amino acid sequence shown in SEQ ID NO: 21, or an amino acid sequence substantially the same as that;
Monoclonal antibody or antigen-binding fragment thereof, including;
Or (2) a monoclonal antibody or an antigen-binding fragment thereof that cross-competes with the monoclonal antibody of (1) above or an antigen-binding fragment thereof with respect to binding to an epitope of AGEs derived from glyceraldehyde or AGEs derived from glycolaldehyde.
A monoclonal antibody or an antigen-binding fragment thereof that binds to an epitope contained in glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs.

[B4](1)重鎖可変領域の相補性決定領域(VH CDR1、VH CDR2、およびVH CDR3)および軽鎖可変領域の相補性決定領域(VL CDR1、VL CDR2、およびVL CDR3)のアミノ酸配列が、
(1−1)
(a)VH CDR1:配列番号:1に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(b)VH CDR2:配列番号:2に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(c)VH CDR3:配列番号:3に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(d)VL CDR1:配列番号:5に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(e)VL CDR2:配列番号:6に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(f)VL CDR3:配列番号:7に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;もしくは
(1−2)
(g)VH CDR1:配列番号:15に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(h)VH CDR2:配列番号:16に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(i)VH CDR3:配列番号:17に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(j)VL CDR1:配列番号:19に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(k)VL CDR2:配列番号:20に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(l)VL CDR3:配列番号:21に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
を含む、モノクローナル抗体またはその抗原結合断片;
または
(2)グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープとの結合について、前記(1)のモノクローナル抗体またはその抗原結合断片と交差競合するモノクローナル抗体またはその抗原結合断片であり、
グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsに含まれるエピトープと結合する、[B1]〜[B3]のいずれかに記載の、モノクローナル抗体またはその抗原結合断片。
[B4] (1) Amino acid sequences of the complementarity determining regions (VH CDR1, VH CDR2, and VH CDR3) of the heavy chain variable region and the complementarity determining regions (VL CDR1, VL CDR2, and VL CDR3) of the light chain variable region. but,
(1-1)
(A) The amino acid sequence shown in VH CDR1: SEQ ID NO: 1 or an amino acid sequence substantially the same as that;
(B) VH CDR2: Amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence substantially the same as that;
(C) VH CDR3: Amino acid sequence shown in SEQ ID NO: 3, or an amino acid sequence substantially the same as that;
(D) VL CDR1: The amino acid sequence shown in SEQ ID NO: 5, or an amino acid sequence substantially the same as that;
(E) VL CDR2: Amino acid sequence shown in SEQ ID NO: 6, or an amino acid sequence substantially the same as that; and (f) VL CDR3: Amino acid sequence shown in SEQ ID NO: 7 or an amino acid sequence substantially the same as the amino acid sequence. Or (1-2)
(G) VH CDR1: The amino acid sequence shown in SEQ ID NO: 15, or an amino acid sequence substantially the same as that;
(H) VH CDR2: Amino acid sequence shown in SEQ ID NO: 16, or an amino acid sequence substantially the same as that;
(I) VH CDR3: Amino acid sequence shown in SEQ ID NO: 17, or an amino acid sequence substantially the same as that;
(J) VL CDR1: The amino acid sequence shown in SEQ ID NO: 19, or an amino acid sequence substantially the same as that;
(K) VL CDR2: Amino acid sequence shown in SEQ ID NO: 20, or an amino acid sequence substantially the same as that;
(L) VL CDR3: Amino acid sequence shown in SEQ ID NO: 21, or an amino acid sequence substantially the same as that;
Monoclonal antibody or antigen-binding fragment thereof, including;
Or (2) a monoclonal antibody or an antigen-binding fragment thereof that cross-competes with the monoclonal antibody of (1) above or an antigen-binding fragment thereof with respect to binding to an epitope of AGEs derived from glyceraldehyde or AGEs derived from glycolaldehyde.
The monoclonal antibody or antigen-binding fragment thereof according to any one of [B1] to [B3], which binds to an epitope contained in glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs.

[B5](1)重鎖可変領域および軽鎖可変領域のアミノ酸配列が、
配列番号:4のアミノ酸配列またはそれと実質的に同一のアミノ酸配列、および/または配列番号:8のアミノ酸配列またはそれと実質的に同一のアミノ酸配列;もしくは
配列番号:18のアミノ酸配列またはそれと実質的に同一のアミノ酸配列、および/または配列番号:22のアミノ酸配列またはそれと実質的に同一のアミノ酸配列;
または
(2)グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープとの結合について、前記(1)に記載の抗体またはその抗原結合断片と交差競合する抗体またはその抗原結合断片であり、
グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsに含まれるエピトープと結合する、[B1]〜[B4]のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片。
[B5] (1) The amino acid sequences of the heavy chain variable region and the light chain variable region are
The amino acid sequence of SEQ ID NO: 4 or substantially the same amino acid sequence and / or the amino acid sequence of SEQ ID NO: 8 or substantially the same amino acid sequence; or the amino acid sequence of SEQ ID NO: 18 or substantially the same thereof. Identical amino acid sequence and / or amino acid sequence of SEQ ID NO: 22 or substantially identical amino acid sequence;
Or (2) an antibody or an antigen-binding fragment thereof that cross-competes with the antibody described in (1) above or an antigen-binding fragment thereof with respect to binding to an epitope of AGEs derived from glyceraldehyde or AGEs derived from glycolaldehyde.
The monoclonal antibody or antigen-binding fragment thereof according to any one of [B1] to [B4], which binds to an epitope contained in glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs.

[B6]グリセルアルデヒド由来AGEsに含まれるエピトープと結合する、[B1]〜[B5]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。 [B6] The monoclonal antibody according to any one of [B1] to [B5] or an antigen-binding fragment thereof, which binds to an epitope contained in glyceraldehyde-derived AGEs.

[B7]完全長抗体、Fab、Fab’、F(ab’)、Fv、scFv、dsFv、ダイアボディ、またはsc(Fv)である、[B1]〜[B6]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。 [B7] The full-length antibody, Fab, Fab', F (ab') 2 , Fv, scFv, dsFv, diabody, or sc (Fv) 2 , according to any one of [B1] to [B6]. Monoclonal antibody or antigen-binding fragment thereof.

[B8]マウス抗体、ヒト化抗体、ヒト抗体、キメラ抗体、またはその抗原結合断片である、[B1]〜[B7]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。 [B8] The monoclonal antibody or the antigen-binding fragment thereof according to any one of [B1] to [B7], which is a mouse antibody, a humanized antibody, a human antibody, a chimeric antibody, or an antigen-binding fragment thereof.

[B9]1×10−5M以下の解離定数(K値)でグリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合する、[B1]〜[B8]のいずれかに記載のモノクローナル抗体またはその抗原結合断片。 [B9] The monoclonal antibody according to any one of [B1] to [B8], which binds to an epitope of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs with a dissociation constant (K d value) of 1 × 10 -5 M or less. Or its antigen-binding fragment.

[B10][B1]〜[B9]のいずれかに記載のモノクローナル抗体またはその抗原結合断片を含む医薬組成物。
[B11]肥満、糖尿病、糖尿病網膜症、糖尿病白内障、糖尿病神経障害、糖尿病心筋症、糖尿病血管合併症、糖尿病性腎症、糖尿病性腎臓疾患、糖尿病足病変、糖尿病ケトアシドーシス、歯周病、加齢黄斑変性症、肺線維症、特発性肺線維症、細気管支周囲線維症、間質性肺疾患、肺がん、がん線維性肺疾患、慢性閉塞性肺疾患、急性下肢動脈塞栓症、末梢動脈疾患、末梢気道疾患、肺気腫、腎盂腎炎、糸球体硬化症、糸球体腎炎、メサンギウム増殖糸球体腎炎、糖尿病性ネフロパシー、腎性全身性線維症、慢性腎臓病、特発性後腹膜線維症、腎疾患、強皮症、腎間質線維症、女性不妊症、多嚢胞性卵巣症候群、卵巣機能不全、早期卵巣機能不全、卵巣がん、乳がん、子宮体がん、前立腺がん、男性不妊症、肝疾患、肝硬変、非アルコール性脂肪肝炎、肝がん、アテローム血栓性脳梗塞、アテローム性動脈硬化症、内頸動脈狭窄症、大動脈弁狭窄症、大動脈弁閉鎖不全症、心血管疾患、狭心症、うっ血性心不全、急性心不全、慢性心不全、虚血性心疾患、拡張型心筋症、心サルコイドーシス、高血圧、肺動脈性肺高血圧症、肺性心、心筋炎、血管狭窄心線維症、心筋梗塞後心線維症、心筋梗塞後左心室肥大、関節リウマチ、生活習慣病、脂質異常症、アルツハイマー病、血管性認知症、脳梗塞、脳腫瘍、脳血管障害、ぶどう膜炎、内分泌疾患、骨粗しょう症、舌がん、口腔がん、咽頭がん、食道がん、胃がん、大腸がん、直腸がん、膵臓がん、網膜色素変性症、レーバー先天性黒内障、シュタルガルト症、アッシャー症候群、コロイデレミア、桿体錐体ジストロフィー、錐体ジストロフィー、進行性網膜萎縮、黄斑ジストロフィー症、脈絡膜硬化症、全脈絡膜萎縮症、類嚢胞黄斑浮腫、ブドウ膜炎、網膜剥離、黄斑円孔、黄斑部毛細血管拡張症、緑内障、視神経症、虚血性網膜疾患、未熟児網膜症、網膜血管閉塞症、および網膜細動脈瘤から選択される疾患の診断、治療、または予防に用いるための、[B10]に記載の医薬組成物。
[B10] A pharmaceutical composition comprising the monoclonal antibody according to any one of [B1] to [B9] or an antigen-binding fragment thereof.
[B11] Obesity, diabetes, diabetic retinopathy, diabetic cataract, diabetic neuropathy, diabetic myocardium, diabetic vascular complications, diabetic nephropathy, diabetic kidney disease, diabetic foot lesions, diabetic ketoacidosis, periodontal disease, addition Age-yellow spot degeneration, pulmonary fibrosis, idiopathic pulmonary fibrosis, peribronchial fibrosis, interstitial lung disease, lung cancer, cancer fibrosis, chronic obstructive pulmonary disease, acute lower extremity arterial embolism, peripheral arteries Diseases, peripheral airway disease, pulmonary emphysema, nephritis, glomerulosclerosis, glomerulonephritis, mesangial proliferative glomerulonephritis, diabetic nephropathy, renal systemic fibrosis, chronic kidney disease, idiopathic retroperitoneal fibrosis, renal disease , Strong skin disease, renal interstitial fibrosis, female infertility, polycystic ovary syndrome, ovarian dysfunction, early ovarian dysfunction, ovarian cancer, breast cancer, uterine body cancer, prostate cancer, male infertility, liver Diseases, liver cirrhosis, non-alcoholic steatosis, liver cancer, atherosclerotic cerebral infarction, atherosclerosis, internal carotid artery stenosis, aortic valve stenosis, aortic valve insufficiency, cardiovascular disease, angina , Congestive heart failure, acute heart failure, chronic heart failure, ischemic heart disease, dilated cardiomyopathy, cardiac sarcoidosis, hypertension, pulmonary arterial pulmonary hypertension, pulmonary heart, myocarditis, vascular stenosis heart fibrosis, post-myocardial infarction heart fiber Disease, left ventricular hypertrophy after myocardial infarction, rheumatoid arthritis, lifestyle disease, dyslipidemia, Alzheimer's disease, vascular dementia, cerebral infarction, brain tumor, cerebrovascular disorder, fibrosis, endocrine disease, osteoporosis, tongue Oral cancer, pharyngeal cancer, esophageal cancer, gastric cancer, colon cancer, rectal cancer, pancreatic cancer, retinal pigment degeneration, Labor congenital melanosis, Stargart's disease, Asher syndrome, colloideremia, rod pyramid Dystrophy, pyramidal dystrophy, progressive retinal atrophy, luteal dystrophy, choriosclerosis, total choroidal atrophy, cystic erythema edema, vasculitis, retinal detachment, luteal foramen, luteal capillary dilatation, glaucoma, optic nerve The pharmaceutical composition according to [B10] for use in the diagnosis, treatment, or prevention of diseases selected from diseases, ischemic retinal diseases, premature infant retinosis, retinal vascular occlusion, and retinal aneurysms.

[B12]糖尿病、耐糖能異常、網膜症、腎症、糖尿病に伴う合併症、末梢神経障害、下肢壊疽、動脈硬化、血栓症、非アルコール性脂肪性肝疾患、非アルコール性脂肪肝炎、がん、不妊症、多嚢胞性卵巣症候群、卵巣機能障害、中枢神経障害、およびアルツハイマー病を含む神経変性疾患から選択される疾患の診断、治療、または予防に用いるための、[B10]に記載の医薬組成物。 [B12] Diabetes mellitus, impaired glucose tolerance, retinopathy, nephropathy, diabetic complications, peripheral neuropathy, lower limb necrosis, arteriosclerosis, thrombosis, non-alcoholic fatty liver disease, non-alcoholic steatosis, cancer The medicament according to [B10] for use in diagnosing, treating, or preventing a disease selected from neurodegenerative diseases including infertility, polycystic ovary syndrome, ovarian dysfunction, central neuropathy, and Alzheimer's disease. Composition.

[B13]疾患が、メラノーマ、肺がん、および肝臓がんから選択されるがんである、[B12]に記載の医薬組成物。
[B14]眼疾患の診断、治療、または予防に用いるための、[B10]に記載の医薬組成物。
[B13] The pharmaceutical composition according to [B12], wherein the disease is cancer selected from melanoma, lung cancer, and liver cancer.
[B14] The pharmaceutical composition according to [B10] for use in the diagnosis, treatment, or prevention of eye diseases.

[B15]眼疾患が、糖尿病網膜症、糖尿病白内障、網膜色素変性症、糖尿病黄斑浮腫、レーバー先天性黒内障、シュタルガルト症、アッシャー症候群、コロイデレミア、桿体錐体ジストロフィー、錐体ジストロフィー、進行性網膜萎縮、加齢黄斑変性症、黄斑ジストロフィー症、脈絡膜硬化症、全脈絡膜萎縮症、類嚢胞黄斑浮腫、ブドウ膜炎、網膜剥離、黄斑円孔、黄斑部毛細血管拡張症、緑内障、視神経症、虚血性網膜疾患、未熟児網膜症、網膜血管閉塞症、および網膜細動脈瘤から選択される、[B14]に記載の医薬組成物。 [B15] Eye diseases include diabetic retinopathy, diabetic cataract, retinal pigment degeneration, diabetic macular edema, Laver congenital melanosis, Stargart's disease, Asher syndrome, colloideremia, rod pyramidal dystrophy, pyramidal dystrophy, and progressive retinal atrophy. , Age-related macular degeneration, macular dystrophy, choriosclerosis, total choroidal atrophy, cystic macular edema, vaginitis, retinal detachment, macular foramen, macular capillary dilatation, glaucoma, optic neuropathy, ischemic The pharmaceutical composition according to [B14], which is selected from retinal diseases, premature infant retina, retinal vascular occlusion, and retinal macula.

[B16][B1]〜[B9]のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片をコードする、核酸。
[B17][B16]に記載の核酸を含む発現ベクター。
[B18][B17]の発現ベクターを含む宿主細胞。
[B19]式(I)または(II):
[B16] A nucleic acid encoding the monoclonal antibody according to any one of [B1] to [B9] or an antigen-binding fragment thereof.
[B17] An expression vector containing the nucleic acid according to [B16].
A host cell containing the expression vector of [B18] and [B17].
[B19] Formula (I) or (II):

Figure 2021136920
[式中、R、R、RおよびRは、それぞれ独立に、水素原子、保護基、および
アミノ酸残基数1〜1000のペプチド基から選択され、
およびXは、−O−、または−NH−を表し;
およびYは、水素原子、保護基、または基:
Figure 2021136920
[In the formula, R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a protecting group, and a peptide group having 1 to 1000 amino acid residues.
X 1 and X 2 represent -O-, or -NH-;
Y 1 and Y 2 are hydrogen atoms, protecting groups, or groups:

Figure 2021136920
を表し;
およびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択される]
の化合物、そのカチオンラジカル、またはそのジカチオン、またはその塩。
[B20]1)α位のアミノ基が保護されたリシンおよびグリセルアルデヒドを反応させて、反応混合物を得ること;
2)反応混合物を分画し、式(Ia)、(Ib)、(IIa)」、または(IIb):
Figure 2021136920
Represents;
R 5 and R 6 are independently selected from hydrogen atoms, protecting groups, and peptide groups with 1 to 1000 amino acid residues]
Compound, its cation radical, or its dication, or its salt.
[B20] 1) A reaction mixture is obtained by reacting lysine and glyceraldehyde in which the amino group at the α-position is protected;
2) Fractionate the reaction mixture and formula (Ia), (Ib), (IIa) ”, or (IIb) :.

Figure 2021136920
[式中、R、R、およびRは、保護基である]
で表される化合物を含む画分を得ること
3)当該画分を用いて動物への免疫を行い、当該画分を抗原とする抗体を得ること
を含む、抗体の製造方法。
Figure 2021136920
[In the formula, R 1 , R 3 , and R 6 are protecting groups]
Obtaining a fraction containing the compound represented by 3) A method for producing an antibody, which comprises immunizing an animal using the fraction to obtain an antibody using the fraction as an antigen.

AGEsの中でも、グリセルアルデヒド由来のAGEs(Glycer−AGEs)は、糖尿病、特に糖尿病血管合併症、糖尿病網膜症、糖尿病性腎症、および糖尿病大血管症などに関わることが報告されている。さらに、Glycer−AGEsは高血圧症、アルツハイマー病などの認知症、がん(例えば肝臓がん、膵臓がん、子宮がん、結腸がん、直腸がん、乳がん、膀胱がん、悪性黒色腫、および肺がん)、非アルコール性脂肪肝炎(NASH)、不妊症などに慣用することが報告されている。したがって、Glycer−AGEsはこれらの疾患の診断のためのバイオマーカーとして使用することができ、本発明の抗体はバイオマーカーの検出において使用することができる。 Among AGEs, glyceraldehyde-derived AGEs (Glycer-AGEs) have been reported to be involved in diabetes, particularly diabetic vascular complications, diabetic retinopathy, diabetic nephropathy, and diabetic macrovascular disease. In addition, Glycer-AGEs include hypertension, dementia such as Alzheimer's disease, cancers (eg liver cancer, pancreatic cancer, uterine cancer, colon cancer, rectal cancer, breast cancer, bladder cancer, malignant melanoma, etc. And lung cancer), non-alcoholic steatosis (NASH), infertility, etc. have been reported to be commonly used. Therefore, Glycer-AGEs can be used as biomarkers for the diagnosis of these diseases, and the antibodies of the present invention can be used in the detection of biomarkers.

さらに本発明にかかる抗体は、生体におけるGlycer−AGEsの効果を中和するために使用することができ、疾患の治療などにおいても使用することができる。 Further, the antibody according to the present invention can be used to neutralize the effect of Glycer-AGEs in a living body, and can also be used in the treatment of diseases and the like.

図1は、ELISA直接法による、新規モノクローナル抗体(SJ−5)と抗グリセルアルデヒド由来AGEsポリクローナル抗体の反応性比較試験の結果を示すグラフである。FIG. 1 is a graph showing the results of a reactivity comparison test between a novel monoclonal antibody (SJ-5) and an anti-glyceraldehyde-derived AGEs polyclonal antibody by the ELISA direct method. 図2は、ELISA直接法による、抗Glycer−AGEsポリクローナル抗体の反応性確認試験の結果を示すグラフである。FIG. 2 is a graph showing the results of a reactivity confirmation test for anti-Glycer-AGEs polyclonal antibody by the ELISA direct method. 図3は、ELISA直接法による、POD標識化SJ−5抗体の反応性確認試験の結果を示すグラフである。FIG. 3 is a graph showing the results of a reactivity confirmation test of a POD-labeled SJ-5 antibody by the ELISA direct method. 図4は、ELISA競合法によるSJ−5の特異性の確認試験において、固相化抗原としてGAL13−BSAを用いたときの結果を示す図である。FIG. 4 is a diagram showing the results when GAL13-BSA was used as the immobilized antigen in the confirmation test of the specificity of SJ-5 by the ELISA competition method. 図5は、ELISA競合法によるSJ−5抗体の特異性の確認試験において、固相化抗原としてGlycer−AGEs−BSAを用いたときの結果を示す図である。FIG. 5 is a diagram showing the results when Glycer-AGEs-BSA was used as the immobilized antigen in the confirmation test of the specificity of the SJ-5 antibody by the ELISA competition method. 図6は、Glycer−AGEs−Z−LysのHPLCによる分析結果を示す図である(ダイオードアレイ検出(260nm))。FIG. 6 is a diagram showing the results of HPLC analysis of Glycer-AGEs-Z-Lys (diode array detection (260 nm)). 図7は、Glycer−AGEs−Z−LysのHPLCによる分析結果を示す図である(蛍光検出(Ex350nm、Em450nm))。FIG. 7 is a diagram showing the results of HPLC analysis of Glycer-AGEs-Z-Lys (fluorescence detection (Ex350 nm, Em450 nm)). 図8は、GAL13の質量分析の結果を示すチャートである。FIG. 8 is a chart showing the results of mass spectrometry of GAL13. 図9は、GAL13について電子スピン共鳴(ESR)を測定した結果を示す図である。FIG. 9 is a diagram showing the results of measuring electron spin resonance (ESR) with respect to GAL13. 図10は、GAL13を含むサンプルの3,3’−ジアミノベンジジン(DAB)を用いた酸化活性の確認試験の結果を示すグラフである。FIG. 10 is a graph showing the results of a confirmation test of oxidative activity using 3,3'-diaminobenzidine (DAB) of a sample containing GAL13. 図11は、競合ELISAによるSJ−5抗体とGLAPの反応性評価試験の結果を示すグラフである。FIG. 11 is a graph showing the results of a reactivity evaluation test of SJ-5 antibody and GLAP by competing ELISA. 図12は、新規なモノクローナル抗体であるSJ−5の重鎖可変領域と軽鎖可変領域のアミノ酸配列を示す図である。下線を付した箇所はCDRに該当する。FIG. 12 is a diagram showing the amino acid sequences of the heavy chain variable region and the light chain variable region of SJ-5, which is a novel monoclonal antibody. The underlined part corresponds to the CDR. 図13は実施例14の内皮細胞管腔形成抑制試験において8時間培養したHUVECの形態を示す写真である。FIG. 13 is a photograph showing the morphology of HUVEC cultured for 8 hours in the endothelial cell lumen formation suppression test of Example 14. 図14は実施例15のSJ−5を用いたGlycer−AGEs−BSAによる内皮間葉転換阻害試験におけるα−SMAの発現量を示すグラフである。FIG. 14 is a graph showing the expression level of α-SMA in the endothelial mesenchymal conversion inhibition test by Glycer-AGEs-BSA using SJ-5 of Example 15. 図15は実施例15のSJ−5を用いたGlycer−AGEs−BSAによる内皮間葉転換阻害試験におけるCD31の発現量を示すグラフである。FIG. 15 is a graph showing the expression level of CD31 in the endothelial mesenchymal conversion inhibition test by Glycer-AGEs-BSA using SJ-5 of Example 15. 図16は実施例16で調製したGlycer−AGEs−Z−Lysの反応液のLC/MSの分析結果を示す(ダイオードアレイ検出(260nm))。FIG. 16 shows the LC / MS analysis results of the Glycer-AGEs-Z-Lys reaction solution prepared in Example 16 (diode array detection (260 nm)). 図17は実施例16で調製したHPLC分取時のGlycer−AGEs−Z−LysのUVスペクトルを示す。FIG. 17 shows the UV spectrum of Glycer-AGEs-Z-Lys prepared in Example 16 at the time of HPLC preparative. 図18は実施例16で調製したHPLC分取時のGlycer−AGEs−Z−LysのMSスペクトルを示す。FIG. 18 shows the MS spectrum of Glycer-AGEs-Z-Lys prepared in Example 16 at the time of HPLC preparative. 図19は、実施例18の競合ELISAによる新規モノクローナル抗体とGAL691、Lys−ヒドロキシ−トリオシジンの反応性評価の結果を示すグラフである。FIG. 19 is a graph showing the results of reactivity evaluation of the novel monoclonal antibody of Example 18 by competing ELISA with GAL691 and Lys-hydroxy-triocidin. 図20Aは、実施例19で行ったGAL691のESRスペクトルの測定結果を示す図である。FIG. 20A is a diagram showing the measurement results of the ESR spectrum of GAL691 performed in Example 19. 図20Bは、亜硫酸ナトリウムを添加したGAL691のESRスペクトルの測定結果を示す図である。FIG. 20B is a diagram showing the measurement results of the ESR spectrum of GAL691 supplemented with sodium sulfite. 図20Cは、GLAPのESRスペクトルの測定結果を示す図である。FIG. 20C is a diagram showing the measurement results of the ESR spectrum of GLAP. 図20Dは、Lys−ヒドロキシ−トリオシジンのESRスペクトルの測定結果を示す図である。FIG. 20D is a diagram showing the measurement results of the ESR spectrum of Lys-hydroxy-triocidin. 図21は、GAL691のDABに対する酸化活性に関して、白色光照射の影響を確認するための試験結果を示すグラフである。FIG. 21 is a graph showing test results for confirming the effect of white light irradiation on the oxidizing activity of GAL691 on DAB. 図22は、実施例21で行ったGAL691の光増感作用による一重項酸素の生成を確認するための試験の結果を示すグラフである。FIG. 22 is a graph showing the results of a test conducted in Example 21 for confirming the production of singlet oxygen by the photosensitizing action of GAL691. 図23は、実施例22で行ったGAL691の光増感作用による一重項酸素の生成を確認するための試験の結果を示すグラフである。FIG. 23 is a graph showing the results of a test conducted in Example 22 for confirming the production of singlet oxygen by the photosensitizing action of GAL691. 図24は、実施例23で行ったGAL691の光増感作用によるスーパーオキシドアニオンの生成を確認するための試験の結果を示すグラフである。FIG. 24 is a graph showing the results of a test conducted in Example 23 for confirming the formation of superoxide anion by the photosensitizing action of GAL691. 図25は、モノクローナル抗体PB−1の可変領域のアミノ酸配列を示す図である。下線を付した箇所はCDR配列を示す。FIG. 25 is a diagram showing the amino acid sequence of the variable region of the monoclonal antibody PB-1. The underlined part indicates the CDR sequence. 図26Aは、固相化抗原としてA−peak−BSAを用いたときのPB−1抗体の特異性を確認する試験の結果を示すグラフである。FIG. 26A is a graph showing the results of a test for confirming the specificity of the PB-1 antibody when A-peak-BSA was used as the immobilized antigen. 図26Bは、固相化抗原としてGlycer−AGEs−BSAを用いたときのPB−1抗体の特異性を確認する試験の結果を示すグラフである。FIG. 26B is a graph showing the results of a test for confirming the specificity of the PB-1 antibody when Glycer-AGEs-BSA was used as the immobilized antigen. 図27は、競合ELISAによる新規モノクローナル抗体PB−1の公知のAGEsとの反応性評価試験の結果を示すグラフである。FIG. 27 is a graph showing the results of a reactivity evaluation test of a novel monoclonal antibody PB-1 with known AGEs by a competing ELISA. 図28は、A−peak−BSAによるDAB酸化活性のPB−1抗体による抑制効果を確認するための試験の結果を示すグラフである。FIG. 28 is a graph showing the results of a test for confirming the inhibitory effect of PB-1 antibody on DAB oxidation activity by A-peak-BSA. 図29は、SJ−5抗体と抗GA−ピリジンモノクローナル抗体のPB−1抗体に対する交差競合を確認する試験の結果を示すグラフである。FIG. 29 is a graph showing the results of a test confirming cross-competition between an SJ-5 antibody and an anti-GA-pyridine monoclonal antibody against a PB-1 antibody. 図30は、網膜色素上皮細胞(ARPE−19細胞)のタイトジャンクション崩壊抑制試験の結果を示すグラフであり、細胞間タイトジャンクションの形成を確認するためにウェル底面のインピーダンスの測定を行った結果を示すグラフである。FIG. 30 is a graph showing the results of a tight junction collapse suppression test of retinal pigment epithelial cells (ARPE-19 cells), and shows the results of measuring the impedance of the bottom surface of the well in order to confirm the formation of intercellular tight junctions. It is a graph which shows. 図31は、実施例35の内皮細胞管腔形成抑制試験において8時間培養したHUVECの形態を示す写真である。FIG. 31 is a photograph showing the morphology of HUVEC cultured for 8 hours in the endothelial cell lumen formation suppression test of Example 35. 図32は、PB−1抗体を用いて染色したマウスの網膜組織を共焦点レーザー顕微鏡にて観察した結果を示す写真である。FIG. 32 is a photograph showing the results of observing the retinal tissue of mice stained with the PB-1 antibody with a confocal laser scanning microscope. 図33は、実施例37において作製したPB−1抗体カラムを用いてサンプル精製を行い、各画分を電気泳動(SDS−PAGE)にて解析した結果を示す図である。FIG. 33 is a diagram showing the results of sample purification using the PB-1 antibody column prepared in Example 37 and analysis of each fraction by electrophoresis (SDS-PAGE). 図34は、実施例37において作製したPB−1抗体カラムにて精製したタンパク質を、電気泳動し(SDS−PAGE)、PVDF膜に電気転写してウェスタンブロッティングを行った結果を示す図である。FIG. 34 is a diagram showing the results of Western blotting by electrophoresis (SDS-PAGE) of the protein purified by the PB-1 antibody column prepared in Example 37 and electrotransfer to a PVDF membrane. 図35は、HE染色したマウス腎臓細胞の病理組織学的検査の結果を示す写真である。FIG. 35 is a photograph showing the results of histopathological examination of HE-stained mouse kidney cells. 図36は、PB-1ヒト化抗体の抗原に対する結合活性を示すグラフである。FIG. 36 is a graph showing the binding activity of the PB-1 humanized antibody to the antigen.

本発明の1つの側面において、本発明の抗体は単離された抗体である。単離された抗体は、天然に存在して何ら外的操作(人為的操作)が施されていない抗体、即ちある個体の体内で産生され、そこに留まっている状態の抗体は含まれない。本発明の抗体は典型的にはモノクローナル抗体、またはその抗原結合断片である。 In one aspect of the invention, the antibody of the invention is an isolated antibody. The isolated antibody does not include an antibody that is naturally occurring and has not been subjected to any external manipulation (artificial manipulation), that is, an antibody that is produced in the body of an individual and remains there. The antibody of the present invention is typically a monoclonal antibody or an antigen-binding fragment thereof.

本発明の1つの態様において、式(XI)または(XII)で示される化合物、そのカチオンラジカル、そのジカチオン、またはその塩に結合する抗体が提供される:

Figure 2021136920
[式中、R、R、RおよびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択され、
は、水素原子、または基−CH−X−Yを表し;
は、水素原子、または基−CH−X−Yを表し;
およびXは、−O−、または−NH−を表し;
およびYは、水素原子、保護基、または基:
Figure 2021136920
を表し;
およびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択される]。 In one embodiment of the invention, an antibody that binds to a compound of formula (XI) or (XII), a cation radical thereof, a dication thereof, or a salt thereof is provided:
Figure 2021136920
[In the formula, R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a protecting group, and a peptide group having 1 to 1000 amino acid residues.
Q 1 represents a hydrogen atom or group -CH 2- X 1- Y 1 ;
Q 2 represents a hydrogen atom or group -CH 2- X 2- Y 2 ;
X 1 and X 2 represent -O-, or -NH-;
Y 1 and Y 2 are hydrogen atoms, protecting groups, or groups:
Figure 2021136920
Represents;
R 5 and R 6 are independently selected from hydrogen atoms, protecting groups, and peptide groups with 1 to 1000 amino acid residues].

本発明の別の態様において、式(I)または(II)で示される化合物、そのカチオンラジカル、そのジカチオン、またはその塩に結合する抗体が提供される。

Figure 2021136920
[式中、R、R、RおよびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択され、
およびXは、−O−、または−NH−を表し;
およびYは、水素原子、保護基、または基:
Figure 2021136920
を表し;
およびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択される]
、R、R、R、RおよびRが保護基の場合、R、RおよびRはアミノ基の保護基であり、R、RおよびRはヒドロキシ基の保護基である。XまたはXが−O−の場合、YまたはYはヒドロキシ基の保護基であってもよく、XまたはXが−NH−の場合、YまたはYはアミノ基の保護基であってもよい。 In another aspect of the invention, an antibody that binds to a compound of formula (I) or (II), a cation radical thereof, a dication thereof, or a salt thereof is provided.
Figure 2021136920
[In the formula, R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a protecting group, and a peptide group having 1 to 1000 amino acid residues.
X 1 and X 2 represent -O-, or -NH-;
Y 1 and Y 2 are hydrogen atoms, protecting groups, or groups:
Figure 2021136920
Represents;
R 5 and R 6 are independently selected from hydrogen atoms, protecting groups, and peptide groups with 1 to 1000 amino acid residues]
If R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are protecting groups, then R 1 , R 3 and R 6 are protecting groups for amino groups, and R 2 , R 4 and R 5 are hydroxy. It is a protecting group of the group. If X 1 or X 2 is -O-, then Y 1 or Y 2 may be a hydroxy protecting group, and if X 1 or X 2 is -NH-, then Y 1 or Y 2 is an amino group. It may be a protecting group.

ヒドロキシの保護基の例としては、C1−6アルキル、C1−6アルコキシC1−6アルキル、アリールC1−6アルキル、ヘテロアリールC1−6アルキル、((アミノC1−6アルキル)カルボニルオキシ)C1−6アルキル、不飽和ヘテロ環カルボニルオキシC1−6アルキル、アリールジ(C1−6アルキル)シリル、トリ(C1−6アルキル)シリルなどが挙げられる。好ましいヒドロキシの保護基としては、C1−6アルキルなどが挙げられる。 Examples of hydroxy protecting groups include C 1-6 alkyl, C 1-6 alkoxy C 1-6 alkyl, aryl C 1-6 alkyl, heteroaryl C 1-6 alkyl, ((amino C 1-6 alkyl)). Examples thereof include carbonyloxy) C 1-6 alkyl, unsaturated heterocyclic carbonyloxy C 1-6 alkyl, aryl di (C 1-6 alkyl) silyl, tri (C 1-6 alkyl) silyl and the like. Preferred hydroxy protecting groups include C 1-6 alkyl and the like.

アミノの保護基の例には、C1−6アルキルカルボニル、アリールC1−6アルキルカルボニル、アリールカルボニル、ヘテロアリールカルボニル、C1−6アルコキシカルボニル、C1−6アルキルアミノカルボニル、ジ(C1−6アルキル)アミノカルボニル、アリールC1−6アルキル、ヘテロアリールC1−6アルキル、(アリールC1−6アルキル)アミノカルボニルなどが含まれる。好ましいアミノの保護基としては、ベンジルオキシカルボニル、t−ブトキシカルボニル、9−フルオレニルメトキシカルボニルなどが挙げられる。また、アミノは保護されることにより、フタル酸イミド、コハク酸イミド、グルタル酸イミド、1−ピロリルなどの飽和または不飽和へテロ環基を形成していてもよい。 Examples of amino protective groups include C 1-6 alkylcarbonyl, aryl C 1-6 alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, C 1-6 alkoxycarbonyl, C 1-6 alkylaminocarbonyl, di (C 1). -6 alkyl) aminocarbonyl, aryl C 1-6 alkyl, heteroaryl C 1-6 alkyl, (aryl C 1-6 alkyl) aminocarbonyl and the like are included. Preferred amino protecting groups include benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethoxycarbonyl and the like. In addition, the amino may form a saturated or unsaturated heterocyclic group such as phthalate imide, succinimide, glutarate imide, and 1-pyrrolill by being protected.

本明細書におけるペプチド基は、特に限定はされないが、例えばアミノ酸残基数1〜10000、1〜5000、1〜3000、1〜2000、1〜1000、1〜500、1〜100のペプチド基を意味する。アミノ酸残基としては、天然アミノ酸から選択される。 The peptide group in the present specification is not particularly limited, and for example, peptide groups having the number of amino acid residues 1 to 10000, 1 to 5000, 1 to 3000, 1 to 2000, 1 to 1000, 1 to 500, and 1 to 100 are used. means. The amino acid residue is selected from natural amino acids.

式(I)または(II)で表される化合物は、側鎖のアミノ基が保護されたリシンを用いて調製することができる。式(I)または(II)の構造式で表される範囲は以下の式で表される化合物を包含する。

Figure 2021136920
Figure 2021136920
The compound represented by the formula (I) or (II) can be prepared by using lysine in which the amino group of the side chain is protected. The range represented by the structural formula of the formula (I) or (II) includes the compound represented by the following formula.
Figure 2021136920
Figure 2021136920

式中、R、R、およびRはアミノ基の保護基である。例えば、上記式において、R、R、およびRはベンジルオキシカルボニルである。
式(I)および式(II)で表される化合物のカチオンラジカルは、以下の式(III)および式(IV)で表される。
In the formula, R 1 , R 3 , and R 6 are amino protecting groups. For example, in the above formula, R 1 , R 3 , and R 6 are benzyloxycarbonyl.
The cationic radicals of the compounds represented by the formulas (I) and (II) are represented by the following formulas (III) and (IV).

Figure 2021136920
Figure 2021136920

式中、R、R、R、R、X、X、Y、およびYは、式(I)および式(II)において定義されるとおりである。式(III)および式(IV)は、以下の式で表されるカチオンラジカルを包含する。 In the formulas, R 1 , R 2 , R 3 , R 4 , X 1 , X 2 , Y 1 , and Y 2 are as defined in formulas (I) and (II). Formulas (III) and (IV) include cationic radicals represented by the following formulas.

Figure 2021136920
Figure 2021136920

式(I)および式(II)で表される化合物のジカチオンは、以下の式(V)および式(VI)で表される。 The dications of the compounds represented by the formulas (I) and (II) are represented by the following formulas (V) and (VI).

Figure 2021136920
Figure 2021136920

式中、R、R、R、R、X、X、Y、およびYは、式(I)および式(II)において定義されるとおりである。式(V)および式(VI)は、以下の式で表されるジカチオンを包含する。 In the formulas, R 1 , R 2 , R 3 , R 4 , X 1 , X 2 , Y 1 , and Y 2 are as defined in formulas (I) and (II). Formulas (V) and (VI) include dications represented by the following formulas.

Figure 2021136920
Figure 2021136920

式(I)または(II)で表される化合物の塩は、具体的には、当該化合物のカルボキシ基において形成される塩、およびペプチド基において形成される塩を包含する。 The salt of the compound represented by the formula (I) or (II) specifically includes a salt formed at the carboxy group of the compound and a salt formed at the peptide group.

式(XI)および式(XII)で表される化合物のカチオンラジカルは、以下の式(XIII)および式(XIV)で表される。 The cationic radicals of the compounds represented by the formulas (XI) and (XII) are represented by the following formulas (XIII) and (XIV).

Figure 2021136920
Figure 2021136920

式中、R、R、R、R、Q、およびQは、式(XI)および式(XII)において定義されるとおりである。 In the formula, R 1 , R 2 , R 3 , R 4 , Q 1 , and Q 2 are as defined in formula (XI) and formula (XII).

式(XI)および式(XII)で表される化合物のジカチオンは、以下の式(XV)および式(XVI)で表される。 The dications of the compounds represented by the formulas (XI) and (XII) are represented by the following formulas (XV) and (XVI).

Figure 2021136920
Figure 2021136920

式中、R、R、R、R、Q、およびQは、式(XI)および式(XII)において定義されるとおりである。 In the formula, R 1 , R 2 , R 3 , R 4 , Q 1 , and Q 2 are as defined in formula (XI) and formula (XII).

式(XI)、または(XII)で表される化合物の塩は、具体的には、当該化合物のカルボキシ基において形成される塩、およびペプチド基において形成される塩を包含する。本明細書に記載のカチオンラジカル、およびジカチオンは、適切なアニオンを含んでいてもよい。 The salt of the compound represented by the formula (XI) or (XII) specifically includes a salt formed at the carboxy group of the compound and a salt formed at the peptide group. The cation radicals and dications described herein may contain suitable anions.

アミノ酸配列に関して使用する用語「実質的に同一」とは、比較される二つのアミノ酸配列間で配列上の相違が比較的小さく且つ配列上の相違が抗原に対する特異的結合性に関して実質的な影響を与えないことを意味する。実質的に同一なアミノ酸配列はアミノ酸配列の一部の改変を含んでいてもよく、例えば、アミノ酸配列を構成する1〜数個(例えば、1〜3個)のアミノ酸の欠失、置換、若しくは1〜数個(例えば、1〜3個)のアミノ酸の付加、挿入、又はこれらの組合せによりアミノ酸配列が改変されていてもよい。アミノ酸配列の変異の位置は特に限定されず、複数の位置で変異を生じていてもよい。アミノ酸配列において改変されるアミノ酸の数は示された全アミノ酸の例えば10%以内に相当する数であり、好ましくは全アミノ酸の5%以内に相当する数である。さらに好ましくは全アミノ酸の1%以内に相当する数である。 The term "substantially identical" used with respect to an amino acid sequence means that the sequence difference between the two amino acid sequences being compared is relatively small and the sequence difference has a substantial effect on specific binding to the antigen. It means not to give. Substantially identical amino acid sequences may include modifications of some of the amino acid sequences, eg, deletions, substitutions, or substitutions of one to several (eg, 1-3) amino acids that make up the amino acid sequence. The amino acid sequence may be modified by the addition, insertion, or combination of one to several (for example, 1 to 3) amino acids. The position of the mutation in the amino acid sequence is not particularly limited, and the mutation may occur at a plurality of positions. The number of amino acids modified in the amino acid sequence is, for example, within 10% of the total amino acids shown, preferably within 5% of the total amino acids. More preferably, it is a number corresponding to within 1% of all amino acids.

アミノ酸を置換する場合には、置換するアミノ酸の側鎖と類似の生化学的特性を持った側鎖を有するアミノ酸と置換することができる(保存的アミノ酸置換)。1つの態様において、実質的に同一なアミノ酸配列は、例えば、1つもしくは複数の保存的置換を含んでいてもよい。保存的アミノ酸置換は当業者に知られており、例えば以下の表に示す例が挙げられる(例えば、WO2010/146550など)。 When substituting an amino acid, it can be replaced with an amino acid having a side chain having similar biochemical properties to the side chain of the amino acid to be replaced (conservative amino acid substitution). In one embodiment, the substantially identical amino acid sequences may include, for example, one or more conservative substitutions. Conservative amino acid substitutions are known to those of skill in the art and include, for example, the examples shown in the table below (eg, WO2010 / 146550, etc.).

