JP2021136916A - Device and method for producing the same - Google Patents

Device and method for producing the same Download PDF

Info

Publication number
JP2021136916A
JP2021136916A JP2020037096A JP2020037096A JP2021136916A JP 2021136916 A JP2021136916 A JP 2021136916A JP 2020037096 A JP2020037096 A JP 2020037096A JP 2020037096 A JP2020037096 A JP 2020037096A JP 2021136916 A JP2021136916 A JP 2021136916A
Authority
JP
Japan
Prior art keywords
enzyme
hrp
betaine
supported
filter paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020037096A
Other languages
Japanese (ja)
Inventor
一也 甲元
Kazuya Komoto
一也 甲元
賀之 橋本
Yoshiyuki Hashimoto
賀之 橋本
武大 北村
Takehiro Kitamura
武大 北村
祐子 森田
Yuko Morita
祐子 森田
真史 山本
Masashi Yamamoto
真史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konan University
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Konan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd, Konan University filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP2020037096A priority Critical patent/JP2021136916A/en
Publication of JP2021136916A publication Critical patent/JP2021136916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

To improve stability of an enzyme supported on a porous support.SOLUTION: A device according to an embodiment has a compound of general formula (1) and an enzyme which are co-supported on a porous support. In the general formula (1), Y is -(CH2)n-X-, -O-, or -R4 Z-, if Y is -(CH2)n-X-, X- is -COO- or -SO3-, R1-R3 each denote a C1-7 linear or branched alkyl group, n is an integer of 1-5, if Y is -O-, R1-R3 each denote a C1-7 linear or branched alkyl group, if Y is -R4 Z-, R1-R4 each denote a C2-7 linear or branched alkyl group, and Z- is a counterion of N+.SELECTED DRAWING: None

Description

本発明は、酵素を担持したデバイス及びその製造方法に関する。 The present invention relates to a device carrying an enzyme and a method for producing the same.

酵素のような生体分子を使用した検体分析は、夾雑物を含む生体試料(検体)中に含まれる特定の物質を検出するために使われることが多い。そのような検体の分析において、複雑な分析技術や装置を用いることなく、例えば尿検査紙のように自宅や診療室内で短時間に検体分析可能な検査デバイスの開発に関心が集まっている。 Specimen analysis using biomolecules such as enzymes is often used to detect specific substances contained in biological samples (samples) containing impurities. In the analysis of such a sample, there is a growing interest in the development of a test device capable of analyzing a sample in a short time at home or in a clinic, such as a urine test paper, without using complicated analysis techniques and devices.

このような検査デバイスに使用される酵素は、一般に保存する温度や製造後の時間経過の影響によって高次構造が変化し、失活する。特に、濾紙などの多孔質支持体に酵素を担持すると、温度や時間経過の影響を受け、活性が低下しやすく、検査デバイスの機能劣化が生じてしまう。多孔質支持体に担持した酵素の安定性を向上する技術として、牛血清アルブミン(BSA)等のタンパク質やα−シクロデキストリンやトレハロース等の糖類を安定化剤として、酵素とともに多孔質支持体に共担持させることが知られている(例えば特許文献1参照)。 Enzymes used in such testing devices are generally inactivated due to changes in higher-order structure due to the effects of storage temperature and the passage of time after production. In particular, when an enzyme is supported on a porous support such as filter paper, the activity tends to decrease due to the influence of temperature and the passage of time, and the function of the inspection device deteriorates. As a technique for improving the stability of the enzyme supported on the porous support, a protein such as bovine serum albumin (BSA) or a saccharide such as α-cyclodextrin or trehalose is used as a stabilizer, and the enzyme is used together with the porous support. It is known to support it (see, for example, Patent Document 1).

しかしながら、BSA等のタンパク質を支持体に共担持するとBSA等の疎水性の影響が強く現れるため、支持体上での均一な酵素反応が阻害されることがある。また、α−シクロデキストリンやトレハロース等の糖類では十分な酵素の安定化効果を得ることができないことがある。 However, when a protein such as BSA is co-supported on the support, the effect of hydrophobicity such as BSA appears strongly, so that a uniform enzymatic reaction on the support may be inhibited. In addition, saccharides such as α-cyclodextrin and trehalose may not be able to obtain a sufficient enzyme stabilizing effect.

ところで、過酸化物とベンジジン系発色剤を含む指示薬にペルオキシダーゼなどの酵素を添加して使用する試薬キットにおいて、上記指示薬の可溶化剤として第四級アンモニウム塩を添加することにより、指示薬の長期保存を可能にしたことが報告されている(特許文献2参照)。しかしながら、酵素を第四級アンモニウム塩により安定化させることは報告されていない。 By the way, in a reagent kit in which an enzyme such as peroxidase is added to an indicator containing a peroxide and a benzidine-based color former, a quaternary ammonium salt is added as a solubilizer for the indicator for long-term storage of the indicator. It has been reported that this has been made possible (see Patent Document 2). However, it has not been reported that the enzyme is stabilized by a quaternary ammonium salt.

また、特定構造のベタイン誘導体が酵素及び発色基質及び/又は発光基質を含む溶液中で酵素の反応性を高めることが報告されている(特許文献3参照)。しかしながら、多孔質支持体に担持された酵素を安定化させることは報告されていない。 Further, it has been reported that a betaine derivative having a specific structure enhances the reactivity of an enzyme in a solution containing the enzyme and a chromogenic substrate and / or a luminescent substrate (see Patent Document 3). However, it has not been reported to stabilize the enzyme carried on the porous support.

特開2005−114368号公報Japanese Unexamined Patent Publication No. 2005-114368 特開平5−227995号公報Japanese Unexamined Patent Publication No. 5-227995 特開2012−100654号公報Japanese Unexamined Patent Publication No. 2012-100654

本発明の実施形態は、多孔質支持体に担持された酵素の安定性を向上することができるデバイスを提供することを目的とする。 It is an object of the present invention to provide a device capable of improving the stability of an enzyme supported on a porous support.

本発明の実施形態に係るデバイスは、多孔質