Figure 2021136920
Figure 2021136920

1つの態様において、80%以上、85%以上、90%以上または95%以上の同一性を有する2つのアミノ酸配列は、実質的に同一である。別の態様において、80%以上、85%以上、90%以上または95%以上の同一性を有する2つのアミノ酸配列は、置換が上記表に示す保存的置換か例示的置換に示されるアミノ酸を用いて置換されている場合は、実質的に同一である。さらに別の態様において、80%以上、85%以上、90%以上または95%以上の同一性を有する2つのアミノ酸配列は、置換が上記表の保存的置換に示されるアミノ酸を用いて置換されている場合は、実質的に同一である。 In one embodiment, the two amino acid sequences having 80% or more, 85% or more, 90% or more or 95% or more identity are substantially identical. In another embodiment, the two amino acid sequences having 80% or more, 85% or more, 90% or more or 95% or more identity use the amino acids whose substitutions are shown in the conservative or exemplary substitutions shown in the table above. When replaced, they are substantially the same. In yet another embodiment, the two amino acid sequences having 80% or more, 85% or more, 90% or more or 95% or more identity are substituted with the amino acids shown in the conservative substitutions in the table above. If so, they are substantially the same.

また、天然に存在するアミノ酸は、共通の側鎖特性に基づいて以下の群に分類される:
(1)非極性:ノルロイシン、Met、Ala、Val、Leu、Ile、
(2)極性、荷電なし:Cys、Ser、Thr、Asn、Gln、
(3)酸性(負荷電):Asp、Glu、
(4)塩基性(正荷電):Lys、Arg、His、
(5)鎖の配向に影響を与える残基:Gly、Pro、および
(6)芳香族:Trp、Tyr、Phe。
In addition, naturally occurring amino acids are classified into the following groups based on common side chain properties:
(1) Non-polarity: norleucine, Met, Ala, Val, Leu, Ile,
(2) Polarity, no charge: Cys, Ser, Thr, Asn, Gln,
(3) Acid (load electricity): Asp, Glu,
(4) Basic (positive charge): Lys, Arg, His,
(5) Residues affecting chain orientation: Gly, Pro, and (6) Aromatic: Trp, Tyr, Phe.

1つの態様として、置換するアミノ酸と同じ群に属するアミノ酸を用いて置換してもよい。 As one embodiment, amino acids belonging to the same group as the amino acids to be substituted may be used for substitution.

1つの態様において、80%以上、85%以上、90%以上または95%以上の同一性を有する2つのアミノ酸配列は、実質的に同一である。別の態様において、80%以上、85%以上、90%以上または95%以上の同一性を有する2つのアミノ酸配列は、置換がアミノ酸と上記の群と同じ群に属するアミノ酸を用いて置換されている場合は、実質的に同一である。 In one embodiment, the two amino acid sequences having 80% or more, 85% or more, 90% or more or 95% or more identity are substantially identical. In another embodiment, two amino acid sequences having 80% or more, 85% or more, 90% or more or 95% or more identity are substituted with amino acids and amino acids belonging to the same group as the above group. If so, they are substantially the same.

二つのアミノ酸配列が実質的に同一であるか否かは、各アミノ酸配列を含む抗体(他の領域の配列は同一)の抗原に対する結合特異性を比較することによって判定できる。例えば、基準となる抗体の生理食塩水環境下での抗原に関する解離定数(K値)をAとしたとき、比較対象の抗体のK値がA×10−1〜A×10の範囲であれば実質的な同一性を認定できる。 Whether or not the two amino acid sequences are substantially the same can be determined by comparing the binding specificity of the antibody containing each amino acid sequence (the sequences of the other regions are the same) to the antigen. For example, when the dissociation constant (K d value) of the reference antibody for the antigen in the physiological saline environment is set to A, the K d value of the antibody to be compared is in the range of A × 10 -1 to A × 10. If so, the substantial identity can be recognized.

本発明に係る核酸は、典型的には、単離された核酸であり、例えばcDNA分子など遺伝子組み換え技術によって生産される核酸の場合の「単離された核酸」は好ましくは、細胞成分や培養液などを実質的に含まない状態の核酸をいう。同様に、化学合成によって生産される核酸の場合の「単離された核酸」は好ましくは、dNTPなどの前駆体(原材料)や合成過程で使用される化学物質等を実質的に含まない状態の核酸をいう。 The nucleic acid according to the present invention is typically an isolated nucleic acid, and in the case of a nucleic acid produced by a gene recombination technique such as a cDNA molecule, the "isolated nucleic acid" is preferably a cell component or a culture. Nucleic acid in a state that does not substantially contain liquid or the like. Similarly, in the case of nucleic acids produced by chemical synthesis, the "isolated nucleic acid" is preferably in a state in which it is substantially free of precursors (raw materials) such as dNTPs and chemical substances used in the synthetic process. Refers to nucleic acid.

本明細書における用語「核酸」はDNA(cDNAおよびゲノムDNAを含む)、RNA(mRNAを含む)、DNA類似体、およびRNA類似体を含む。本発明の核酸の形態は限定されず、即ち1本鎖および2本鎖のいずれであってもよい。好ましくは2本鎖DNAである。またコドンの縮重も考慮される。即ちタンパク質をコードする核酸の場合には、その発現産物として当該タンパク質が得られる限り任意の塩基配列を有していてよい。 As used herein, the term "nucleic acid" includes DNA (including cDNA and genomic DNA), RNA (including mRNA), DNA analogs, and RNA analogs. The form of the nucleic acid of the present invention is not limited, that is, it may be either single-stranded or double-stranded. It is preferably double-stranded DNA. Codon degeneration is also considered. That is, in the case of a nucleic acid encoding a protein, it may have an arbitrary base sequence as long as the protein can be obtained as an expression product thereof.

AGEsはタンパク質の糖化反応により形成される。グルコースやフルクトースなどの還元糖とタンパク質の遊離のアミノ基が非酵素的に反応してシッフ塩基からアマドリ化合物を生成し、その後不可逆的な脱水や縮合、酸化、還元などの反応を繰り返し、特有の蛍光を持つ黄褐色の複雑な物質AGEsが生成するに至る。一方で、リシンなどのアミノ酸残基が糖と反応して得られる化合物がAGEsの構造として特定されており、蛍光を有さないピラリン、Nε−カルボキシメチルリシン(CML)、Nε−カルボキシエチルリシン(CEL)、およびNω−カルボキシメチルアルギニン(CMA)などもAGEsとして知られている。その他、芳香環を有するアルグピリミジン、ペントシジン、クロスリン、GA−ピリジン、ベスペルリシン、ピロピリジンなどの化合物がAGEsとして特定されている。これらの化合物をアミノ酸残基として含有するペプチドやタンパク質もAGEsに含まれる。 AGEs are formed by the glycation reaction of proteins. Reducing sugars such as glucose and fructose react non-enzymatically with free amino groups of proteins to produce Amadori compounds from Schiff bases, and then irreversible reactions such as dehydration, condensation, oxidation, and reduction are repeated, which is peculiar. AGEs, a complex yellow-brown substance with fluorescence, are produced. On the other hand, compounds obtained by reacting amino acid residues such as lysine with sugar have been identified as the structure of AGEs, and have no fluorescence, pyrarin, N ε -carboxymethyl lysine (CML), and N ε -carboxyethyl. Lysine (CEL), N ω -carboxymethyl arginine (CMA) and the like are also known as AGEs. In addition, compounds having an aromatic ring such as argpyrimidine, pentosidine, crosulin, GA-pyridine, vesperurisine, and pyropyridine have been specified as AGEs. Peptides and proteins containing these compounds as amino acid residues are also included in AGEs.

AGEsを形成するタンパク質糖化反応の基質としては、グルコース、フルクトースなどの還元糖の他に、生体内の糖代謝などにより生成する、グリセルアルデヒド、グリコールアルデヒド、メチルグリオキサール、グリオキサール、および3−デオキシグルコソンなどが想定されている。こうした還元糖およびアルデヒドを使用し、BSAなどのタンパク質と反応させてAGEsを形成する試みがされている。このようにして調製されるグリセルアルデヒド由来AGEs(Glycer−AGEs)、グルコース由来AGEs(Glu−AGEs)、グリコールアルデヒド由来AGEs(Glycol−AGEs)、フルクトース由来AGEs(Fru−AGEs)、メチルグリオキサール由来AGEs(MGO−AGEs)、グリオキサール由来AGEs(GO−AGEs)、および3−デオキシグルコソン由来AGEs(3−DG−AGEs)などの各種AGEsのうち、グリセルアルデヒド由来AGEsは、糖尿病などの各種疾患に関与するとの報告がされており、グリセルアルデヒド由来AGEsを抗原とするポリクローナル抗体を用いた分析方法により、Glycer−AGEsの血中濃度を測定する手法が知られている。 As substrates for protein glycation reactions that form AGEs, in addition to reducing sugars such as glucose and fructose, glyceraldehyde, glycolaldehyde, methylglyoxal, glyoxal, and 3-deoxyglucosone, which are produced by sugar metabolism in the living body, are used. Son etc. are assumed. Attempts have been made to use these reducing sugars and aldehydes to react with proteins such as BSA to form AGEs. Glyceraldehyde-derived AGEs (Glycer-AGEs), glucose-derived AGEs (Glu-AGEs), glycolaldehyde-derived AGEs (Glycol-AGEs), fructose-derived AGEs (Fru-AGEs), and methylglioxal-derived AGEs prepared in this manner. Among various AGEs such as (MGO-AGEs), glycal-derived AGEs (GO-AGEs), and 3-deoxyglucosone-derived AGEs (3-DG-AGEs), glyceraldehyde-derived AGEs are used for various diseases such as diabetes. It has been reported that it is involved, and a method for measuring the blood concentration of Glycer-AGEs by an analysis method using a polyclonal antibody using AGEs derived from glyceraldehyde as an antigen is known.

本発明のモノクローナル抗体は、α位のアミノ基が保護基(Z基)で保護されたリシンとグリセルアルデヒドを反応させて得られるAGEs(Glycer−AGEs−Z−Lys)を分画し、得られる特定の画分を抗原として作製することができる。また本発明のモノクローナル抗体は、グリセルアルデヒド由来AGEs(Glycer−AGEs)およびグリコールアルデヒド由来AGEs(Glycol−AGEs)に対して特異的に結合する特性を有している。 The monoclonal antibody of the present invention is obtained by fractionating AGEs (Glycer-AGEs-Z-Lys) obtained by reacting lysine in which the amino group at the α-position is protected with a protecting group (Z group) with glyceraldehyde. The specific fraction to be used can be prepared as an antigen. Further, the monoclonal antibody of the present invention has a property of specifically binding to glyceraldehyde-derived AGEs (Glycer-AGEs) and glycolaldehyde-derived AGEs (Glycol-AGEs).

本発明の1つの側面において、グリセルアルデヒド由来AGEs(Glycer−AGEs)および/またはグリコールアルデヒド由来AGEs(Glycol−AGEs)のエピトープと結合し、グルコース由来AGEs(Glu−AGEs)、フルクトース由来AGEs(Fru−AGEs)、メチルグリオキサール由来AGEs(MGO−AGEs)、グリオキサール由来AGEs(GO−AGEs)、および3−デオキシグルコソン由来AGEs(3−DG−AGEs)から選択される、1以上のAGEsとは結合しない、モノクローナル抗体またはその抗原結合断片が提供される。より具体的には、グリセルアルデヒド由来AGEs(Glycer−AGEs)およびグリコールアルデヒド由来AGEs(Glycol−AGEs)のエピトープと結合し、グルコース由来AGEs(Glu−AGEs)、フルクトース由来AGEs(Fru−AGEs)、メチルグリオキサール由来AGEs(MGO−AGEs)、グリオキサール由来AGEs(GO−AGEs)、および3−デオキシグルコソン由来AGEs(3−DG−AGEs)とは結合しない、モノクローナル抗体またはその抗原結合断片が提供される。さらに具体的には、グリセルアルデヒド由来AGEsおよびグリコールアルデヒド由来AGEsのエピトープと結合し、グルコース由来AGEs(Glu−AGEs)、フルクトース由来AGEs(Fru−AGEs)、メチルグリオキサール由来AGEs(MGO−AGEs)、グリオキサール由来AGEs(GO−AGEs)、3−デオキシグルコソン由来AGEs(3−DG−AGEs)、Nε−カルボキシメチルリシン(CML)、およびNε−カルボキシエチルリシン(CEL)とは結合しない、モノクローナル抗体またはその抗原結合断片が提供される。 In one aspect of the invention, it binds to epitopes of glyceraldehyde-derived AGEs (Glycer-AGEs) and / or glycolaldehyde-derived AGEs (Glycol-AGEs), glucose-derived AGEs (Glu-AGEs), and fructose-derived AGEs (Fru). -AGEs), methylglyoxal-derived AGEs (MGO-AGEs), glyoxal-derived AGEs (GO-AGEs), and 3-deoxyglucosone-derived AGEs (3-DG-AGEs) that bind to one or more AGEs. No, a monoclonal antibody or an antigen-binding fragment thereof is provided. More specifically, it binds to epitopes of glyceraldehyde-derived AGEs (Glycer-AGEs) and glycolaldehyde-derived AGEs (Glycol-AGEs), and glucose-derived AGEs (Glu-AGEs), fructose-derived AGEs (Fru-AGEs), and the like. Provided are monoclonal antibodies or antigen-binding fragments thereof that do not bind to methyl glyoxal-derived AGEs (MGO-AGEs), glyoxal-derived AGEs (GO-AGEs), and 3-deoxyglucosone-derived AGEs (3-DG-AGEs). .. More specifically, AGEs derived from glyceraldehyde and AGEs derived from glycol aldehyde bind to epitopes of AGEs derived from glucose, AGEs derived from glucose (Glu-AGEs), AGEs derived from fructose (Fru-AGEs), AGEs derived from methyl glyoxal (MGO-AGEs), and the like. Monochrome that does not bind to AGEs derived from glyoxal (GO-AGEs), AGEs derived from 3-deoxyglucoson (3-DG-AGEs), N ε -carboxymethyl lysine (CML), and N ε -carboxyethyl lysine (CEL). An antibody or an antigen-binding fragment thereof is provided.

本発明の1つの側面において、グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合するモノクローナル抗体またはその抗原結合断片が提供される。ここで、グリセルアルデヒド由来AGEsおよびグリコールアルデヒド由来AGEsは、グリセルアルデヒドまたはグリコールアルデヒドの存在下でBSA、マウス血清アルブミン(MSA)などのタンパク質糖化反応により生じるAGEsであり、AGEsを含むタンパク質である。本発明のモノクローナル抗体およびその抗原結合断片は、タンパク質糖化反応で生じた化学構造をエピトープとするという特徴を有している。好ましい態様において、本発明の抗体およびその抗原結合断片は、還元糖および糖代謝などで生じるアルデヒド、特にグルコース由来AGEs、フルクトース由来AGEs、メチルグリオキサール由来AGEs、グリオキサール由来AGEs、および3−デオキシグルコソン由来AGEsとは結合しない。これらのAGEsも各還元糖またはアルデヒドをBSAなどのタンパク質に添加してタンパク質糖化反応により調製される。抗体の結合特異性については、公知の手法、例えば競合ELISA法などにより特定することができる。 In one aspect of the invention, a monoclonal antibody or antigen-binding fragment thereof that binds to an epitope of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs is provided. Here, glyceraldehyde-derived AGEs and glycolaldehyde-derived AGEs are AGEs produced by protein saccharification reactions such as BSA and mouse serum albumin (MSA) in the presence of glyceraldehyde or glycolaldehyde, and are proteins containing AGEs. .. The monoclonal antibody of the present invention and its antigen-binding fragment have a feature that the chemical structure generated in the protein saccharification reaction is used as an epitope. In a preferred embodiment, the antibody of the present invention and an antigen-binding fragment thereof are derived from aldehydes generated by reduced sugar and sugar metabolism, particularly glucose-derived AGEs, fructose-derived AGEs, methylglyoxal-derived AGEs, glyoxal-derived AGEs, and 3-deoxyglucosone. It does not combine with AGEs. These AGEs are also prepared by a protein saccharification reaction by adding each reducing sugar or aldehyde to a protein such as BSA. The binding specificity of an antibody can be specified by a known method, such as a competitive ELISA method.

本発明は、グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合するモノクローナル抗体またはその抗原結合断片を提供し、該抗体または断片は、AGEsが関与する疾患の治療、予防および/または診断に使用することができる。本発明で使用できる抗体は、本明細書に記載のとおり、複数の形態をとることができ、本発明は、本明細書で定義するとおり6個のCDRのセット(それと実質的に同一のアミノ酸配列、例えば、1〜3個のアミノ酸残基の欠失、置換、付加を含む配列を含む)を含む抗体構造を提供する。 The present invention provides monoclonal antibodies or antigen-binding fragments thereof that bind to epitopes of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs, and the antibodies or fragments are used for the treatment, prevention and / or diagnosis of diseases associated with AGEs. Can be used. The antibodies that can be used in the present invention can take multiple forms as described herein, and the present invention is a set of 6 CDRs (substantially identical amino acids) as defined herein. Provided is an antibody structure comprising a sequence, eg, a sequence comprising deletions, substitutions, or additions of 1-3 amino acid residues.

従来の抗体構造ユニットは、典型的には4量体を含む。各4量体は、典型的には、2つの同一のポリペプチチド鎖対からなり、各対は、1つの「軽」鎖(典型的には約25kDaの分子量を有する)と1つの「重」鎖(典型的には、約50〜70kDaの分子量を有する)を有する。ヒト軽鎖は、κ軽鎖とλ軽鎖に分類される。重鎖は、μ、δ、γ、αまたはεに分類され、それぞれ、IgM、IgD、IgG、IgAおよびIgEとして抗体アイソタイプを定義する。IgGは複数のサブクラスを有し、サブクラスとしては、IgG1、IgG2、IgG3、およびIgG4が挙げられるがこれらに限定されない。IgMは、IgM1およびIgM2を含むサブクラスを有するが、これらに限定されない。従って、本明細書で使用される場合、「アイソタイプ」は、その定常領域の化学的および抗原的特徴により定義される免疫グロブリンの任意のサブクラスを意味する。既知のヒト免疫グロブリンアイソタイプは、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2、IgM1、IgM2、IgDおよびIgEである。治療用抗体には、アイソタイプおよび/またはサブクラスのハイブリッドも含まれ得る。一つの態様において、本発明の抗体は、IgG、IgA、IgM、IgDまたはIgEであり、好ましくはIgGである。 Conventional antibody structural units typically contain tetramers. Each tetramer typically consists of two identical polypeptide chain pairs, each pair having one "light" chain (typically having a molecular weight of about 25 kDa) and one "heavy". It has a chain (typically having a molecular weight of about 50-70 kDa). Human light chains are classified into κ light chains and λ light chains. Heavy chains are classified as μ, δ, γ, α or ε and define antibody isotypes as IgM, IgD, IgG, IgA and IgE, respectively. IgG has a plurality of subclasses, and subclasses include, but are not limited to, IgG1, IgG2, IgG3, and IgG4. IgM has subclasses including, but is not limited to, IgM1 and IgM2. Thus, as used herein, "isotype" means any subclass of immunoglobulin defined by the chemical and antigenic characteristics of its constant region. Known human immunoglobulin isotypes are IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgM1, IgM2, IgD and IgE. Therapeutic antibodies may also include hybrids of isotypes and / or subclasses. In one embodiment, the antibody of the invention is IgG, IgA, IgM, IgD or IgE, preferably IgG.

各鎖には、抗原認識に主に関与する約100〜110以上のアミノ酸の可変領域が含まれる。可変領域では3つのループが重鎖および軽鎖の各Vドメインについて集合しており、抗原結合部位を形成する。各ループは、相補性決定領域とも称され(以下、「CDR」とも称する)、この部分におけるアミノ酸配列の変異(variation)が最も顕著である。「可変」とは、可変領域の特定のセグメントが、抗体の配列において広範囲に異なるという事実を意味する。可変領域内の可変性は、均一に分布していない。代わりに、V領域は、それぞれ9〜15アミノ酸長以上の「超可変領域」と称される極度に可変性の短い領域により分離される15〜30アミノ酸のフレームワーク領域(FR)と称される比較的不変のストレッチからなる。 Each strand contains variable regions of about 100-110 or more amino acids that are primarily involved in antigen recognition. In the variable region, three loops are assembled for each V domain of heavy chain and light chain to form an antigen binding site. Each loop is also referred to as a complementarity determining region (hereinafter, also referred to as "CDR"), and the variation of the amino acid sequence in this region is most prominent. By "variable" is meant the fact that a particular segment of the variable region varies widely in the sequence of the antibody. The variability within the variable region is not evenly distributed. Instead, the V region is referred to as the framework region (FR) of 15-30 amino acids, each separated by an extremely shortly variable region called a "hypervariable region" that is 9 to 15 amino acids or more in length. It consists of a relatively immutable stretch.

各VHおよびVLは、3つの超可変領域(「相補性決定領域」、「CDR」)と4つのFRからなり、以下の順序でアミノ末端からカルボキシ末端へ配置される:FR1−CDR1−FR2−CDR2−FR3−CDR3−FR4。 Each VH and VL consists of three hypervariable regions (“complementarity determining regions”, “CDRs”) and four FRs, arranged from amino terminus to carboxy terminus in the following order: FR1-CDR1-FR2- CDR2-FR3-CDR3-FR4.

超可変領域は、一般に、軽鎖可変領域における、アミノ酸残基24〜34付近(VL CDR1;「VL」は軽鎖の可変領域を意味する)、50〜56付近(VL CDR2)および89〜97付近(VL CDR3)と重鎖可変領域における、31〜35付近(VH CDR1;「VH」は重鎖の可変領域を意味する)、50〜65付近(VH CDR2)および95〜102付近(VH CDR3)のアミノ酸残基;Kabat et al., SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST,5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.(1991)、および/または超可変性ループを形成するそれらの残基(例えば、軽鎖可変領域における残基26〜32(VL CDR1)、50〜52(VL CDR2)および91〜96(VL CDR3)と、重鎖可変領域における26〜32(VH CDR1)、53〜55(VH CDR2)および96〜101(VH CDR3);Chothia and Lesk (1987) J. Mol. Biol. 196:901-917)を包含する。 The hypervariable regions are generally around amino acid residues 24-34 (VL CDR1; "VL" means variable region of the light chain), around 50-56 (VL CDR2) and 89-97 in the light chain variable region. Near (VL CDR3) and heavy chain variable region, around 31-35 (VH CDR1; "VH" means variable heavy chain region), around 50-65 (VH CDR2) and around 95-102 (VH CDR3) ) Amino acid residues; Kabat et al., SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), and / or those forming a hypervariable loop. Residues (eg, residues 26-32 (VL CDR1), 50-52 (VL CDR2) and 91-96 (VL CDR3) in the light chain variable region and 26-32 (VH CDR1) in the heavy chain variable region, Includes 53-55 (VH CDR2) and 96-101 (VH CDR3); Chothia and Lesk (1987) J. Mol. Biol. 196: 901-917).

本明細書にわたり、可変ドメインの残基(およそ、軽鎖可変領域の残基1〜107および重鎖可変領域の残基1〜113)について言及する場合には、Fc領域で使用されるEUナンバーシステムとともに、Kabatナンバリングシステムを通常用いる(例えば、Kabat et al., 上記(1991))。KabatナンバリングによるCDRの特定は、一般に利用可能なソフト(例えば、abYsis (http://www.abysis.org/)を用いて特定することができる。 The EU number used in the Fc region is used herein to refer to variables in the variable domain (approximately residues 1-107 in the light chain variable region and residues 1-113 in the heavy chain variable region). A Kabat numbering system is commonly used with the system (eg, Kabat et al., Supra (1991)). The identification of the CDR by Kabat numbering can be specified by using generally available software (for example, abYsis (http://www.abysis.org/)).

CDRは、抗原結合の形成に寄与し、より詳細には、抗体のエピトープ結合部位の形成に寄与する。「エピトープ」とは、抗体分子の可変領域における特異的な抗原結合部位(パラトープ)と相互作用する決定基を意味する。エピトープは、アミノ酸や糖側鎖などの分子にグループ分けされ、通常、特異的な構造特性および特異的な電荷特性を有する。本明細書で示すとおり、本発明に係る「SJ−5」または「PB−1」と本明細書で称する抗体は、上記式(XI)もしくは(XII)、または上記式(I)もしくは(II)で示される構造の一部または全部をエピトープとして抗原に結合すると考えられている。 CDRs contribute to the formation of antigen binding, and more specifically to the formation of epitope binding sites for antibodies. "Epitope" means a determinant that interacts with a specific antigen binding site (paratope) in the variable region of an antibody molecule. Epitopes are grouped into molecules such as amino acids and sugar side chains and usually have specific structural and specific charge properties. As shown herein, the antibody referred to herein as "SJ-5" or "PB-1" according to the present invention is the above formula (XI) or (XII), or the above formula (I) or (II). ) Is considered to bind to the antigen as an epitope.

各種AGEsは、タンパク質(例えば、ウシ血清アルブミン(BSA)、マウス血清アルブミン(MSA),ウサギ血清アルブミン(RSA)など)とアルデヒドまたは還元糖を混合し、反応をさせることにより調製することができる。例えば、グリセルアルデヒドをBSAと反応させることにより、グリセルアルデヒド由来AGEs含有BSAを調製することができ、これをAGEsの標品として使用することができる。グリセルアルデヒド由来AGEsにおいて、本発明の抗体は、例えば、グリセルアルデヒド由来AGEs含有BSAに対して結合性を有し、BSAに対して結合性を有さない抗体を選抜することにより、調製することができる。本発明の1つの側面において、本発明の抗体が結合するエピトープは、グリセルアルデヒドとタンパク質から非酵素的反応により生成する構造を含む。 Various AGEs can be prepared by mixing proteins (for example, bovine serum albumin (BSA), mouse serum albumin (MSA), rabbit serum albumin (RSA), etc.) with aldehydes or reducing sugars and reacting them. For example, by reacting glyceraldehyde with BSA, BSA containing AGEs derived from glyceraldehyde can be prepared, and this can be used as a standard for AGEs. In glyceraldehyde-derived AGEs, the antibody of the present invention is prepared, for example, by selecting an antibody having binding property to glyceraldehyde-derived AGEs-containing BSA and not binding to BSA. be able to. In one aspect of the invention, the epitope to which the antibody of the invention binds comprises a structure produced by a non-enzymatic reaction between glyceraldehyde and a protein.

本発明の1つの側面において、以下の(1−1)および(1−2)で特定されるアミノ酸配列を重鎖可変領域および軽鎖可変領域の相補性決定領域に含む抗体、またはその抗原結合断片が提供される:
(1−1)
(a)VH CDR1:配列番号:1に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(b)VH CDR2:配列番号:2に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(c)VH CDR3:配列番号:3に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(d)VL CDR1:配列番号:5に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(e)VL CDR2:配列番号:6に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(f)VL CDR3:配列番号:7に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;もしくは
(1−2)
(g)VH CDR1:配列番号:15に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(h)VH CDR2:配列番号:16に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(i)VH CDR3:配列番号:17に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(j)VL CDR1:配列番号:19に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(k)VL CDR2:配列番号:20に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(l)VL CDR3:配列番号:21に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列。
In one aspect of the present invention, an antibody containing the amino acid sequences specified in (1-1) and (1-2) below in the complementarity determining regions of the heavy chain variable region and the light chain variable region, or antigen binding thereof. Fragments provided:
(1-1)
(A) The amino acid sequence shown in VH CDR1: SEQ ID NO: 1 or an amino acid sequence substantially the same as that;
(B) VH CDR2: Amino acid sequence shown in SEQ ID NO: 2, or an amino acid sequence substantially the same as that;
(C) VH CDR3: Amino acid sequence shown in SEQ ID NO: 3, or an amino acid sequence substantially the same as that;
(D) VL CDR1: The amino acid sequence shown in SEQ ID NO: 5, or an amino acid sequence substantially the same as that;
(E) VL CDR2: Amino acid sequence shown in SEQ ID NO: 6, or an amino acid sequence substantially the same as that; and (f) VL CDR3: Amino acid sequence shown in SEQ ID NO: 7 or an amino acid sequence substantially the same as the amino acid sequence. Or (1-2)
(G) VH CDR1: The amino acid sequence shown in SEQ ID NO: 15, or an amino acid sequence substantially the same as that;
(H) VH CDR2: Amino acid sequence shown in SEQ ID NO: 16, or an amino acid sequence substantially the same as that;
(I) VH CDR3: Amino acid sequence shown in SEQ ID NO: 17, or an amino acid sequence substantially the same as that;
(J) VL CDR1: The amino acid sequence shown in SEQ ID NO: 19, or an amino acid sequence substantially the same as that;
(K) VL CDR2: Amino acid sequence shown in SEQ ID NO: 20, or an amino acid sequence substantially the same as that;
(L) VL CDR3: Amino acid sequence shown in SEQ ID NO: 21, or an amino acid sequence substantially the same as that.

本発明の1つの側面によれば、重鎖可変領域のアミノ酸配列が、配列番号:4のアミノ酸配列またはそれと実質的に同一のアミノ酸配列であり、軽鎖可変領域のアミノ酸配列が配列番号:8のアミノ酸配列またはそれと実質的に同一のアミノ酸配列であるモノクローナル抗体またはその抗原結合断片が提供される。その具体的な態様として、本発明は本明細書記載のモノクローナル抗体であるSJ−5を含む。本発明の別の側面によれば、重鎖可変領域のアミノ酸配列が、配列番号:18のアミノ酸配列またはそれと実質的に同一のアミノ酸配列であり、軽鎖可変領域のアミノ酸配列が配列番号:22のアミノ酸配列またはそれと実質的に同一のアミノ酸配列であるモノクローナル抗体またはその抗原結合断片が提供される。その具体的な態様として、本発明は本明細書記載のモノクローナル抗体であるPB−1を含む。 According to one aspect of the present invention, the amino acid sequence of the heavy chain variable region is the amino acid sequence of SEQ ID NO: 4 or substantially the same amino acid sequence, and the amino acid sequence of the light chain variable region is SEQ ID NO: 8. Provided is a monoclonal antibody or an antigen-binding fragment thereof, which has an amino acid sequence of the above or an amino acid sequence substantially the same as that of the amino acid. As a specific embodiment thereof, the present invention includes SJ-5, which is a monoclonal antibody described in the present specification. According to another aspect of the present invention, the amino acid sequence of the heavy chain variable region is the amino acid sequence of SEQ ID NO: 18 or substantially the same amino acid sequence, and the amino acid sequence of the light chain variable region is SEQ ID NO: 22. Provided is a monoclonal antibody or an antigen-binding fragment thereof, which has an amino acid sequence of the above or an amino acid sequence substantially the same as that of the amino acid. As a specific embodiment, the present invention includes PB-1, which is a monoclonal antibody described herein.

本発明の1つの側面によれば、これらの抗体はマウス由来の抗体であり、上記の配列番号で示される重鎖可変領域と軽鎖可変領域に加えて、マウス抗体の定常領域を有している。なお、上記の配列番号で示される重鎖可変領域または軽鎖可変領域と実質的に同一のアミノ酸配列の例として、N末端またはC末端に1つまたは2つのアミノ酸が付加された配列が挙げられる。例えば、上記の配列番号で示される重鎖可変領域と実質的に同一のアミノ酸配列として、N末端またはC末端に1または2のアミノ酸(例えば、天然型アミノ酸から選択されるアミノ酸)、より具体的にはGluおよびGlnから選択される1つのアミノ酸が付加した配列が挙げられる。 According to one aspect of the invention, these antibodies are mouse-derived antibodies and have constant regions of the mouse antibody in addition to the heavy and light chain variable regions set forth in the above SEQ ID NOs. There is. An example of an amino acid sequence substantially the same as the heavy chain variable region or the light chain variable region shown by the above SEQ ID NO: is a sequence in which one or two amino acids are added to the N-terminal or C-terminal. .. For example, as an amino acid sequence substantially the same as the heavy chain variable region represented by the above SEQ ID NO:, one or two amino acids at the N-terminal or C-terminal (for example, an amino acid selected from natural amino acids), more specifically. Includes a sequence to which one amino acid selected from Glu and Gln is added.

本発明の1つの側面によれば、上記の重鎖可変領域および軽鎖可変領域またはそれらのCDRで特定される抗体またはその抗原結合断片を参照抗体として、グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープとの結合について、参照抗体と交差競合する抗体またはその抗原結合断片が提供される。本発明の1つの態様において、モノクローナル抗体であるSJ−5を参照抗体として、グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープとの結合について、参照抗体と交差競合する抗体またはその抗原結合断片が提供される。 According to one aspect of the present invention, glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs are referred to as the above-mentioned heavy chain variable region and light chain variable region or the antibody identified by their CDRs or an antigen-binding fragment thereof as a reference antibody. An antibody that cross-competes with a reference antibody or an antigen-binding fragment thereof is provided for binding to an epitope of. In one embodiment of the present invention, an antibody or an antigen-binding fragment thereof that cross-competes with the reference antibody for binding to an epitope of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs, using the monoclonal antibody SJ-5 as a reference antibody. Provided.

本発明の抗体は、例えばモノクローナル抗体であるSJ−5を参照抗体として、Glycer−AGEsまたはGlycol−AGEsとの標準的な結合アッセイを行うことにより交差競合に関する特性を確認することができる。交差競合の確認は、例えば、フローサイトメトリーや交差競合ELISAアッセイにより確認することができる。 The antibody of the present invention can be confirmed to have cross-competitive properties by performing a standard binding assay with Glycer-AGEs or Glycol-AGEs, for example, using the monoclonal antibody SJ-5 as a reference antibody. Confirmation of cross-competition can be confirmed, for example, by flow cytometry or cross-competition ELISA assay.

本発明の1つの側面において、上記の抗体またはその抗原結合断片を含む、疾患の治療、予防または診断のための医薬組成物が提供される。対象疾患としては、Glycer−AGEsまたはGlycol−AGEsが関与する疾患であれば特に限定されず、例えば、糖尿病、糖尿病最小血管合併症(糖尿病網膜症、糖尿病性腎症、および糖尿病神経障害)、および糖尿病大血管症、高血圧症、アルツハイマー病などの認知症、がん(例えば肝臓がん、膵臓がん、子宮がん、結腸がん、直腸がん、乳がん、膀胱がん、悪性黒色腫、および肺がん)、非アルコール性脂肪肝炎(NASH)、不妊症などが挙げられる。本発明の別の態様によれば、疾患は、糖尿病、耐糖能異常、網膜症、腎症、末梢神経障害、下肢壊疽、動脈硬化、血栓症、非アルコール性脂肪性肝疾患、非アルコール性脂肪肝炎、がん(例えば、メラノーマ、肺がん、および肝臓がんなど)、多嚢胞性卵巣症候群、卵巣機能障害、中枢神経障害、およびアルツハイマー病が挙げられる。 In one aspect of the invention, a pharmaceutical composition for treating, preventing or diagnosing a disease is provided that comprises the antibody or antigen-binding fragment thereof. The target disease is not particularly limited as long as it is a disease involving Glycer-AGEs or Glycol-AGEs, and includes, for example, diabetes, diabetic minimal vascular complications (diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy), and diabetic neuropathy. Dementia such as diabetic macroangiopathy, hypertension, Alzheimer's disease, cancers (eg liver cancer, pancreatic cancer, uterine cancer, colon cancer, rectal cancer, breast cancer, bladder cancer, malignant melanoma, and Lung cancer), non-alcoholic steatosis (NASH), infertility and the like. According to another aspect of the invention, the disease is diabetes, impaired glucose tolerance, retinopathy, nephropathy, peripheral neuropathy, lower extremity necrosis, arteriosclerosis, thrombosis, non-alcoholic steatohepatopathy, non-alcoholic fat. These include hepatitis, cancer (eg, melanoma, lung cancer, and liver cancer), polycystic ovary syndrome, ovarian dysfunction, central nervous system disorder, and Alzheimer's disease.

本発明の1つの側面において、本発明の医薬組成物はAGEsにより促進される内皮間葉転換に起因する疾患の治療、予防または診断のために用いることができる。対象疾患としては、がん(例えば、卵巣がん、乳がん、子宮体がん、前立腺がん、舌がん、口腔がん、咽頭がん、食道がん、胃がん、大腸がん、直腸がん、膵臓がん、肺がん、肝がん、脳腫瘍など)、肥満、糖尿病、糖尿病性疾患(例えば、糖尿病網膜症、糖尿病白内障、糖尿病神経障害、糖尿病心筋症、糖尿病血管合併症、糖尿病性腎症、糖尿病性腎臓疾患、糖尿病足病変、糖尿病ケトアシドーシス、糖尿病性ネフロパシーなど)、歯周病、加齢黄斑変性症、肺疾患または呼吸器系疾患(例えば、肺線維症、特発性肺線維症、細気管支周囲線維症、間質性肺疾患、がん線維性肺疾患、慢性閉塞性肺疾患、末梢気道疾患、肺気腫など)、腎疾患(腎盂腎炎、糸球体硬化症、糸球体腎炎、メサンギウム増殖糸球体腎炎、腎性全身性線維症、腎間質線維症、慢性腎臓病など)、特発性後腹膜線維症、強皮症、女性不妊症、多嚢胞性卵巣症候群、卵巣機能不全、早期卵巣機能不全、男性不妊症、肝疾患(例えば、肝硬変、非アルコール性脂肪肝炎など)、心血管疾患(例えば、急性下肢動脈塞栓症、末梢動脈疾患、アテローム血栓性脳梗塞、アテローム性動脈硬化症、内頸動脈狭窄症、大動脈弁狭窄症、大動脈弁閉鎖不全症、狭心症、うっ血性心不全、急性心不全、慢性心不全、虚血性心疾患、拡張型心筋症、心サルコイドーシス、高血圧、肺動脈性肺高血圧症、肺性心、心筋炎、血管狭窄心線維症、心筋梗塞後心線維症、心筋梗塞後左心室肥大、脳梗塞、脳血管障害など)、関節リウマチ、生活習慣病、脂質異常症、アルツハイマー病、血管性認知症、ぶどう膜炎、内分泌疾患、骨粗しょう症が挙げられる。より具体的には、糖尿病網膜症、糖尿病性腎症、アテローム血栓性脳梗塞、アテローム性動脈硬化症、慢性腎臓病、慢性心不全、および虚血性心疾患が例示される。 In one aspect of the invention, the pharmaceutical compositions of the invention can be used for the treatment, prevention or diagnosis of diseases caused by endothelial mesenchymal conversion promoted by AGEs. Target diseases include cancer (for example, ovarian cancer, breast cancer, uterine body cancer, prostate cancer, tongue cancer, oral cancer, pharyngeal cancer, esophageal cancer, stomach cancer, colon cancer, rectal cancer). , Pancreatic cancer, lung cancer, liver cancer, brain tumor, etc.), obesity, diabetes, diabetic diseases (eg, diabetic retinopathy, diabetic cataract, diabetic neuropathy, diabetic myocardium, diabetic vascular complications, diabetic nephropathy, Diabetic kidney disease, diabetic foot lesions, diabetic ketoacidosis, diabetic nephropathy, etc.), periodontal disease, age-related luteal degeneration, lung disease or respiratory disease (eg, pulmonary fibrosis, idiopathic pulmonary fibrosis, fine Peribronchial fibrosis, interstitial lung disease, cancer fibrous lung disease, chronic obstructive lung disease, peripheral airway disease, pulmonary emphysema, etc.), renal disease (renal nephritis, glomerulosclerosis, glomerulonephritis, mesangial proliferative thread) (Spheroid nephritis, renal systemic fibrosis, renal interstitial fibrosis, chronic kidney disease, etc.), idiopathic retroperitoneal fibrosis, scleroderma, female infertility, polycystic ovary syndrome, ovarian insufficiency, early ovarian function Insufficiency, male infertility, liver disease (eg liver cirrhosis, non-alcoholic steatosis, etc.), cardiovascular disease (eg acute lower extremity arterial embolism, peripheral arterial disease, atherosclerotic cerebral infarction, atherosclerosis, internal Carotid artery stenosis, aortic valve stenosis, aortic valve insufficiency, angina, congestive heart failure, acute heart failure, chronic heart failure, ischemic heart disease, dilated cardiomyopathy, cardiac sarcoidosis, hypertension, pulmonary arterial pulmonary hypertension , Pulmonary heart, myocarditis, vascular stenosis heart fibrosis, post-myocardial infarction cardiac fibrosis, post-myocardial infarction left ventricular hypertrophy, cerebral infarction, cerebrovascular disorder, etc.), rheumatoid arthritis, lifestyle disease, dyslipidemia, Alzheimer's disease , Vascular dementia, vaginitis, endocrine disorders, osteoporosis. More specifically, diabetic retinopathy, diabetic nephropathy, atherosclerotic cerebral infarction, atherosclerosis, chronic kidney disease, chronic heart failure, and ischemic heart disease are exemplified.

本発明の医薬組成物は眼疾患の診断、治療、および/または予防に使用することができる。一つの態様において、当該医薬組成物は、眼疾患の進行度の確認、または眼疾患発症リスクの推定のために用いることができる。別の態様において、当該医薬組成物は、発症した眼疾患の進行の防止する、または遅延させるための治療において用いることができ、例えば長期にわたり定期的に投与することができる。さらに別の態様において、当該医薬組成物は、疾患の発症リスクが高い対象に予防的に投与することができる。さらに別の態様において、当該医薬組成物は、発症した眼疾患において、疾患の発症部位を回復させるための治療に用いることができる。 The pharmaceutical compositions of the present invention can be used for the diagnosis, treatment and / or prevention of eye diseases. In one embodiment, the pharmaceutical composition can be used to confirm the degree of progression of an eye disease or to estimate the risk of developing an eye disease. In another embodiment, the pharmaceutical composition can be used in a treatment to prevent or delay the progression of an eye disease that has developed, eg, can be administered regularly over a long period of time. In yet another embodiment, the pharmaceutical composition can be prophylactically administered to a subject at high risk of developing the disease. In yet another embodiment, the pharmaceutical composition can be used in the treatment of developing an eye disease to restore the site of onset of the disease.

本発明の医薬組成物の使用に適した眼疾患としては、例えば、糖尿病網膜症、糖尿病白内障、網膜色素変性症、糖尿病黄斑浮腫、レーバー先天性黒内障、シュタルガルト症、アッシャー症候群、コロイデレミア、桿体錐体ジストロフィー、錐体ジストロフィー、進行性網膜萎縮、加齢黄斑変性症、黄斑ジストロフィー症、脈絡膜硬化症、全脈絡膜萎縮症、類嚢胞黄斑浮腫、ブドウ膜炎、網膜剥離、黄斑円孔、黄斑部毛細血管拡張症、緑内障、視神経症、虚血性網膜疾患、未熟児網膜症、網膜血管閉塞症、および網膜細動脈瘤が挙げられる。余地適した眼疾患としては、例えば、糖尿病網膜症、糖尿病黄斑浮腫、網膜色素変性症および加齢黄斑変性症が挙げられる。 Suitable eye diseases for use of the pharmaceutical composition of the present invention include, for example, diabetic retinopathy, diabetic cataract, retinal pigment degeneration, diabetic macular edema, Labor congenital macular disorder, Stargart's disease, Asher syndrome, colloideremia, rod cone. Body dystrophy, pyramidal dystrophy, progressive retinal atrophy, age-related macular degeneration, macular dystrophy, choriosclerosis, total chorioretinal atrophy, cystic macular edema, vasculitis, retinal exfoliation, macular foramen, macular capillary Includes vasodilation, macula, optic neuropathy, ischemic retinal disease, premature infant retina, retinal vascular occlusion, and retinal aneurysm. Suitable eye diseases include, for example, diabetic retinopathy, diabetic macular edema, retinitis pigmentosa and age-related macular degeneration.

本発明の医薬組成物は、血管内皮細胞の管腔形成におけるAGEsによる抑制効果を低減または消失させ、さらにAGEsにより誘導される血管内皮細胞の内皮間葉転換を抑制または阻害する効果を有する。このような効果により管腔形成阻害による血管透過性上昇が低減または消失し、がんの転移が抑制される。したがって、一つの態様において、本発明の医薬組成物はがんの転移の予防または抑制のために使用することができる。 The pharmaceutical composition of the present invention has the effect of reducing or eliminating the inhibitory effect of AGEs on the lumen formation of vascular endothelial cells, and further suppressing or inhibiting the endothelial mesenchymal conversion of vascular endothelial cells induced by AGEs. Due to such an effect, the increase in vascular permeability due to inhibition of lumen formation is reduced or eliminated, and cancer metastasis is suppressed. Therefore, in one embodiment, the pharmaceutical composition of the present invention can be used for the prevention or suppression of cancer metastasis.

本発明の1つに態様において、対象の組織(例えば血液)中に存在するGlycer−AGEsおよびGlycol−AGEsの量を本発明の抗体またはその抗原結合断片を用いて測定する工程を含む、疾患の診断方法が提供される。ここでの診断とは既に記載した通りである。本発明の別の態様において、試料(例えば、採血により得られた血液試料)中に存在するGlycer−AGEsおよびGlycol−AGEsの量を本発明の抗体またはその抗原結合断片を用いて測定する工程を含む、試料の分析方法が提供される。 One aspect of the invention comprises the step of measuring the amount of Glycer-AGEs and Glycol-AGEs present in a tissue of interest (eg, blood) using an antibody of the invention or an antigen-binding fragment thereof. A diagnostic method is provided. The diagnosis here is as described above. In another aspect of the present invention, a step of measuring the amount of Glycer-AGEs and Glycol-AGEs present in a sample (for example, a blood sample obtained by blood sampling) using the antibody of the present invention or an antigen-binding fragment thereof. Methods for analyzing the sample, including, are provided.

本発明の抗体の抗原結合断片は、例えば、Fab、Fab’、F(ab’)、Fv、scFv、dsFv、ダイアボディ、またはsc(Fv)である。本発明の抗体は、例えば、マウス抗体、ヒト化抗体、ヒト抗体、またはキメラ抗体である。これらの抗体またはその抗原結合断片は、当業者に公知の方法により調製することができる。 The antigen-binding fragment of the antibody of the present invention is, for example, Fab, Fab', F (ab') 2 , Fv, scFv, dsFv, diabody, or sc (Fv) 2 . The antibody of the present invention is, for example, a mouse antibody, a humanized antibody, a human antibody, or a chimeric antibody. These antibodies or antigen-binding fragments thereof can be prepared by methods known to those skilled in the art.

本発明の抗体の抗原結合断片は、例えば、1×10−4M以下、具体的には1×10−5M以下、より具体的には1×10−6M以下、さらに具体的には1×10−7M以下、好ましくは1×10−8M以下の平衡解離定数Kでグリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合する。抗体のK値は、当技術分野において十分に確立された方法を用いて決定することができる。抗体のK値を決定するための好ましい方法は、表面プラズモン共鳴を用いること、好ましくはBiacore(登録商標)システムのようなバイオセンサーシステムを用いることによる。 The antigen-binding fragment of the antibody of the present invention is, for example, 1 × 10 -4 M or less, specifically 1 × 10 -5 M or less, more specifically 1 × 10 -6 M or less, and more specifically, 1 × 10 -6 M or less. It binds to an epitope of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs with an equilibrium dissociation constant Kd of 1 × 10-7 M or less, preferably 1 × 10-8 M or less. The Kd value of an antibody can be determined using well-established methods in the art. A preferred method for determining the Kd value of an antibody is by using surface plasmon resonance, preferably by using a biosensor system such as the Biacore® system.

本発明の1つの側面において、グリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合するモノクローナル抗体またはその抗原結合断片の製造方法が提供される。該方法は、本発明の抗体をコードする核酸がトランスフェクトされた宿主細胞を培養する工程を含み、周知技術に基づいて様々な方法で実施され得る。 In one aspect of the present invention, there is provided a method for producing a monoclonal antibody or an antigen-binding fragment thereof that binds to an epitope of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs. The method comprises culturing a host cell transfected with a nucleic acid encoding an antibody of the invention and can be carried out in a variety of ways based on well-known techniques.

本発明の1つの側面において、本発明の抗体をコードする核酸が提供される。このようなポリヌクレオチドは、例えば、重鎖および軽鎖それぞれの可変領域および定常領域の両方をコードする。ポリヌクレオチドはRNAの形態であってもDNAの形態であってもよい。ポリペプチドをコードするコーディング配列は、遺伝コードの冗長性または縮重を含んでいてもよい。 In one aspect of the invention, nucleic acids encoding the antibodies of the invention are provided. Such polynucleotides encode, for example, both variable and constant regions of the heavy and light chains, respectively. The polynucleotide may be in the form of RNA or DNA. The coding sequence encoding the polypeptide may include genetic code redundancy or degeneracy.

いくつかの実施態様において、本発明の抗体をコードする1つ以上の核酸は、発現ベクターに組み込まれ、当該発現ベクターは、導入される宿主細胞の染色体外であるか、またはそのゲノム中にインテグレートされるよう設計され得る。発現ベクターは、任意数の適切な制御配列(転写および翻訳調節配列、プロモーター、リボソーム結合部位、エンハンサー、複製起点などが挙げられるが、これらに限定されない)または他の要素(選択遺伝子など)を含むことができ、これらは全て、当分野でよく知られるように操作可能に連結される。いくつかの場合、2つの核酸を用いて、それぞれを異なる発現ベクターに入れるか(例えば、第一の発現ベクターに重鎖をコードする核酸、第二の発現ベクターに軽鎖をコードする核酸)、あるいはそれらを同一の発現ベクターにいれることができる。制御配列の選択を含む、1つ以上の発現ベクターの設計は、宿主細胞の選択、所望するタンパク質の発現レベルなどの因子によって決まり得る。 In some embodiments, one or more nucleic acids encoding the antibodies of the invention are integrated into an expression vector, which expression vector is extrachromosomal or integrated into the genome of the host cell into which it is introduced. Can be designed to be. Expression vectors include any number of suitable regulatory sequences, including, but not limited to, transcriptional and translational regulatory sequences, promoters, ribosome binding sites, enhancers, origins of replication, or other elements (such as selected genes). All of these can be operably linked as is well known in the art. In some cases, two nucleic acids are used and each is placed in a different expression vector (eg, a nucleic acid encoding a heavy chain in a first expression vector, a nucleic acid encoding a light chain in a second expression vector). Alternatively, they can be placed in the same expression vector. The design of one or more expression vectors, including the selection of control sequences, can be determined by factors such as host cell selection, desired protein expression level, and the like.

一般に、選択される宿主細胞に適した任意の方法(例えば、トランスフォーメーション、トランスフェクション、エレクトロポレーション、インフェクションなど)を用いて、1つ以上の核酸が1つ以上の発現調節要素に操作可能に連結されるように(例えば、ベクターにおいて、細胞でのプロセスにより作出される構築物において、宿主細胞のゲノムにインテグレートされて)、核酸および/または発現が適した宿主細胞に導入され、組換え宿主細胞が作出される。得られた組換え宿主細胞は、発現に適した条件下(例えば、インデューサーの存在下、適した非ヒト動物中、適した塩、増殖因子、抗生物質、栄養補助剤などを添加した培地など)で維持でき、それによりコードされた1つ以上のポリペプチドが製造される。いくつかの場合において、重鎖が1つの細胞で製造され、軽鎖が別の細胞で製造される。 In general, one or more nucleic acids can be manipulated into one or more expression regulators using any method suitable for the host cell of choice (eg, transformation, transfection, electroporation, infection, etc.). Recombinant host cells are introduced into host cells of suitable nucleic acid and / or expression so as to be ligated (eg, in a vector, integrated into the genome of the host cell in a construct created by a process in the cell). Is created. The obtained recombinant host cell is prepared under conditions suitable for expression (for example, in the presence of an inducer, in a suitable non-human animal, a medium supplemented with a suitable salt, growth factor, antibiotic, dietary supplement, etc. ), Which produces one or more encoded polypeptides. In some cases, the heavy chain is made in one cell and the light chain is made in another cell.

発現のための宿主として利用可能な哺乳動物細胞株は当分野で既知であり、American Type Culture Collection(ATCC),Manassas,VAから入手可能な多くの不死化細胞株が含まれ、これには、チャイニーズハムスター卵巣(CHO)細胞、HEK 293細胞、NSO細胞、HeLa細胞、ベビーハムスター腎臓(BHK)細胞、サル腎臓細胞(COS)、ヒト肝臓がん細胞(例えば、Hep G2)、および多数の他の細胞株が挙げられるが、これらに限定されない。細菌、酵母、昆虫および植物を含む(これらに限定されない)非哺乳動物細胞を用いて、組換え抗体を発現させることもできる。いくつかの実施態様において、抗体は、ウシやニワトリなどのトランスジェニック動物において製造することができる。 Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), Manassas, VA. Chinese hamster ovary (CHO) cells, HEK 293 cells, NSO cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human liver cancer cells (eg Hep G2), and many others Cell lines include, but are not limited to. Recombinant antibodies can also be expressed using non-mammalian cells, including but not limited to bacteria, yeasts, insects and plants. In some embodiments, the antibody can be produced in transgenic animals such as cows and chickens.

本発明の一つの側面において、式(XI)もしくは式(XII)、または式(I)もしくは式(II)の化合物を抗原として動物に対して免疫を行って抗体を作製する方法が提供される。式(XI)もしくは式(XII)、または式(I)もしくは式(II)の化合物の製造方法は特に限定はされないが、例えば、α位のアミノ基が保護されたリシンおよびグリセルアルデヒドを反応させて得られる反応混合物を精製して調製することができる。免疫に使用する抗原として、例えば、上記の反応混合物を分画して得られる画分のうち、式(Ia)または式(Ib)で表される化合物を含む画分を使用することができる。分画は通常の方法で行うことができ、例えばHPLC分取により特定のピークを含む画分を使用することができる。 In one aspect of the present invention, there is provided a method for producing an antibody by immunizing an animal using a compound of formula (XI) or formula (XII), or a compound of formula (I) or formula (II) as an antigen. .. The method for producing the compound of the formula (XI) or the formula (XII), or the compound of the formula (I) or the formula (II) is not particularly limited, and for example, lysine and glyceraldehyde in which the amino group at the α-position is protected are reacted. The reaction mixture thus obtained can be purified and prepared. As the antigen used for immunization, for example, among the fractions obtained by fractionating the above reaction mixture, a fraction containing a compound represented by the formula (Ia) or the formula (Ib) can be used. Fractionation can be performed by a conventional method, for example, a fraction containing a specific peak can be used by HPLC fractionation.

免疫は抗体の作製において通常行われる方法を使用することができる。動物はヒト以外の哺乳類、例えばマウス、ラット、ウサギ、イヌ、ブタ、ハムスターなどを使用することができる。 Immunization can use the methods commonly used in the production of antibodies. As the animal, mammals other than humans such as mice, rats, rabbits, dogs, pigs, hamsters and the like can be used.

[実施例1]AGEsの調製
AGEsは公知の方法により調製することができる(非特許文献5および非特許文献6など)。具体的には以下の方法により各種AGEsを調製した。
[Example 1] Preparation of AGEs AGEs can be prepared by a known method (Non-Patent Document 5 and Non-Patent Document 6 and the like). Specifically, various AGEs were prepared by the following methods.

(1)グリセルアルデヒド由来AGEs含有ウシ血清アルブミン(Glycer−AGEs−BSA)
ウシ血清アルブミン(BSA、Sigma−Aldrich)、DL−グリセルアルデヒド(DL−GLA、ナカライテスク)、ジエチレントリアミン−N,N,N’,N”,N”−ペンタ酢酸(DTPA、同仁化学研究所)は購入により入手した。
(1) Bovine serum albumin containing AGEs derived from glyceraldehyde (Glycer-AGEs-BSA)
Bovine serum albumin (BSA, Sigma-Aldrich), DL-glyceraldehyde (DL-GLA, Nacalai Tesque), diethylenetriamine-N, N, N', N ", N" -pentaacetic acid (DTPA, Dojin Chemical Research Institute) Was obtained by purchase.

DL−GLA(180mg)とDTPA(39mg)を秤量し、50mLの培養用チューブに移した。チューブにリン酸緩衝液(0.2M、pH7.4、20mL)を加えてボルテックスミキサーにてDL−GLAが溶解するまで攪拌した。その後、BSA(500mg)を加えて溶解するまで攪拌した(溶液中のBSAの濃度:25mg/mL)。 DL-GLA (180 mg) and DTPA (39 mg) were weighed and transferred to a 50 mL culture tube. Phosphate buffer (0.2 M, pH 7.4, 20 mL) was added to the tube, and the mixture was stirred with a vortex mixer until DL-GLA was dissolved. Then, BSA (500 mg) was added and stirred until dissolved (concentration of BSA in solution: 25 mg / mL).

得られた混合物をクリーンベンチ内で0.2μmフィルターに通して無菌溶液とした。チューブ内の液体が蒸発しないように、パラフィルム(商標)などのフィルムにてチューブの蓋を密閉して37℃で1週間インキュベートした。 The resulting mixture was passed through a 0.2 μm filter in a clean bench to give a sterile solution. The tube lid was sealed with a film such as Parafilm ™ to prevent the liquid in the tube from evaporating, and the tube was incubated at 37 ° C. for 1 week.

得られた反応溶液(2.5mLずつ)をPD−10カラム(GEヘルスケア、8本)にアプライし、PD−10カラムのプロトコールにしたがって、リン酸緩衝液生理食塩水(PBS)(pH7.4、3.5mLずつ)で溶出させた。 The resulting reaction solution (2.5 mL each) was applied to a PD-10 column (GE Healthcare, 8 bottles) and according to the PD-10 column protocol, phosphate buffered saline (PBS) (pH 7. It was eluted with 4 and 3.5 mL each).

カラム4本分の溶出液(計14mL)を集めて分画分子量6〜8kDaの透析チューブ(Spectra/Por Dialysis Membrane、幅:23mm)に入れ、14mLのチューブ2本を予め冷やしておいた2LのPBS中に入れて攪拌して透析した。透析は低温室内(5℃)で行い、24時間ごとに透析液(PBS)を交換し、3日間透析した。 Eluate for 4 columns (14 mL in total) was collected and placed in a dialysis tube (Spectra / Por Dialysis Membrane, width: 23 mm) with a molecular weight cut-off of 6 to 8 kDa. It was placed in PBS, stirred and dialyzed. Dialysis was performed in a low temperature room (5 ° C.), the dialysate (PBS) was changed every 24 hours, and dialysis was performed for 3 days.

透析終了後、2本の透析チューブ内の液を合わせて50mLの培養用チューブに入れて、グリセルアルデヒド由来AGEs含有BSA(Glycer−AGEs−BSA)としてタンパク質量を測定し、培養用PBSにて必要なタンパク質濃度に調整した。
DL−GLAを添加しなかったことを除いて実施例1と同じ手法で、対照BSAを調製した。
After the completion of dialysis, the solutions in the two dialysis tubes were put together into a 50 mL culture tube, the amount of protein was measured as glyceraldehyde-derived AGEs-containing BSA (Glycer-AGEs-BSA), and the culture PBS was used. Adjusted to the required protein concentration.
A control BSA was prepared in the same manner as in Example 1 except that DL-GLA was not added.

(2)グリセルアルデヒド由来AGEs含有マウス血清アルブミン(Glycer−AGEs−MSA)およびグリセルアルデヒド由来AGEs含有ウサギ血清アルブミン(Glycer−AGEs−RSA)
0.2Mリン酸緩衝液(pH7.4)中に、25mg/mLのマウス血清アルブミン(MSA、Sigma−Aldrich)あるいはウサギ血清アルブミン(RSA、Sigma−Aldrich)、DL−グリセルアルデヒド(0.1M,ナカライテスク)、およびジエチレントリアミン5酢酸(5mM、DTPA、同仁化学研究所)を含有する溶液を調製した。該溶液を0.2μmのフィルター滅菌により無菌的な状態にし、37℃で1週間インキュベートした。低分子量の未反応物などは、PD−10ゲルろ過カラム(GEヘルスケア)を用いて除き、さらに、低温室内(5℃)でPBS(リン酸緩衝生理食塩水)にて3日間透析(この間、毎日PBSを交換)を行った。
(2) Glyceraldehyde-derived AGEs-containing mouse serum albumin (Glycer-AGEs-MSA) and glyceraldehyde-derived AGEs-containing rabbit serum albumin (Glycer-AGEs-RSA)
25 mg / mL mouse serum albumin (MSA, Sigma-Aldrich) or rabbit serum albumin (RSA, Sigma-Aldrich), DL-glyceraldehyde (0.1 M) in 0.2 M phosphate buffer (pH 7.4). , Nakaraitesk), and diethylenetriamine-5acetic acid (5 mM, DTPA, Dojin Chemical Laboratory). The solution was sterilized by 0.2 μm filter sterilization and incubated at 37 ° C. for 1 week. Low molecular weight unreacted substances are removed using a PD-10 gel filtration column (GE Healthcare), and further dialyzed in PBS (phosphate buffered saline) for 3 days in a low temperature room (5 ° C.) (during this period). , Change PBS daily).

(3)グルコース由来AGEs含有BSA(Glu−AGEs−BSA)およびフルクトース由来AGEs含有BSA(Fru−AGEs−BSA)
0.2Mリン酸緩衝液(pH7.4)中に、25mg/mLウシ血清アルブミン(BSA、Sigma−Aldrich)、D−グルコース(0.5M、和光純薬)またはD−フルクトース(0.5M、和光純薬)、およびDTPA(5mM、同仁化学研究所)を含む溶液を調製し、該溶液を0.2μmのフィルター滅菌により無菌的な状態にし、37℃で8週間インキュベートした。低分子量の未反応物などはPD−10ゲルろ過カラムを用いて除き、さらに、低温室内(5℃)でPBSにて3日間透析(この間、毎日PBSを交換)を行った。
(3) Glucose-derived AGEs-containing BSA (Glu-AGEs-BSA) and fructose-derived AGEs-containing BSA (Fru-AGEs-BSA)
25 mg / mL bovine serum albumin (BSA, Sigma-Aldrich), D-glucose (0.5 M, Wako Pure Chemical Industries, Ltd.) or D-fluctose (0.5 M, 0.5 M,) in 0.2 M phosphate buffer (pH 7.4). A solution containing Wako Pure Chemical Industries, Ltd.) and DTPA (5 mM, Dojin Chemical Industries, Ltd.) was prepared, and the solution was sterilized by 0.2 μm filter sterilization and incubated at 37 ° C. for 8 weeks. Low molecular weight unreacted substances were removed using a PD-10 gel filtration column, and further dialyzed with PBS in a low temperature room (5 ° C.) for 3 days (PBS was replaced daily during this period).

(4)グリコールアルデヒド由来AGEs含有BSA(Glycol−AGEs−BSA)、メチルグリオキサール由来AGEs含有BSA(MGO−AGEs−BSA)、およびグリオキサール由来AGEs含有BSA(GO−AGEs−BSA)
0.2Mリン酸緩衝液(pH7.4)中に、0.1Mのグリコールアルデヒド(Sigma−Aldrich)、メチルグリオキサール(Sigma−Aldrich)、あるいはグリオキサール(Sigma−Aldrich)と、BSA(25mg/mL)およびDTPA(5mM)を含む溶液を調製した。該溶液を0.2μmのフィルター滅菌により無菌的な状態にし、37℃で1週間インキュベートした。無菌条件下、37℃で1週間インキュベートし、その後、低分子量の未反応物などはPD−10ゲルろ過カラムを用いて除き、さらに、低温室内(5℃)でPBSにて3日間透析(この間、毎日PBSを交換)を行った。
(4) Glycolaldehyde-derived AGEs-containing BSA (Glycol-AGEs-BSA), methylglyoxal-derived AGEs-containing BSA (MGO-AGEs-BSA), and glyoxal-derived AGEs-containing BSA (GO-AGEs-BSA).
0.1 M glycolaldehyde (Sigma-Aldrich), methylglyoxal (Sigma-Aldrich), or glyoxal (Sigma-Aldrich) and BSA (25 mg / mL) in 0.2 M phosphate buffer (pH 7.4). And a solution containing DTPA (5 mM) was prepared. The solution was sterilized by 0.2 μm filter sterilization and incubated at 37 ° C. for 1 week. Incubate at 37 ° C. for 1 week under aseptic conditions, then remove low molecular weight unreacted substances using a PD-10 gel filtration column, and further dialyze with PBS in a low temperature room (5 ° C.) for 3 days (during this period). , Change PBS daily).

(5)3−デオキシグルコソン由来AGEs含有BSA(3−DG−AGEs−BSA)
0.2Mリン酸緩衝液(pH7.4)中にBSA(25mg/mL、Sigma−Aldrich)、3−デオキシグルコソン(0.2M、同仁化学研究所)およびDTPA(5mM)を含む溶液を調製した。該溶液を0.2μmのフィルター滅菌により無菌的な状態にし、37℃で2週間インキュベートした。その後、低分子量の未反応物などはPD−10ゲルろ過カラムを用いて除き、さらに、低温室内(5℃)でPBSにて3日間透析(この間、毎日PBSを交換)を行った。
(5) 3-Deoxyglucosone-derived AGEs-containing BSA (3-DG-AGEs-BSA)
Prepare a solution containing BSA (25 mg / mL, Sigma-Aldrich), 3-deoxyglucosone (0.2 M, Dojin Chemical Laboratory) and DTPA (5 mM) in 0.2 M phosphate buffer (pH 7.4). bottom. The solution was sterilized by 0.2 μm filter sterilization and incubated at 37 ° C. for 2 weeks. Then, low molecular weight unreacted substances and the like were removed using a PD-10 gel filtration column, and further dialyzed with PBS in a low temperature room (5 ° C.) for 3 days (PBS was replaced daily during this period).

(6)Nε−カルボキシメチルリシン含有BSA(CML−BSA)
0.2 Mリン酸緩衝液(pH7.4)中に、BSA(50mg/mL、Sigma−Aldrich)、グリオキシル酸(45mM、和光純薬)およびシアノ水素化ホウ素ナトリウム(150mM、Sigma−Aldrich)を含む溶液を調製した。該溶液を0.2μmのフィルター滅菌により無菌的な状態にし、37℃で24時間インキュベートした。その後、低分子量の未反応物などはPD−10ゲルろ過カラムを用いて除き、さらに、低温室内(5℃)でPBSにて3日間透析(この間、毎日PBSを交換)を行った。
(6) N ε -carboxymethyl lysine-containing BSA (CML-BSA)
BSA (50 mg / mL, Sigma-Aldrich), glyoxylic acid (45 mM, Wako Pure Chemical Industries, Ltd.) and sodium cyanoborohydride (150 mM, Sigma-Aldrich) in 0.2 M phosphate buffer (pH 7.4). A solution containing was prepared. The solution was sterilized by 0.2 μm filter sterilization and incubated at 37 ° C. for 24 hours. Then, low molecular weight unreacted substances and the like were removed using a PD-10 gel filtration column, and further dialyzed with PBS in a low temperature room (5 ° C.) for 3 days (PBS was replaced daily during this period).

(7)Nε−カルボキシエチルリシン含有BSA(CEL−BSA)
0.2 Mリン酸緩衝液(pH7.4)中に、BSA(50mg/mL、Sigma−Aldrich)、ピルビン酸(45mM、和光純薬)およびシアノ水素化ホウ素ナトリウム(150mM、Sigma−Aldrich)を含む溶液を調製した。該溶液を0.2μmのフィルター滅菌により無菌的な状態にし、37℃で24時間インキュベートした。その後、低分子量の未反応物などはPD−10ゲルろ過カラムを用いて除き、さらに、低温室内(5℃)でPBSにて3日間透析(この間、毎日PBSを交換)を行った。
(7) N ε -carboxyethyl lysine-containing BSA (CEL-BSA)
BSA (50 mg / mL, Sigma-Aldrich), pyruvic acid (45 mM, Wako Pure Chemical Industries, Ltd.) and sodium cyanoborohydride (150 mM, Sigma-Aldrich) in 0.2 M phosphate buffer (pH 7.4). A solution containing was prepared. The solution was sterilized by 0.2 μm filter sterilization and incubated at 37 ° C. for 24 hours. Then, low molecular weight unreacted substances and the like were removed using a PD-10 gel filtration column, and further dialyzed with PBS in a low temperature room (5 ° C.) for 3 days (PBS was replaced daily during this period).

[実施例2]抗原の調製
(1)グリセルアルデヒド由来AGEs化リシン(Glycer−AGEs−Z−Lys)の調製
α−カルボベンゾキシ−L−リシン(Z−Lys−OH、東京化成工業)、DL−グリセルアルデヒド(DL−GLA、ナカライテスク)は購入により入手した。DL−GLA(675.6mg)を秤量し、50mL容の遠沈管に移した。遠沈管にリン酸緩衝液(0.2M、pH7.4、25mL)を加えてボルテックスミキサーにてDL−GLAが溶解するまで攪拌した。その後、Z−Lys−OH(700.8mg)を加えて溶解するまで攪拌した(溶液中のDL−GLA濃度:300mM、Z−Lys−OH濃度:100mM)。その後、遠沈管内の液体が蒸発しないように、パラフィルム(商標)などのフィルムにてチューブの蓋を密閉して37℃で1週間以上静置した。
[Example 2] Preparation of antigen (1) glyceraldehyde-derived AGEs lysine (Glycer-AGEs-Z-Lys ) Preparation of N alpha - carbobenzoxy -L- lysine (Z-Lys-OH, Tokyo Kasei Kogyo) , DL-glyceraldehyde (DL-GLA, Nacalai Tesque) was obtained by purchase. DL-GLA (675.6 mg) was weighed and transferred to a 50 mL centrifuge tube. Phosphate buffer (0.2 M, pH 7.4, 25 mL) was added to the centrifuge tube, and the mixture was stirred with a vortex mixer until DL-GLA was dissolved. Then, Z-Lys-OH (700.8 mg) was added and stirred until dissolved (DL-GLA concentration in solution: 300 mM, Z-Lys-OH concentration: 100 mM). Then, the lid of the tube was sealed with a film such as Parafilm (trademark) so that the liquid in the centrifuge tube would not evaporate, and the tube was allowed to stand at 37 ° C. for 1 week or longer.

得られた反応溶液5mLに対して、10%トリフルオロ酢酸(TFA、富士フイルム和光純薬)水溶液1mLを加え、転倒混和した。その後、室温にて10分間遠心分離(12,000×g)し、上清を除去した。得られた沈殿物を含む遠沈管に超純水(5mL)を加え、再度遠心分離を行い、上清を除去した。この操作を計3回実施することで、沈殿を洗浄した。洗浄後の沈殿は風乾後、乾燥重を測定(200mg)し、冷蔵保存した。 To 5 mL of the obtained reaction solution, 1 mL of a 10% trifluoroacetic acid (TFA, Wako Pure Chemical Industries, Ltd.) aqueous solution was added and mixed by inversion. Then, it was centrifuged (12,000 × g) for 10 minutes at room temperature, and the supernatant was removed. Ultrapure water (5 mL) was added to the centrifuge tube containing the obtained precipitate, and centrifugation was performed again to remove the supernatant. The precipitate was washed by performing this operation a total of three times. The precipitate after washing was air-dried, the dry weight was measured (200 mg), and the precipitate was stored in a refrigerator.

(2)Glycer−AGEs−Z−Lysの分取精製
Glycer−AGEs−Z−Lysの沈殿物をリン酸緩衝液(0.2M、pH7.4)に溶解させ、0.5mg/mL(分析用)もしくは50mg/mL(分取用)の試料溶液を調製した。その後、孔径0.2μmのシリンジフィルター(Millex−LG、メルク)でろ過し、ろ液を高速液体クロマトグラフィー(HPLC)の試料とした。HPLC装置は1260 Infinity IIシステム(アジレント・テクノロジー)を使用し、以下のモジュールで構成した;クォーターナリポンプ(G7111B)、マルチサンプラ(G7167A)、マルチカラムサーモスタット(G7116A)、ダイオードアレイ検出器(G7115A)、蛍光検出器(G7121B)、フラクションコレクタ(G1364F)、OpenLAB CDS ChemStationソフトウェア。移動相は富士フイルム和光純薬のHPLC溶媒より調製した。移動相Aは1M酢酸アンモニウム溶液10mLと蒸留水990mLを混合した10mM酢酸アンモニウム水溶液、移動相Bはアセトニトリルとした。分析時間0−10分は移動相A:B=75:25で流下し、10.1−20分は移動相A:B=65:35で流下し、20.1−25分は移動相A:B=10:90で流下した。分析カラムはYMC-Triart C18(150×4.6mm、ワイエムシィ)を使用し、流速を0.8mL/分に設定した。ろ過後の分析用試料溶液(0.5mg/mL)をHPLC装置に5μL注入し、ダイオードアレイ検出器(260nm)及び蛍光検出器(励起波長350nm、蛍光波長450nm)でGlycer−AGEs−Z−Lysのピークを検出した。HPLCの結果を図6(ダイオードアレイ検出(260nm))および図7(蛍光検出(Ex350nm、Em450nm))に示す。
(2) Precipitating and purifying Glycer-AGEs-Z-Lys The precipitate of Glycer-AGEs-Z-Lys was dissolved in a phosphate buffer solution (0.2M, pH 7.4) and 0.5 mg / mL (for analysis). ) Or 50 mg / mL (for precipitation) sample solution was prepared. Then, the mixture was filtered through a syringe filter (Millex-LG, Merck) having a pore size of 0.2 μm, and the filtrate was used as a sample for high performance liquid chromatography (HPLC). The HPLC instrument used the 1260 Infinity II system (Agilent Technologies) and consisted of the following modules; quarterly pump (G7111B), multisampler (G7167A), multicolumn thermostat (G7116A), diode array detector (G7115A). , Fluorescence detector (G7121B), Fraction collector (G1364F), OpenLAB CDS ChemStation software. The mobile phase was prepared from the HPLC solvent of Wako Pure Chemical Industries, Ltd. The mobile phase A was a 10 mM ammonium acetate aqueous solution obtained by mixing 10 mL of a 1 M ammonium acetate solution and 990 mL of distilled water, and the mobile phase B was acetonitrile. The analysis time was 0-10 minutes flowing down at mobile phase A: B = 75: 25, 10.1-20 minutes flowing down at mobile phase A: B = 65:35, and 20.1-2 minutes flowing down at mobile phase A. : B = 10: 90 flowed down. A YMC-Triart C18 (150 × 4.6 mm, YMC) was used as the analysis column, and the flow rate was set to 0.8 mL / min. 5 μL of the sample solution for analysis (0.5 mg / mL) after filtration was injected into the HPLC apparatus, and Glycer-AGEs-Z-Lys was used with a diode array detector (260 nm) and a fluorescence detector (excitation wavelength 350 nm, fluorescence wavelength 450 nm). Peak was detected. The results of HPLC are shown in FIG. 6 (diode array detection (260 nm)) and FIG. 7 (fluorescence detection (Ex350 nm, Em450 nm)).

その結果、分析時間13.5分にて顕著なピークが認められた。以後、このピークをGAL13と呼称する。続いて、YMC−Triart C18(150×10mm、ワイエムシィ)をHPLC装置に取り付け、流速を2.5mL/分に設定した。ろ過後の分取用試料溶液(50mg/mL)をHPLC装置に50μL注入し、ダイオードアレイ検出器(260nm)でGAL13を検出した。そして、UVのピークをトリガーに設定したフラクションコレクタにて、GAL13を分取した。 As a result, a remarkable peak was observed at the analysis time of 13.5 minutes. Hereinafter, this peak will be referred to as GAL13. Subsequently, YMC-Triart C18 (150 × 10 mm, YMC) was attached to the HPLC apparatus, and the flow rate was set to 2.5 mL / min. 50 μL of the filtered sample solution (50 mg / mL) was injected into the HPLC apparatus, and GAL13 was detected by a diode array detector (260 nm). Then, GAL13 was separated by a fraction collector set with a UV peak as a trigger.

分取溶液に含まれるアセトニトリルはロータリーエバポレーター(東京理化器械)で除去した。残渣の溶液5mLに対して、10%TFA水溶液1mLを加え、転倒混和した。その後、室温にて10分間遠心分離(12,000×g)し、上清を除去した。得られた沈殿物に超純水(5mL)を加え、再度遠心分離を行い、上清を除去した。この操作を計3回実施することで、沈殿を洗浄した。洗浄後の沈殿は風乾後、乾燥重を測定し(1mg)、冷蔵保存した。 Acetonitrile contained in the preparative solution was removed by a rotary evaporator (Tokyo Rika Kikai). To 5 mL of the residue solution, 1 mL of a 10% TFA aqueous solution was added and mixed by inversion. Then, it was centrifuged (12,000 × g) for 10 minutes at room temperature, and the supernatant was removed. Ultrapure water (5 mL) was added to the obtained precipitate, and centrifugation was performed again to remove the supernatant. The precipitate was washed by performing this operation a total of three times. The precipitate after washing was air-dried, the dry weight was measured (1 mg), and the precipitate was stored in a refrigerator.

(3)GAL13のキャリアタンパク質への結合
分取精製後のGAL13の乾燥粉末をリン酸緩衝液(0.2M、pH7.4)に溶解させ、終濃度を40mg/mLとした。さらに、この溶液をリン酸緩衝生理食塩水(PBS、pH7.4)にて10倍希釈し、終濃度を4mg/mLとした。キャリアタンパク質の溶液は以下のように調製した。マウス血清アルブミン(MSA、Sigma−Aldrich)の凍結乾燥粉末をPBSに溶解させ、終濃度を10mg/mLとした。1.5mL容のEppendorf Safe-Lock Tubes(エッペンドルフ)内で、4mg/mLのGAL13溶液(500μL)と10mg/mLのMSA溶液(200μL)を混合した。続いて、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC、Thermo Scientific)を超純水に溶解させ、10mg/mL水溶液を作製した。GAL13とMSAの混合溶液(700μL)に、10mg/mLEDC水溶液(100μL)を素早く添加し、転倒混和した後、室温にて一晩インキュベートした。
(3) Binding of GAL13 to carrier protein The dry powder of GAL13 after preparative purification was dissolved in phosphate buffer (0.2M, pH 7.4) to give a final concentration of 40 mg / mL. Further, this solution was diluted 10-fold with phosphate buffered saline (PBS, pH 7.4) to a final concentration of 4 mg / mL. The carrier protein solution was prepared as follows. A lyophilized powder of mouse serum albumin (MSA, Sigma-Aldrich) was dissolved in PBS to a final concentration of 10 mg / mL. In 1.5 mL of Eppendorf Safe-Lock Tubes, 4 mg / mL GAL13 solution (500 μL) and 10 mg / mL MSA solution (200 μL) were mixed. Subsequently, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC, Thermo Scientific) was dissolved in ultrapure water to prepare a 10 mg / mL aqueous solution. A 10 mg / mLEDC aqueous solution (100 μL) was quickly added to a mixed solution of GAL13 and MSA (700 μL), mixed by inversion, and then incubated overnight at room temperature.

反応終了後、直ちにZeba Spin Desalting Columns(7K MWCO、Thermo Scientific)で反応溶液をゲルろ過した。さらに、Slide-A-Lyzer MINI Dialysis Device(3.5K MWCO、Thermo Scientific)を使用し、低温下(4℃)で透析した。透析外液はPBSとした。透析を開始して3時間後に外液を交換し、さらに一晩の透析を行った。透析終了後、透析デバイス内の溶液を回収し、アミコンウルトラ−0.5(30K MWCO、メルク)で濃縮した。Pierce BCA Protein Assay Kit(Thermo Scientific)でGAL13を架橋させたMSA(GAL13−MSA)のタンパク質濃度を求め、PBSにて任意のタンパク質濃度に調整した。GAL13−MSAはマウスモノクローナル抗体作製における免疫抗原として使用した。 Immediately after completion of the reaction, the reaction solution was gel-filtered with Zeba Spin Desalting Columns (7K MWCO, Thermo Scientific). Furthermore, using a Slide-A-Lyzer MINI Dialysis Device (3.5K MWCO, Thermo Scientific), dialysis was performed at a low temperature (4 ° C.). The external dialysis solution was PBS. Three hours after the start of dialysis, the external fluid was exchanged, and dialysis was further performed overnight. After completion of dialysis, the solution in the dialysis device was collected and concentrated with Amicon Ultra-0.5 (30K MWCO, Merck). The protein concentration of MSA (GAL13-MSA) cross-linked with GAL13 was determined with the Pierce BCA Protein Assay Kit (Thermo Scientific), and adjusted to an arbitrary protein concentration with PBS. GAL13-MSA was used as an immune antigen in the production of mouse monoclonal antibodies.

Enzyme-Linked ImmunoSorbent Assay(ELISA)においては、GAL13をウシ血清アルブミン(BSA、Sigma−Aldrich)に架橋させ、GAL13−BSAとして試験に使用した。また、陰性の対照区として、Nα,Nε−ジカルボベンゾキシ−L−リシン(Z−Lys(Z)−OH、渡辺化学工業)をBSAに架橋させ、Z−Lys−BSAを調製した。これらの試料は、必要に応じて、クリーンベンチ内でフィルターろ過滅菌(孔径0.22μm)を行った。 In the Enzyme-Linked ImmunoSorbent Assay (ELISA), GAL13 was crosslinked with bovine serum albumin (BSA, Sigma-Aldrich) and used in the test as GAL13-BSA. In addition, as a negative control group, N α , N ε -dicarbobenzoxy-L-lysine (Z-Lys (Z) -OH, Watanabe Kagaku Kogyo) was crosslinked with BSA to prepare Z-Lys-BSA. .. These samples were filtered and sterilized (pore size 0.22 μm) in a clean bench as needed.

[実施例3]モノクローナル抗体の作製
(1)マウスへの免疫
免疫抗原として、Glycer−AGEs由来新規構造体修飾―マウス血清アルブミン(GAL13−MSA、1mg/mL)を同じ容量のFreund’s Adjuvant, Complete(Sigma−Aldrich)と混合してエマルジョンを調製し(抗原の濃度:0.5mg/mL)、BALB/cマウス5匹の背部皮下に初回免疫をした(抗原の量:200μg/匹)。GAL13−MSA(1mg/mL)を同じ容量のFreund’s Adjuvant, Incomplete(Sigma−Aldrich)と混合して調製したエマルジョン(抗原の濃度:0.5mg/mL)を用いて1週間おきに追加免疫(抗原の量:50μg/匹)を行った。初回免疫から6回免疫した後に尾静脈より採血を行い、抗体価の確認を行った。抗体価の高かったものに対して、追加免疫用のエマルジョン(抗原の量:50μg)をマウスの腹腔内に最終投与し、その3日後に細胞融合用に脾臓を摘出した。
[Example 3] Preparation of monoclonal antibody (1) Immunity to mice As an immune antigen, a novel structure modification derived from Glycer-AGEs-mouse serum albumin (GAL13-MSA, 1 mg / mL) was added to Freund's Adjuvant, Complete (1 mg / mL) in the same volume. An emulsion was prepared by mixing with Sigma-Aldrich (antigen concentration: 0.5 mg / mL), and the back subcutaneous of 5 BALB / c mice was first immunized (antigen amount: 200 μg / animal). Boost immunization (antigen) every other week using an emulsion (antigen concentration: 0.5 mg / mL) prepared by mixing GAL13-MSA (1 mg / mL) with the same volume of Freund's Adjuvant, Incomplete (Sigma-Aldrich). Amount: 50 μg / animal). After immunization 6 times from the initial immunization, blood was collected from the tail vein to confirm the antibody titer. An emulsion for booster immunization (amount of antigen: 50 μg) was finally administered intraperitoneally to the mouse having a high antibody titer, and 3 days later, the spleen was removed for cell fusion.

(2)抗体価の測定
抗血清の力価をELISAで評価した。96穴マイクロタイタープレート(NUNC)に、免疫抗原であるGAL13−MSAにおいて、キャリアタンパクをBSAに変更したGlycer−AGEs由来新規構造体修飾―ウシ血清アルブミン(GAL13−BSA)を1μg/mLの濃度で50μL/ウェルずつ加え、一晩4℃で固相化した。0.05%(v/v)Tween20を含むPBS(PBS−T)で3回洗浄後、0.5%(w/v)ゼラチンを含む炭酸緩衝液(pH9.5)で1時間ブロッキングした。抗血清は1000倍から3倍ずつ段階希釈し、729000倍までの希釈系列を調製後、抗原固相化プレートに50μL/ウェルずつ入れて1時間静置した。洗浄後、PBS−Tで2500倍に希釈した2次抗体(西洋ワサビペルオキシダーゼ(HRP)標識化抗マウスIgG(ZYMED)を50μL/ウェルずつ入れて1時間静置した。洗浄後、各ウェルに0.02%(w/v)の過酸化水素を含む0.1Mクエン酸リン酸緩衝液(pH5.0)で0.5mg/mLに調製した
o−フェニレンジアミン溶液(100μL)を添加し、25℃で10分間静置した後に、1M硫酸溶液(100μL)を各ウェルに添加し、呈色反応を停止した。その後490nmの吸光度をマイクロプレートリーダーによって測定した。その結果、抗血清の9000倍以上の希釈溶液において、抗原と有意な反応性を示したマウスを細胞融合に使用した。
(2) Measurement of antibody titer The titer of antiserum was evaluated by ELISA. In a 96-well microtiter plate (NUNC), in the immune antigen GAL13-MSA, a novel structure modification derived from Glycer-AGEs in which the carrier protein was changed to BSA-bovine serum albumin (GAL13-BSA) was added at a concentration of 1 μg / mL. 50 μL / well was added and solidified at 4 ° C. overnight. After washing 3 times with PBS (PBS-T) containing 0.05% (v / v) Tween 20, blocking was performed with a carbonate buffer (pH 9.5) containing 0.5% (w / v) gelatin for 1 hour. The antiserum was serially diluted 1000 to 3 times, and after preparing a dilution series up to 729000 times, 50 μL / well was placed on an antigen-immobilized plate and allowed to stand for 1 hour. After washing, 50 μL / well of secondary antibody (Horseradish peroxidase (HRP) -labeled anti-mouse IgG (ZYMED)) diluted 2500-fold with PBS-T was added and allowed to stand for 1 hour. After washing, 0 in each well. An o-phenylenediamine solution (100 μL) prepared to 0.5 mg / mL with 0.1 M phosphate buffer (pH 5.0) containing 0.02% (w / v) hydrogen peroxide was added, and 25 After allowing to stand at ° C. for 10 minutes, a 1 M sulfuric acid solution (100 μL) was added to each well to stop the coloring reaction. Then, the absorbance at 490 nm was measured with a microplate reader. As a result, 9000 times or more of the anti-serum. Mice that showed significant reactivity with the antigen in the diluted solution of were used for cell fusion.

(3)脾臓細胞の調製と細胞融合
マウスから摘出した脾臓をすりつぶし、1匹あたり約1×10個の脾臓細胞を調製した。ミエローマ細胞であるP3U1を培養し、細胞融合当日に生細胞率が95%以上のP3U1を調製した。前記脾臓細胞とP3U1を5:1(細胞数の比)で混ぜ、50%(w/v)濃度の分子量1,450のポリエチレングリコールにより細胞融合を行った。融合後、細胞を培地で洗浄し、HAT培地に懸濁させ、96穴培養プレートの各ウェルに1×10個/ウェルとなるように細胞を播きこみ、ハイブリドーマの選択培養を行った。細胞融合10日目にハイブリドーマ培養上清を回収し、培養上清中の抗体価の測定を行った。
(3) Preparation of spleen cells and cell fusion The spleen extracted from the mouse was ground to prepare about 1 × 10 8 spleen cells per mouse. P3U1 which is a myeloma cell was cultured, and P3U1 having a viable cell rate of 95% or more was prepared on the day of cell fusion. The spleen cells and P3U1 were mixed at a ratio of 5: 1 (cell number ratio), and cell fusion was performed with polyethylene glycol having a molecular weight of 1,450 at a concentration of 50% (w / v). After the fusion, the cells were washed with a medium, suspended in a HAT medium, and the cells were seeded into each well of a 96-well culture plate so as to be 1 × 10 5 cells / well, and a hybridoma was selectively cultured. On the 10th day of cell fusion, the hybridoma culture supernatant was collected, and the antibody titer in the culture supernatant was measured.

(4)抗体産生陽性ウェルのスクリーニング
細胞融合後、10日目の培養上清を回収し、抗体産生陽性ウェルのスクリーニングを上記の抗体価測定方法で行った。GAL13−BSA、グリセルアルデヒド由来AGEs含有BSA(Glycer−AGEs−BSA)に陽性、Z−リシン修飾ウシ血清アルブミン(Z−Lys−BSA)に陰性であるクローンについて選択した。
(4) Screening of antibody production positive wells The culture supernatant on the 10th day after cell fusion was collected, and antibody production positive wells were screened by the above antibody titer measurement method. Clone was selected for GAL13-BSA, glyceraldehyde-derived AGEs-containing BSA (Glycer-AGEs-BSA) positive, and Z-lysine-modified bovine serum albumin (Z-Lys-BSA) negative.

(5)クローニング
GAL13−BSAに対する特異性の高かったクローンを限界希釈法でクローニングを行った。すなわち、細胞を10%のFCSを含むRPMI培地で5個/mLに調製し、96穴培養プレート2枚分の各ウェルに200μLずつ添加した。10日後、培養上清中のGAL13−BSA、Glycer−AGEs−BSAに陽性、およびZ−Lys−BSAに陰性であることを確認し、それぞれのウェルに由来するクローンを得た。特異性を十分に備えた本発明の抗体として、新規モノクローナル抗体SJ−5産生細胞を得た。
(5) Cloning A clone having high specificity for GAL13-BSA was cloned by the limiting dilution method. That is, cells were prepared at 5 cells / mL in RPMI medium containing 10% FCS, and 200 μL was added to each well of two 96-well culture plates. After 10 days, it was confirmed that the culture supernatant was positive for GAL13-BSA, Glycer-AGEs-BSA, and negative for Z-Lys-BSA, and clones derived from each well were obtained. As an antibody of the present invention having sufficient specificity, a novel monoclonal antibody SJ-5 producing cell was obtained.

(6)抗体の精製
新規モノクローナル抗体SJ−5産生細胞を、10%のFCS を含むRPMI培地で培養後、PBSにて洗浄し、無血清培地(SMF培地、Thermo Scientific)にて4日〜6日間培養し培養上清を得た。培養上清をProteinGカラム(GEヘルスケア社製)にて、IgG画分を精製し、特異性を十分に備えた本発明の抗体として、新規モノクローナル抗体SJ−5を得た。
(6) Purification of antibody The cells producing the novel monoclonal antibody SJ-5 were cultured in RPMI medium containing 10% FCS, washed with PBS, and in serum-free medium (SMF medium, Thermo Scientific) for 4 days to 6 days. The cells were cultured for one day to obtain a culture supernatant. The culture supernatant was purified from the IgG fraction on a Protein G column (manufactured by GE Healthcare) to obtain a novel monoclonal antibody SJ-5 as an antibody of the present invention having sufficient specificity.

[実施例4]モノクローナル抗体およびポリクローナル抗体のペルオキシダーゼ(POD)標識方法
得られた新規モノクローナル抗体SJ−5(PBS溶液、200μg)または、抗グリセルアルデヒド由来AGEsポリクローナル抗体(Molecular Medicine 6(2): 114-125, 2000に記載の竹内らの方法による、PBS溶液、200μg)は、Peroxidase Labeling Kit-SH(同仁化学研究所)を用いて、POD標識を行った。標識方法は取扱説明書の手順に従った。得られたPOD標識化抗体溶液はグリセロール(Sigma−Aldrich)と1:1で混合し、−20℃で保存した。
[Example 4] Peroxidase (POD) labeling method for monoclonal antibody and polyclonal antibody The obtained novel monoclonal antibody SJ-5 (PBS solution, 200 μg) or anti-glyceraldehyde-derived AGEs polyclonal antibody (Molecular Medicine 6 (2): The PBS solution (200 μg) according to Takeuchi et al.'S method described in 114-125, 2000 was POD-labeled using the Peroxidase Labeling Kit-SH (Dojin Chemical Laboratory). The labeling method followed the procedure in the instruction manual. The obtained POD-labeled antibody solution was mixed with glycerol (Sigma-Aldrich) at a ratio of 1: 1 and stored at −20 ° C.

[実施例5]ELISA直接法による新規モノクローナル抗体の反応性の確認
Glycer−AGEs由来新規構造体修飾―BSA(GAL13−BSA)、を1μg/mLの濃度で100μL/ウェルずつ加え、一晩4℃で固相化した。0.05%(v/v)Tween20を含むPBS(PBS−T)で3回洗浄後、0.5%(w/v)ゼラチンを含むPBS−Tで1時間ブロッキングした。実施例4で調製したPOD標識化新規モノクローナル抗体SJ−5並びにコントロールとして抗グリセルアルデヒド由来AGEsポリクローナル抗体は4μg/mLから、4倍ずつ段階希釈し、0.06254μg/mLまでの希釈系列を調製後、抗原固相化プレートに100μL/ウェルずつ入れて1時間静置した。洗浄後、各ウェルに0.02%(w/v)の過酸化水素を含む0.1Mクエン酸リン酸緩衝液(pH5.0)で0.5mg/mLに調製したo−フェニレンジアミン溶液(100μL)を添加し、25℃で10分間静置した後に、1M硫酸溶液(50μL)を各ウェルに添加し、呈色反応を停止した。その後490nmの吸光度をマイクロプレートリーダーによって測定した。
[Example 5] Confirmation of reactivity of novel monoclonal antibody by ELISA direct method Glycer-AGEs-derived novel structure modification-BSA (GAL13-BSA) was added at a concentration of 1 μg / mL at a concentration of 100 μL / well, and the temperature was 4 ° C. overnight. It was immobilized with. After washing 3 times with PBS (PBS-T) containing 0.05% (v / v) Tween 20, blocking was performed with PBS-T containing 0.5% (w / v) gelatin for 1 hour. The POD-labeled novel monoclonal antibody SJ-5 prepared in Example 4 and the anti-glyceraldehyde-derived AGEs polyclonal antibody as a control were serially diluted 4-fold from 4 μg / mL to prepare a dilution series up to 0.06254 μg / mL. Then, 100 μL / well was placed in the antigen-immobilized plate and allowed to stand for 1 hour. After washing, an o-phenylenediamine solution (o-phenylenediamine solution) prepared to 0.5 mg / mL with 0.1 M phosphate buffer (pH 5.0) containing 0.02% (w / v) hydrogen hydrogen in each well. 100 μL) was added and allowed to stand at 25 ° C. for 10 minutes, and then a 1 M sulfuric acid solution (50 μL) was added to each well to stop the color reaction. The absorbance at 490 nm was then measured with a microplate reader.

その結果、図1に示すように、POD標識化SJ−5抗体はGAL13−BSAに良好に反応することが示された。 As a result, as shown in FIG. 1, it was shown that the POD-labeled SJ-5 antibody responded well to GAL13-BSA.

[実施例6]ELISA競合法による新規モノクローナル抗体の反応性の確認
GAL13−BSAを1μg/mLの濃度で100μL/ウェルずつ加え、一晩4℃で固相化した。0.05%(v/v)Tween20を含むPBS(PBS−T)で3回洗浄後、0.5%(w/v)ゼラチンを含む炭酸緩衝液(pH9.5)で1時間ブロッキングした。POD標識化SJ−5抗体(0.4μg/mL)並びにコントロールとして抗グリセルアルデヒド由来AGEsポリクローナル抗体(6μg/mL)を調製後、抗原固相化プレートに、GAL13−BSAと対照のBSAの10倍希釈系列溶液(各50μL)およびPOD標識化SJ−5抗体または、コントロールとして抗グリセルアルデヒド由来AGEsポリクローナル抗体(50μL)を加え、プレートミキサーで撹拌後、室温で1時間静置した。洗浄後、各ウェルに0.02%(w/v)の過酸化水素を含む0.1Mクエン酸リン酸緩衝液(pH5.0)で0.5mg/mLに調製したo−フェニレンジアミン溶液100μLを添加し、25℃で10分間静置した後に、1M硫酸溶液50μLを各ウェルに添加し、呈色反応を停止した。その後490nmの吸光度をマイクロプレートリーダーによって測定した。図2に抗グリセルアルデヒド由来AGEsポリクローナル抗体の結果、図3にPOD標識化SJ−5抗体の結果を示す。
[Example 6] Confirmation of reactivity of novel monoclonal antibody by ELISA competition method GAL13-BSA was added at a concentration of 1 μg / mL at a concentration of 100 μL / well, and immobilized at 4 ° C. overnight. After washing 3 times with PBS (PBS-T) containing 0.05% (v / v) Tween 20, blocking was performed with a carbonate buffer (pH 9.5) containing 0.5% (w / v) gelatin for 1 hour. After preparing POD-labeled SJ-5 antibody (0.4 μg / mL) and anti-glyceraldehyde-derived AGEs polyclonal antibody (6 μg / mL) as a control, GAL13-BSA and 10 of BSA as a control were placed on an antigen-immobilized plate. A double dilution series solution (50 μL each) and POD-labeled SJ-5 antibody or anti-glyceraldehyde-derived AGEs polyclonal antibody (50 μL) were added as a control, and the mixture was stirred with a plate mixer and allowed to stand at room temperature for 1 hour. After washing, 100 μL of o-phenylenediamine solution prepared to 0.5 mg / mL with 0.1 M phosphate buffer (pH 5.0) containing 0.02% (w / v) hydrogen hydrogen in each well. Was added and allowed to stand at 25 ° C. for 10 minutes, and then 50 μL of 1 M sulfuric acid solution was added to each well to stop the color reaction. The absorbance at 490 nm was then measured with a microplate reader. FIG. 2 shows the results of the anti-glyceraldehyde-derived AGEs polyclonal antibody, and FIG. 3 shows the results of the POD-labeled SJ-5 antibody.

POD標識化SJ−5抗体並び抗グリセルアルデヒド由来AGEsポリクローナル抗体ともに、競合法においても、GAL13−BSAに良好に反応することが示され、POD標識化SJ−5抗体の使用抗体濃度は、抗グリセルアルデヒド由来AGEsポリクローナル抗体の15倍低い濃度にて、同様の結果が得られることが示された。 Both POD-labeled SJ-5 antibody and anti-glyceraldehyde-derived AGEs polyclonal antibody were shown to react well with GAL13-BSA even in the competitive method, and the antibody concentration used for POD-labeled SJ-5 antibody was anti-glyceride. It was shown that similar results were obtained at a concentration 15 times lower than that of glyceraldehyde-derived AGEs polyclonal antibody.

[実施例7]ELISA競合法による新規モノクローナル抗体の特異性の確認
96穴マイクロタイタープレート(NUNC)の各ウェルに、固相化抗原としてPBS(pH7.4)で1μg/mLに調製したGAL13−BSAまたはGlycer−AGEs−BSAを100μLずつ添加し、25℃で1時間放置した。一晩4℃で固相化した。0.05%(v/v)Tween20を含むPBS(PBS−T)で3回洗浄後、0.5%(w/v)ゼラチンを含む炭酸緩衝液(pH9.5)で1時間ブロッキングした。実施例6と同じ条件でPOD標識化SJ−5抗体(0.4μg/mL)を調製し、抗原固相化プレートに、特異性確認のためグルコース由来AGEs含有BSA(Glu−AGEs−BSA)、グリコールアルデヒド由来AGEs含有BSA(Glycol−AGEs−BSA)、メチルグリオキサール由来AGEs含有BSA(MGO−AGEs−BSA)、グリオキサール由来AGEs含有BSA(GO−AGEs−BSA)、Nε−カルボキシメチルリシン含有BSA(CML−BSA)、Nε−カルボキシエチルリシン含有BSA(CEL−BSA)、およびウシ血清アルブミン(BSA)を同様に50μLずつ添加し、さらにPOD標識化SJ−5抗体(50μL)を添加し、プレートミキサーで撹拌後、室温で1時間静置した。洗浄後、各ウェルに0.02%(w/v)の過酸化水素を含む0.1Mクエン酸リン酸緩衝液(pH5.0)で0.5mg/mLに調製したo−フェニレンジアミン溶液(100μL)を添加し、25℃で10分間静置した後に、1M硫酸溶液50μLを各ウェルに添加し、呈色反応を停止した。その後490nmの吸光度をマイクロプレートリーダーによって測定した。
[Example 7] Confirmation of specificity of novel monoclonal antibody by ELISA competition method GAL13- prepared in 1 μg / mL of PBS (pH 7.4) as an immobilized antigen in each well of a 96-well microtiter plate (NUNC). 100 μL of BSA or Glycer-AGEs-BSA was added, and the mixture was left at 25 ° C. for 1 hour. It was solid-phased at 4 ° C. overnight. After washing 3 times with PBS (PBS-T) containing 0.05% (v / v) Tween 20, blocking was performed with a carbonate buffer (pH 9.5) containing 0.5% (w / v) gelatin for 1 hour. POD-labeled SJ-5 antibody (0.4 μg / mL) was prepared under the same conditions as in Example 6, and glucose-derived AGEs-containing BSA (Glu-AGEs-BSA) was placed on an antigen-immobilized plate to confirm specificity. glycolaldehyde derived AGEs containing BSA (glycol-AGEs-BSA) , methylglyoxal-derived AGEs containing BSA (MGO-AGEs-BSA) , glyoxal derived AGEs containing BSA (GO-AGEs-BSA) , N ε - carboxymethyl lysine-containing BSA ( CML-BSA), N ε -carboxyethyl lysine-containing BSA (CEL-BSA), and bovine serum albumin (BSA) were similarly added in an amount of 50 μL each, and then POD-labeled SJ-5 antibody (50 μL) was added, and the plate was added. After stirring with a mixer, the mixture was allowed to stand at room temperature for 1 hour. After washing, an o-phenylenediamine solution prepared at 0.5 mg / mL with 0.1 M phosphate buffer (pH 5.0) containing 0.02% (w / v) hydrogen hydrogen in each well ( 100 μL) was added and allowed to stand at 25 ° C. for 10 minutes, and then 50 μL of 1 M sulfuric acid solution was added to each well to stop the color reaction. The absorbance at 490 nm was then measured with a microplate reader.

図4に固相化抗原として、GAL13−BSAを用いたときのPOD標識化SJ−5抗体の特異性の結果、図5に固相化抗原としてGlycer−AGEs−BSAを用いたときのPOD標識新規モノクローナル抗体SJ−5の特異性の結果として、対照のBSAを1とした場合の吸光度を示す。
GAL13−BSA並びにGlycer−AGEs−BSAを固相化した場合においても、新規モノクローナル抗体SJ−5の特異性として、Glycer−AGEs−BSAおよびGlycol−AGEs−BSAに陽性、Glu−AGEs−BSA、Fru−AGEs−BSA、MGO−AGEs−BSA、GO−AGEs−BSA、CML−BSA、及びCEL−BSAに陰性であった。
FIG. 4 shows the specificity of the POD-labeled SJ-5 antibody when GAL13-BSA was used as the immobilized antigen, and FIG. 5 shows POD labeling when Glycer-AGEs-BSA was used as the immobilized antigen. As a result of the specificity of the novel monoclonal antibody SJ-5, the absorbance when the control BSA is 1 is shown.
Even when GAL13-BSA and Glycer-AGEs-BSA were immobilized, the specificity of the novel monoclonal antibody SJ-5 was positive for Glycer-AGEs-BSA and Glycol-AGEs-BSA, and Glu-AGEs-BSA and Fru. It was negative for -AGEs-BSA, MGO-AGEs-BSA, GO-AGEs-BSA, CML-BSA, and CEL-BSA.

[実施例8]モノクローナル抗体の解離定数測定
モノクローナル抗体SJ−5について、以下の手法で解離定数(K値)を測定した。グリセルアルデヒド由来AGEs含有BSA(Glycer−AGEs−BSA)を10mM 酢酸ナトリウム溶液(pH4.0)で希釈し、終濃度100μg/mLのリガンド溶液を調製した。リガンドの固定化およびKD値の算出について、Biacore T200(GEヘルスケア)を使用した。アミンカップリングキット(GEヘルスケア)を用いて、センサーチップCM5(GEヘルスケア)上にリガンド溶液を固定化した。続いて、モノクローナル抗体を0〜400nMの濃度に希釈した抗体希釈液を作成し、K値を算出した。
[Example 8] Measurement of dissociation constant of monoclonal antibody The dissociation constant (K d value) of the monoclonal antibody SJ-5 was measured by the following method. Glyceraldehyde-derived AGEs-containing BSA (Glycer-AGEs-BSA) was diluted with a 10 mM sodium acetate solution (pH 4.0) to prepare a ligand solution having a final concentration of 100 μg / mL. Biacore T200 (GE Healthcare) was used for ligand immobilization and KD value calculation. The ligand solution was immobilized on the sensor chip CM5 (GE Healthcare) using an amine coupling kit (GE Healthcare). Subsequently, an antibody diluent prepared by diluting the monoclonal antibody to a concentration of 0 to 400 nM was prepared, and the K d value was calculated.

その結果、モノクローナル抗体のK値は57.4nMであった。また、HPLCで分取したピークを化学結合させたBSA(GAL13−BSA)を10mM 酢酸ナトリウム溶液(pH5.0)で希釈し、終濃度25μg/mLのリガンド溶液を調製した。上記と同様にモノクローナル抗体のK値を算出した結果、87.5nMであった。 As a result, the K d value of the monoclonal antibody was 57.4 nM. Further, BSA (GAL13-BSA) in which the peaks separated by HPLC were chemically bonded was diluted with a 10 mM sodium acetate solution (pH 5.0) to prepare a ligand solution having a final concentration of 25 μg / mL. As a result of calculating the Kd value of the monoclonal antibody in the same manner as above, it was 87.5 nM.

[実施例9]GAL13の質量分析
質量分析で使用した溶媒は、富士フイルム和光純薬のHPLCグレードのものを使用した。実施例2にて調製したGAL13の乾燥粉末を50%アセトニトリル含有0.1%TFA溶液で溶解させ、終濃度0.25mg/mLとした。マトリクスはα−シアノ−4−ヒドロキシケイ皮酸(CHCA)を島津ジーエルシーより購入し、50%アセトニトリル含有0.1%TFA溶液で10mg/mL溶液を調製した。試料溶液とマトリクス溶液を0.6mL容のEppendorf Safe-Lock Tubes(エッペンドルフ)内で等量混合した後、測定用プレートのウェルに1μL滴下し、風乾させた。質量校正用ペプチドとして、des-Arg1-Bradykinin、Angiotensin I、Glu1-Fibrinopeptide(AB SCIEX)とマトリクスの混合溶液を調製し、同様にプレートに滴下した。風乾後のプレートは、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(MALDI−TOF−MS)であるAXIMA Performance(島津製作所)に挿入し、リフレクトロンモードによる陽イオン測定を行った。質量分析の結果を図8に示す。
[Example 9] Mass spectrometry of GAL13 The solvent used in the mass spectrometry was HPLC grade of Fujifilm Wako Pure Chemical Industries, Ltd. The dry powder of GAL13 prepared in Example 2 was dissolved in a 0.1% TFA solution containing 50% acetonitrile to give a final concentration of 0.25 mg / mL. For the matrix, α-cyano-4-hydroxysilicic acid (CHCA) was purchased from Shimadzu LLC, and a 10 mg / mL solution was prepared with a 0.1% TFA solution containing 50% acetonitrile. The sample solution and the matrix solution were mixed in equal amounts in 0.6 mL of Eppendorf Safe-Lock Tubes, and then 1 μL was added dropwise to the wells of the measuring plate and air-dried. As a mass calibration peptide, a mixed solution of des-Arg 1 -Bradykinin, Angiotensin I, Glu 1 -Fibrinopeptide (AB SCIEX) and a matrix was prepared and dropped onto a plate in the same manner. The plate after air drying was inserted into AXIMA Performance (Shimadzu Corporation), which is a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (MALDI-TOF-MS), and cation measurements were performed in the reflector mode. The result of mass spectrometry is shown in FIG.

その結果、m/z=650−750及び953に試料由来のピークが観察された。特に、m/z=691.2926は、C344410のNa付加体である[M+Na]イオン(モノアイソトピック質量の理論値691.2957、実測値との誤差4.5ppm)であると考えられた。これはZ−Lys−OH2分子がDL−GLA2分子によって架橋された構造体のモノアイソトピック質量とほぼ一致する。また、m/z=953.3945は、C486213のNa付加体である[M+Na]イオン(モノアイソトピック質量の理論値953.4276、実測値との誤差34.7ppm)であると考えられた。これはZ−Lys−OH3分子がDL−GLA2分子によって架橋された構造体のモノアイソトピック質量とほぼ一致する。以上の結果から、GAL13には、少なくとも以下の2種類の化合物が含まれていることが示された。 As a result, sample-derived peaks were observed at m / z = 650-750 and 953. In particular, m / z = 691.2926 is a Na adduct of C 34 H 44 N 4 O 10 [M + Na] + ion (theoretical value of monoisotopic mass 691.2957, error 4.5 ppm from the measured value). ) Was considered. This is approximately the same as the monoisotopic mass of the structure in which the Z-Lys-OH2 molecule is crosslinked by the DL-GLA2 molecule. Further, m / z = 953.3945 is a Na adduct of C 48 H 62 N 6 O 13 , [M + Na] + ion (theoretical value of monoisotopic mass 953.4276, error 34.7 ppm from the measured value). ) Was considered. This is approximately the same as the monoisotopic mass of the structure in which the Z-Lys-OH3 molecule is crosslinked by the DL-GLA2 molecule. From the above results, it was shown that GAL13 contains at least the following two kinds of compounds.

Figure 2021136920
Figure 2021136920

[実施例10]HPLCで分取したピークのラジカル測定
実施例2にて調製したGAL13の乾燥粉末を0.2Mリン酸緩衝液(pH7.4)で溶解させ、終濃度50mg/mLとした。この溶液を目盛り付きガラス毛細管マイクロピペット(Drummond Scientific Company)で50μL採取し、EMマイスター ヘマトクリット毛細管 シーリングワックスプレート(アズワン)で毛細管の下端をシールした。その後、毛細管を電子スピン共鳴(ESR)装置用標準試料管(外径4mm、株式会社シゲミ)に移し、ESRの共振器に挿入した。ESR装置はELEXSYS-II E580(Bruker)を使用し、Continuous Wave法にて室温測定を行った。測定条件は以下の通りである:
Field center 3350G;
Field width 150G;
Averaged scan 20;
Sampling time 0.03s;
Field modulation amplitude 0.4mT;
Field modulation Frequency 100kHz;
Microwave power 3mW;
Receiver gain 60。
[Example 10] Measurement of peak radicals separated by HPLC The dry powder of GAL13 prepared in Example 2 was dissolved in 0.2 M phosphate buffer (pH 7.4) to a final concentration of 50 mg / mL. 50 μL of this solution was collected with a graduated glass capillary micropipette (Drummond Scientific Company), and the lower end of the capillary was sealed with an EM Meister hematocrit capillary sealing wax plate (As One). Then, the capillary tube was transferred to a standard sample tube for an electron spin resonance (ESR) device (outer diameter 4 mm, Shigemi Co., Ltd.) and inserted into an ESR resonator. An ELEXSYS-II E580 (Bruker) was used as the ESR device, and the room temperature was measured by the continuous wave method. The measurement conditions are as follows:
Field center 3350G;
Field width 150G ;
Averaged scan 20;
Sampling time 0.03s ;
Field modulation amplitude 0.4mT;
Field modulation Frequency 100kHz;
Microwave power 3mW;
Receiver gain 60.

結果を図9に示す。g値(2.0043)とスペクトルの線形より、HPLCで分取したピークはラジカルを発生させる炭素中心を含むグリセルアルデヒド由来AGEsであることが分かった。 The results are shown in FIG. From the g value (2.443) and the linearity of the spectrum, it was found that the peaks fractionated by HPLC were AGEs derived from glyceraldehyde containing carbon centers that generate radicals.

[実施例11]GAL13の酸化活性評価
(1)3,3’−ジアミノベンジジン(DAB)の調製
DABは同仁化学研究所より購入した。DABを秤量し、終濃度5mg/mLとなるように、Tris緩衝液(50mM、pH7.4)に溶解させた。
[Example 11] Evaluation of oxidative activity of GAL13 (1) Preparation of 3,3'-diaminobenzidine (DAB) DAB was purchased from Dojin Chemical Research Institute. DAB was weighed and dissolved in Tris buffer (50 mM, pH 7.4) to a final concentration of 5 mg / mL.

(2)試料溶液の調製
実施例2に従って調製したGAL13の乾燥粉末をリン酸緩衝液(0.2M、pH7.4)に溶解させ、2mg/mL溶液を調製した。陰性の対照区として、2mg/mLのZ−Lys−OH溶液も調製した。
(2) Preparation of sample solution The dry powder of GAL13 prepared according to Example 2 was dissolved in a phosphate buffer solution (0.2 M, pH 7.4) to prepare a 2 mg / mL solution. A 2 mg / mL Z-Lys-OH solution was also prepared as a negative control group.

(3)酸化活性の評価方法
96穴プレート(ビオラモ)に5mg/mLのDAB溶液もしくはTris緩衝液(50mM、pH7.4)を10μLずつ添加した。そして、試料溶液を90μLずつ添加し、プレートミキサーで撹拌した。プレートを遮光下で37℃、3時間インキュベートした後、Cytation5プレートリーダー(BioTek)にて、460nmの吸光度を測定した。DAB添加区の460nmの吸光度からTris緩衝液添加区の460nmの吸光度を差し引くことで、DABに対する酸化活性を求めた。結果を図10のグラフに示す。3回の測定値の平均値と標準偏差を示した。統計解析はJMP14.0(SAS)によりスチューデントのt検定を行い、GAL13のDABに対する酸化活性はZ−Lys−OHに比べ、有意に高いことが分かった(P<0.01)。
(3) Evaluation Method of Oxidative Activity 10 μL of 5 mg / mL DAB solution or Tris buffer (50 mM, pH 7.4) was added to a 96-well plate (Violamo). Then, 90 μL of the sample solution was added, and the mixture was stirred with a plate mixer. After incubating the plate at 37 ° C. for 3 hours under shading, the absorbance at 460 nm was measured with a Cytion5 plate reader (BioTek). The oxidative activity against DAB was determined by subtracting the absorbance at 460 nm in the Tris buffer addition group from the absorbance at 460 nm in the DAB-added group. The results are shown in the graph of FIG. The average value and standard deviation of the three measured values are shown. For statistical analysis, Student's t-test was performed by JMP14.0 (SAS), and it was found that the oxidizing activity of GAL13 against DAB was significantly higher than that of Z-Lys-OH (P <0.01).

[実施例12]グリセルアルデヒド由来ピリジニウム化合物(GLAP)の調製
GLAPは公知の方法により調製することができる(Usui et al., Biosci. Biotechnol. Biochem., 2003, 67(4), 930-932)。具体的には以下の方法によりGLAPを調製した。
[Example 12] Preparation of glyceraldehyde-derived pyridinium compound (GLAP) GLAP can be prepared by a known method (Usui et al., Biosci. Biotechnol. Biochem., 2003, 67 (4), 930-932. ). Specifically, GLAP was prepared by the following method.

(1)GLAP反応溶液の調製
α−アセチル−L−リシン(Ac−Lys−OH、東京化成工業)、DL−グリセルアルデヒド(DL−GLA、ナカライテスク)は購入により入手した。
(1) Preparation of GLAP reaction solution N alpha - acetyl -L- lysine (Ac-Lys-OH, Tokyo Kasei Kogyo), DL-glyceraldehyde (DL-GLA, Nacalai Tesque) was obtained by purchase.

DL−GLA(360.3mg)を秤量し、50mLの遠沈管に移した。チューブにリン酸緩衝液(0.2M、pH7.4、20mL)を加えてボルテックスミキサーにてDL−GLAが溶解するまで攪拌した。その後、Ac−Lys−OH(376.5mg)を加えて溶解するまで攪拌した(溶液中のDL−GLAの濃度:200mM、Ac−Lys−OHの濃度:100mM)。チューブ内の液体が蒸発しないように、パラフィルム(商標)などのフィルムにてチューブの蓋を密閉して37℃で1週間インキュベートした。得られた反応溶液は4℃にて保存した。 DL-GLA (360.3 mg) was weighed and transferred to a 50 mL centrifuge tube. Phosphate buffer (0.2 M, pH 7.4, 20 mL) was added to the tube, and the mixture was stirred with a vortex mixer until DL-GLA was dissolved. Then, Ac-Lys-OH (376.5 mg) was added and stirred until dissolved (DL-GLA concentration in solution: 200 mM, Ac-Lys-OH concentration: 100 mM). The tube lid was sealed with a film such as Parafilm ™ to prevent the liquid in the tube from evaporating, and the tube was incubated at 37 ° C. for 1 week. The obtained reaction solution was stored at 4 ° C.

(2)GLAPの分離精製
GLAP反応溶液は、孔径0.2μmのシリンジフィルター(Millex−LG、メルク)でろ過し、ろ液を液体クロマトグラフ質量分析計(LC−MS)の試料とした。LC/MSのLC部は1260 Infinity IIシステム(アジレント・テクノロジー)、MS部は四重極型質量分析計(InfinityLab LC/MSD、G6125B、アジレント・テクノロジー)で構成した。なお、LC部は以下のモジュールで構成される;クォーターナリポンプ(G7111B)、アイソクラティックポンプ(G7110B)、マルチサンプラ(G7167A)、マルチカラムサーモスタット(G7116A)、ダイオードアレイ検出器(G7115A)、フラクションコレクタ(G1364F)、MSフローモジュレータ(G7170B)、OpenLAB CDS ChemStationソフトウェア。移動相は富士フイルム和光純薬のHPLCグレードのものを購入した。移動相Aは1M酢酸アンモニウム溶液10mLと蒸留水990mLを混合した10mM酢酸アンモニウム水溶液、移動相Bはアセトニトリルとした。分析時間0−7分は移動相A:B=99:1で流下し、7.1−12分は移動相A:B=10:90で流下した。カラムはZORBAX SB−C18(150×9.4mm、アジレント・テクノロジー)を使用し、流速を4mL/分に設定した。ろ過後の試料溶液をLC−MS装置に80μL注入し、ダイオードアレイ検出器(215nm及び254nm)とMS(陽イオン検出)でGLAPのピークを検出した。分析時間5分において、UV吸収性を持つピークが観察され、そのピークはm/z=297.1の陽イオンを含んでいた。そこで、m/z=297をトリガーとしたMS分取を行うことで、保持時間5分のピークを回収した。分取後の溶液はロータリーエバポレーター(東京理化器械)で濃縮乾固させた。得られた沈殿は4℃で保存した。
(2) Separation and Purification of GLAP The GLAP reaction solution was filtered through a syringe filter (Millex-LG, Merck) having a pore size of 0.2 μm, and the filtrate was used as a sample of a liquid chromatograph mass spectrometer (LC-MS). The LC section of the LC / MS consisted of a 1260 Infinity II system (Agilent Technology), and the MS section consisted of a quadrupole mass spectrometer (InfinityLab LC / MSD, G6125B, Agilent Technologies). The LC unit consists of the following modules; quarterly pump (G7111B), isocratic pump (G7110B), multi-sampler (G7167A), multi-column thermostat (G7116A), diode array detector (G7115A), fraction. Collector (G1364F), MS flow modulator (G7170B), OpenLAB CDS Pump Station software. The mobile phase was purchased from Fujifilm Wako Pure Chemical Industries, Ltd. in HPLC grade. The mobile phase A was a 10 mM ammonium acetate aqueous solution obtained by mixing 10 mL of a 1 M ammonium acetate solution and 990 mL of distilled water, and the mobile phase B was acetonitrile. The analysis time was 0-7 minutes with mobile phase A: B = 99: 1, and 7.1-12 minutes with mobile phase A: B = 10: 90. The column used was ZORBAX SB-C18 (150 x 9.4 mm, Agilent Technologies) and the flow rate was set to 4 mL / min. 80 μL of the filtered sample solution was injected into the LC-MS apparatus, and the peak of GLAP was detected by a diode array detector (215 nm and 254 nm) and MS (cation detection). At the analysis time of 5 minutes, a peak having UV absorption was observed, and the peak contained a cation of m / z = 297.1. Therefore, by performing MS preparative with m / z = 297 as a trigger, the peak with a retention time of 5 minutes was recovered. The solution after separation was concentrated to dryness with a rotary evaporator (Tokyo Rika Kikai). The resulting precipitate was stored at 4 ° C.

(3)GLAPの構造確認
得られた沈殿(8mg)は、重水(0.6mL、富士フイルム和光純薬)に溶解させ、外径5mmの核磁気共鳴(NMR)用サンプル管(シゲミ)に移した。その後、NMR装置(AVANCE III HD、500MHz、CryoProbe搭載型、Bruker)でGLAPの構造を確認した。H−NMR及び13C−NMRのスペクトルデータにて、全水素及び炭素の帰属を決定した。また、H−H COSY、H−13C HSQC、H−13C HMBC、H−15N HSQC、H−15N HMBCスペクトルを解析することで、帰属の妥当性を確認した。GLAPの構造を以下に示す。
(3) Confirmation of GLAP structure The obtained precipitate (8 mg) is dissolved in heavy water (0.6 mL, Fujifilm Wako Pure Chemical Industries, Ltd.) and transferred to a sample tube (Shigemi) for nuclear magnetic resonance (NMR) with an outer diameter of 5 mm. bottom. After that, the structure of GLAP was confirmed with an NMR device (AVANCE III HD, 500 MHz, CryoProbe mounted type, Bruker). The attribution of total hydrogen and carbon was determined from 1 H-NMR and 13 C-NMR spectrum data. Further, 1 H- 1 H COSY, 1 H- 13 C HSQC, 1 H- 13 C HMBC, 1 H- 15 N HSQC, 1 H- 15 N HMBC spectra by analyzing the confirmed the validity of the assignment .. The structure of GLAP is shown below.

Figure 2021136920
Figure 2021136920

[実施例13]競合ELISAによる新規モノクローナル抗体とGLAPの反応性評価
(1)試薬調製
下記試薬をRO水に溶解させて1Lとし、コーティング溶液として使用した。
炭酸ナトリウム(富士フイルム和光純薬) 1.59g
炭酸水素ナトリウム(富士フイルム和光純薬) 2.93g
BSA(5g、Sigma−Aldrich)をPBS(500mL)に溶かし、ブロッキング溶液として使用した。
[Example 13] Reactivity evaluation of novel monoclonal antibody and GLAP by competing ELISA (1) Reagent preparation The following reagent was dissolved in RO water to make 1 L, and used as a coating solution.
Sodium carbonate (Fujifilm Wako Pure Chemical Industries) 1.59g
Sodium hydrogen carbonate (Fujifilm Wako Pure Chemical Industries, Ltd.) 2.93 g
BSA (5 g, Sigma-Aldrich) was dissolved in PBS (500 mL) and used as a blocking solution.

50mMトリス(6.1g、富士フイルム和光純薬)をRO水(約900mL)に溶解させて、6N塩酸(富士フイルム和光純薬)でpH7.4に調整した。得られた溶液にグリセロール(1mL、Sigma−Aldrich)、Tween20(1mL、ナカライテスク)を加え、RO水にて1Lにメスアップした。得られた溶液を希釈溶液として使用した。 50 mM Tris (6.1 g, Wako Pure Chemical Industries, Ltd.) was dissolved in RO water (about 900 mL), and the pH was adjusted to 7.4 with 6N hydrochloric acid (Wako Pure Chemical Industries, Ltd.). Glycerol (1 mL, Sigma-Aldrich) and Tween 20 (1 mL, Nacalai Tesque) were added to the obtained solution, and the volume was increased to 1 L with RO water. The resulting solution was used as a diluent.

下記試薬をRO水に溶解させて1Lとし、さらにRO水を9L加えた後で、Tween20(5mL)を加えた。得られた溶液を洗浄溶液として使用した。
塩化ナトリウム(富士フイルム和光純薬) 80g
リン酸2水素カリウム(富士フイルム和光純薬) 2g
リン酸水素2ナトリウム12水和物(富士フイルム和光純薬) 29g
The following reagents were dissolved in RO water to make 1 L, and 9 L of RO water was further added, and then Tween 20 (5 mL) was added. The obtained solution was used as a washing solution.
Sodium chloride (Fujifilm Wako Pure Chemical Industries) 80g
Potassium dihydrogen phosphate (Fujifilm Wako Pure Chemical Industries, Ltd.) 2g
Disodium hydrogen phosphate dodecahydrate (Fujifilm Wako Pure Chemical Industries, Ltd.) 29 g

(3)抗原の固相化
コーティング溶液中で1μg/mLに調製したグリセルアルデヒド由来AGEs含有BSA(原液:10mg/mLPBS溶液)の溶液を、100μLずつ96穴マイクロタイタープレート(COSTAR)に加え、4℃で一晩インキュベートした。
(3) Immobilization of antigen A solution of glyceraldehyde-derived AGEs-containing BSA (stock solution: 10 mg / mL PBS solution) prepared at 1 μg / mL in the coating solution was added to a 96-well microtiter plate (COSTAR) of 100 μL each. Incubated overnight at 4 ° C.

(4)ブロッキング
固相化の処理を行った各ウェルを洗浄溶液(300μL)で3回洗浄し、ブロッキング溶液(200μL)を加え、室温で1時間放置した。
(4) Blocking Each well treated for solid phase was washed 3 times with a washing solution (300 μL), a blocking solution (200 μL) was added, and the mixture was left at room temperature for 1 hour.

(5)競合実験
GAL13(実施例2にて調製)、GLAP(実施例12にて調製)、Z−Lys−OH(東京化成工業)をそれぞれリン酸緩衝液(0.2M、pH7.4)に溶解させ、20mg/mL溶液を調製した。さらに、希釈溶液にて希釈することで、0.0063〜2mg/mLの2倍希釈系列(6点)の試料溶液を作製した。POD標識化新規モノクローナル抗体(SJ−5)溶液をBSA(1mg/mL、富士フイルム和光純薬)含有希釈溶液にて16,000倍に希釈し、POD標識化SJ−5抗体希釈溶液とした。
(5) Competitive Experiment GAL13 (prepared in Example 2), GLAP (prepared in Example 12), and Z-Lys-OH (Tokyo Chemical Industry) were added to phosphate buffer (0.2M, pH 7.4), respectively. To prepare a 20 mg / mL solution. Further, by diluting with a diluted solution, a sample solution of a 2-fold dilution series (6 points) of 0.0063 to 2 mg / mL was prepared. A POD-labeled novel monoclonal antibody (SJ-5) solution was diluted 16,000 times with a diluted solution containing BSA (1 mg / mL, Fujifilm Wako Pure Chemical Industries, Ltd.) to obtain a POD-labeled SJ-5 antibody diluted solution.

ブロッキング溶液で処理した各ウェルを洗浄溶液(300μL)で3回洗浄し、2倍希釈系列の試料溶液(各50μL)およびPOD標識化SJ−5抗体希釈溶液(50μL)を加え、プレートミキサーで2分間撹拌後、25℃で1時間インキュベートした。 Each well treated with the blocking solution was washed 3 times with a wash solution (300 μL), a 2-fold dilution series of sample solution (50 μL each) and a POD-labeled SJ-5 antibody dilution solution (50 μL) were added, and 2 with a plate mixer. After stirring for 1 minute, the mixture was incubated at 25 ° C. for 1 hour.

(6)発色
洗浄溶液(300μL)で3回洗浄後、100μLの基質溶液(ELISA POD基質TMBキット(Popular)、ナカライテスク)を加え、室温、遮光下で10分間インキュベートした。その後、2N硫酸(50μL)を加え発色を停止した。
(6) Color development After washing 3 times with a washing solution (300 μL), 100 μL of a substrate solution (ELISA POD substrate TMB kit (Popular), Nacalai Tesque) was added, and the mixture was incubated at room temperature for 10 minutes under shading. Then, 2N sulfuric acid (50 μL) was added to stop the color development.

(7)吸光度測定およびデータ解析
マイクロプレートリーダー(Cytation5、BioTek)で主波長450nmと副波長650nmの吸光度を測定し、主波長の吸光度から副波長の吸光度を差し引いた。その結果を図11に示す。GAL13では濃度依存的に吸光度が低下していたが、GLAPとZ−Lys−OHは吸光度の低下が観察されなかった。したがって、新規モノクローナル抗体SJ−5は公知のグリセルアルデヒド由来AGEsであるGLAPを認識しない抗体であることが明らかとなった。
(7) Absorbance measurement and data analysis The absorbance at the main wavelength of 450 nm and the sub-wavelength of 650 nm was measured with a microplate reader (Cytion5, BioTek), and the absorbance of the sub-wavelength was subtracted from the absorbance of the main wavelength. The result is shown in FIG. In GAL13, the absorbance decreased in a concentration-dependent manner, but in GLAP and Z-Lys-OH, no decrease in absorbance was observed. Therefore, it was revealed that the novel monoclonal antibody SJ-5 is an antibody that does not recognize GLAP, which is a known glyceraldehyde-derived AGEs.

[実施例14]SJ−5を用いたGlycer−AGEs−BSAによる血管内皮細胞管腔形成抑制中和試験
(1)マトリゲルマトリックスの調製
マトリゲルマトリックス(コーニング)を冷蔵庫に入れ、一晩かけて融解した。融解したマトリゲルマトリックスは12ウェルプレート(コーニング)に300μL/ウェルで添加し、37℃、COインキュベータ(エスペック)で1時間静置することで硬化した。
[Example 14] Neutralization test for suppressing vascular endothelial cell lumen formation by Glycer-AGEs-BSA using SJ-5 (1) Preparation of Matrigel matrix The Matrigel matrix (Corning) was placed in a refrigerator and thawed overnight. .. The thawed Matrigel matrix was added to a 12-well plate (Corning) at 300 μL / well and allowed to stand at 37 ° C. in a CO 2 incubator (ESPEC) for 1 hour to cure.

(2)Glycer−AGEs−BSAまたは対照BSAと抗体反応液の調製
実施例1で調製したGlycer−AGEs−BSA(10mg/mL)10μLまたは対照BSA(10mg/mL)10μLとリン酸緩衝生理食塩水(PBS、和光)、SJ−5(10mg/mL)または対照抗体(10mg/mL)90μLを1.5mLチューブ(ワトソン)に加え、室温で10分間静置した。その後、遠心分離機(Thermo Fisher Scientific)を用いて14000rpm、15分間遠心分離し、上清を回収した。
(2) Preparation of antibody reaction solution with Glycer-AGEs-BSA or control BSA 10 μL of Glycer-AGEs-BSA (10 mg / mL) or 10 μL of control BSA (10 mg / mL) prepared in Example 1 and phosphate buffered saline (PBS, Wako), SJ-5 (10 mg / mL) or 90 μL of control antibody (10 mg / mL) was added to a 1.5 mL tube (Watson) and allowed to stand at room temperature for 10 minutes. Then, it was centrifuged at 14000 rpm for 15 minutes using a centrifuge (Thermo Fisher Scientific), and the supernatant was collected.

(3)管腔形成試験
HUVEC(ヒト臍帯静脈血管内皮細胞、国立研究開発法人医薬基盤・健康・栄養研究所JCRB細胞バンク)は10cmディッシュ(コーニング)でHUVEC用培地(ケー・エー・シー)10mLを用いて培養した。
(3) Cavity formation test HUVEC (human umbilical vein vascular endothelial cells, National Institutes of Biomedical Innovation, Health and Nutrition JCRB Cell Bank) is a 10 cm dish (corning) and 10 mL of HUVEC medium (KAC). Was cultured using.

培養したHUVECはPBS10mLで洗浄した後、トリプシン−EDTA(和光)1mLで添加し、室温で3分間静置した。静置後、HUVECがディッシュから剥がれた事を確認し、HUVEC用培地10mLを添加する事でトリプシン−EDTAを中和した。中和後、全量を50mLチューブ(コーニング)に移し、遠心分離機(久保田)を用いて1500rpm、3分間遠心分離を行った。 The cultured HUVEC was washed with 10 mL of PBS, added with 1 mL of trypsin-EDTA (Wako), and allowed to stand at room temperature for 3 minutes. After standing, it was confirmed that HUVEC had peeled off from the dish, and trypsin-EDTA was neutralized by adding 10 mL of HUVEC medium. After neutralization, the whole volume was transferred to a 50 mL tube (Corning) and centrifuged at 1500 rpm for 3 minutes using a centrifuge (Kubota).

遠心分離後、上清を捨て、沈殿している細胞にHUVEC用培地1mLを加え、再懸濁させた。懸濁液を10μL取り、トリパンブルー(NanoEnTek)10μLと混和し、血球計算盤(NanoEnTek)に10μLを添加した。その後、オートセルカウンターEVE(NanoEnTek)で生細胞数をカウントした。細胞懸濁液を2.5x10cells/mLになるようにHUVEC用培地で希釈し、(1)で調製したマトリゲルに400μL/ウェルで播種した。播種後、(2)で調製したそれぞれの反応液をPBSで100μg/mLに調整した溶液を100μL/ウェルで添加し、COインキュベータで8時間培養した。 After centrifugation, the supernatant was discarded, 1 mL of HUVEC medium was added to the precipitated cells, and the cells were resuspended. 10 μL of the suspension was taken, mixed with 10 μL of trypan blue (NanoEnTek), and 10 μL was added to the hemocytometer (NanoEnTek). Then, the number of viable cells was counted by the auto cell counter EVE (NanoEnTek). So that the cell suspension 2.5x10 5 cells / mL diluted in HUVEC medium, and plated in 400 [mu] L / well Matrigel prepared in (1). After sowing, a solution prepared in (2) adjusted to 100 μg / mL with PBS was added at 100 μL / well, and the mixture was cultured in a CO 2 incubator for 8 hours.

8時間培養後にBZ−X710(キーエンス)の対物レンズ20倍を用いて明視野観察した際のHUVECの形態を図13に示す。当該図に示されるとおり、HUVECは対照BSA添加した群においてはSJ−5抗体及び対照抗体反応液マトリゲルマトリックス中での管腔形成が確認された。しかし、Glycer−AGEs−BSAは管腔形成を阻害した。また、この管腔形成の阻害はSJ−5抗体との反応液では中和されるが、対照抗体ではその中和が確認できなかった。この結果から、Glycer−AGEs−BSAがHUVECに及ぼす影響をSJ−5が中和可能である事が明らかになった。 FIG. 13 shows the morphology of HUVEC when observed in a bright field using a 20x objective lens of BZ-X710 (Keyence) after culturing for 8 hours. As shown in the figure, in the group to which the control BSA was added, HUVEC was confirmed to form lumens in the SJ-5 antibody and the control antibody reaction solution Matrigel matrix. However, Glycer-AGEs-BSA inhibited lumen formation. In addition, this inhibition of lumen formation was neutralized with the reaction solution with the SJ-5 antibody, but the neutralization could not be confirmed with the control antibody. From this result, it was clarified that SJ-5 can neutralize the effect of Glycer-AGEs-BSA on HUVEC.

[実施例15]SJ−5抗体を用いたGlycer−AGEs−BSAによる内皮間葉転換阻害試験
(1)マトリゲルマトリックスの調製は実施例14と同様に操作を行った。
[Example 15] Endothelial mesenchymal conversion inhibition test by Glycer-AGEs-BSA using SJ-5 antibody (1) The Matrigel matrix was prepared in the same manner as in Example 14.

(2)Glycer−AGEs−BSAまたは対照BSAと抗体反応液の調製
実施例1で調製したGlycer−AGEs−BSA(10mg/mL)10μLとPBS、SJ−5(10mg/mL)または対照抗体(10mg/mL)90μLを1.5mLチューブ(ワトソン)に加えた。また、対照BSA(10mg/mL)のPBS溶液90μLを加えた。これらの溶液を室温で10分間静置した。その後、遠心分離機(Thermo Fisher Scientific)を用いて14000rpm、15分間遠心分離し、上清を回収した。
(2) Preparation of antibody reaction solution with Glycer-AGEs-BSA or control BSA 10 μL of Glycer-AGEs-BSA (10 mg / mL) prepared in Example 1 and PBS, SJ-5 (10 mg / mL) or control antibody (10 mg) / ML) 90 μL was added to a 1.5 mL tube (Watson). In addition, 90 μL of PBS solution of control BSA (10 mg / mL) was added. These solutions were allowed to stand at room temperature for 10 minutes. Then, it was centrifuged at 14000 rpm for 15 minutes using a centrifuge (Thermo Fisher Scientific), and the supernatant was collected.

(3)管腔形成阻害試験
HUVECは10cmディッシュでHUVEC用培地10mLを用いて培養した。
培養したHUVECはPBS10mLで洗浄した後、トリプシン−EDTA1mLを添加し、室温で3分間静置した。静置後、HUVECがディッシュから剥がれた事を確認し、HUVEC用培地10mLを添加することでトリプシン−EDTAを中和した。中和後、全量を50mLチューブに移し、遠心分離機を用いて1500rpm、3分間遠心分離を行った。
(3) Lumen formation inhibition test HUVEC was cultured in a 10 cm dish using 10 mL of HUVEC medium.
The cultured HUVEC was washed with 10 mL of PBS, 1 mL of trypsin-EDTA was added, and the cells were allowed to stand at room temperature for 3 minutes. After standing, it was confirmed that HUVEC had peeled off from the dish, and trypsin-EDTA was neutralized by adding 10 mL of HUVEC medium. After neutralization, the whole volume was transferred to a 50 mL tube and centrifuged at 1500 rpm for 3 minutes using a centrifuge.

遠心分離後、上清を捨て、沈殿している細胞にHUVEC用培地1mLを加え、再懸濁させた。懸濁液10μLを取り、トリパンブルー10μLと混和させ、血球計算盤に10μLを添加した。その後、オートセルカウンターEVEで生細胞数をカウントした。細胞懸濁液を2.5x10cells/mLになるようにHUVEC用培地で希釈し、(1)で調製したマトリゲルに400μL/ウェルで播種した。播種後、(2)で調製したそれぞれの反応液を100μL/ウェルで添加し、COインキュベータで8時間培養した。 After centrifugation, the supernatant was discarded, 1 mL of HUVEC medium was added to the precipitated cells, and the cells were resuspended. 10 μL of the suspension was taken, mixed with 10 μL of trypan blue, and 10 μL was added to the hemocytometer. Then, the number of living cells was counted by the auto cell counter EVE. So that the cell suspension 2.5x10 5 cells / mL diluted in HUVEC medium, and plated in 400 [mu] L / well Matrigel prepared in (1). After sowing, each reaction solution prepared in (2) was added at 100 μL / well and cultured in a CO 2 incubator for 8 hours.

(4)細胞の回収
それぞれのウェルを1mLのPBSで三回洗浄し、セルリカバリーソリューション(コーニング)を500μL/ウェルで添加した。
細胞とマトリゲルマトリックスをブルーチップ(ワトソン)を用いてかき取り、1.5mLチューブに回収し、500μLのセルリカバリーソリューションでウェルを再度リンスし、1.5mLチューブに移した。1.5mLチューブを5回転倒混和した後、1時間氷上で静置し、マトリゲルマトリックスが完全に分解する事を確認した。マトリゲルマトリックス分解後、4℃、800rpmで遠心分離を行い、上清を捨てた。沈殿した細胞を氷冷した1mLでPBSに静かに懸濁し、4℃、800rpmで遠心分離を行い、上清を捨て、再度沈殿した細胞を氷冷した1mLでPBSに静かに懸濁させ、4℃、800rpmで遠心分離を行った。
(4) Cell Recovery Each well was washed 3 times with 1 mL PBS and a cell recovery solution (Corning) was added at 500 μL / well.
Cells and Matrigel matrix were scraped with a blue chip (Watson), collected in 1.5 mL tubes, wells rerinsed with a 500 μL cell recovery solution and transferred to 1.5 mL tubes. After mixing the 1.5 mL tube 5 times, it was allowed to stand on ice for 1 hour, and it was confirmed that the Matrigel matrix was completely decomposed. After decomposing the Matrigel matrix, centrifugation was performed at 4 ° C. and 800 rpm, and the supernatant was discarded. Gently suspend the precipitated cells in PBS with 1 mL of ice-cooled, centrifuge at 4 ° C. and 800 rpm, discard the supernatant, and gently suspend the reprecipitated cells in PBS with 1 mL of ice-cooled 4 Centrifugation was performed at 800 ° C. and 800 rpm.

(5)mRNA回収
mRNA回収はCellAmpTM Direct RNA Prep Kit for RT-PCR(Takara)を用いて行った。実際の操作を下記に示す。
遠心分離し、沈殿した細胞にKit付属のCellAmp Washing Buffer125μL添加し、混和させた。300xg、5分間遠心分離を行い、上清を除去し、Kit付属のCellAmp Processing Buffer 49μLとDNase I for Direct RNA Prep 1μLを各チューブに添加した。室温で5分間静置後、PCRチューブ(日本ジェネティクス)に移し、サーマルサイクラー(日本ジェネティクス)を用いて75℃、5分間静置することでmRNAを得た。
(5) mRNA recovery mRNA recovery was performed using the CellAmp TM Direct RNA Prep Kit for RT-PCR (Takara). The actual operation is shown below.
Centrifugation was performed, and 125 μL of Cell Amp Washing Buffer attached to Kit was added to the precipitated cells and mixed. Centrifugation was performed at 300 xg for 5 minutes, the supernatant was removed, and 49 μL of Cell Amp Processing Buffer attached to Kit and 1 μL of DNase I for Direct RNA Prep were added to each tube. After allowing to stand at room temperature for 5 minutes, the mRNA was transferred to a PCR tube (Nippon Genetics) and allowed to stand at 75 ° C. for 5 minutes using a thermal cycler (Nippon Genetics) to obtain mRNA.

(6)逆転写反応
逆転写反応はPrimeScriptTM RT Master Mix (Takara)を用いて行った。実際の操作を下記に示す。(5)で得たmRNA1μL、5 × PrimeScript RT Master Mix2μLとMaster Mixに付属のRNase Free dH2O7μLをPCRチューブで混和させ、サーマルサイクラーを用いて37℃15分、85℃5秒で反応させた。
(6) Reverse transcription reaction The reverse transcription reaction was carried out using PrimeScript TM RT Master Mix (Takara). The actual operation is shown below. 1 μL of mRNA obtained in (5), 5 × 2 μL of PrimeScript RT Master Mix and 7 μL of RNase Free dH 2 O attached to Master Mix were mixed with a PCR tube and reacted at 37 ° C. for 15 minutes and 85 ° C. for 5 seconds using a thermal cycler. ..

(7)リアルタイムPCR
リアルタイムPCRはLuna Universal qPCR Master Mix(BioLabs)を用いて行った。(6)で得た逆転写反応産物を90μLの超純水(Thermo Fisher Scientific)で希釈した。希釈後、下表の組成で反応液を調製し、384ウェルプレート(日本ジェネティクス)に添加した。

Figure 2021136920
Primerは下記の配列を株式会社ファスマックに合成委託して入手したものを使用した。
ヒトα−SMAα−SMA
フォワード:CGGCTTTGCTGGGGACGAT
リバーズ:CAGGGGCAACACGAAGCTCAT
ヒトCD31
フォワード:ATTGCAGTGGTTATCATCGGAGTG
リバーズ:CTCGTTGTTGGAGTTCAGAAGTGG
ヒトβ−アクチン
フォワード:CTGGAACGGTGAAGGTGACA
リバーズ:AAGGGACTTCCTGTAACAATGCA (7) Real-time PCR
Real-time PCR was performed using Luna Universal qPCR Master Mix (BioLabs). The reverse transcription reaction product obtained in (6) was diluted with 90 μL of ultrapure water (Thermo Fisher Scientific). After dilution, a reaction solution was prepared according to the composition shown in the table below, and added to a 384-well plate (Nippon Genetics).
Figure 2021136920
Primer used the following sequence obtained by entrusting synthesis to Fasmac Co., Ltd.
Human α-SMA α-SMA
Forward: CGGCTTTGGCTGGGGAGAGAT
Rivers: CAGGGGCAACACGAAGCTCAT
Human CD31
Forward: ATTGCAGTGGTTATCATCGGAGTG
Rivers: CTCGTTGTTGGAGTTCAGAGTGG
Human β-actin forward: CTGGAACGGGTGAAGGTGACA
Rivers: AAGGGACTTCCTGTAACATGCA

添加後、QuantStudioTM 12K Flex リアルタイム PCR システム(Thermo Fisher Scientific)でリアルタイムPCRを行い、遺伝子発現量を定量した。 After the addition , real-time PCR was performed with a Quant Studio TM 12K Flex real-time PCR system (Thermo Fisher Scientific) to quantify the gene expression level.

CD31は内皮細胞のマーカーとして、α−平滑筋アクチン(α−SMA)は間葉細胞のマーカーとしてそれぞれ知られている(非特許文献14、Figure 2など)。α−SMA及びCD31の発現量をβ―アクチンの発現量を内部標準として計算することで評価したグラフを図14および図15に示す。図14より、Glycer−AGEs−BSA添加によってα−SMAの発現量が増加することが明らかになった。また、この作用はSJ−5で抑制可能であるが、対照抗体では抑制が認められなかった。また図15より、CD31に関してはGlycer−AGEs−BSA添加によってCD31の発現量が低下することが明らかになった。また、この作用はSJ−5で抑制可能であるが、対照抗体では抑制が認められなかった。α−SMAの発現量増加とCD31の発現量低下は血管内皮細胞が間葉系の細胞へと形質転換を起こす内皮間葉転換で認められる作用である。これらの結果からGlycer−AGEs−BSAが内皮間葉転換を引き起こす作用を有しており、SJ−5はこの作用を抑制可能であることが確認された。 CD31 is known as a marker for endothelial cells, and α-smooth muscle actin (α-SMA) is known as a marker for mesenchymal cells (Non-Patent Document 14, Figure 2, etc.). The graphs in which the expression levels of α-SMA and CD31 were evaluated by calculating the expression levels of β-actin as an internal standard are shown in FIGS. 14 and 15. From FIG. 14, it was clarified that the expression level of α-SMA was increased by the addition of Glycer-AGEs-BSA. In addition, this effect can be suppressed by SJ-5, but not by the control antibody. Further, from FIG. 15, it was clarified that the expression level of CD31 was decreased by the addition of Glycer-AGEs-BSA for CD31. In addition, this effect can be suppressed by SJ-5, but not by the control antibody. The increase in the expression level of α-SMA and the decrease in the expression level of CD31 are the effects observed in the endothelial mesenchymal transformation in which vascular endothelial cells are transformed into mesenchymal cells. From these results, it was confirmed that Glycer-AGEs-BSA has an action of inducing endothelial mesenchymal conversion, and SJ-5 can suppress this action.

[実施例16]Glycer−AGEs−Z−Lysの分取精製(高純度化)
実施例2で沈殿物として得たGlycer−AGEs−Z−Lysを0.2Mリン酸緩衝液(pH7.4)に溶解させ、50mg/mLの試料溶液を調製した。その後、孔径0.2μmのシリンジフィルター(Millex−LG、メルク)でろ過し、ろ液を液体クロマトグラフ質量分析計(LC/MS)の試料とした。LC/MSのLC部及びMS部は実施例12と同様に構成した。移動相は富士フイルム和光純薬のHPLCグレードのものを購入した。移動相Aは1M酢酸アンモニウム溶液10mLと蒸留水990mLを混合した10mM酢酸アンモニウム水溶液、移動相Bはアセトニトリルとした。分析時間0−2分において、移動相A:B=100:0−85:15の濃度勾配で流下した。分析時間2−15分において、移動相A:B=85:15−70:30の濃度勾配で、15−17分において移動相A:B=70:30−10:90で流下した。カラムはZORBAX SB−C18(150×9.4mm、アジレント・テクノロジー)を使用し、流速を4mL/分に設定した。ろ過後の試料溶液をLC/MS装置に50μL注入し、ダイオードアレイ検出器(260nm)とMS(陽イオン検出)でGlycer−AGEs−Z−Lysのピークを検出した。分析時間12.3分において、UV吸収性を持つピークが観察され、そのピークはm/z=691.3の[M+Na]を含んでいた。そこで、m/z=691をトリガーとしたMS分取を行うことで、保持時間12.3分のピークを回収した。以後、このピークをGAL691と呼称する。LC/MSの分析結果を図16(ダイオードアレイ検出(260nm))、図17(UVスペクトル)、および図18(MSスペクトル)に示す。
[Example 16] Preparative purification (purification) of Glycer-AGEs-Z-Lys
Glycer-AGEs-Z-Lys obtained as a precipitate in Example 2 was dissolved in 0.2 M phosphate buffer (pH 7.4) to prepare a sample solution of 50 mg / mL. Then, the mixture was filtered through a syringe filter (Millex-LG, Merck) having a pore size of 0.2 μm, and the filtrate was used as a sample of a liquid chromatograph mass spectrometer (LC / MS). The LC unit and the MS unit of the LC / MS were configured in the same manner as in Example 12. The mobile phase was purchased from Fujifilm Wako Pure Chemical Industries, Ltd. in HPLC grade. The mobile phase A was a 10 mM ammonium acetate aqueous solution obtained by mixing 10 mL of a 1 M ammonium acetate solution and 990 mL of distilled water, and the mobile phase B was acetonitrile. At the analysis time of 0-2 minutes, the cells flowed down with a concentration gradient of mobile phase A: B = 100: 0-85: 15. At an analysis time of 2-15 minutes, the concentration gradient of mobile phase A: B = 85: 15-70: 30, and at 15-17 minutes, mobile phase A: B = 70: 30-10: 90 flowed down. The column used was ZORBAX SB-C18 (150 x 9.4 mm, Agilent Technologies) and the flow rate was set to 4 mL / min. 50 μL of the filtered sample solution was injected into the LC / MS apparatus, and the peak of Glycer-AGEs-Z-Lys was detected by a diode array detector (260 nm) and MS (cation detection). At an analysis time of 12.3 minutes, a UV-absorbing peak was observed, which contained [M + Na] + at m / z = 691.3. Therefore, the peak with a retention time of 12.3 minutes was recovered by performing MS preparative with m / z = 691 as a trigger. Hereinafter, this peak will be referred to as GAL691. The LC / MS analysis results are shown in FIG. 16 (diode array detection (260 nm)), FIG. 17 (UV spectrum), and FIG. 18 (MS spectrum).

分取溶液に含まれるアセトニトリルをロータリーエバポレーター(東京理化器械)で除去した。残渣の溶液5mLに対して、10%TFA水溶液1mLを加え、転倒混和した。その後、室温にて10分間遠心分離(12,000×g)し、上清を除去した。得られた沈殿物に超純水(5mL)を加え、再度遠心分離を行い、上清を除去した。この操作を計3回実施することで、沈殿を洗浄した。洗浄後の沈殿は風乾後、乾燥重を測定し(1mg)、冷蔵保存した。 Acetonitrile contained in the preparative solution was removed by a rotary evaporator (Tokyo Rika Kikai). To 5 mL of the residue solution, 1 mL of a 10% TFA aqueous solution was added and mixed by inversion. Then, it was centrifuged (12,000 × g) for 10 minutes at room temperature, and the supernatant was removed. Ultrapure water (5 mL) was added to the obtained precipitate, and centrifugation was performed again to remove the supernatant. The precipitate was washed by performing this operation a total of three times. The precipitate after washing was air-dried, the dry weight was measured (1 mg), and the precipitate was stored in a refrigerator.

[実施例17]グリセルアルデヒド由来ピリジニウム化合物(Lys−ヒドロキシ−トリオシジン)の調製
Lys−ヒドロキシ−トリオシジンは公知の方法により調製することができる(非特許文献12)。具体的には以下の方法によりLys−ヒドロキシ−トリオシジンを調製した。
[Example 17] Preparation of glyceraldehyde-derived pyridinium compound (Lys-hydroxy-triocidin) Lys-hydroxy-triocidin can be prepared by a known method (Non-Patent Document 12). Specifically, Lys-hydroxy-triocidin was prepared by the following method.

(1)Lys−ヒドロキシ−トリオシジン反応溶液の調製
メタノール(富士フイルム和光純薬)、ジエチレントリアミン−N,N,N’,N”,N”−ペンタ酢酸(DTPA、同仁化学研究所)、Nα−アセチル−L−リシン(Ac−Lys−OH、東京化成工業)、DL−グリセルアルデヒド(DL−GLA、ナカライテスク)は購入により入手した。
50mLの遠沈管でリン酸緩衝液(0.267M、pH10.5、30mL)、メタノール(10mL)を混合した(25%メタノール含有0.2Mリン酸緩衝液)。上記の溶液36mLに対して、DTPA(15.7mg)とDL−GLA(356.7mg)を加え、ボルテックスミキサーにて溶解させた。その後、Ac−Lys−OH(799.6mg)を加えて溶解するまで攪拌した(溶液中のDTPAの濃度:1mM、DL−GLAの濃度:110mM、Ac−Lys−OHの濃度:118mM)。さらに、チューブ内の液体が蒸発しないように、パラフィルム(商標)などのフィルムにてチューブの蓋を密閉して37℃で9日間インキュベートした。なお、反応3日目と6日目の反応液にDL−GLAを260mg、196mg追加し、溶解させた。得られた反応溶液は4℃にて保存した。
(1) Preparation of Lys-hydroxy-triocidin reaction solution Methanol (Fujifilm Wako Pure Chemical Industries, Ltd.), diethylenetriamine-N, N, N', N ", N" -pentaacetic acid (DTPA, Dojin Chemical Research Institute), N α- Acetyl-L-lysine (Ac-Lys-OH, Tokyo Kasei Kogyo) and DL-glyceraldehyde (DL-GLA, Nacalai Tesque) were obtained by purchase.
Phosphate buffer (0.267M, pH 10.5, 30 mL) and methanol (10 mL) were mixed in a 50 mL centrifuge tube (0.2 M phosphate buffer containing 25% methanol). DTPA (15.7 mg) and DL-GLA (356.7 mg) were added to 36 mL of the above solution and dissolved with a vortex mixer. Then, Ac-Lys-OH (799.6 mg) was added and stirred until it was dissolved (DTPA concentration in solution: 1 mM, DL-GLA concentration: 110 mM, Ac-Lys-OH concentration: 118 mM). Furthermore, the lid of the tube was sealed with a film such as Parafilm ™ to prevent the liquid in the tube from evaporating, and the tube was incubated at 37 ° C. for 9 days. In addition, 260 mg and 196 mg of DL-GLA were added to the reaction solutions on the 3rd and 6th days of the reaction and dissolved. The obtained reaction solution was stored at 4 ° C.

(2)Lys−ヒドロキシ−トリオシジンの分離精製
Lys−ヒドロキシ−トリオシジン反応溶液は、孔径0.2μmのシリンジフィルター(Millex−LG、メルク)でろ過し、ろ液を液体クロマトグラフ質量分析計(LC/MS)の試料とした。LC/MSのLC部及びMS部は実施例12と同様に構成した。移動相は富士フイルム和光純薬のHPLCグレードのものを購入した。移動相Aは1M酢酸アンモニウム溶液10mLと蒸留水990mLを混合した10mM酢酸アンモニウム水溶液、移動相Bはアセトニトリルとした。分析時間0−8分において、移動相A:B=97:3−95:5の濃度勾配で流下した。分析時間8−10分において、移動相A:B=95:5−10:90の濃度勾配で、10−13分において移動相A:B=10:90で流下した。カラムはZORBAX SB−C18(150×9.4mm、アジレント・テクノロジー)を使用し、流速を4mL/分に設定した。ろ過後の試料溶液をLC/MS装置に50μL注入し、ダイオードアレイ検出器(269nm)とMS(陽イオン検出)でLys−ヒドロキシ−トリオシジンのピークを検出した。分析時間5.7分において、UV吸収性を持つピークが観察され、そのピークはm/z=467.3の陽イオンを含んでいた。そこで、m/z=467をトリガーとしたMS分取を行うことで、保持時間5.7分のピークを回収した。分取後の溶液はロータリーエバポレーター(東京理化器械)で濃縮乾固させた。得られた沈殿は−20℃で保存した。
(2) Separation and purification of Lys-hydroxy-triocidin The Lys-hydroxy-triocidin reaction solution is filtered through a syringe filter (Millex-LG, Merck) having a pore size of 0.2 μm, and the filtrate is filtered by a liquid chromatograph mass spectrometer (LC / It was used as a sample of MS). The LC unit and the MS unit of the LC / MS were configured in the same manner as in Example 12. The mobile phase was purchased from Fujifilm Wako Pure Chemical Industries, Ltd. in HPLC grade. The mobile phase A was a 10 mM ammonium acetate aqueous solution obtained by mixing 10 mL of a 1 M ammonium acetate solution and 990 mL of distilled water, and the mobile phase B was acetonitrile. At an analysis time of 0-8 minutes, the cells flowed down with a concentration gradient of mobile phase A: B = 97: 3-95: 5. It flowed down with a concentration gradient of mobile phase A: B = 95: 5-10: 90 at an analysis time of 8-10 minutes and mobile phase A: B = 10:90 at 10-13 minutes. The column used was ZORBAX SB-C18 (150 x 9.4 mm, Agilent Technologies) and the flow rate was set to 4 mL / min. 50 μL of the filtered sample solution was injected into the LC / MS apparatus, and the peak of Lys-hydroxy-triocidin was detected by a diode array detector (269 nm) and MS (cation detection). At an analysis time of 5.7 minutes, a UV-absorbing peak was observed, which contained cations at m / z = 467.3. Therefore, the peak with a retention time of 5.7 minutes was recovered by performing MS preparative with m / z = 467 as a trigger. The solution after separation was concentrated to dryness with a rotary evaporator (Tokyo Rika Kikai). The resulting precipitate was stored at −20 ° C.

(3)Lys−ヒドロキシ−トリオシジンの構造確認
得られた沈殿(10mg)は、重水(0.6mL、富士フイルム和光純薬)に溶解させ、外径5mmの核磁気共鳴(NMR)用サンプル管(シゲミ)に移した。その後、NMR装置(AVANCE III HD、500MHz、CryoProbe搭載型、Bruker)でLys−ヒドロキシ−トリオシジンの構造を確認した。H−NMR及び13C−NMRのスペクトルデータにて、全水素及び炭素の帰属を決定した。また、H−H COSY、H−13C HSQC、H−13C HMBCスペクトルを解析することで、帰属の妥当性を確認した。Lys−ヒドロキシ−トリオシジンの構造を以下に示す。
(3) Confirmation of structure of Lys-hydroxy-triocidin The obtained precipitate (10 mg) was dissolved in heavy water (0.6 mL, Wako Pure Chemical Industries, Ltd.), and a sample tube for nuclear magnetic resonance (NMR) having an outer diameter of 5 mm ( Moved to Shigemi). After that, the structure of Lys-hydroxy-triocidin was confirmed by an NMR apparatus (AVANCE III HD, 500 MHz, CryoProbe mounted type, Bruker). The attribution of total hydrogen and carbon was determined from 1 H-NMR and 13 C-NMR spectrum data. Further, 1 H- 1 H COSY, 1 H- 13 C HSQC, 1 H- 13 C HMBC spectrum by analyzing the confirmed the validity of the assignment. The structure of Lys-hydroxy-triocidin is shown below.

Figure 2021136920
Figure 2021136920

[実施例18]競合ELISAによる新規モノクローナル抗体とGAL691、Lys−ヒドロキシ−トリオシジンの反応性評価
(1)試薬調製
下記試薬をRO水に溶解させて1Lとし、コーティング溶液として使用した。
炭酸ナトリウム(富士フイルム和光純薬) 1.59g
炭酸水素ナトリウム(富士フイルム和光純薬) 2.93g
BSA(5g、Sigma−Aldrich)をPBS(500mL)に溶かし、ブロッキング溶液として使用した。
[Example 18] Reactivity evaluation of novel monoclonal antibody and GAL691 and Lys-hydroxy-triocidin by competitive ELISA (1) Reagent preparation The following reagent was dissolved in RO water to make 1 L, and used as a coating solution.
Sodium carbonate (Fujifilm Wako Pure Chemical Industries) 1.59g
Sodium hydrogen carbonate (Fujifilm Wako Pure Chemical Industries, Ltd.) 2.93 g
BSA (5 g, Sigma-Aldrich) was dissolved in PBS (500 mL) and used as a blocking solution.

50mMトリス(6.1g、富士フイルム和光純薬)をRO水(約900mL)に溶解させて、6N塩酸(富士フイルム和光純薬)でpH7.4に調整した。得られた溶液にグリセロール(1mL、Sigma−Aldrich)、Tween20 (1mL、ナカライテスク)を加え、RO水にて1Lにメスアップした。得られた溶液を希釈溶液として使用した。 50 mM Tris (6.1 g, Wako Pure Chemical Industries, Ltd.) was dissolved in RO water (about 900 mL), and the pH was adjusted to 7.4 with 6N hydrochloric acid (Wako Pure Chemical Industries, Ltd.). Glycerol (1 mL, Sigma-Aldrich) and Tween20 (1 mL, Nacalai Tesque) were added to the obtained solution, and the volume was increased to 1 L with RO water. The resulting solution was used as a diluent.

下記試薬をRO水に溶解させて1Lとし、さらにRO水を9L加えた後で、Tween20(5mL)を加えた。得られた溶液を洗浄溶液として使用した。
塩化ナトリウム(富士フイルム和光純薬) 80g
リン酸2水素カリウム(富士フイルム和光純薬) 2g
リン酸水素2ナトリウム12水和物(富士フイルム和光純薬) 29g
The following reagents were dissolved in RO water to make 1 L, and 9 L of RO water was further added, and then Tween 20 (5 mL) was added. The obtained solution was used as a washing solution.
Sodium chloride (Fujifilm Wako Pure Chemical Industries) 80g
Potassium dihydrogen phosphate (Fujifilm Wako Pure Chemical Industries, Ltd.) 2g
Disodium hydrogen phosphate dodecahydrate (Fujifilm Wako Pure Chemical Industries, Ltd.) 29 g

(2)抗原の固相化
コーティング溶液中で1μg/mLに調製したグリセルアルデヒド由来AGEs含有BSA(原液:10mg/mLPBS溶液)の溶液を、100μLずつ96穴マイクロタイタープレート(COSTAR)に加え、4℃で一晩インキュベートした。
(2) Immobilization of antigen A solution of glyceraldehyde-derived AGEs-containing BSA (stock solution: 10 mg / mL PBS solution) prepared at 1 μg / mL in the coating solution was added to a 96-well microtiter plate (COSTAR) of 100 μL each. Incubated overnight at 4 ° C.

(3)ブロッキング
固相化の処理を行った各ウェルを洗浄溶液(300μL)で3回洗浄し、ブロッキング溶液(200μL)を加え、室温で1時間放置した。
(3) Blocking Each well treated for solid phase was washed 3 times with a washing solution (300 μL), a blocking solution (200 μL) was added, and the mixture was left at room temperature for 1 hour.

(4)競合実験
GAL691(実施例16にて調製)、Lys−ヒドロキシ−トリオシジン(実施例17にて調製)をそれぞれリン酸緩衝液(0.2M、pH7.4)に溶解させ、10mg/mL溶液を調製した。そして、希釈溶液にて希釈することで、0.625〜10mg/mLの2倍希釈系列(5点)の試料溶液を作製した。試料を含まないブランク溶液も同様に希釈溶液を調製した。POD標識化新規モノクローナル抗体(SJ−5)溶液をBSA(1mg/mL、富士フイルム和光純薬)含有希釈溶液にて12,000倍に希釈し、POD標識化SJ−5抗体希釈溶液とした。
(4) Competitive Experiment GAL691 (prepared in Example 16) and Lys-hydroxy-triocidin (prepared in Example 17) were dissolved in phosphate buffer (0.2M, pH 7.4), respectively, and 10 mg / mL. The solution was prepared. Then, by diluting with a diluted solution, a sample solution of a 2-fold dilution series (5 points) of 0.625 to 10 mg / mL was prepared. A diluted solution was prepared in the same manner for the blank solution containing no sample. A POD-labeled novel monoclonal antibody (SJ-5) solution was diluted 12,000 times with a diluted solution containing BSA (1 mg / mL, Fujifilm Wako Pure Chemical Industries, Ltd.) to obtain a POD-labeled SJ-5 antibody diluted solution.

ブロッキング溶液で処理した各ウェルを洗浄溶液(300μL)で3回洗浄し、2倍希釈系列の試料溶液(各50μL)およびPOD標識化SJ−5抗体希釈溶液(50μL)を加え、プレートミキサーで2分間撹拌後、25℃で1時間インキュベートした。 Each well treated with the blocking solution was washed 3 times with a wash solution (300 μL), a 2-fold dilution series of sample solution (50 μL each) and a POD-labeled SJ-5 antibody dilution solution (50 μL) were added, and 2 with a plate mixer. After stirring for 1 minute, the mixture was incubated at 25 ° C. for 1 hour.

(5)発色
洗浄溶液(300μL)で3回洗浄後、100μLの基質溶液(ELISA POD基質TMBキット(Popular)、ナカライテスク)を加え、室温、遮光下で10分間インキュベートした。その後、2N硫酸(50μL)を加え発色を停止した。
(5) Color development After washing 3 times with a washing solution (300 μL), 100 μL of a substrate solution (ELISA POD substrate TMB kit (Popular), Nacalai Tesque) was added, and the mixture was incubated at room temperature for 10 minutes under shading. Then, 2N sulfuric acid (50 μL) was added to stop the color development.

(6)吸光度測定およびデータ解析
マイクロプレートリーダー(Cytation5、BioTek)で主波長450nmと副波長650nmの吸光度を測定し、主波長の吸光度から副波長の吸光度を差し引いた。ブランク溶液の吸光度に対するGAL691とLys−ヒドロキシ−トリオシジンの吸光度変化を相対値として表記した。その結果を図19に示す。GAL691では濃度依存的に吸光度が低下していたが、Lys−ヒドロキシ−トリオシジンは吸光度の低下が観察されなかった。したがって、新規モノクローナル抗体SJ−5は新規構造体のグリセルアルデヒド由来AGEsと結合し、公知のグリセルアルデヒド由来AGEsであるLys−ヒドロキシ−トリオシジンを認識しない抗体であることが明らかとなった。
(6) Absorbance measurement and data analysis The absorbance at the main wavelength of 450 nm and the sub-wavelength of 650 nm was measured with a microplate reader (Cytion5, BioTek), and the absorbance of the sub-wavelength was subtracted from the absorbance of the main wavelength. The change in absorbance of GAL691 and Lys-hydroxy-triocidin with respect to the absorbance of the blank solution was expressed as a relative value. The result is shown in FIG. In GAL691, the absorbance decreased in a concentration-dependent manner, but in Lys-hydroxy-triocidin, no decrease in absorbance was observed. Therefore, it was revealed that the novel monoclonal antibody SJ-5 binds to the glyceraldehyde-derived AGEs of the novel structure and does not recognize Lys-hydroxy-triocidin, which is a known glyceraldehyde-derived AGEs.

[実施例19]GAL691及び公知のGlycer−AGEsのラジカル測定
実施例16で調製したGAL691(10mg/mLのPBS溶液)について、ESRによるラジカルの解析を行った。ESRの測定条件は以下のパラメータを除いて実施例10と同様である:
Sampling time: 0.06s;
Field modulation Amplitude: 0.2mT;および
Microwave power: 15mW。
磁場はα,γ−ビスジフェニレン−β−フェニルアリル(BDPA)のg値(2.00264)で補正した。
[Example 19] Radical measurement of GAL691 and known Glycer-AGEs GAL691 (10 mg / mL PBS solution) prepared in Example 16 was analyzed for radicals by ESR. The ESR measurement conditions are the same as in Example 10 except for the following parameters:
Sampling time: 0.06s;
Field modulation Amplitude: 0.2mT; and
Microwave power: 15mW.
The magnetic field was corrected by the g value (2.00264) of α, γ-bisdiphenylene-β-phenylallyl (BDPA).

図20AのESRスペクトルより、GAL691はg=2.00328の有機ラジカルを示すシグナルが検出された。このシグナルは10%(w/v)の亜硫酸ナトリウム(NaSO、富士フイルム和光純薬工業)の添加により大きく減衰した(図20B)。また、GLAP(実施例12)、Lys−ヒドロキシ−トリオシジン(実施例17)(各10mg/mLのPBS溶液)も同様にESR測定に供試したところ、ラジカルに由来するシグナルを検出できなかった(図20C、図20D)。以上の結果より、GAL691は公知のGlycer−AGEsでは認められないラジカル性を有することが確認された。 From the ESR spectrum of FIG. 20A, a signal indicating an organic radical of g = 2.00328 was detected in GAL691. This signal was greatly attenuated by the addition of 10% (w / v) sodium sulfite (Na 2 SO 3 , Fujifilm Wako Pure Chemical Industries, Ltd.) (Fig. 20B). Further, GLAP (Example 12) and Lys-hydroxy-triocidin (Example 17) (PBS solution of 10 mg / mL each) were also tested in the same manner for ESR measurement, but no signal derived from a radical could be detected (Example 12). 20C, 20D). From the above results, it was confirmed that GAL691 has radical properties not found in known Glycer-AGEs.

[実施例20]GAL691の酸化活性に対する光照射の影響
AGEsは眼の硝子体、ブルッフ膜、水晶体などの組織に蓄積しており、糖尿病性網膜症や加齢黄斑変性症を含む様々な疾患に関与することが指摘されている(Yokoi et al., Br. J. Ophthalmol., 2005, 89, 673-675; Glenn et al., Invest. Ophthalmol. Vis. Sci., 2009, 50(1), 441-451; Nagaraj et al., Amino Acids, 201242, 1205-1220; Katagiri et al., Int. Ophthalmol., 2017, 38(2), 1-9; Kanda et al., Sci. Rep., 2017, 7, 16168)。また、眼は光を電気信号に変換することで脳へ情報を伝達する重要な器官である。そこで、AGEsと光の関係に注目し、GAL691の酸化活性に対する光の影響を検討した。
[Example 20] Effect of light irradiation on the oxidative activity of GAL691 AGEs are accumulated in tissues such as the vitreous body, Bruch membrane, and crystalline lens of the eye, and are used for various diseases including diabetic retinopathy and age-related macular degeneration. It has been pointed out that it is involved (Yokoi et al., Br. J. Ophthalmol., 2005, 89, 673-675; Glenn et al., Invest. Ophthalmol. Vis. Sci., 2009, 50 (1), 441-451; Nagaraj et al., Amino Acids, 201242, 1205-1220; Katagiri et al., Int. Ophthalmol., 2017, 38 (2), 1-9; Kanda et al., Sci. Rep., 2017 , 7, 16168). The eye is also an important organ that transmits information to the brain by converting light into electrical signals. Therefore, paying attention to the relationship between AGEs and light, the effect of light on the oxidative activity of GAL691 was examined.

実施例16で調製したGAL691およびZ−Lys(各2mg/mLのPBS溶液)について、実施例11と同様にDABに対する酸化活性を検討した。このとき、白色LEDの照射下(3000lux)で一晩反応させた。 The oxidative activity of GAL691 and Z-Lys (2 mg / mL PBS solution each) prepared in Example 16 was examined in the same manner as in Example 11. At this time, the reaction was carried out overnight under irradiation with a white LED (3000 lux).

図21に示すように、DABの酸化による生成物はGAL691単独処理(遮光下)に比べ、GAL691と光照射下での処理で2.6倍増加していた。したがって、GAL691の酸化活性は光照射下でより強力になることが明らかとなった。 As shown in FIG. 21, the product due to the oxidation of DAB increased 2.6 times in the treatment under GAL691 and light irradiation as compared with the treatment with GAL691 alone (under shading). Therefore, it was revealed that the oxidizing activity of GAL691 becomes stronger under light irradiation.

[実施例21]GAL691の光増感作用による一重項酸素の生成
実施例16で調製したGAL691について、光増感作用による一重項酸素の生成能を検証した。GAL691の対照区として用いたN−α,N−ε−ジ(カルボベンゾキシ)−L−リシン(Z−Lys(Z)−OH)について、渡辺化学工業より購入した。
[Example 21] Generation of singlet oxygen by photosensitizing action of GAL691 The ability of GAL691 prepared in Example 16 to generate singlet oxygen by photosensitizing action was verified. N-α, N-ε-di (carbobenzoxi) -L-lysine (Z-Lys (Z) -OH) used as a control group of GAL691 was purchased from Watanabe Chemical Industry.

0.6mL容マイクロチューブ(ワトソン)にて、25μLのGAL691もしくはZ−Lys(Z)−OH(10mM、PBS溶液)、12.5μLの4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン(4−OH−TEMP;東京化成工業、400mM、PBS溶液)、12.5μLのPBSを混合し、反応溶液を調製した。4−OH−TEMPは一重項酸素を捕捉してニトロキシドラジカルに変化するため、ESRを用いた一重項酸素の検出によく利用されている(Nakamura et al., J. Clin. Biochem. Nutr., 2011, 49(2), 87-95)。携帯型LED光源(美舘イメージング)を用いて、反応溶液にUV365nm、青色470nm、緑色530nm、または赤色630nmの光を1時間照射した。その後、各反応溶液の一部(50μL)を用いてESRの測定を行った。ESRの測定は一部のパラメータを除いて実施例10と同様の条件で実施した。変更した測定パラメータについて、以下の通りである:
Field center: 3354.47G; Field width: 70G; Sampling time: 0.06s; Field modulation amplitude: 0.1mT; Microwave power: 15mW。
In a 0.6 mL microtube (Watson), 25 μL of GAL691 or Z-Lys (Z) -OH (10 mM, PBS solution), 12.5 μL of 4-hydroxy-2,2,6,6-tetramethylpiperidine (4-OH-TEMP; Tokyo Chemical Industry, 400 mM, PBS solution), 12.5 μL of PBS was mixed to prepare a reaction solution. 4-OH-TEMP captures singlet oxygen and converts it into nitroxide radicals, so it is often used for detection of singlet oxygen using ESR (Nakamura et al., J. Clin. Biochem. Nutr., 2011, 49 (2), 87-95). Using a portable LED light source (Mitate Imaging), the reaction solution was irradiated with light of UV 365 nm, blue 470 nm, green 530 nm, or red 630 nm for 1 hour. Then, ESR was measured using a part (50 μL) of each reaction solution. The ESR measurement was carried out under the same conditions as in Example 10 except for some parameters. The changed measurement parameters are as follows:
Field center: 3354.47G; Field width: 70G; Sampling time: 0.06s; Field modulation amplitude: 0.1mT; Microwave power: 15mW.

生成したニトロキシドラジカルの濃度を定量するため、以下の解析を行った。まず、観察されたニトロキシドラジカルのスペクトルをXeprソフトウェア(Bruker)内のSpinFitモジュールでシミュレーションし、ラジカル種を同定した(g=2.0058、I=1、A=17.05G)。その後、SpinCountモジュールにて、シミュレーションしたニトロキシドラジカルのスピン濃度(μM)を求めた。 The following analysis was performed to quantify the concentration of nitroxide radicals generated. First, the spectrum of the observed nitroxide radical simulated by SpinFit module Xepr in software (Bruker), were identified radical species (g = 2.0058, I = 1 , A N = 17.05G). Then, the spin concentration (μM) of the simulated nitroxide radical was determined by the SpinCount module.

図22に示すように、GAL691は特に青色光照射によって、ニトロキシドラジカルを顕著に生成させることが分かった。したがって、GAL691は光増感作用により一重項酸素を生成するグリセルアルデヒド由来AGEsであることが示された。 As shown in FIG. 22, it was found that GAL691 remarkably produces nitroxide radicals, especially when irradiated with blue light. Therefore, it was shown that GAL691 is glyceraldehyde-derived AGEs that generate singlet oxygen by photosensitization.

[実施例22]GAL691と既知のグリセルアルデヒド由来AGEsにおける光増感作用を介した一重項酸素生成量の比較
GAL691(実施例16)、GLAP(実施例12)、Lys−ヒドロキシ−トリオシジン(実施例17)について、青色光照射下における一重項酸素の生成量を比較した。試料の調製方法、光源、ESR分析条件、ESRスペクトルの解析条件は実施例21に準じた。測定試料の調製において、一重項酸素の捕捉剤であるアスタキサンチン(富士フイルム和光純薬)は10mMのジメチルスルホキシド(DMSO、富士フイルム和光純薬)溶液を調製し、PBSの替わりに12.5μL加えた(終濃度2.5mM)。アスタキサンチン未処理の試料については、PBSではなく、DMSOを12.5μL加えた。
[Example 22] Comparison of singlet oxygen production through photosensitization between GAL691 and known glyceraldehyde-derived AGEs GAL691 (Example 16), GLAP (Example 12), Lys-hydroxy-triocidin (Example 22) For Example 17), the amount of singlet oxygen produced under blue light irradiation was compared. The sample preparation method, light source, ESR analysis conditions, and ESR spectrum analysis conditions were in accordance with Example 21. In the preparation of the measurement sample, astaxanthin (Fujifilm Wako Pure Chemical Industries, Ltd.), which is a scavenger of singlet oxygen, prepared a 10 mM dimethyl sulfoxide (DMSO, Wako Pure Chemical Industries, Ltd.) solution, and added 12.5 μL instead of PBS. (Final concentration 2.5 mM). For astaxanthin-untreated samples, 12.5 μL of DMSO was added instead of PBS.

その結果を図23に示す。青色光照射による一重項酸素の生成量はGLAPやLys−ヒドロキシ−トリオシジンに比べ、GAL691は9倍多かった。また、GAL691と光照射により発生した一重項酸素はアスタキサンチンにより捕捉されていた。これらのことから、公知のグリセルアルデヒド由来AGEsに比べ、GAL691は強力な光増感作用を示す新規グリセルアルデヒド由来AGEであることが示された。 The result is shown in FIG. The amount of singlet oxygen produced by blue light irradiation was 9 times higher in GAL691 than in GLAP and Lys-hydroxy-triocidin. In addition, GAL691 and singlet oxygen generated by light irradiation were captured by astaxanthin. From these facts, it was shown that GAL691 is a novel glyceraldehyde-derived AGE showing a strong photosensitizing effect as compared with known glyceraldehyde-derived AGEs.

[実施例23]GAL691のスーパーオキシドアニオン生成能の検討
GAL691(実施例16)、GLAP(実施例12)、Lys−ヒドロキシ−トリオシジン(実施例17)について、青色光照射下におけるスーパーオキシドアニオンの生成量を比較した。スーパーオキシドアニオンの生成は1−ヒドロキシ−4−ホスホノオキシ−2,2,6,6−テトラメチルピペリジン(PPH)を用いてESRを測定することにより確認した。すなわち、スーパーオキシドアニオンを捕捉したPPHは安定な窒素酸化物に変化するため、そのラジカル濃度をESRで測定し、スーパーオキシドアニオン量として評価した(Dikalov et al., Biochemical and Biophysical Research Communications, 1998, 248, 211-215)。PPH−HCl(Enzo Life Sciences)について10mMのPBS溶液(pH7.4)を調製した。各25μLのGAL691、Z−Lys(Z)、GLAP、Lys−ヒドロキシ−トリオシジン(10mMのPBS溶液)を0.6mL容マイクロチューブに加えた。そして、12.5μLのPPH溶液、12.5μLのDTPA(0.4mM)含有PBSを加え、計50μLの反応溶液を調製した。その後、青色光照射を1時間行い、ESRを測定した。なお、光源、ESR分析条件、ESRスペクトルの解析条件は実施例21と同様であるが、Microwave powerのみ5mWに変更した。
[Example 23] Examination of superoxide anion-producing ability of GAL691 For GAL691 (Example 16), GLAP (Example 12), and Lys-hydroxy-triocidin (Example 17), generation of superoxide anion under blue light irradiation. The amounts were compared. The formation of superoxide anion was confirmed by measuring ESR with 1-hydroxy-4-phosphonooxy-2,2,6,6-tetramethylpiperidine (PPH). That is, since PPH trapped in superoxide anion changes to stable nitrogen oxide, its radical concentration was measured by ESR and evaluated as the amount of superoxide anion (Dikalov et al., Biochemical and Biophysical Research Communications, 1998, 248, 211-215). A 10 mM PBS solution (pH 7.4) was prepared for PPH-HCl (Enzo Life Sciences). Each 25 μL of GAL691, Z-Lys (Z), GLAP, Lys-hydroxy-triocidin (10 mM PBS solution) was added to a 0.6 mL microtube. Then, 12.5 μL of PPH solution and 12.5 μL of PBS containing DTPA (0.4 mM) were added to prepare a total of 50 μL of the reaction solution. Then, blue light irradiation was performed for 1 hour, and ESR was measured. The light source, ESR analysis conditions, and ESR spectrum analysis conditions were the same as in Example 21, but only the Microwave power was changed to 5 mW.

結果を図24に示す。光を照射しない場合(遮光下)、GAL691は他のグリセルアルデヒド由来AGEsに比べ、4倍量以上のスーパーオキシドアニオンを生成していた。さらに、その生成量は青色光照射により約3倍増加した。したがって、GAL691は光に依存せずスーパーオキシドアニオンを生成するグリセルアルデヒド由来AGEであり、その生成量は光によって増強されることが示された。 The results are shown in FIG. When not irradiated with light (under shading), GAL691 produced four times or more of the amount of superoxide anion as compared with other glyceraldehyde-derived AGEs. Furthermore, the amount produced was increased about 3 times by irradiation with blue light. Therefore, it was shown that GAL691 is a glyceraldehyde-derived AGE that produces a superoxide anion independently of light, and its production amount is enhanced by light.

[実施例24]免疫抗原の調製
実施例2で沈殿物として得たGlycer−AGEs−Z−Lysを0.2Mリン酸緩衝液(pH7.4)に溶解させ、50mg/mLの試料溶液を調製した。その後、孔径0.2μmのシリンジフィルター(Millex−LG、メルク)でろ過し、ろ液をLC/MSの試料とした。LC/MSの分析条件は実施例16と同様である。新規構造体であるGAL691を含む保持時間10−16分の画分を分取した。分取溶液に含まれるアセトニトリルはロータリーエバポレーター(東京理化器械)で除去した。残渣の溶液(5mL)に対して、10%TFA水溶液(1mL)を加え、転倒混和した。その後、室温にて10分間遠心分離(12,000×g)し、上清を除去した。得られた沈殿物に超純水(5mL)を加え、再度遠心分離を行い、上清を除去した。この操作を計3回実施することで、沈殿を洗浄した。洗浄後の沈殿は風乾後、乾燥重を測定し、冷蔵保存した。50mg/mLの試料溶液1mLあたり20mgの沈殿を得た。
[Example 24] Preparation of immune antigen Glycer-AGEs-Z-Lys obtained as a precipitate in Example 2 was dissolved in 0.2 M phosphate buffer (pH 7.4) to prepare a sample solution of 50 mg / mL. bottom. Then, the mixture was filtered through a syringe filter (Millex-LG, Merck) having a pore size of 0.2 μm, and the filtrate was used as an LC / MS sample. The LC / MS analysis conditions are the same as in Example 16. Fractions with a retention time of 10-16 minutes, including the new structure GAL691, were fractionated. Acetonitrile contained in the preparative solution was removed by a rotary evaporator (Tokyo Rika Kikai). A 10% TFA aqueous solution (1 mL) was added to the residue solution (5 mL), and the mixture was inverted and mixed. Then, it was centrifuged (12,000 × g) for 10 minutes at room temperature, and the supernatant was removed. Ultrapure water (5 mL) was added to the obtained precipitate, and centrifugation was performed again to remove the supernatant. The precipitate was washed by performing this operation a total of three times. After washing, the precipitate was air-dried, the dry weight was measured, and the precipitate was stored in a refrigerator. A 20 mg precipitate was obtained per 1 mL of 50 mg / mL sample solution.

乾燥後の沈殿を0.2Mリン酸緩衝液(pH7.4)に溶解させ、終濃度を40mg/mLとした(A−peak溶液)。さらに、この溶液をリン酸緩衝生理食塩水(PBS、pH7.4)にて10倍希釈し、終濃度を4mg/mLとした。キャリアタンパク質の溶液は以下のように調製した。ウシ血清アルブミン(BSA、Sigma−Aldrich)の凍結乾燥粉末をPBSに溶解させ、終濃度を10mg/mLとした。1.5mL容のEppendorf Safe-Lock Tubes(エッペンドルフ)内で、4mg/mLのA−peak溶液(500μL)と10mg/mLのBSA溶液(200μL)を混合した。続いて、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC、Thermo Scientific)を超純水に溶解させ、10mg/mL水溶液を作製した。A−peakとBSAの混合溶液(700μL)に、10mg/mL EDC水溶液(100μL)を素早く添加し、転倒混和した後、室温にて一晩インキュベートした。 The dried precipitate was dissolved in 0.2 M phosphate buffer (pH 7.4) to give a final concentration of 40 mg / mL (A-peak solution). Further, this solution was diluted 10-fold with phosphate buffered saline (PBS, pH 7.4) to a final concentration of 4 mg / mL. The carrier protein solution was prepared as follows. A lyophilized powder of bovine serum albumin (BSA, Sigma-Aldrich) was dissolved in PBS to a final concentration of 10 mg / mL. In 1.5 mL of Eppendorf Safe-Lock Tubes, 4 mg / mL A-peak solution (500 μL) and 10 mg / mL BSA solution (200 μL) were mixed. Subsequently, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC, Thermo Scientific) was dissolved in ultrapure water to prepare a 10 mg / mL aqueous solution. A 10 mg / mL EDC aqueous solution (100 μL) was quickly added to a mixed solution of A-peak and BSA (700 μL), mixed by inversion, and then incubated overnight at room temperature.

反応終了後、直ちにZeba Spin Desalting Columns(7K MWCO、Thermo Scientific)で反応溶液をゲルろ過した。さらに、Slide-A-Lyzer MINI Dialysis Device(3.5K MWCO、Thermo Scientific)を使用し、低温下(4℃)で透析した。透析外液はPBSとした。透析を開始して3時間後に外液を交換し、さらに一晩の透析を行った。 Immediately after completion of the reaction, the reaction solution was gel-filtered with Zeba Spin Desalting Columns (7K MWCO, Thermo Scientific). Furthermore, using a Slide-A-Lyzer MINI Dialysis Device (3.5K MWCO, Thermo Scientific), dialysis was performed at a low temperature (4 ° C.). The external dialysis solution was PBS. Three hours after the start of dialysis, the external fluid was exchanged, and dialysis was further performed overnight.

透析終了後、透析デバイス内の溶液を回収し、アミコンウルトラ−0.5(30K MWCO、メルク)で濃縮した。Pierce BCA Protein Assay Kit(Thermo Scientific)でA−peakを架橋させたBSA(A−peak−BSA)のタンパク質濃度を求め、PBSにて任意のタンパク質濃度に調整した。A−peak−BSAはマウスモノクローナル抗体作製における免疫抗原として使用した。 After completion of dialysis, the solution in the dialysis device was collected and concentrated with Amicon Ultra-0.5 (30K MWCO, Merck). The protein concentration of BSA (A-peak-BSA) in which A-peak was crosslinked was determined with the Pierce BCA Protein Assay Kit (Thermo Scientific), and adjusted to an arbitrary protein concentration with PBS. A-peak-BSA was used as an immune antigen in the production of mouse monoclonal antibodies.

[実施例25]モノクローナル抗体の作製(PB−1)
(1)マウスへの免疫
免疫抗原として、A−peak−BSA(4mg/mL)を同じ容量のAdjuvant Complete Freund(BD)と混合してエマルジョンを調製し(抗原の濃度:2mg/mL)、BALB/cマウス10匹の背部皮下に初回免疫をした(抗原の量:200μg/匹)。A−peak−BSA(1mg/mL)を同じ容量のAdjuvant Complete Freund(BD)と混合して調製したエマルジョン(抗原の濃度:0.5mg/mL)を用いて1週間おきに追加免疫(抗原の量:50μg/匹)を行った。初回免疫から6回免疫した後に尾静脈より採血を行い、抗体価の確認を行った。抗体価の高かったものに対して、追加免疫用の抗原(抗原の量:50μg/匹)をマウスの腹腔内に最終投与し、その3日後に細胞融合用に脾臓を摘出した。
[Example 25] Preparation of monoclonal antibody (PB-1)
(1) Immunity to mice As an immune antigen, A-peak-BSA (4 mg / mL) is mixed with the same volume of Adjuvant Complete Freund (BD) to prepare an emulsion (antigen concentration: 2 mg / mL), and BALB Initial immunization was performed subcutaneously on the back of 10 / c mice (antigen amount: 200 μg / animal). Boost immunization (antigen concentration) every other week using an emulsion (antigen concentration: 0.5 mg / mL) prepared by mixing A-peak-BSA (1 mg / mL) with the same volume of Adjuvant Complete Freund (BD). Amount: 50 μg / animal) was performed. After immunization 6 times from the initial immunization, blood was collected from the tail vein to confirm the antibody titer. The antigen for booster immunization (antigen amount: 50 μg / animal) was finally administered intraperitoneally to the mouse having a high antibody titer, and 3 days later, the spleen was removed for cell fusion.

(2)抗体価の測定
抗血清の力価をELISAで評価した。96穴マイクロタイタープレート(NUNC)に、免疫抗原であるA−peak−BSAを5μg/mLの濃度で50μL/ウェルずつ加え、一晩4℃で固相化した。0.05%(v/v)Tween20を含むPBS(PBS−T)で3回洗浄後、0.5%(w/v)ゼラチンを含むPBS−Tで1時間ブロッキングした。抗血清は500倍から5倍ずつ段階希釈し、1562500倍までの希釈系列を調製後、抗原固相化プレートに50μL/ウェルずつ入れて1時間静置した。洗浄後、0.1%ゼラチンPBS−Tで10000倍に希釈した2次抗体(西洋ワサビペルオキシダーゼ(HRP)標識化抗マウスIgG(KPL)を50μL/ウェルずつ入れて1時間静置した。洗浄後、各ウェルに0.02%(w/v)の過酸化水素を含む0.1Mクエン酸リン酸緩衝液(pH5.0)で0.5mg/mLに調整したo−フェニレンジアミン溶液(100μL)を添加し、25℃で20分間静置した後に、2N硫酸溶液(50μL)を各ウェルに添加し、呈色反応を停止した。その後490nmの吸光度をマイクロプレートリーダーによって測定した。その結果、抗血清の12500倍以上の希釈溶液において、抗原と有意な反応性を示したマウスを細胞融合に使用した。
(2) Measurement of antibody titer The titer of antiserum was evaluated by ELISA. The immune antigen A-peak-BSA was added to a 96-well microtiter plate (NUNC) at a concentration of 5 μg / mL at a concentration of 50 μL / well, and solid-phased at 4 ° C. overnight. After washing 3 times with PBS (PBS-T) containing 0.05% (v / v) Tween 20, blocking was performed with PBS-T containing 0.5% (w / v) gelatin for 1 hour. The antiserum was serially diluted 500 to 5 times, and after preparing a dilution series up to 156,500 times, 50 μL / well was placed on an antigen-immobilized plate and allowed to stand for 1 hour. After washing, 50 μL / well of secondary antibody (Horseradish peroxidase (HRP) -labeled anti-mouse IgG (KPL)) diluted 10000 times with 0.1% gelatin PBS-T was added and allowed to stand for 1 hour. An o-phenylenediamine solution (100 μL) adjusted to 0.5 mg / mL with 0.1 M phosphate buffer (pH 5.0) containing 0.02% (w / v) hydrogen peroxide in each well. Was added and allowed to stand at 25 ° C. for 20 minutes, then a 2N sulfate solution (50 μL) was added to each well to stop the color development reaction. Then, the absorbance at 490 nm was measured with a microplate reader. As a result, the anti-antibody Mice that showed significant reactivity with the antigen in a diluted solution of 12500 times or more of serum were used for cell fusion.

(3)脾臓細胞の調製と細胞融合
マウスから摘出した脾臓をすりつぶし、1匹あたり約1×10個の脾臓細胞を調製した。ミエローマ細胞であるP3U1を培養し、細胞融合当日に生細胞率が95%以上のP3U1を調製した。前記脾臓細胞とP3U1を5:1(細胞数の比)で混ぜ、50%(w/v)濃度の分子量4000のポリエチレングリコールにより細胞融合を行った。融合後、細胞を培地で洗浄し、HAT培地に懸濁させ、96穴培養プレートの各ウェルに1×10個/ウェルとなるように細胞を播きこみ、ハイブリドーマの選択培養を行った。細胞融合10日目にハイブリドーマ培養上清を回収し、培養上清中の抗体価の測定を行った。
(3) Preparation of spleen cells and cell fusion The spleen extracted from the mouse was ground to prepare about 1 × 10 8 spleen cells per mouse. P3U1 which is a myeloma cell was cultured, and P3U1 having a viable cell rate of 95% or more was prepared on the day of cell fusion. The spleen cells and P3U1 were mixed at a ratio of 5: 1 (cell number ratio), and cell fusion was performed with polyethylene glycol having a molecular weight of 4000 at a concentration of 50% (w / v). After the fusion, the cells were washed with a medium, suspended in a HAT medium, and the cells were seeded into each well of a 96-well culture plate so as to be 1 × 10 5 cells / well, and a hybridoma was selectively cultured. On the 10th day of cell fusion, the hybridoma culture supernatant was collected, and the antibody titer in the culture supernatant was measured.

(4)抗体産生陽性ウェルのスクリーニング
細胞融合後、10日目の培養上清を回収し、抗体産生陽性ウェルのスクリーニングを上記の抗体価測定方法で行った。A−peak−BSA、グリセルアルデヒド由来AGEs含有KLH(Glycer−AGEs−KLH)に陽性、BSAに陰性であるクローンについて選択した。なお、Glycer−AGEs−KLHの調製方法は実施例27に示した。
(4) Screening of antibody production positive wells The culture supernatant on the 10th day after cell fusion was collected, and antibody production positive wells were screened by the above antibody titer measurement method. A-peak-BSA, glyceraldehyde-derived AGEs-containing KLH (Glycer-AGEs-KLH) -positive and BSA-negative clones were selected. The method for preparing Glycer-AGEs-KLH is shown in Example 27.

(5)クローニング
A−peak−BSAに対する特異性の高かったクローンを限界希釈法でクローニングを行った。すなわち、細胞を10%のFBSを含むRPMI培地で10個/mLに調製し、96穴培養プレート2枚分の各ウェルに200μLずつ添加した。10日後、培養上清中のA−peak−BSA、Glycer−AGEs−KLHに陽性、およびBSAに陰性であることを確認し、それぞれのウェルに由来するクローンを得た。特異性を十分に備えた本発明の抗体として、新規モノクローナル抗体PB−1産生細胞を得た。
(5) Cloning A clone having high specificity for A-peak-BSA was cloned by the limiting dilution method. That is, cells were prepared at 10 cells / mL in RPMI medium containing 10% FBS, and 200 μL was added to each well of two 96-well culture plates. After 10 days, it was confirmed that A-peak-BSA, Glycer-AGEs-KLH and BSA were negative in the culture supernatant, and clones derived from each well were obtained. As an antibody of the present invention having sufficient specificity, a novel monoclonal antibody PB-1 producing cell was obtained.

(6)抗体の精製
新規モノクローナル抗体PB−1産生細胞を、10%のFBSを含むRPMI培地で培養後、PBSにて洗浄し、無血清培地(SFM培地、GIBCO)にて5日〜7日間培養し培養上清を得た。培養上清をプロテインGカラム(GEヘルスケア)にて、IgG画分を精製し、特異性を十分に備えた本発明の抗体として、新規モノクローナル抗体PB−1を得た。
(6) Purification of antibody The cells producing the novel monoclonal antibody PB-1 were cultured in RPMI medium containing 10% FBS, washed with PBS, and in serum-free medium (SFM medium, GIBCO) for 5 to 7 days. It was cultured to obtain a culture supernatant. The IgG fraction was purified from the culture supernatant on a protein G column (GE Healthcare) to obtain a novel monoclonal antibody PB-1 as an antibody of the present invention having sufficient specificity.

[実施例26]モノクローナル抗体PB−1の解離定数測定
モノクローナル抗体PB−1について、以下の手法で解離定数(Kd値)を測定した。A−peak−BSAを10mM酢酸ナトリウム溶液(pH5.0)で希釈し、終濃度50μg/mLのリガンド溶液を調製した。リガンドの固定化およびKd値の算出について、Biacore T200(GEヘルスケア)を使用した。アミンカップリングキット(GEヘルスケア)を用いて、センサーチップCM5(GEヘルスケア)上にリガンド溶液を固定化した(最終固定化量72RU)。続いて、ランニング緩衝液のHBS−P+(GEヘルスケア)にて0.1953〜50nMのPB−1抗体希釈溶液を作製し、センサーグラムを取得した。
[Example 26] Measurement of dissociation constant of monoclonal antibody PB-1 The dissociation constant (Kd value) of the monoclonal antibody PB-1 was measured by the following method. A-peak-BSA was diluted with 10 mM sodium acetate solution (pH 5.0) to prepare a ligand solution with a final concentration of 50 μg / mL. Biacore T200 (GE Healthcare) was used for ligand immobilization and Kd value calculation. The ligand solution was immobilized on the sensor chip CM5 (GE Healthcare) using an amine coupling kit (GE Healthcare) (final immobilization amount 72RU). Subsequently, a 0.1953 to 50 nM PB-1 antibody diluted solution was prepared with HBS-P + (GE Healthcare) as a running buffer, and sensorgrams were obtained.

フィッティングモデルとして1:1 bindingを採用し、センサーグラムを解析した結果、PB−1モノクローナル抗体のKd値は4.15nMであった。 As a result of using 1: 1 binding as a fitting model and analyzing the sensorgram, the Kd value of the PB-1 monoclonal antibody was 4.15 nM.

常法により決定した可変領域のアミノ酸配列を図25に示す。下線部分はCDR配列を表す。 The amino acid sequence of the variable region determined by a conventional method is shown in FIG. The underlined part represents the CDR sequence.

[実施例27]グリセルアルデヒド由来AGEs含有スカシガイヘモシアニン(Glycer−AGEs−KLH)の調製
Glycer−AGEs−KLHの調製方法は、実施例1に記載したGlycer−AGEs−BSAの調製方法に準じた。ただし、500mgのBSAではなく、167mgのヘモシアニン、スカシガイ製(KLH、富士フイルム和光純薬)をDL−グリセルアルデヒドと反応させた(溶液中のKLHの濃度:8.3mg/mL)。
[Example 27] Preparation of glyceraldehyde-derived AGEs-containing scallop hemocyanin (Glycer-AGEs-KLH) The preparation method of Glycer-AGEs-KLH was based on the preparation method of Glycer-AGEs-BSA described in Example 1. .. However, instead of 500 mg of BSA, 167 mg of hemocyanin and Sukashigai (KLH, Fujifilm Wako Pure Chemical Industries, Ltd.) were reacted with DL-glyceraldehyde (KLH concentration in solution: 8.3 mg / mL).

[実施例28]グリコールアルデヒド由来ピリジニウム化合物(GA−ピリジン)の調製
GA−ピリジンは公知の方法により調製することができる(Murakami et al. Bioscience Biotechnology and Biochemistry, 2018, 82(2), 312-319)。具体的には以下の方法によりGA−ピリジンを調製した。
[Example 28] Preparation of glycolaldehyde-derived pyridinium compound (GA-pyridine) GA-pyridine can be prepared by a known method (Murakami et al. Bioscience Biotechnology and Biochemistry, 2018, 82 (2), 312-319. ). Specifically, GA-pyridine was prepared by the following method.

(1)GA−ピリジン反応溶液の調製
α−アセチル−L−リシン(Ac−Lys−OH、東京化成工業)、グリコールアルデヒドダイマー(GA、Sigma−Aldrich)は購入により入手した。50mLの遠沈管に0.96gのGA(0.2M)を加え、40mLのリン酸緩衝液(0.2M、pH7.4)で完全に溶解させた。その後、0.75gのAc−Lys−OH(0.1M)を加えて溶解するまで攪拌した。チューブ内の液体が蒸発しないように、パラフィルム(商標)などのフィルムにてチューブの蓋を密閉し、50℃で3日間インキュベートした。得られた反応溶液は4℃にて保存した。
(1) GA- pyridine Preparation of the reaction solution N alpha - acetyl -L- lysine (Ac-Lys-OH, Tokyo Kasei Kogyo), glycolaldehyde dimer (GA, Sigma-Aldrich) were obtained by purchase. 0.96 g of GA (0.2 M) was added to a 50 mL centrifuge tube and completely dissolved in 40 mL of phosphate buffer (0.2 M, pH 7.4). Then, 0.75 g of Ac-Lys-OH (0.1 M) was added and stirred until dissolved. The lid of the tube was sealed with a film such as Parafilm ™ to prevent the liquid in the tube from evaporating, and the tube was incubated at 50 ° C. for 3 days. The obtained reaction solution was stored at 4 ° C.

(2)GA−ピリジンの分離精製
GA−ピリジン反応溶液は、孔径0.2μmのシリンジフィルター(Millex−LG、メルク)でろ過し、ろ液を液体クロマトグラフ質量分析計(LC/MS)の試料とした。LC/MSのLC部及びMS部は実施例12と同様に構成した。移動相は富士フイルム和光純薬のHPLCグレードのものを購入した。移動相Aはギ酸1mLと蒸留水1000mLを混合した0.1%ギ酸水溶液、移動相Bはアセトニトリル500mL、蒸留水500mL、ギ酸1mLと混合した50%アセトニトリル/0.1%ギ酸溶液とした。分析時間0−10分において、移動相A:B=100:0−90:10の濃度勾配で流下した。分析時間10−12分において、移動相A:B=90:10−0:100の濃度勾配で、12−15分において移動相A:B=0:100で流下した。カラムは35℃にてZORBAX SB−C18(150×9.4mm、アジレント・テクノロジー)を使用し、流速を4mL/分に設定した。ろ過後の試料溶液をLC/MS装置に80μL注入し、ダイオードアレイ検出器(290nm)とMS(陽イオン検出)でGA−ピリジンのピークを検出した。分析時間6分において、UV吸収性を持つピークが観察され、そのピークはm/z=297.1の陽イオンを含んでいた。そこで、m/z=297をトリガーとしたMS分取を行うことで、保持時間6分のピークを回収した。分取後の溶液はロータリーエバポレーター(東京理化器械)で濃縮乾固させた。得られた沈殿は−20℃で保存した。
(2) Separation and Purification of GA-Pyridine The GA-pyridine reaction solution is filtered through a syringe filter (Millex-LG, Merck) having a pore size of 0.2 μm, and the filtrate is sampled by a liquid chromatograph mass spectrometer (LC / MS). And said. The LC unit and the MS unit of the LC / MS were configured in the same manner as in Example 12. The mobile phase was purchased from Fujifilm Wako Pure Chemical Industries, Ltd. in HPLC grade. The mobile phase A was a 0.1% formic acid aqueous solution in which 1 mL of formic acid and 1000 mL of distilled water were mixed, and the mobile phase B was a 50% acetonitrile / 0.1% formic acid solution in which 500 mL of acetonitrile, 500 mL of distilled water and 1 mL of formic acid were mixed. At an analysis time of 0-10 minutes, the cells flowed down with a concentration gradient of mobile phase A: B = 100: 0-90: 10. It flowed down with a concentration gradient of mobile phase A: B = 90: 10-0: 100 at an analysis time of 10-12 minutes and with mobile phase A: B = 0: 100 at 12-15 minutes. The column was ZORBAX SB-C18 (150 x 9.4 mm, Agilent Technologies) at 35 ° C. and the flow rate was set to 4 mL / min. 80 μL of the filtered sample solution was injected into the LC / MS apparatus, and the peak of GA-pyridine was detected by a diode array detector (290 nm) and MS (cation detection). At 6 minutes of analysis time, a UV-absorbing peak was observed, which contained cations at m / z = 297.1. Therefore, the peak with a retention time of 6 minutes was recovered by performing MS preparative with m / z = 297 as a trigger. The solution after separation was concentrated to dryness with a rotary evaporator (Tokyo Rika Kikai). The resulting precipitate was stored at −20 ° C.

(3)GA−ピリジンの構造確認
得られた沈殿(4.7mg)は、重水(0.6mL、富士フイルム和光純薬)に溶解させ、外径5mmの核磁気共鳴(NMR)用サンプル管(シゲミ)に移した。その後、NMR装置(AVANCE III HD、500MHz、CryoProbe搭載型、Bruker)でGA−ピリジンの構造を確認した。得られたH−NMRのスペクトルデータを非特許文献(Nagai et al., Journal of Biological chemistry, 2002, 277(50), 48905-48912)と比較し、全水素の帰属を決定した。また、H−13C HSQCスペクトルを解析することで、帰属の妥当性を確認した。GA−ピリジンの構造を以下に示す。
(3) Confirmation of structure of GA-pyridine The obtained precipitate (4.7 mg) was dissolved in heavy water (0.6 mL, Wako Pure Chemical Industries, Ltd.), and a sample tube for nuclear magnetic resonance (NMR) having an outer diameter of 5 mm ( Moved to Shigemi). After that, the structure of GA-pyridine was confirmed with an NMR device (AVANCE III HD, 500 MHz, CryoProbe mounted type, Bruker). The obtained 1 H-NMR spectral data was compared with non-patent literature (Nagai et al., Journal of Biological Chemistry, 2002, 277 (50), 48905-48912) to determine the attribution of total hydrogen. In addition, the validity of attribution was confirmed by analyzing the 1 H- 13 C HSQC spectrum. The structure of GA-pyridine is shown below.

Figure 2021136920
Figure 2021136920

[実施例29]グリオキサール由来リシンダイマー(GOLD)の調製
GOLD(Wells-Knecht et al., J. Org. Chem. 1995, 60, 6264-6247)は以下の方法により調製した。
[Example 29] Preparation of glyoxal-derived lysine dimer (GOLD) GOLD (Wells-Knecht et al., J. Org. Chem. 1995, 60, 6264-6247) was prepared by the following method.

(1)反応溶液の調製
α−アセチル−L−リシン(Ac−Lys−OH、東京化成工業)、40%グリオキサール溶液(Sigma−Aldrich)は購入により入手した。リン酸緩衝液(0.5M、pH7.4、1mL)に188mgのAc−Lys−OHを溶解させ、1M溶液を調製した。マイクロチューブ内にて、1M Ac−Lys−OH溶液(500μL)、40%グリオキサール溶液(73μL)、0.5Mリン酸緩衝液(427μL)を混合し、ボルテックスミキサーで攪拌した。その後、チューブを密閉して95℃で5分間加熱した。得られた反応溶液は4℃にて保存した。
(1) Preparation of the reaction solution N alpha - acetyl -L- lysine (Ac-Lys-OH, Tokyo Kasei Kogyo), 40% glyoxal solution (Sigma-Aldrich) were obtained by purchase. 188 mg of Ac-Lys-OH was dissolved in phosphate buffer (0.5 M, pH 7.4, 1 mL) to prepare a 1 M solution. A 1M Ac-Lys-OH solution (500 μL), a 40% glyoxal solution (73 μL), and a 0.5 M phosphate buffer (427 μL) were mixed in a microtube and stirred with a vortex mixer. Then, the tube was sealed and heated at 95 ° C. for 5 minutes. The obtained reaction solution was stored at 4 ° C.

(2)GOLDの分離精製
GOLD反応溶液は、孔径0.2μmのシリンジフィルター(Millex−LG、メルク)でろ過し、ろ液を液体クロマトグラフ質量分析計(LC/MS)の試料とした。LC/MSのLC部及びMS部は実施例12と同様に構成した。移動相は富士フイルム和光純薬のHPLCグレードのものを購入した。移動相Aはギ酸1mLと蒸留水1000mLを混合した0.1%ギ酸水溶液、移動相Bはアセトニトリル500mL、蒸留水500mL、ギ酸1mLと混合した50%アセトニトリル/0.1%ギ酸溶液とした。分析時間0−10分において、移動相A:B=95:5−70:30の濃度勾配で流下した。分析時間10−12分において、移動相A:B=70:30−0:100の濃度勾配で、12−15分において移動相A:B=0:100で流下した。カラムは35℃にてZORBAX SB−C18(150×9.4mm、アジレント・テクノロジー)を使用し、流速を4mL/分に設定した。ろ過後の試料溶液をLC/MS装置に20μL注入し、ダイオードアレイ検出器(215nm)とMS(陽イオン検出)でGOLDのピークを検出した。分析時間4.2分において、UV吸収性を持つピークが観察され、そのピークはm/z=411.2の陽イオンを含んでいた。そこで、m/z=411をトリガーとしたMS分取を行うことで、保持時間4.2分のピークを回収した。分取後の溶液はロータリーエバポレーター(東京理化器械)で濃縮乾固させた。得られた沈殿は−20℃で保存した。
(2) Separation and Purification of GOLD The GOLD reaction solution was filtered through a syringe filter (Millex-LG, Merck) having a pore size of 0.2 μm, and the filtrate was used as a sample of a liquid chromatograph mass spectrometer (LC / MS). The LC unit and the MS unit of the LC / MS were configured in the same manner as in Example 12. The mobile phase was purchased from Fujifilm Wako Pure Chemical Industries, Ltd. in HPLC grade. The mobile phase A was a 0.1% formic acid aqueous solution in which 1 mL of formic acid and 1000 mL of distilled water were mixed, and the mobile phase B was a 50% acetonitrile / 0.1% formic acid solution in which 500 mL of acetonitrile, 500 mL of distilled water and 1 mL of formic acid were mixed. At an analysis time of 0-10 minutes, the cells flowed down with a concentration gradient of mobile phase A: B = 95: 5-70: 30. It flowed down with a concentration gradient of mobile phase A: B = 70: 30-0: 100 at an analysis time of 10-12 minutes and with mobile phase A: B = 0: 100 at 12-15 minutes. The column was ZORBAX SB-C18 (150 x 9.4 mm, Agilent Technologies) at 35 ° C. and the flow rate was set to 4 mL / min. 20 μL of the filtered sample solution was injected into the LC / MS apparatus, and the peak of GOLD was detected by a diode array detector (215 nm) and MS (cation detection). At an analysis time of 4.2 minutes, a UV-absorbing peak was observed, which contained cations at m / z = 411.2. Therefore, the peak with a retention time of 4.2 minutes was recovered by performing MS preparative with m / z = 411 as a trigger. The solution after separation was concentrated to dryness with a rotary evaporator (Tokyo Rika Kikai). The resulting precipitate was stored at −20 ° C.

(3)GOLDの構造確認
得られた沈殿(6.7mg)は、重水(0.6mL、富士フイルム和光純薬)に溶解させ、外径5mmの核磁気共鳴(NMR)用サンプル管(シゲミ)に移した。その後、NMR装置(AVANCE III HD、500MHz、CryoProbe搭載型、Bruker)でGOLDの構造を確認した。H−NMR及び13C−NMRのスペクトルデータについて、上記文献を参照し、全水素及び炭素の帰属を決定した。また、H−H COSY、H−13C HSQC、H−13C HMBCスペクトルを解析することで、帰属の妥当性を確認した。GOLDの構造を以下に示す。
(3) Confirmation of GOLD structure The obtained precipitate (6.7 mg) was dissolved in heavy water (0.6 mL, Fujifilm Wako Pure Chemical Industries, Ltd.), and a sample tube for nuclear magnetic resonance (NMR) with an outer diameter of 5 mm (Shigemi). Moved to. After that, the structure of GOLD was confirmed with an NMR device (AVANCE III HD, 500 MHz, CryoProbe mounted type, Bruker). For 1 H-NMR and 13 C-NMR spectral data, the attribution of total hydrogen and carbon was determined with reference to the above literature. Further, 1 H- 1 H COSY, 1 H- 13 C HSQC, 1 H- 13 C HMBC spectrum by analyzing the confirmed the validity of the assignment. The structure of GOLD is shown below.

Figure 2021136920
Figure 2021136920

[実施例30]ELISA競合法による新規モノクローナル抗体PB−1の特異性の確認
(1)抗原の固相化
96穴マイクロタイタープレート(Coster)の各ウェルに、コーティング溶液(実施例13)で1μg/mLの濃度に調製したA−peak−BSAもしくはGlycer−AGEs−BSAを100μL加え、一晩4℃で固相化した。
[Example 30] Confirmation of specificity of novel monoclonal antibody PB-1 by ELISA competition method (1) Antigen immobilization 1 μg of coating solution (Example 13) is applied to each well of a 96-well microtiter plate (Coster). 100 μL of A-peak-BSA or Glycer-AGEs-BSA prepared to a concentration of / mL was added, and the mixture was immobilized at 4 ° C. overnight.

(2)ブロッキング
0.05%(v/v)Tween20を含むPBS(PBS−T)で3回洗浄後、0.5%(w/v)ゼラチンを含むPBS−Tで1時間ブロッキングした。
(2) Blocking After washing 3 times with PBS (PBS-T) containing 0.05% (v / v) Tween20, blocking was performed with PBS-T containing 0.5% (w / v) gelatin for 1 hour.

(3)競合反応
0.1%(w/v)ゼラチン含有PBS−Tで10μg/mLに希釈したウシ血清アルブミン(BSA)、グルコース由来AGEs含有BSA(Glu−AGEs−BSA)、フルクトース由来AGEs含有BSA(Fru−AGEs−BSA)、グリコールアルデヒド由来AGEs含有BSA(Glycol−AGEs−BSA)、グリセルアルデヒド由来AGEs含有BSA(Glycer−AGEs−BSA)、Nε−カルボキシエチルリシン含有BSA(CEL−AGEs−BSA)、Nε−カルボキシメチルリシン含有BSA(CML−AGEs−BSA)、グリオキサール由来AGEs含有BSA(GO−AGEs−BSA)、メチルグリオキサール由来AGEs含有BSA(MGO−AGEs−BSA)、A−peak−BSAを抗原固相化プレートに各50μLずつ添加し、さらに0.1%(w/v)ゼラチン含有PBS−Tで0.05μg/mLに希釈したPB−1抗体を50μL加え、プレートミキサーで撹拌後、室温で1時間静置した。
(3) Competitive reaction Contains bovine serum albumin (BSA) diluted to 10 μg / mL with 0.1% (w / v) gelatin-containing PBS-T, glucose-derived AGEs-containing BSA (Glu-AGEs-BSA), and fructose-derived AGEs. BSA (Fru-AGEs-BSA), glycolaldehyde-derived AGEs-containing BSA (Glycol-AGEs-BSA), glyceraldehyde-derived AGEs-containing BSA (Glycer-AGEs-BSA), Nε-carboxyethyl lysine-containing BSA (CEL-AGEs-) BSA), Nε-carboxymethyllysine-containing BSA (CML-AGEs-BSA), glyoxal-derived AGEs-containing BSA (GO-AGEs-BSA), methylglyoxal-derived AGEs-containing BSA (MGO-AGEs-BSA), A-peak-BSA 50 μL of each was added to the antigen-immobilized plate, and 50 μL of PB-1 antibody diluted to 0.05 μg / mL with PBS-T containing 0.1% (w / v) gelatin was added, and the mixture was stirred with a plate mixer. , The mixture was allowed to stand at room temperature for 1 hour.

(4)検出用抗体との反応
洗浄後、0.1%(w/v)ゼラチン含有PBS−Tで0.05μg/mLに希釈したペルオキシダーゼ標識抗マウスIgG(H+L)ポリクローナル抗体、F(ab’)フラグメント(KPL)を100μLずつウェルに加え、室温で1時間静置した。
(4) Reaction with detection antibody Peroxidase-labeled anti-mouse IgG (H + L) polyclonal antibody, F (ab') diluted to 0.05 μg / mL with PBS-T containing 0.1% (w / v) gelatin after washing. ) Two fragments (KPL) were added to the wells in an amount of 100 μL each, and the mixture was allowed to stand at room temperature for 1 hour.

(5)発色および吸光度測定
洗浄後、ELISA POD基質TMBキット(ナカライテスク)を各ウェル100μL加え、暗所、室温下で静置した。10分後に2N硫酸を50μLずつ加え、発色を停止させた。マイクロプレートリーダー(Cytation5、BioTek)で主波長450nmと副波長650nmの吸光度を測定し、主波長の吸光度から副波長の吸光度を差し引いた。
(5) Color development and absorbance measurement After washing, 100 μL of each well of the ELISA POD substrate TMB kit (Nacalai Tesque) was added, and the mixture was allowed to stand in a dark place at room temperature. After 10 minutes, 50 μL of 2N sulfuric acid was added to stop the color development. The absorbance at the main wavelength of 450 nm and the sub-wavelength of 650 nm was measured with a microplate reader (Cytion 5, BioTek), and the absorbance of the sub-wavelength was subtracted from the absorbance of the main wavelength.

図26Aに固相化抗原としてA−peak−BSAを用いたときのPB−1抗体の特異性の結果、図26Bに固相化抗原としてGlycer−AGEs−BSAを用いたときのPB−1抗体の特異性の結果を示す。グラフの縦軸は対照のBSAを1とした場合の吸光度変化で表した。A−peak−BSA並びにGlycer−AGEs−BSAを固相化した場合においても、新規モノクローナル抗体PB−1の特異性として、Glycol−AGEs−BSA、Glycer−AGEs−BSA、A−peak−BSAに陽性、Glu−AGEs−BSA、Fru−AGEs−BSA、CEL−AGEs−BSA、CML−AGEs−BSA、GO−AGEs−BSA、MGO−AGEs−BSAに陰性であった。 As a result of the specificity of the PB-1 antibody when A-peak-BSA was used as the immobilized antigen in FIG. 26A, the PB-1 antibody when Glycer-AGEs-BSA was used as the immobilized antigen was shown in FIG. 26B. The result of the specificity of is shown. The vertical axis of the graph is represented by the change in absorbance when the control BSA is 1. Even when A-peak-BSA and Glycer-AGEs-BSA are immobilized, the specificity of the novel monoclonal antibody PB-1 is positive for Glycol-AGEs-BSA, Glycer-AGEs-BSA, and A-peak-BSA. , Glu-AGEs-BSA, Fru-AGEs-BSA, CEL-AGEs-BSA, CML-AGEs-BSA, GO-AGEs-BSA, MGO-AGEs-BSA.

[実施例31]競合ELISAによる新規モノクローナル抗体PB−1の反応性評価
(1)抗原の固相化
実施例13に記載した試薬を用いて競合ELISAを行った。コーティング溶液中で1μg/mLに調製したA−peak−BSAの溶液を、100μLずつ96穴マイクロタイタープレート(Costar)に加え、4℃で一晩インキュベートした。
[Example 31] Reactivity evaluation of novel monoclonal antibody PB-1 by competing ELISA (1) Antigen immobilization Competitive ELISA was performed using the reagent described in Example 13. A solution of A-peak-BSA prepared at 1 μg / mL in the coating solution was added to a 96-well microtiter plate (Costar) in 100 μL increments and incubated overnight at 4 ° C.

(2)ブロッキング
固相化の処理を行った各ウェルを洗浄溶液(300μL)で3回洗浄し、ブロッキング溶液(200μL)を加え、室温で1時間放置した。
(2) Blocking Each well treated for solid phase was washed 3 times with a washing solution (300 μL), a blocking solution (200 μL) was added, and the mixture was left at room temperature for 1 hour.

(3)競合実験
GAL691(実施例16にて調製)、GLAP(実施例12にて調製)、Lys−ヒドロキシ−トリオシジン(実施例17にて調製)、GA−ピリジン(実施例28にて調製)、GOLD(実施例29にて調製)、Z−Lysをそれぞれリン酸緩衝液(0.2M、pH7.4)に溶解させ、100mM溶液を調製した。その後、BSA(1mg/mL、富士フイルム和光純薬)含有希釈溶液にて10倍希釈し、10mM溶液を作製した。さらに、10%(v/v)リン酸緩衝液及び1mg/mL BSA含有希釈液にて、0.04、0.16、0.63、2.5mMの4倍希釈系列の試料溶液を作製した。試料を含まないブランク溶液として、リン酸緩衝液を同様に1mg/mL BSA含有希釈溶液で10倍希釈したものを調製した。PB−1抗体については、1mg/mL BSA含有希釈液にて、0.1μg/mL溶液を調製した。
(3) Competitive Experiment GAL691 (prepared in Example 16), GLAP (prepared in Example 12), Lys-hydroxy-triocidin (prepared in Example 17), GA-pyridine (prepared in Example 28) , GOLD (prepared in Example 29) and Z-Lys were dissolved in phosphate buffer (0.2 M, pH 7.4), respectively, to prepare a 100 mM solution. Then, it was diluted 10 times with a diluted solution containing BSA (1 mg / mL, Wako Pure Chemical Industries, Ltd.) to prepare a 10 mM solution. Further, a sample solution of 0.04, 0.16, 0.63, 2.5 mM 4-fold dilution series was prepared with 10% (v / v) phosphate buffer and 1 mg / mL BSA-containing diluent. .. As a blank solution containing no sample, a phosphate buffer solution was similarly diluted 10-fold with a 1 mg / mL BSA-containing diluted solution. For PB-1 antibody, a 0.1 μg / mL solution was prepared with a 1 mg / mL BSA-containing diluent.

ブロッキング溶液で処理した各ウェルを洗浄溶液(300μL)で3回洗浄し、4倍希釈系列の試料溶液(各50μL)およびPB−1抗体希釈溶液(50μL)を加え、プレートミキサーで2分間撹拌後、室温で1時間インキュベートした。 Each well treated with the blocking solution was washed 3 times with a washing solution (300 μL), a 4-fold dilution series of sample solution (50 μL each) and a PB-1 antibody diluted solution (50 μL) were added, and the mixture was stirred with a plate mixer for 2 minutes. , Incubated for 1 hour at room temperature.

(4)検出用抗体との反応
競合反応後の各ウェルを洗浄溶液(300μL)で3回洗浄し、1mg/mL BSA含有希釈溶液で0.05μg/mLに希釈したペルオキシダーゼ標識抗マウスIgG(H+L)ポリクローナル抗体、F(ab’)フラグメント(KPL)を100μLずつウェルに加え、室温で1時間静置した。
(4) Reaction with detection antibody Each well after the competitive reaction was washed 3 times with a washing solution (300 μL) and diluted to 0.05 μg / mL with a diluted solution containing 1 mg / mL BSA (H + L). ) Polyclonal antibody, F (ab') 2 fragment (KPL) was added to each well in an amount of 100 μL, and the mixture was allowed to stand at room temperature for 1 hour.

(5)発色
洗浄溶液(300μL)で3回洗浄後、100μLの基質溶液(ELISA POD基質TMBキット(Popular)、ナカライテスク)を加え、室温、遮光下で10分間インキュベートした。その後、2N硫酸(50μL)を加え発色を停止した。
(5) Color development After washing 3 times with a washing solution (300 μL), 100 μL of a substrate solution (ELISA POD substrate TMB kit (Popular), Nacalai Tesque) was added, and the mixture was incubated at room temperature for 10 minutes under shading. Then, 2N sulfuric acid (50 μL) was added to stop the color development.

(6)吸光度測定およびデータ解析
マイクロプレートリーダー(Cytation5、BioTek)で主波長450nmと副波長650nmの吸光度を測定し、主波長の吸光度から副波長の吸光度を差し引いた。ブランク溶液の吸光度に対するGAL691、GLAP、Lys−ヒドロキシ−トリオシジン、GA−ピリジン、GOLD、Z−Lysの吸光度変化を相対値として表記した。その結果を図27に示す。GAL691では濃度依存的に吸光度が低下していたが、その他の化合物では吸光度の低下が観察されなかった。したがって、新規モノクローナル抗体PB−1は新規構造体のグリセルアルデヒド由来AGEsと結合し、公知のグリセルアルデヒド由来AGEsであるGLAPやLys−ヒドロキシ−トリオシジン、公知のグリコールアルデヒド由来AGEsであるGA−ピリジンやグリオキサール由来AGEsであるGOLDを認識しない抗体であることが明らかとなった。
ポリクローナル
(6) Absorbance measurement and data analysis The absorbance at the main wavelength of 450 nm and the sub-wavelength of 650 nm was measured with a microplate reader (Cytion5, BioTek), and the absorbance of the sub-wavelength was subtracted from the absorbance of the main wavelength. The changes in the absorbance of GAL691, GLAP, Lys-hydroxy-triocidin, GA-pyridine, GOLD, and Z-Lys with respect to the absorbance of the blank solution were expressed as relative values. The result is shown in FIG. In GAL691, the absorbance decreased in a concentration-dependent manner, but in other compounds, no decrease in absorbance was observed. Therefore, the novel monoclonal antibody PB-1 binds to the glyceraldehyde-derived AGEs of the novel structure, and GLAP and Lys-hydroxy-triocidin, which are known glyceraldehyde-derived AGEs, and GA-pyridine, which are known glycolaldehyde-derived AGEs, are present. It was revealed that it is an antibody that does not recognize GOLD, which is AGEs derived from or glyoxal.
Polyclonal

[実施例32]PB−1抗体を用いたA−peak−BSAによるDAB酸化の抑制試験
(1)反応溶液の調製
ジアミノベンシジン(DAB、同仁化学)は5mg/mLのPBS溶液を調製した。A−peak−BSA(2mg/mL、PBS溶液)の調製は実施例24と同様である。0.6mL容のマイクロチューブ(ワトソン)にDAB溶液を10μL加え、さらにPBS、PB−1抗体(1.8mg/mL)、またはマウスIgGアイソタイプコントロール(Ctrl−mIgG、Thermo Fisher Scientific)を100μL加えた。ボルテックスミキサーで撹拌後、A−peak−BSA溶液を10μL加えた。これらの溶液をボルテックスミキサーで撹拌後、白色LED(3000lux)を一晩照射した。光照射後の溶液について、ボルテックスミキサーで撹拌後、スピンダウンし、100μLをビオラモ96ウェルプレート(アズワン)に回収した。
[Example 32] Suppression test of DAB oxidation by A-peak-BSA using PB-1 antibody (1) Preparation of reaction solution Diaminobenzidine (DAB, Dojin Kagaku) prepared a PBS solution of 5 mg / mL. The preparation of A-peak-BSA (2 mg / mL, PBS solution) is the same as in Example 24. 10 μL of DAB solution was added to a 0.6 mL microtube (Watson), and 100 μL of PBS, PB-1 antibody (1.8 mg / mL), or mouse IgG isotype control (Ctrl-mIgG, Thermo Fisher Scientific) was added. .. After stirring with a vortex mixer, 10 μL of A-peak-BSA solution was added. These solutions were stirred with a vortex mixer and then irradiated with a white LED (3000lux) overnight. The solution after light irradiation was stirred with a vortex mixer and then spun down, and 100 μL was collected on a Violamo 96-well plate (As One).

(2)吸光度測定およびデータ解析
マイクロプレートリーダー(Cytation5、BioTek)で波長460nmの吸光度を測定し、酸化されたDABを検出した。その結果を図28に示す。グラフの縦軸は抗体未処理区(PBS添加区)において検出された酸化型DABに対する相対値として表記した。PBS処理区やCtrl−mIgG処理区に比べ、PB−1抗体処理区において、酸化型DABが大きく減少していた。この結果より、PB−1抗体は新規構造体のグリセルアルデヒド由来AGEsと結合することで、新規構造体によるDABの酸化作用を抑制できることが示された。
(2) Absorbance measurement and data analysis The absorbance at a wavelength of 460 nm was measured with a microplate reader (Cytion5, BioTek), and oxidized DAB was detected. The result is shown in FIG. The vertical axis of the graph is shown as a relative value to the oxidized DAB detected in the antibody-untreated group (PBS-added group). Compared with the PBS-treated group and the Ctrl-mIgG-treated group, the oxidized DAB was significantly reduced in the PB-1 antibody-treated group. From this result, it was shown that the PB-1 antibody can suppress the oxidizing action of DAB by the novel structure by binding to the glyceraldehyde-derived AGEs of the novel structure.

[実施例33]SJ−5抗体と抗GA−ピリジンモノクローナル抗体の交差競合
グリコールアルデヒド由来AGEsであるGA−ピリジンは、Nagaiらによって報告されており(Nagai et al., Journal of Biological chemistry, 2002, 277(50), 48905-48912)、GA−ピリジンに対するモノクローナル抗体(クローン名2A2)も樹立されている。そこで、新しく樹立したSJ−5抗体、PB−1抗体、および抗GA−ピリジン抗体2A2の交差性について、競合ELISAにて検討した。競合ELISAに用いた一部の試薬について、実施例13と同様に調製した。
[Example 33] Cross-competition between SJ-5 antibody and anti-GA-pyridine monoclonal antibody GA-pyridine, which is glycolaldehyde-derived AGEs, has been reported by Nagai et al., Journal of Biological chemistry, 2002, 277 (50), 48905-48912), a monoclonal antibody against GA-pyridine (clone name 2A2) has also been established. Therefore, the cross-reactivity of the newly established SJ-5 antibody, PB-1 antibody, and anti-GA-pyridine antibody 2A2 was examined by competing ELISA. Some reagents used in the competitive ELISA were prepared in the same manner as in Example 13.

(1)抗原の固相化
コーティング溶液中で1μg/mLに調製したA−peak−BSAの溶液を、100μLずつ96穴マイクロタイタープレート(Costar)に加え、4℃で一晩インキュベートした。
(1) Immobilization of antigen A solution of A-peak-BSA prepared at 1 μg / mL in a coating solution was added to a 96-well microtiter plate (Costar) of 100 μL each and incubated overnight at 4 ° C.

(2)ブロッキング
固相化の処理を行った各ウェルを洗浄溶液(300μL)で3回洗浄し、0.5%ゼラチンを溶解させた0.05%Tween20含有PBS(PBS−T)(200μL)を加え、室温で1時間静置した。
(2) Blocking Each well subjected to the immobilization treatment was washed 3 times with a washing solution (300 μL), and 0.05% Tween 20-containing PBS (PBS-T) (200 μL) in which 0.5% gelatin was dissolved was washed. Was added, and the mixture was allowed to stand at room temperature for 1 hour.

(3)競合実験
PB−1抗体、マウスIgGアイソタイプコントロール(Ctrl−mIgG、Thermo Fisher Scientific)、抗GA−ピリジン抗体2A2(コスモ・バイオ)を0.1%ゼラチン含有PBS−Tにて希釈し、4倍希釈系列を作製した(0.049〜50μg/mL)。また、HRP標識SJ−5抗体(実施例4)について、0.1%ゼラチン含有PBS−Tで10000倍希釈した。
(3) Competitive Experiment PB-1 antibody, mouse IgG isotype control (Ctrl-mIgG, Thermo Fisher Scientific), and anti-GA-pyridine antibody 2A2 (Cosmo Bio) were diluted with PBS-T containing 0.1% gelatin. A 4-fold dilution series was prepared (0.049-50 μg / mL). In addition, the HRP-labeled SJ-5 antibody (Example 4) was diluted 10000-fold with PBS-T containing 0.1% gelatin.

ブロッキング溶液で処理した各ウェルを洗浄溶液(300μL)で3回洗浄し、4倍希釈系列の試料溶液(各50μL)およびHRP標識SJ−5抗体希釈溶液(50μL)を加え、プレートミキサーで2分間撹拌後、室温で1時間インキュベートした。 Each well treated with the blocking solution was washed 3 times with a wash solution (300 μL), a 4-fold dilution series of sample solution (50 μL each) and an HRP-labeled SJ-5 antibody dilution solution (50 μL) were added, and a plate mixer was used for 2 minutes. After stirring, the mixture was incubated at room temperature for 1 hour.

(4)発色
洗浄溶液(300μL)で3回洗浄後、100μLの基質溶液(ELISA POD基質TMBキット(Popular)、ナカライテスク)を加え、室温、遮光下で10分間インキュベートした。その後、2N硫酸(50μL)を加え発色を停止した。
(4) Color development After washing 3 times with a washing solution (300 μL), 100 μL of a substrate solution (ELISA POD substrate TMB kit (Popular), Nacalai Tesque) was added, and the mixture was incubated at room temperature for 10 minutes under shading. Then, 2N sulfuric acid (50 μL) was added to stop the color development.

(5)吸光度測定およびデータ解析
マイクロプレートリーダー(Cytation5、BioTek)で主波長450nmと副波長650nmの吸光度を測定し、主波長の吸光度から副波長の吸光度を差し引いた。その結果を図29に示す。A−peak−BSAとSJ−5抗体の反応において、PB−1の添加により、PB−1濃度依存的に吸光度が減少した。一方、Ctrl−mIgGや抗GA−ピリジン抗体2A2では吸光度の減少が観察されず、交差競合しなかった。したがって、SJ−5抗体とPB−1抗体は同一のエピトープを認識する抗体であるが、抗GA−ピリジン抗体はSJ−5抗体のエピトープを認識しない抗体であることが示された。
(5) Absorbance measurement and data analysis The absorbance at the main wavelength of 450 nm and the sub-wavelength of 650 nm was measured with a microplate reader (Cytion5, BioTek), and the absorbance of the sub-wavelength was subtracted from the absorbance of the main wavelength. The result is shown in FIG. In the reaction between A-peak-BSA and SJ-5 antibody, the addition of PB-1 reduced the absorbance in a PB-1 concentration-dependent manner. On the other hand, in Ctrl-mIgG and anti-GA-pyridine antibody 2A2, no decrease in absorbance was observed and no cross-competition was observed. Therefore, it was shown that the SJ-5 antibody and the PB-1 antibody are antibodies that recognize the same epitope, but the anti-GA-pyridine antibody is an antibody that does not recognize the epitope of the SJ-5 antibody.

[実施例34]網膜色素上皮細胞(ARPE−19細胞)のタイトジャンクション崩壊抑制試験
網膜色素上皮細胞は細胞間タイトジャンクションによる血液網膜関門を形成することで脈絡膜血管からの物質の移動を制限し、網膜の機能を維持している。血液網膜関門の崩壊は糖尿病網膜症などの疾患の原因であると考えられており、網膜色素上皮細胞のタイトジャンクションは網膜の機能保持において極めて重要である(Willermain et al., Int. J. Mol. Sci., 2018, 19(4), pii: E1056.)。xCELLigence RTCA DPシステムは、ウェル底面に電極が設置された機器である。この機器は、ウェル底面に微弱な電流を流すことにより、細胞の機能に影響を与えず、ウェル底面のインピーダンスを測定することが可能である。インピーダンスは細胞間タイトジャンクションの形成により増加し、タイトジャンクションの崩壊によって低下することが明らかになっている(Wittchen et al., Invest. Ophthalmol. Vis. Sci., 2011, 52(10), 7455-63)。本実施例ではxCELLigence RTCA DP システムを用いて、網膜色素上皮細胞(ARPE−19)のA−Peak−BSAによるタイトジャンクションへの影響を確認し、SJ―5抗体及びPB−1抗体でのその抑制効果を評価した。
[Example 34] Tight junction decay suppression test of retinal pigment epithelial cells (ARPE-19 cells) Retinal pigment epithelial cells restrict the movement of substances from choroidal blood vessels by forming the blood-retinal barrier due to intercellular tight junctions. Maintains retinal function. Collapse of the blood-retinal barrier is thought to be the cause of diseases such as diabetic retinopathy, and tight junctions of retinal pigment epithelial cells are extremely important in maintaining retinal function (Willermain et al., Int. J. Mol). . Sci., 2018, 19 (4), pii: E1056.). The xCELLigence RTCA DP system is a device with electrodes installed on the bottom of the well. By passing a weak current through the bottom of the well, this device can measure the impedance of the bottom of the well without affecting the function of cells. Impedance has been shown to increase with the formation of intercellular tight junctions and decrease with the collapse of tight junctions (Wittchen et al., Invest. Ophthalmol. Vis. Sci., 2011, 52 (10), 7455- 63). In this example, the effect of retinal pigment epithelial cells (ARPE-19) on tight junctions by A-Peak-BSA was confirmed using the xCELLigence RTCA DP system, and its suppression with SJ-5 antibody and PB-1 antibody. The effect was evaluated.

(1)細胞培養
D−MEM(富士フイルム和光純薬)にFBS(富士フイルム和光純薬)を10%添加、ペニシリン―ストレプトマイシン(ナカライテスク)を1%添加し、DMEM培地を調製し、ARPE−19細胞(ATCC)はDMEM培地で10cmディッシュ(コーニング)を用いて培養した。
(1) Cell culture To D-MEM (Fujifilm Wako Pure Chemical Industries), 10% of FBS (Fujifilm Wako Pure Chemical Industries) was added, and 1% of penicillin-streptomycin (Nakalitesk) was added to prepare DMEM medium, and ARPE- 19 cells (ATCC) were cultured in DMEM medium using a 10 cm dish (corning).

(2)測定プレート
COインキュベータ内にxCELLigence RTCA DP システム(ACEA Biosciences)を設置し、安定化させるために、設置後一晩以上セットした状態で使用した。細胞調製直前にE−plate(ACEA Biosciences)にDMEM培地を50μL/wellで添加し、バックグラウンドを測定した。
(2) Measurement plate The xCELLigence RTCA DP system (ACEA Biosciences) was installed in the CO 2 incubator and used in a state where it was set overnight or more after installation in order to stabilize it. Immediately before cell preparation, DMEM medium was added to E-plate (ACEA Biosciences) at 50 μL / well, and the background was measured.

(3)細胞調製
上記(1)で培養したARPE−19細胞の培地を除去し、10mLのPBS(−)(富士フイルム和光純薬)の添加・除去を2回繰り返すことで洗浄した。トリプシン-EDTA(富士フイルム和光純薬)を1mL添加し、COインキュベータ(タイテック)で37℃、3分間インキュベートすることで細胞を分散させた。その後、10mLのDMEM培地を添加し、トリプシンの活性を中和した。中和した細胞分散液は50mLのチューブ(ファルコン)に移し、遠心分離機(久保田)を用いて、1500rpm、5分間遠心分離した。その後、上清を捨て、沈殿を1mLのDMEM培地に再懸濁させた。再懸濁させた細胞分散液を10μL取り、トリパンブルー(NanoEnTek)10μLと混和し、血球計算盤(NanoEnTek)に10μLを添加した。その後、オートセルカウンターEVE(NanoEnTek)で生細胞数をカウントした。細胞懸濁液を4.0x105cells/mLになるようにDMEM培地で希釈し、E−plate(ACEA Biosciences)に80μL/ウェルで播種した。
(3) Cell preparation The medium of ARPE-19 cells cultured in (1) above was removed, and the cells were washed by repeating the addition and removal of 10 mL of PBS (-) (Fujifilm Wako Pure Chemical Industries, Ltd.) twice. Cells were dispersed by adding 1 mL of trypsin-EDTA (Fujifilm Wako Pure Chemical Industries, Ltd.) and incubating in a CO 2 incubator (Titec) at 37 ° C. for 3 minutes. Then, 10 mL of DMEM medium was added to neutralize the activity of trypsin. The neutralized cell dispersion was transferred to a 50 mL tube (Falcon) and centrifuged at 1500 rpm for 5 minutes using a centrifuge (Kubota). The supernatant was then discarded and the precipitate was resuspended in 1 mL DMEM medium. 10 μL of the resuspended cell dispersion was taken, mixed with 10 μL of trypan blue (NanoEnTek), and 10 μL was added to the hemocytometer (NanoEnTek). Then, the number of viable cells was counted by the auto cell counter EVE (NanoEnTek). The cell suspension was diluted with DMEM medium to 4.0 x 105 cells / mL and seeded in E-plate (ACEA Biosciences) at 80 μL / well.

(4)抗体及びA−peak−BSAの添加
xCELLigence RTCA DPシステムを用いて15分毎のプレートのインピーダンスを測定し、細胞のプレートへの接着を確認した。細胞播種後、20〜24時間後に9μLのPB−1抗体(10mg/mL)、PB−1抗体(3mg/mL)、PB−1抗体(1mg/mL)、PB−1抗体(0.3mg/mL)、SJ−5抗体(10mg/mL)、もしくはPBSと1μLのA−peak−BSA(10mg/mL)を添加した。Controlは20〜24時間後にPBS10μLを添加した。添加後も15分間隔でインピーダンスを測定した。
(4) Addition of antibody and A-peak-BSA
The impedance of the plate was measured every 15 minutes using the xCELLigence RTCA DP system to confirm the adhesion of cells to the plate. 20 to 24 hours after cell seeding, 9 μL of PB-1 antibody (10 mg / mL), PB-1 antibody (3 mg / mL), PB-1 antibody (1 mg / mL), PB-1 antibody (0.3 mg / mL) mL), SJ-5 antibody (10 mg / mL), or PBS and 1 μL A-peak-BSA (10 mg / mL) were added. Control added 10 μL of PBS after 20-24 hours. Impedance was measured at 15 minute intervals even after the addition.

A−peak−BSA添加10〜12時間後のインピーダンスを測定し、A−peak−BSA添加群を0に標準化した結果を図30に示す。当該図に示すようにA−Peak−BSAの添加によってインピーダンスの有意に低下することが確認された。このインピーダンスの低下はPB−1抗体の添加によって有意に抑制された。また、SJ−5抗体添加群では終濃度1mg/mLにおいて定価の抑制が認められたが、PB−1抗体の添加ではより低濃度域においてもSJ−5抗体よりも強い抑制が認められた。以上の結果から、A−peak−BSAが網膜色素上皮細胞のタイトジャンクションの崩壊を誘導すること、それをPB−1抗体及びSJ−5抗体の添加により抑制可能であることが示唆された。 The impedance measured 10 to 12 hours after the addition of A-peak-BSA was measured, and the result of standardizing the A-peak-BSA addition group to 0 is shown in FIG. As shown in the figure, it was confirmed that the impedance was significantly reduced by the addition of A-Peek-BSA. This decrease in impedance was significantly suppressed by the addition of PB-1 antibody. In addition, in the SJ-5 antibody-added group, suppression of the list price was observed at a final concentration of 1 mg / mL, but in the addition of PB-1 antibody, stronger suppression was observed than in the SJ-5 antibody even in the lower concentration range. From the above results, it was suggested that A-peak-BSA induces the disruption of tight junctions in retinal pigment epithelial cells, which can be suppressed by the addition of PB-1 antibody and SJ-5 antibody.

[実施例35]PB−1抗体を用いたGlycer−AGEs−BSAによる血管内皮細胞管腔形成抑制中和試験
(1)マトリゲルマトリックスの調製
マトリゲルマトリックスの調製は実施例14と同様に操作を行った。
[Example 35] Neutralization test for suppressing vascular endothelial cell lumen formation by Glycer-AGEs-BSA using PB-1 antibody (1) Preparation of Matrigel matrix The preparation of Matrigel matrix was carried out in the same manner as in Example 14. ..

(2)Glycer−AGEs−BSAと抗体反応液の調製
実施例1で調製したGlycer−AGEs−BSA(10mg/mL)10μLと10μLのリン酸緩衝生理食塩水(PBS、富士フイルム和光純薬)、PB−1抗体(10mg/mL)または対照抗体(10mg/mL)90μLを1.5mLチューブ(ワトソン)に加え、室温で10分間静置した。その後、遠心分離機(Thermo Fisher Scientific)を用いて14000rpm、15分間遠心分離し、上清を回収した。
(2) Preparation of Glycer-AGEs-BSA and antibody reaction solution 10 μL and 10 μL of Glycer-AGEs-BSA (10 mg / mL) prepared in Example 1 (PBS, Fujifilm Wako Pure Chemical Industries, Ltd.), 90 μL of PB-1 antibody (10 mg / mL) or control antibody (10 mg / mL) was added to a 1.5 mL tube (Watson) and allowed to stand at room temperature for 10 minutes. Then, it was centrifuged at 14000 rpm for 15 minutes using a centrifuge (Thermo Fisher Scientific), and the supernatant was collected.

(3)管腔形成阻害試験は実施例14と同様に操作を行った。8時間培養後のHUVECの形態を図31に示す。当該図に示されるとおり、HUVECは対照BSA添加した群においてはマトリゲルマトリックス中での管腔形成が確認された。しかし、Glycer−AGEs−BSAは管腔形成を阻害した。また、この管腔形成の阻害はPB−1との反応液では中和された。この結果から、Glycer−AGEs−BSAがHUVECに及ぼす影響をPB−1抗体が中和可能であることが明らかになった。 (3) The lumen formation inhibition test was performed in the same manner as in Example 14. The morphology of HUVEC after culturing for 8 hours is shown in FIG. As shown in the figure, HUVEC was confirmed to form lumens in the Matrigel matrix in the control BSA-added group. However, Glycer-AGEs-BSA inhibited lumen formation. In addition, this inhibition of lumen formation was neutralized in the reaction solution with PB-1. From this result, it was clarified that the PB-1 antibody can neutralize the effect of Glycer-AGEs-BSA on HUVEC.

[実施例36]糖尿病マウス及び対照マウスのPB−1抗体による網膜組織染色
(1)マウスの飼育
妊娠13日のC57BL6/Jマウス(日本クレア)を購入し、仔マウスを得た。糖尿病マウスには生理食塩水(大塚製薬)でストレプトゾトシン(富士フィルム和光純薬)を5mg/mLになるように溶解させ、生後2日後に雄性の仔マウスに300μL皮下投与した。対照マウスには生理食塩水を生後2日後に雄性の仔マウスに300μL皮下投与した。4週間母親マウスと同居させた後に離乳し、糖尿病マウスはHFD32(日本クレア)で8週間飼育した。対照マウスはCE−2(日本クレア)で8週間飼育した。
[Example 36] Retinal tissue staining of diabetic mice and control mice with PB-1 antibody (1) Rearing of mice C57BL6 / J mice (Claire Japan) on the 13th day of pregnancy were purchased to obtain pups. For diabetic mice, streptozotocin (Fujifilm Wako Pure Chemical Industries, Ltd.) was dissolved in physiological saline (Otsuka Pharmaceutical Industries, Ltd.) to a concentration of 5 mg / mL, and 300 μL was subcutaneously administered to male pups 2 days after birth. Two days after birth, 300 μL of physiological saline was subcutaneously administered to male pups as control mice. After living with the mother mouse for 4 weeks, weaned, and the diabetic mouse was bred in HFD32 (Claire Japan) for 8 weeks. Control mice were bred in CE-2 (Claire Japan) for 8 weeks.

(2)解剖
1.875mLのドミトール(日本全薬工業)、2mLのミダゾラム(サンド)、2.5mLのベトルファール(Meiji Seikaファルマ)と18.625mLの生理食塩水を混和し、三種混合麻酔を調製した。マウスの体重を体重計(タニタ)で計測し、三種混合麻酔を0.1mL/gで腹腔内投与した。麻酔の効果を後肢引き込み反射の消失で確認し、ピンセット(夏目製作所)及び剪刀(夏目製作所)で開腹、開胸し、下大静脈を切断した。生理食塩水を左室から10mL投与することにより潅流し、潅流後眼球を摘出した。摘出した眼球は、OCTコンパウンド(サクラファインテックジャパン)を満たしたクリオモルド(サクラファインテックジャパン)内に沈め、液体窒素で凍結させることで新鮮凍結ブロックを作製した。作製後、−80℃に設定したディープフリーザー(Thermo Fisher Scientific)で保存した。
(2) Anatomy 1.875 mL of Domitor (Nippon Zenyaku Kogyo), 2 mL of Midazolam (Sand), 2.5 mL of Betorfar (Meiji Seika Pharma) and 18.625 mL of physiological saline are mixed to prepare a three-kind mixed anesthesia. bottom. The body weight of the mice was measured with a weight scale (Tanita), and triple anesthesia was intraperitoneally administered at 0.1 mL / g. The effect of anesthesia was confirmed by the disappearance of the hindlimb retracting reflex, and the abdomen and thoracotomy were performed with tweezers (Natsume Seisakusho) and scissors (Natsume Seisakusho), and the inferior vena cava was amputated. 10 mL of physiological saline was administered from the left chamber for perfusion, and the eyeball was removed after perfusion. The removed eyeball was submerged in a cryomold (Sakura Finetech Japan) filled with an OCT compound (Sakura Finetech Japan) and frozen in liquid nitrogen to prepare a fresh freezing block. After preparation, it was stored in a deep freezer (Thermo Fisher Scientific) set at -80 ° C.

(3)薄切・染色
−30℃に設定したフリーザー(福島工業)でアセトン(富士フィルム和光純薬)を16時間以上インキュベートし、冷アセトンを調製した。PBSにTriton X−100(ナカライテスク)を0.1%添加し、PBS−Tを調製した。新鮮凍結ブロックをクリオスタットCM1950(ライカ)で薄切厚10μmで薄切した。薄切した組織はMASコートスライドガラス(松波硝子工業)に貼り付け、乾燥させた。乾燥後、冷アセトンで10分間インキュベートすることで組織を固定した。固定後、PBS−Tで10分間、2回洗浄した。洗浄後、Fc block(バイオレジェンド)を5%のBSA(Sigma−Aldrich)が溶解したTBS−Tで50倍希釈することでブロッキング液を調製し、室温30分インキュベートすることでブロッキングを行った。ブロッキング後、PB−1抗体(1mg/mL)または対照抗体(1mg/mL)を1%のBSAが溶解したTBS−Tで500倍希釈した一次抗体反応液を調製し、4℃に設定した冷蔵庫(福島工業)で一晩インキュベートした。一次抗体反応後、PBS−Tで10分間、2回洗浄した。Alexa594標識Goat Anti-Mouse IgG H&L(Abcam)を1%のBSAが溶解したTBS−Tで100倍希釈した二次抗体反応液を調製し、遮光下で室温1時間反応させた。二次抗体反応後、PBS−Tで10分間、2回洗浄した。包埋剤としてベクターシールド(Vector Laboratories)を染色組織に添加し、カバーガラス(松波硝子工業)で封入した。その後、共焦点レーザー顕微鏡(オリンパス)で網膜のAlexa594の蛍光を観察した。
(3) Slicing / Dyeing Acetone (Fujifilm Wako Pure Chemical Industries, Ltd.) was incubated for 16 hours or more in a freezer (Fukushima Kogyo) set at -30 ° C to prepare cold acetone. Triton X-100 (Nacalai Tesque) was added to PBS in an amount of 0.1% to prepare PBS-T. The fresh frozen block was sliced with a cryostat CM1950 (Leica) to a thickness of 10 μm. The sliced structure was attached to MAS coated slide glass (Matsunami Glass Industry) and dried. After drying, the tissue was fixed by incubating with cold acetone for 10 minutes. After fixation, it was washed twice with PBS-T for 10 minutes. After washing, a blocking solution was prepared by diluting Fc block (BioLegend) 50-fold with TBS-T in which 5% BSA (Sigma-Aldrich) was dissolved, and blocking was performed by incubating at room temperature for 30 minutes. After blocking, a primary antibody reaction solution prepared by diluting PB-1 antibody (1 mg / mL) or control antibody (1 mg / mL) 500-fold with TBS-T in which 1% BSA was dissolved was prepared, and a refrigerator set at 4 ° C. Incubated overnight at (Fukushima Kogyo). After the primary antibody reaction, the cells were washed twice with PBS-T for 10 minutes. A secondary antibody reaction solution prepared by diluting Alexa594-labeled Goat Anti-Mouse IgG H & L (Abcam) 100-fold with TBS-T in which 1% BSA was dissolved was prepared and reacted at room temperature for 1 hour in the dark. After the secondary antibody reaction, the cells were washed twice with PBS-T for 10 minutes. Vector Shieldories was added to the stained tissue as an embedding agent and sealed with a cover glass (Matsunami Glass Industry). Then, the fluorescence of Alexa 594 of the retina was observed with a confocal laser scanning microscope (Olympus).

(4)結果
結果を図32に示す。PB−1抗体は対照マウスに比べ、糖尿病マウスの網膜神経節細胞層、内顆粒層、外顆粒層、網膜色素上皮細胞層に強く結合するこが明らかになった。また、対照抗体で糖尿病マウスの染色性を確認した所、同様の染色結果が得られない事から、この染色性はPB−1抗体の可変領域による特異的な結合に起因することが明らかになった。これらの結果から、PB−1抗体のエピトープ構造を有するAGEが生体内に存在し、糖尿病マウスの網膜においては網膜神経節細胞層、内顆粒層、外顆粒層、網膜色素上皮細胞層に存在することが明らかになった。また、PB−1抗体は新規構造体の存在を免疫染色学的に確認するために有用なツールであることが明らかになった。
(4) Results The results are shown in FIG. It was revealed that the PB-1 antibody binds more strongly to the retinal ganglion cell layer, inner nuclear layer, outer nuclear layer, and retinal pigment epithelial cell layer of diabetic mice than the control mice. In addition, when the stainability of diabetic mice was confirmed with a control antibody, similar staining results could not be obtained. Therefore, it was clarified that this stainability is due to the specific binding of the PB-1 antibody by the variable region. rice field. From these results, AGE having an epitope structure of PB-1 antibody exists in vivo, and in the retina of diabetic mice, it exists in the retinal ganglion cell layer, inner nuclear layer, outer nuclear layer, and retinal pigment epithelial cell layer. It became clear. In addition, the PB-1 antibody was found to be a useful tool for immunostaining the presence of novel structures.

[実施例37]PB−1抗体カラムを用いたヒト血清タンパク質の精製及びウェスタンブロッティングによる検出
(1)PB−1抗体カラムの作製
PB−1抗体の溶媒をPD10カラム(GEヘルスケア)にて、カップリング緩衝液(0.2M炭酸ナトリウム,0.5M NaCl,pH8.3)に置換し、10mg/mL PB−1抗体溶液を1mL調製した。カップリング担体としてはNHS-activated Sepharose 4 Fast Flow(GEヘルスケア)を使用した。NHS-activated Sepharose 4 Fast Flow 1mLに氷浴で冷やした1mM HClを10mL流し、その後すぐに、先に調製した10mg/mL PB−1抗体溶液と混合し、ローテーター(TAITEC)を用いて転倒混和(4℃、終夜)することで、PB−1抗体をカップリング担体に固定した。その後、ブロッキング用緩衝液(0.1M Tris−HCl、pH8.0)、洗浄用緩衝液(0.1M酢酸ナトリウム,0.5M NaCl,pH5.0)の順に各3mLずつ流し、この操作を3回繰り返した。最後にPBS 10mL流して溶媒を置換した後、4℃で保存した。
[Example 37] Purification of human serum protein using PB-1 antibody column and detection by Western blotting (1) Preparation of PB-1 antibody column A solvent for PB-1 antibody was used on a PD10 column (GE Healthcare). Substituted with a coupling buffer (0.2 M sodium carbonate, 0.5 M NaCl, pH 8.3), 1 mL of a 10 mg / mL PB-1 antibody solution was prepared. NHS-activated Sepharose 4 Fast Flow (GE Healthcare) was used as the coupling carrier. 10 mL of 1 mM HCl chilled in an ice bath was poured into 1 mL of NHS-activated Sepharose 4 Fast Flow, and immediately after that, it was mixed with the previously prepared 10 mg / mL PB-1 antibody solution and mixed by inversion using a rotator (TAITEC). The PB-1 antibody was immobilized on the coupling carrier by heating at 4 ° C. overnight). Then, 3 mL each of blocking buffer (0.1M Tris-HCl, pH 8.0) and washing buffer (0.1M sodium acetate, 0.5M NaCl, pH 5.0) were poured in this order, and this operation was performed in the order of 3. Repeated times. Finally, 10 mL of PBS was flowed to replace the solvent, and then the mixture was stored at 4 ° C.

(2)PB−1抗体カラムを用いたヒト血清タンパク質の精製
精製試料として、ヒト血清(プール)(コスモ・バイオ株式会社)を用いた。最初に10mLのヒト血清(プール)を結合緩衝液(0.02M Tris−HCl、0.03mM NaCl、pH7.4)で7倍に希釈し、SP Sepharose Fast Flow(GEヘルスケア)30mLを用いて、製品マニュアルにしたがい精製した。得られた溶出画分を結合緩衝液を用いて透析した後、Protein G Sepharose 4 Fast Flow(GEヘルスケア)3mLを用いて、製品マニュアルにしたがい精製し、IgGを取り除いた。得られた素通り画分をサンプルとしてPB−1抗体カラム1mLを用いて精製した。精製により得られた各画分は常法に従い電気泳動(SDS−PAGE)にて解析した。
(2) Purification of human serum protein using PB-1 antibody column Human serum (pool) (Cosmo Bio Co., Ltd.) was used as a purified sample. First, 10 mL of human serum (pool) is diluted 7-fold with binding buffer (0.02 M Tris-HCl, 0.03 mM NaCl, pH 7.4) and 30 mL of SP Sepharose Fast Flow (GE Healthcare) is used. , Purified according to the product manual. The obtained eluted fraction was dialyzed against a binding buffer and then purified using 3 mL of Protein G Sepharose 4 Fast Flow (GE Healthcare) according to the product manual to remove IgG. The obtained pass-through fraction was purified using 1 mL of a PB-1 antibody column as a sample. Each fraction obtained by purification was analyzed by electrophoresis (SDS-PAGE) according to a conventional method.

SDS−PAGEの結果を図33に示す。PB−1抗体カラムにサンプル(図中、Sample)を通した後(図中、Flow Through)、結合緩衝液25mLを2回繰り返し流した(図中、Wash1、Wash2)。その後、溶出緩衝液(0.1Mグリシン,pH3.0)10mLでPB−1抗体カラムに結合したタンパク質を溶出した(図中、Elute)。溶出液は直ちに0.4mLの中和緩衝液(1M Tris−HCl、pH9.0)を加えて中和したSDS−PAGEの結果、大半の夾雑タンパク質が除去され、精製試料の純度が上がることが示された。 The results of SDS-PAGE are shown in FIG. After passing the sample (Sample in the figure) through the PB-1 antibody column (Flow Through in the figure), 25 mL of the binding buffer was repeatedly flowed twice (Wash1, Wash2 in the figure). Then, the protein bound to the PB-1 antibody column was eluted with 10 mL of elution buffer (0.1 M glycine, pH 3.0) (Elute in the figure). The eluate was immediately neutralized with 0.4 mL of neutralizing buffer (1M Tris-HCl, pH 9.0) as a result of SDS-PAGE, which removed most contaminating proteins and increased the purity of the purified sample. Shown.

(3)PB−1抗体を用いたウェスタンブロッティング
PB−1抗体カラムにて精製したタンパク質を、常法に従い電気泳動し(SDS−PAGE),PVDF膜に電気転写してウェスタンブロッティングを行った。抗体反応は、一次抗体としてPB−1抗体、二次抗体としてPeroxidase-conjugated AffiniPure Goast Anti-Mouse IgG (H+L)(Jackson ImmunoResearch) を用いて行った。また、二次抗体の結合による非特異的なシグナルを区別するため、二次抗体のみを用いた抗体反応も行った。次に、ECL Western Blotting Detection Reagents(GEヘルスケア)を用いて発色させ、タンパク質のバンドを検出した。
(3) Western blotting using PB-1 antibody The protein purified by the PB-1 antibody column was electrophoresed according to a conventional method (SDS-PAGE), electrotransferred to a PVDF membrane, and Western blotting was performed. The antibody reaction was carried out using PB-1 antibody as the primary antibody and Peroxidase-conjugated AffiniPure Goast Anti-Mouse IgG (H + L) (Jackson ImmunoResearch) as the secondary antibody. In addition, in order to distinguish non-specific signals due to the binding of the secondary antibody, an antibody reaction using only the secondary antibody was also performed. Next, color was developed using ECL Western Blotting Detection Reagents (GE Healthcare) to detect protein bands.

二次抗体のみを反応させたPVDF膜ではバンドは全く検出されなかった。一方、PB−1抗体を反応させたPVDF膜でのみ、バンドが検出された(図34)。この結果より、PB−1抗体を用いたウェスタンブロット法はヒト血清中に存在する新規構造体修飾タンパク質を検出可能であることが示された。 No band was detected in the PVDF membrane in which only the secondary antibody was reacted. On the other hand, the band was detected only in the PVDF membrane reacted with the PB-1 antibody (Fig. 34). From this result, it was shown that Western blotting using PB-1 antibody can detect a novel structure-modifying protein present in human serum.

[実施例38]糖尿病マウスに対するPB−1抗体の全身投与による糖尿病性腎症への薬効評価
(1)糖尿病マウスの生産
日本クレアから妊娠14日のC57BL/6Jマウスを購入し、出産後、産仔雄性マウスにストレプトゾトシン(2mg/mL)を100μg/マウスで皮下投与した。4週齢で離乳した際に、高脂肪食負荷(HFD32、日本クレア)を開始し15週齢まで高脂肪食で飼育した。
[Example 38] Evaluation of drug efficacy for diabetic nephropathy by systemic administration of PB-1 antibody to diabetic mice (1) Production of diabetic mice C57BL / 6J mice on the 14th day of pregnancy were purchased from Claire Japan and gave birth after childbirth. Streptozotocin (2 mg / mL) was subcutaneously administered to pups at 100 μg / mouse. When weaned at 4 weeks of age, a high-fat diet load (HFD32, Claire Japan) was started and the animals were bred on a high-fat diet until 15 weeks of age.

(2)PB−1抗体の投与
PB−1及び対照抗体を10mg/mLになるようにリン酸緩衝液(PBS、富士フイルム和光純薬)で調製した。各抗体の投与量は50mg/kgに設定し、7週齢から15週齢まで週1回、合計8回の腹腔内投与を実施した。
(2) Administration of PB-1 antibody PB-1 and control antibody were prepared with phosphate buffer (PBS, Fujifilm Wako Pure Chemical Industries, Ltd.) so as to have a concentration of 10 mg / mL. The dose of each antibody was set to 50 mg / kg, and intraperitoneal administration was performed once a week from 7 to 15 weeks of age, for a total of 8 times.

(3)剖検
糖尿病マウスを18時間以上絶食させ、3種混合麻酔で麻酔した。70%エタノールで胸頸部を消毒し、開胸後、心臓穿刺による採血を行った。採血後に下大静脈を切断、左室より生理食塩水(大塚製薬)を充填したシリンジを用いて10mL手動で潅流させた。その後、速やかに解剖してすべての器官及び組織について異常の有無を肉眼観察した。
(3) Autopsy Diabetic mice were fasted for 18 hours or more and anesthetized with a three-kind mixed anesthesia. The chest and neck were disinfected with 70% ethanol, and after thoracotomy, blood was collected by cardiac puncture. After blood collection, the inferior vena cava was cut and 10 mL was manually perfused from the left chamber using a syringe filled with physiological saline (Otsuka Pharmaceutical Co., Ltd.). After that, it was promptly dissected and the presence or absence of abnormalities was visually observed in all organs and tissues.

(4)病理組織学的検査
剖検後、腎臓をパラフィン切片作製用にスーパーフィックスで固定して常温で保存した。パラフィン切片は、ヘマトキシリン・エオジン染色(HE染色)を施して鏡検した。正常マウスの腎臓HE染色はC56BL/6J(10週齢)のものを鏡検した。
(4) Histopathological examination After autopsy, the kidney was fixed with Superfix for paraffin section preparation and stored at room temperature. Paraffin sections were stained with hematoxylin and eosin (HE stain) and examined microscopically. Kidney HE staining of normal mice was examined microscopically at C56BL / 6J (10 weeks old).

(5)結果
結果を図35に示す。糖尿病マウスの対象抗体投与群の腎臓においては、糸球体係蹄の壁肥厚と血管内腔の狭小化及びメサンギウム領域の染色性の増加(個体No.1、3、4:太い矢印)、糸球体内の核の増加(個体No.1、3、4:細い矢印)、ボーマン嚢内のタンパク質量の増加(個体No.1、3:点線の矢印)並びに近位尿細管上皮細胞の変性像(個体No.1、2、3:矢頭)がみられた。このうち、糸球体係蹄の壁の肥厚とメサンギウム領域の染色性の増加は、糖尿病患者の糸球体に見られる結節性硬化症に相当する可能性がある。PB−1抗体投与群の腎臓においては、これら全ての病理像が明らかに軽減していた。
(5) Results The results are shown in FIG. In the kidneys of the target antibody-administered group of diabetic mice, the wall of the glomerular loop of Henle was thickened, the lumen of the blood vessel was narrowed, and the stainability of the mesangial region was increased (individual Nos. 1, 3, 4: thick arrows), and the glomerulus. Increased nuclei in the body (individual Nos. 1, 3, 4: thin arrows), increased protein content in Bowman's capsule (individuals Nos. 1, 3: dotted arrows) and degeneration of proximal tubule epithelial cells (individuals) No. 1, 2, 3: arrowhead) was observed. Of these, thickening of the glomerular loop of henle wall and increased staining of the mesangial region may correspond to tuberous sclerosis found in the glomeruli of diabetic patients. In the kidneys of the PB-1 antibody-administered group, all these pathological features were clearly alleviated.

[実施例39]PB−1ヒト化抗体の作製
PB−1ヒト化抗体は、文献(Tsurushita et al., Methods, 2005, 36, 69-83)に記載の方法にしたがって作成した。
[Example 39] Preparation of PB-1 humanized antibody A PB-1 humanized antibody was prepared according to the method described in the literature (Tsurushita et al., Methods, 2005, 36, 69-83).

Asn−Gly配列中のアスパラギンは脱アミド化されやすく、当該脱アミド化が抗体の活性低下の原因の一つであることが知られている。PB−1抗体の重鎖可変領域(VH)のCDR2及び軽鎖可変領域(VL)のCDR1のそれぞれに含まれるAsn−Gly配列を除くため、当該配列のアスパラギンをセリンに置換した全長VH及びVLをコードするオリゴヌクレオチド(ChPB-1SS VH、ChPB-1SS VL)を常法により合成した。オリジナルのPB−1抗体由来(Asn−Gly配列含む)VHおよびVLをコードするオリゴヌクレオチドについても同様に合成した(ChPB-1NN VH、ChPB-1NN VL)。 Asparagine in the Asn-Gly sequence is easily deamidated, and it is known that the deamidation is one of the causes of decreased antibody activity. In order to exclude the Asn-Gly sequence contained in CDR2 of the heavy chain variable region (VH) and CDR1 of the light chain variable region (VL) of the PB-1 antibody, the full-length VH and VL in which the asparagine of the sequence was replaced with serine was removed. The oligonucleotides (ChPB-1SS VH, ChPB-1SS VL) encoding the above were synthesized by a conventional method. Oligonucleotides encoding VH and VL derived from the original PB-1 antibody (including Asn-Gly sequence) were similarly synthesized (ChPB-1NN VH, ChPB-1NN VL).

PB−1抗体(SG変異体)のVHアミノ酸配列(ChPB-1SS VH)(配列番号:26):
EVRLQQSGPELVKPGTSVKISCKASGYSFTGYYMHWVKQSPVKSLEWIGRIIPYSGATSYNQNFKDKASLTVDKSSRTAYMDLHSLTSEDSAVYYCARSRYYGRAPYYFDYWGQGTTLTVSS。
VH amino acid sequence (ChPB-1SS VH) of PB-1 antibody (SG mutant) (SEQ ID NO: 26):
EVRLQQSGPELVKPGTSVKISCKAS GYSFTGYYMH WVKQSPVKSLEWIG RIIPYSGATSYNQNFKD KASLTVDKSSRTAYMDLHSLTSEDSAVYYCAR SRYYGRAPYYFDY WGQGTTLTVSS.

PB−1抗体(SG変異体)のVLアミノ酸配列(ChPB-1SS VL)(配列番号:32):
DVVVTQTPLSLPVSLGDQASISCRSSQSIVHSSGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVPDRISGSGSGTDFTLKISRVEAGDLGVYSCFQGSHVPFTFGSGTKLEIK。
VL amino acid sequence (ChPB-1SS VL) of PB-1 antibody (SG mutant) (SEQ ID NO: 32):
DVVVTQTPLSLPVSLGDQASISC RSSQSIVHSSGNTYLE WYLQKPGQSPKLLIY KVSNRFS GVPDRISGSGSGTDFTLKISRVEAGDLGVYSC FQGSHVPFT FGSGTKLEIK.

PB−1抗体について、ヒト化したアミノ酸配列を設計し、2種類のVHおよびVL配列を得た。得られたアミノ酸配列をコードするオリゴヌクレオチドを合成した。合成した遺伝子がコードするアミノ酸配列を以下に示す(下線部はCDR領域): For the PB-1 antibody, a humanized amino acid sequence was designed to obtain two types of VH and VL sequences. The oligonucleotide encoding the obtained amino acid sequence was synthesized. The amino acid sequence encoded by the synthesized gene is shown below (underlined part is the CDR region):

PB−1ヒト化抗体のVH1アミノ酸配列(HuPB-1 VH1)(配列番号:27):
QVQLVQSGAEVKKPGASVKVSCKASGYSFTGYYMHWVRQAPGQRLEWIGRIIPYSGATSYNQNFKDRATLTVDTSASTAYMELSSLRSEDTAVYYCARSRYYGRAPYYFDYWGQGTTVTVSS。
VH1 amino acid sequence of PB-1 humanized antibody (HuPB-1 VH1) (SEQ ID NO: 27):
QVQLVQSGAEVKKPGASVKVSCKAS GYSFTGYYMH WVRQAPGQRLEWIG RIIPYSGATSYNQNFKD RATLTVDTSASTAYMELSSLRSEDTAVYYCAR SRYYGRAPYYFDY WGQGTTVTVSS.

PB−1ヒト化抗体のVH2アミノ酸配列(HuPB-1 VH2)(配列番号:28):QVQLVQSGAEVKKPGASVKVSCKASGYSFTGYYMHWVRQAPGQRLEWIGRIIPYSGATSYNQNFKDRATLTVDKSASTAYMELSSLRSEDTAVYYCARSRYYGRAPYYFDYWGQGTTVTVSS。 VH2 amino acid sequence of PB-1 humanized antibody (HuPB-1 VH2) (SEQ ID NO: 28): QVQLVQSGAEVKKPGASVKVSCKAS GYSFTGYYMH WVRQAPGQRLEWIG RIIPYSGATSYNQNFKD RATLTVDKSASTAYMELSSLRSEDTAVYYCAR SRYYGRAPYYFDY

PB−1ヒト化抗体のVL1アミノ酸配列(HuPB-1 VL1)(配列番号:33):DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSSGNTYLEWYLQKPGQSPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYSCFQGSHVPFTFGGGTKVEIK。 VL1 amino acid sequence of PB-1 humanized antibody (HuPB-1 VL1) (SEQ ID NO: 33): DIVMTQSPLSLPVTPGEPASISC RSSQSIVHSSGNTYLE WYLQKPGQSPQLLIY KVSNRFS GVPDRFSGSGSGTDFTLKISRVEAEDVGVYSC FQGSHVPFT

PB-1ヒト化抗体のVL2アミノ酸配列(HuPB-1 VL2)(配列番号:34):DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSSGNTYLEWYLQKPGQSPQLLIYKVSNRFSGVPDRISGSGSGTDFTLKISRVEAEDVGVYSCFQGSHVPFTFGGGTKVEIK。 VL2 amino acid sequence of PB-1 humanized antibody (HuPB-1 VL2) (SEQ ID NO: 34): DIVMTQSPLSLPVTPGEPASISC RSSQSIVHSSGNTYLE WYLQKPGQSPQLLIY KVSNRFS GVPDRISGSGSGTDFTLKISRVEAEDVGVYSC FQGSHVPFT FGGGTKVEIK.

得られたオリゴヌクレオチドを以下に示す:
<ChPB-1SS VH>(配列番号:35)
GAGGTTCGGCTGCAACAGTCTGGACCTGAGCTGGTTAAGCCTGGGACTTCAGTGAAGATCTCCTGCAAGGCTTCTGGTTACTCATTCACTGGCTACTACATGCACTGGGTCAAGCAAAGCCCTGTGAAGAGCCTTGAGTGGATTGGACGTATTATTCCTTACAGTGGAGCTACTAGCTACAACCAGAATTTCAAGGACAAGGCCAGCTTGACTGTAGATAAGTCTTCCAGAACAGCCTACATGGATCTCCACAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGATCGCGATACTACGGACGAGCTCCCTACTACTTTGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCA
The obtained oligonucleotides are shown below:
<ChPB-1SS VH> (SEQ ID NO: 35)
GAGGTTCGGCTGCAACAGTCTGGACCTGAGCTGGTTAAGCCTGGGACTTCAGTGAAGATCTCCTGCAAGGCTTCTGGTTACTCATTCACTGGCTACTACATGCACTGGGTCAAGCAAAGCCCTGTGAAGAGCCTTGAGTGGATTGGACGTATTATTCCTTACAGTGGAGCTACTAGCTACAACCAGAATTTCAAGGACAAGGCCAGCTTGACTGTAGATAAGTCTTCCAGAACAGCCTACATGGATCTCCACAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGATCGCGATACTACGGACGAGCTCCCTACTACTTTGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCA

<ChPB-1SS VL>(配列番号:36)
GATGTTGTGGTCACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGATCTAGTCAGAGTATTGTGCATAGTAGTGGAAACACCTATCTGGAATGGTACCTGCAGAAACCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGATCAGTGGAAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTTGAGGCTGGGGATCTGGGAGTTTATTCCTGCTTTCAAGGCTCACATGTTCCATTCACCTTCGGCTCTGGGACAAAGTTGGAAATCAAA
<ChPB-1SS VL> (SEQ ID NO: 36)
GATGTTGTGGTCACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGATCTAGTCAGAGTATTGTGCATAGTAGTGGAAACACCTATCTGGAATGGTACCTGCAGAAACCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGATCAGTGGAAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTTGAGGCTGGGGATCTGGGAGTTTATTCCTGCTTTCAAGGCTCACATGTTCCATTCACCTTCGGCTCTGGGACAAAGTTGGAAATCAAA

<HuPB-1 VH1>(配列番号:37)
CAAGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGCTTCAGTGAAGGTCTCCTGCAAGGCTTCTGGTTACTCATTCACTGGCTACTACATGCACTGGGTCAGGCAAGCACCTGGCCAGAGACTTGAGTGGATTGGACGTATTATTCCTTACAGTGGAGCTACTAGCTACAACCAGAATTTCAAGGACAGAGCCACCTTGACTGTGGATACCTCTGCCAGTACAGCCTACATGGAACTCTCTAGCCTGAGATCTGAGGACACTGCAGTCTATTACTGTGCAAGATCGCGATACTACGGACGAGCTCCCTACTACTTTGACTACTGGGGCCAAGGCACCACTGTCACAGTCTCCTCA
<HuPB-1 VH1> (SEQ ID NO: 37)
CAAGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGCTTCAGTGAAGGTCTCCTGCAAGGCTTCTGGTTACTCATTCACTGGCTACTACATGCACTGGGTCAGGCAAGCACCTGGCCAGAGACTTGAGTGGATTGGACGTATTATTCCTTACAGTGGAGCTACTAGCTACAACCAGAATTTCAAGGACAGAGCCACCTTGACTGTGGATACCTCTGCCAGTACAGCCTACATGGAACTCTCTAGCCTGAGATCTGAGGACACTGCAGTCTATTACTGTGCAAGATCGCGATACTACGGACGAGCTCCCTACTACTTTGACTACTGGGGCCAAGGCACCACTGTCACAGTCTCCTCA

<HuPB-1 VH2>(配列番号:38)
CAAGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGCTTCAGTGAAGGTCTCCTGCAAGGCTTCTGGTTACTCATTCACTGGCTACTACATGCACTGGGTCAGGCAAGCACCTGGCCAGAGACTTGAGTGGATTGGACGTATTATTCCTTACAGTGGAGCTACTAGCTACAACCAGAATTTCAAGGACAGAGCCACCTTGACTGTGGATAAGTCTGCCAGTACAGCCTACATGGAACTCTCTAGCCTGAGATCTGAGGACACTGCAGTCTATTACTGTGCAAGATCGCGATACTACGGACGAGCTCCCTACTACTTTGACTACTGGGGCCAAGGCACCACTGTCACAGTCTCCTCA
<HuPB-1 VH2> (SEQ ID NO: 38)
CAAGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGCTTCAGTGAAGGTCTCCTGCAAGGCTTCTGGTTACTCATTCACTGGCTACTACATGCACTGGGTCAGGCAAGCACCTGGCCAGAGACTTGAGTGGATTGGACGTATTATTCCTTACAGTGGAGCTACTAGCTACAACCAGAATTTCAAGGACAGAGCCACCTTGACTGTGGATAAGTCTGCCAGTACAGCCTACATGGAACTCTCTAGCCTGAGATCTGAGGACACTGCAGTCTATTACTGTGCAAGATCGCGATACTACGGACGAGCTCCCTACTACTTTGACTACTGGGGCCAAGGCACCACTGTCACAGTCTCCTCA

<HuPB-1 VL1>(配列番号:39)
GATATCGTGATGACCCAAAGTCCACTCTCCCTGCCTGTCACTCCTGGAGAACCAGCCTCCATCTCTTGCAGATCTAGTCAGAGTATTGTGCATAGTAGTGGAAACACCTATCTGGAATGGTACCTGCAGAAACCAGGCCAGTCTCCACAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGAAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTTGAGGCTGAGGATGTGGGAGTTTATTCCTGCTTTCAAGGCTCACATGTTCCATTCACCTTCGGCGGAGGGACAAAAGTGGAAATCAAA
<HuPB-1 VL1> (SEQ ID NO: 39)
GATATCGTGATGACCCAAAGTCCACTCTCCCTGCCTGTCACTCCTGGAGAACCAGCCTCCATCTCTTGCAGATCTAGTCAGAGTATTGTGCATAGTAGTGGAAACACCTATCTGGAATGGTACCTGCAGAAACCAGGCCAGTCTCCACAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGAAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTTGAGGCTGAGGATGTGGGAGTTTATTCCTGCTTTCAAGGCTCACATGTTCCATTCACCTTCGGCGGAGGGACAAAAGTGGAAATCAAA

<HuPB-1 VL2>(配列番号:40)
GATATCGTGATGACCCAAAGTCCACTCTCCCTGCCTGTCACTCCTGGAGAACCAGCCTCCATCTCTTGCAGATCTAGTCAGAGTATTGTGCATAGTAGTGGAAACACCTATCTGGAATGGTACCTGCAGAAACCAGGCCAGTCTCCACAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGATCAGTGGAAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTTGAGGCTGAGGATGTGGGAGTTTATTCCTGCTTTCAAGGCTCACATGTTCCATTCACCTTCGGCGGAGGGACAAAAGTGGAAATCAAA
<HuPB-1 VL2> (SEQ ID NO: 40)
GATATCGTGATGACCCAAAGTCCACTCTCCCTGCCTGTCACTCCTGGAGAACCAGCCTCCATCTCTTGCAGATCTAGTCAGAGTATTGTGCATAGTAGTGGAAACACCTATCTGGAATGGTACCTGCAGAAACCAGGCCAGTCTCCACAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGATCAGTGGAAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTTGAGGCTGAGGATGTGGGAGTTTATTCCTGCTTTCAAGGCTCACATGTTCCATTCACCTTCGGCGGAGGGACAAAAGTGGAAATCAAA

合成した遺伝子はヒト由来定常領域(IgG1重鎖、kappa軽鎖)を持つベクターに組み込み、6種類の発現ベクターを構築した。VH、VLの組み合わせを以下に示す: The synthesized gene was incorporated into a vector having a human-derived constant region (IgG1 heavy chain, kappa light chain) to construct 6 types of expression vectors. The combinations of VH and VL are shown below:

(1)ChPB-1NN VH/ChPB-1NN VL、
(2)ChPB-1SS VH/ChPB-1SS VL、
(3)HuPB-1 VH1/HuPB-1 VL1、
(4)HuPB-1 VH2/HuPB-1 VL1、
(5)HuPB-1 VH1/HuPB-1 VL2、および
(6)HuPB-1 VH2/HuPB-1 VL2。
(1) ChPB-1NN VH / ChPB-1NN VL,
(2) ChPB-1SS VH / ChPB-1SS VL,
(3) HuPB-1 VH1 / HuPB-1 VL1,
(4) HuPB-1 VH2 / HuPB-1 VL1,
(5) HuPB-1 VH1 / HuPB-1 VL2, and (6) HuPB-1 VH2 / HuPB-1 VL2.

PB−1キメラ抗体及びPB−1ヒト化抗体は、文献(Durocher et al., Nucleic Acids Res., 2002, 30, e9)に記載の方法で発現させた。培養上清中に含まれる抗体の濃度を算出し、標準的なELISA法にて抗原に対する結合活性を評価した。 PB-1 chimeric antibody and PB-1 humanized antibody were expressed by the methods described in the literature (Durocher et al., Nucleic Acids Res., 2002, 30, e9). The concentration of the antibody contained in the culture supernatant was calculated, and the antigen-binding activity was evaluated by a standard ELISA method.

ELISAの抗原(A-peak-RSA)は、実施例24に記載の方法に従って調製したものを使用した。ただし、キャリアタンパク質として、BSAではなく、ウサギ血清アルブミン(RSA、Sigma-Aldrich)を用いた。 The ELISA antigen (A-peak-RSA) used was prepared according to the method described in Example 24. However, rabbit serum albumin (RSA, Sigma-Aldrich) was used as the carrier protein instead of BSA.

0.2Mの炭酸ナトリウム緩衝液(pH:9.4)で希釈した1μg/mLのA-peak-RSAを100μL/ウェルでELISAプレートに加えた。一晩、4℃で固相化した後、洗浄液(0.05% Tween 20含有PBS)でプレートを洗浄し、300μL/ウェルのSuperBlock Blocking Buffer(Thermo Scientific)でブロッキングした。プレートを洗浄後、SuperBlock Blocking Bufferで希釈した試験抗体を100μL/ウェルで添加した。室温で1時間反応後、プレートを洗浄し、2000倍希釈したHRP標識抗ヒトIgGポリクローナル抗体(Southern Biotech)を100μL/ウェルで加えた。30分間、室温で静置した後、プレートを洗浄した。その後、1-Step Ultra TMB-ELISA(Thermo Scientific)を100μL/ウェルで加え、発色させた。100μL/ウェルの2N硫酸にて発色反応を停止させ、450nmの吸光度を測定した。 1 μg / mL A-peak-RSA diluted with 0.2 M sodium carbonate buffer (pH: 9.4) was added to the ELISA plate at 100 μL / well. After solid phase at 4 ° C. overnight, the plates were washed with wash solution (PBS containing 0.05% Tween 20) and blocked with 300 μL / well SuperBlock Blocking Buffer (Thermo Scientific). After washing the plate, test antibody diluted with SuperBlock Blocking Buffer was added at 100 μL / well. After reaction at room temperature for 1 hour, the plates were washed and 2000-fold diluted HRP-labeled anti-human IgG polyclonal antibody (Southern Biotech) was added at 100 μL / well. After allowing to stand at room temperature for 30 minutes, the plate was washed. Then, 1-Step Ultra TMB-ELISA (Thermo Scientific) was added at 100 μL / well to develop color. The color reaction was stopped with 100 μL / well of 2N sulfuric acid, and the absorbance at 450 nm was measured.

A-peak-RSAに対する結合活性の評価結果を表3に示した。試験抗体濃度50ng/mL、100ng/mLのいずれにおいても、オリジナルのPB−1マウス抗体の可変領域を保持したキメラ抗体(ChPB-1NN VH/ChPB-1NN VL)と4種類のPB−1ヒト化抗体の結合活性は同等であることが示された。 Table 3 shows the evaluation results of the binding activity to A-peak-RSA. Chimeric antibody (ChPB-1NN VH / ChPB-1NN VL) retaining the variable region of the original PB-1 mouse antibody and 4 types of PB-1 humanized at both test antibody concentrations of 50 ng / mL and 100 ng / mL. The binding activity of the antibody was shown to be comparable.

Figure 2021136920
Figure 2021136920

PB−1ヒト化抗体の濃度依存的な抗原結合性をELISA法で評価した(図36)。表3の結果と同様に、PB-1キメラ抗体(ChPB-1NN VH/ChPB-1NN VL)と4種類のPB−1ヒト化抗体の結合活性は同等であることが示された。 The concentration-dependent antigen binding of the PB-1 humanized antibody was evaluated by the ELISA method (Fig. 36). Similar to the results in Table 3, it was shown that the binding activity of the PB-1 chimeric antibody (ChPB-1NN VH / ChPB-1NN VL) and the four types of PB-1 humanized antibodies were equivalent.

Claims (18)

(1)重鎖可変領域の相補性決定領域(VH CDR1、VH CDR2、およびVH CDR3)または軽鎖可変領域の相補性決定領域(VL CDR1、VL CDR2、およびVL CDR3)のアミノ酸配列が、
(1−3H)
(a)VH CDR1:配列番号:23に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(b)VH CDR2:配列番号:24に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(c)VH CDR3:配列番号:25に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;もしくは
(1−3L)
(d)VL CDR1:配列番号:29に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(e)VL CDR2:配列番号:30に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(f)VL CDR3:配列番号:31に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
を含む、モノクローナル抗体またはその抗原結合断片。
(1) The amino acid sequences of the complementarity determining regions (VH CDR1, VH CDR2, and VH CDR3) of the heavy chain variable region or the complementarity determining regions (VL CDR1, VL CDR2, and VL CDR3) of the light chain variable region are
(1-3H)
(A) VH CDR1: The amino acid sequence shown in SEQ ID NO: 23, or an amino acid sequence substantially the same as that;
(B) VH CDR2: Amino acid sequence shown in SEQ ID NO: 24, or an amino acid sequence substantially identical thereto; and (c) VH CDR3: Amino acid sequence shown in SEQ ID NO: 25, or an amino acid sequence substantially identical thereto. ; Or (1-3L)
(D) VL CDR1: The amino acid sequence shown in SEQ ID NO: 29, or an amino acid sequence substantially the same as that;
(E) VL CDR2: Amino acid sequence shown in SEQ ID NO: 30, or an amino acid sequence substantially the same as that; and (f) VL CDR3: Amino acid sequence shown in SEQ ID NO: 31 or an amino acid sequence substantially the same thereof. ;
A monoclonal antibody or antigen-binding fragment thereof, which comprises.
(1)重鎖可変領域の相補性決定領域(VH CDR1、VH CDR2、およびVH CDR3)および軽鎖可変領域の相補性決定領域(VL CDR1、VL CDR2、およびVL CDR3)のアミノ酸配列が、
(a)VH CDR1:配列番号:23に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(b)VH CDR2:配列番号:24に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(c)VH CDR3:配列番号:25に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(d)VL CDR1:配列番号:29に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
(e)VL CDR2:配列番号:30に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;および
(f)VL CDR3:配列番号:31に示すアミノ酸配列、またはそれと実質的に同一のアミノ酸配列;
を含む、請求項1に記載のモノクローナル抗体またはその抗原結合断片。
(1) The amino acid sequences of the complementarity determining regions (VH CDR1, VH CDR2, and VH CDR3) of the heavy chain variable region and the complementarity determining regions (VL CDR1, VL CDR2, and VL CDR3) of the light chain variable region are
(A) VH CDR1: The amino acid sequence shown in SEQ ID NO: 23, or an amino acid sequence substantially the same as that;
(B) VH CDR2: Amino acid sequence shown in SEQ ID NO: 24, or an amino acid sequence substantially the same as that;
(C) VH CDR3: Amino acid sequence shown in SEQ ID NO: 25, or an amino acid sequence substantially the same as that;
(D) VL CDR1: The amino acid sequence shown in SEQ ID NO: 29, or an amino acid sequence substantially the same as that;
(E) VL CDR2: Amino acid sequence shown in SEQ ID NO: 30, or an amino acid sequence substantially the same as that; and (f) VL CDR3: Amino acid sequence shown in SEQ ID NO: 31 or an amino acid sequence substantially the same thereof. ;
The monoclonal antibody according to claim 1 or an antigen-binding fragment thereof.
(1)重鎖可変領域および軽鎖可変領域のアミノ酸配列が、
配列番号:26のアミノ酸配列またはそれと実質的に同一のアミノ酸配列、および配列番号:32のアミノ酸配列またはそれと実質的に同一のアミノ酸配列;
配列番号:27のアミノ酸配列またはそれと実質的に同一のアミノ酸配列、および/または配列番号:33のアミノ酸配列またはそれと実質的に同一のアミノ酸配列;
配列番号:28のアミノ酸配列またはそれと実質的に同一のアミノ酸配列、および/または配列番号:34のアミノ酸配列またはそれと実質的に同一のアミノ酸配列;
を含む、請求項1または2に記載のモノクローナル抗体またはその抗原結合断片。
(1) The amino acid sequences of the heavy chain variable region and the light chain variable region are
The amino acid sequence of SEQ ID NO: 26 or substantially the same amino acid sequence, and the amino acid sequence of SEQ ID NO: 32 or substantially the same amino acid sequence;
The amino acid sequence of SEQ ID NO: 27 or substantially the same amino acid sequence and / or the amino acid sequence of SEQ ID NO: 33 or substantially the same amino acid sequence;
The amino acid sequence of SEQ ID NO: 28 or substantially the same amino acid sequence and / or the amino acid sequence of SEQ ID NO: 34 or substantially the same amino acid sequence;
The monoclonal antibody according to claim 1 or 2, or an antigen-binding fragment thereof.
グリセルアルデヒド由来AGEsに含まれるエピトープと結合する、請求項1〜5のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片。 The monoclonal antibody or antigen-binding fragment thereof according to any one of claims 1 to 5, which binds to an epitope contained in glyceraldehyde-derived AGEs. 式(I)または(II):
Figure 2021136920
[式中、R、R、RおよびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択され、
およびXは、−O−、または−NH−を表し;
およびYは、水素原子、保護基、または基:
Figure 2021136920
を表し;
およびRは、それぞれ独立に、水素原子、保護基、およびアミノ酸残基数1〜1000のペプチド基から選択される]
の化合物、そのカチオンラジカル、またはそのジカチオンと結合する、請求項1〜5のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片。
Formula (I) or (II):
Figure 2021136920
[In the formula, R 1 , R 2 , R 3 and R 4 are independently selected from a hydrogen atom, a protecting group, and a peptide group having 1 to 1000 amino acid residues.
X 1 and X 2 represent -O-, or -NH-;
Y 1 and Y 2 are hydrogen atoms, protecting groups, or groups:
Figure 2021136920
Represents;
R 5 and R 6 are independently selected from hydrogen atoms, protecting groups, and peptide groups with 1 to 1000 amino acid residues]
The monoclonal antibody or antigen-binding fragment thereof according to any one of claims 1 to 5, which binds to the compound, the cation radical thereof, or the dication thereof.
完全長抗体、Fab、Fab’、F(ab’)、Fv、scFv、dsFv、ダイアボディ、またはsc(Fv)である、請求項1〜6のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片。 The monoclonal antibody according to any one of claims 1 to 6, which is a full-length antibody, Fab, Fab', F (ab') 2 , Fv, scFv, dsFv, diabody, or sc (Fv) 2. The antigen-binding fragment. マウス抗体、ヒト化抗体、ヒト抗体、キメラ抗体、またはその抗原結合断片である、請求項1〜6のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片。 The monoclonal antibody or an antigen-binding fragment thereof according to any one of claims 1 to 6, which is a mouse antibody, a humanized antibody, a human antibody, a chimeric antibody, or an antigen-binding fragment thereof. 1×10−5M以下の解離定数(K値)でグリセルアルデヒド由来AGEsまたはグリコールアルデヒド由来AGEsのエピトープと結合する、請求項1〜7のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片。 The monoclonal antibody or antigen thereof according to any one of claims 1 to 7, which binds to an epitope of glyceraldehyde-derived AGEs or glycolaldehyde-derived AGEs with a dissociation constant (K d value) of 1 × 10-5 M or less. Bonded fragment. 請求項1〜8のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片を含む医薬組成物。 A pharmaceutical composition comprising the monoclonal antibody according to any one of claims 1 to 8 or an antigen-binding fragment thereof. 肥満、糖尿病、糖尿病網膜症、糖尿病白内障、糖尿病神経障害、糖尿病心筋症、糖尿病血管合併症、糖尿病性腎症、糖尿病性腎臓疾患、糖尿病足病変、糖尿病ケトアシドーシス、歯周病、加齢黄斑変性症、肺線維症、特発性肺線維症、細気管支周囲線維症、間質性肺疾患、肺がん、がん線維性肺疾患、慢性閉塞性肺疾患、急性下肢動脈塞栓症、末梢動脈疾患、末梢気道疾患、肺気腫、腎盂腎炎、糸球体硬化症、糸球体腎炎、メサンギウム増殖糸球体腎炎、糖尿病性ネフロパシー、腎性全身性線維症、慢性腎臓病、特発性後腹膜線維症、腎疾患、強皮症、腎間質線維症、女性不妊症、多嚢胞性卵巣症候群、卵巣機能不全、早期卵巣機能不全、卵巣がん、乳がん、子宮体がん、前立腺がん、男性不妊症、肝疾患、肝硬変、非アルコール性脂肪肝炎、肝がん、アテローム血栓性脳梗塞、アテローム性動脈硬化症、内頸動脈狭窄症、大動脈弁狭窄症、大動脈弁閉鎖不全症、心血管疾患、狭心症、うっ血性心不全、急性心不全、慢性心不全、虚血性心疾患、拡張型心筋症、心サルコイドーシス、高血圧、肺動脈性肺高血圧症、肺性心、心筋炎、血管狭窄心線維症、心筋梗塞後心線維症、心筋梗塞後左心室肥大、関節リウマチ、生活習慣病、脂質異常症、アルツハイマー病、血管性認知症、脳梗塞、脳腫瘍、脳血管障害、ぶどう膜炎、内分泌疾患、骨粗しょう症、舌がん、口腔がん、咽頭がん、食道がん、胃がん、大腸がん、直腸がん、膵臓がん、網膜色素変性症、糖尿病黄斑浮腫、レーバー先天性黒内障、シュタルガルト症、アッシャー症候群、コロイデレミア、桿体錐体ジストロフィー、錐体ジストロフィー、進行性網膜萎縮、黄斑ジストロフィー症、脈絡膜硬化症、全脈絡膜萎縮症、類嚢胞黄斑浮腫、ブドウ膜炎、網膜剥離、黄斑円孔、黄斑部毛細血管拡張症、緑内障、視神経症、虚血性網膜疾患、未熟児網膜症、網膜血管閉塞症、および網膜細動脈瘤から選択される疾患の診断、治療、または予防に用いるための、請求項9に記載の医薬組成物。 Obesity, diabetes, diabetic retinopathy, diabetic cataract, diabetic neuropathy, diabetic myocardium, diabetic vascular complications, diabetic nephropathy, diabetic kidney disease, diabetic foot lesions, diabetic ketoacidosis, periodontal disease, age-related yellow spot degeneration Disease, pulmonary fibrosis, idiopathic pulmonary fibrosis, peribronchial fibrosis, interstitial lung disease, lung cancer, cancer fibrotic lung disease, chronic obstructive pulmonary disease, acute lower extremity arterial embolism, peripheral arterial disease, peripheral Airway disease, pulmonary emphysema, nephritis, glomerulosclerosis, glomerulonephritis, mesangial proliferative glomerulonephritis, diabetic nephropathy, renal systemic fibrosis, chronic kidney disease, idiopathic retroperitoneal fibrosis, renal disease, strong skin Disease, renal stromal fibrosis, female infertility, polycystic ovary syndrome, ovarian dysfunction, early ovarian dysfunction, ovarian cancer, breast cancer, uterine body cancer, prostate cancer, male infertility, liver disease, liver cirrhosis , Non-alcoholic steatosis, liver cancer, atherosclerotic cerebral infarction, atherosclerosis, internal carotid artery stenosis, aortic valve stenosis, aortic valve insufficiency, cardiovascular disease, angina, congestive Heart failure, acute heart failure, chronic heart failure, ischemic heart disease, dilated cardiomyopathy, cardiac sarcoidosis, hypertension, pulmonary arterial pulmonary hypertension, pulmonary heart, myocarditis, vascular stenosis heart fibrosis, post-myocardial infarction heart fibrosis, myocardium Post-infarction left ventricular hypertrophy, rheumatoid arthritis, lifestyle disease, dyslipidemia, Alzheimer's disease, vascular dementia, cerebral infarction, brain tumor, cerebrovascular disorder, melanitis, endocrine disease, osteoporosis, tongue cancer, oral cavity Cancer, pharyngeal cancer, esophageal cancer, gastric cancer, colon cancer, rectal cancer, pancreatic cancer, retinal pigment degeneration, diabetic luteal edema, Labor congenital melanosis, Stargart's disease, Asher syndrome, colloideremia, rod cone Body dystrophy, pyramidal dystrophy, progressive retinal atrophy, luteal dystrophy, choroidal sclerosis, total choroidal atrophy, cystic edema, vasculitis, retinal detachment, luteal foramen, luteal capillary dilatation, glaucoma, The pharmaceutical composition according to claim 9, wherein the pharmaceutical composition is used for diagnosing, treating, or preventing a disease selected from optic neuropathy, ischemic retinal disease, premature infant retinosis, retinal vascular occlusion, and retinal aneurysm. 糖尿病、耐糖能異常、網膜症、腎症、糖尿病に伴う合併症、末梢神経障害、下肢壊疽、動脈硬化、血栓症、非アルコール性脂肪性肝疾患、非アルコール性脂肪肝炎、がん、不妊症、多嚢胞性卵巣症候群、卵巣機能障害、中枢神経障害、およびアルツハイマー病を含む神経変性疾患から選択される疾患の診断、治療、または予防に用いるための、請求項9に記載の医薬組成物。 Diabetes mellitus, impaired glucose tolerance, retinopathy, nephropathy, complications associated with diabetes, peripheral neuropathy, lower limb necrosis, arteriosclerosis, thrombosis, non-alcoholic fatty liver disease, non-alcoholic steatosis, cancer, infertility The pharmaceutical composition according to claim 9, wherein the pharmaceutical composition is used for diagnosing, treating, or preventing a disease selected from neurodegenerative diseases including polycystic ovary syndrome, ovarian dysfunction, central neuropathy, and Alzheimer's disease. 疾患が、メラノーマ、肺がん、および肝臓がんから選択されるがんである、請求項11に記載の医薬組成物。 The pharmaceutical composition according to claim 11, wherein the disease is cancer selected from melanoma, lung cancer, and liver cancer. 糖尿病腎症、腎盂腎炎、糸球体硬化症、糸球体腎炎、腎性全身性繊維症、慢性腎臓病、腎間質線維症から選択される疾患の診断、治療、または予防に用いるための、請求項9に記載の医薬組成物。 Claims for use in the diagnosis, treatment, or prevention of diseases selected from diabetic nephropathy, pyelonephritis, glomerulonephritis, glomerulonephritis, renal systemic fibrosis, chronic kidney disease, and renal interstitial fibrosis. Item 9. The pharmaceutical composition according to Item 9. 眼疾患の診断、治療、または予防に用いるための、請求項9に記載の医薬組成物。 The pharmaceutical composition according to claim 9, which is used for diagnosing, treating, or preventing eye diseases. 眼疾患が、糖尿病網膜症、糖尿病白内障、網膜色素変性症、糖尿病黄斑浮腫、レーバー先天性黒内障、シュタルガルト症、アッシャー症候群、コロイデレミア、桿体錐体ジストロフィー、錐体ジストロフィー、進行性網膜萎縮、加齢黄斑変性症、黄斑ジストロフィー症、脈絡膜硬化症、全脈絡膜萎縮症、類嚢胞黄斑浮腫、ブドウ膜炎、網膜剥離、黄斑円孔、黄斑部毛細血管拡張症、緑内障、視神経症、虚血性網膜疾患、未熟児網膜症、網膜血管閉塞症、および網膜細動脈瘤から選択される、請求項14に記載の医薬組成物。 Eye diseases include diabetic retinopathy, diabetic cataract, retinal pigment degeneration, diabetic macular edema, Labor congenital melanosis, Stargart's disease, Asher syndrome, colloideremia, rod pyramidal dystrophy, pyramidal dystrophy, progressive retinal atrophy, aging Macular degeneration, macular dystrophy, choriosclerosis, total choroidal atrophy, cystic macular edema, macular inflammation, retinal detachment, macular foramen, macular capillary dilatation, glaucoma, optic neuropathy, ischemic retinal disease, The pharmaceutical composition according to claim 14, which is selected from premature infant retina, retinal vascular occlusion, and retinal macula. 請求項1〜8のいずれか1項に記載のモノクローナル抗体またはその抗原結合断片をコードする、核酸。 A nucleic acid encoding the monoclonal antibody according to any one of claims 1 to 8 or an antigen-binding fragment thereof. 請求項16に記載の核酸を含む発現ベクター。 An expression vector containing the nucleic acid according to claim 16. 請求項17の発現ベクターを含む宿主細胞。
A host cell comprising the expression vector of claim 17.
JP2020037254A 2020-03-04 2020-03-04 Antibody against glycation end product, and use of the same Pending JP2021136920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037254A JP2021136920A (en) 2020-03-04 2020-03-04 Antibody against glycation end product, and use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037254A JP2021136920A (en) 2020-03-04 2020-03-04 Antibody against glycation end product, and use of the same

Publications (1)

Publication Number Publication Date
JP2021136920A true JP2021136920A (en) 2021-09-16

Family

ID=77666731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037254A Pending JP2021136920A (en) 2020-03-04 2020-03-04 Antibody against glycation end product, and use of the same

Country Status (1)

Country Link
JP (1) JP2021136920A (en)

Similar Documents

Publication Publication Date Title
RU2760334C2 (en) Monoclonal antibodies to alpha-synuclein for preventing tau-protein aggregation
DK2525812T3 (en) Anticoagulant.
AU2011208719B2 (en) Anticoagulant antidotes
KR20230007406A (en) Antibodies to NECTIN-4 and applications thereof
JP7101927B2 (en) Anti-transthyretin antibody
JP7017013B2 (en) Anti-transthyretin antibody
KR20160113206A (en) Anti-transthyretin humanized antibody
AU2016210887A1 (en) Anti-transthyretin antibodies
JP2022506719A (en) Tau recognition antibody
KR20100097674A (en) Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor
CN111344011A (en) Use of anti-FAM 19a5 antibodies for treating fibrosis
BR112020023416A2 (en) monospecific and multispecific anti-tmeff2 antibodies and their uses
TW201302796A (en) Anticoagulant antidotes
KR20180030045A (en) Antibodies that bind to sortilins and inhibit the binding of progranulins
KR102335799B1 (en) Antibodies regulating functions of an endothelin receptor type A
EP2123297A1 (en) Therapeutic agent comprising antibody capable of specifically binding to human hmgb-1 as active ingredient
US9587015B2 (en) Anti-human CTGF antibody
JPWO2020045646A1 (en) Antibodies to advanced glycation end products and their use
WO2021005019A1 (en) Tau epitope and binding molecules
JP2021136920A (en) Antibody against glycation end product, and use of the same
JP7149509B2 (en) Antibodies against advanced glycation end products and uses thereof
WO2023163187A1 (en) Therapeutic agent for neurodegenerative disorder
JP2024506391A (en) How to use antibodies that recognize tau
CN115028722A (en) anti-TSLP antibody, preparation method and application thereof
CN110972463A (en) Use of anti-sequence similarity family 19 member a5 antibodies in the treatment of glaucoma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325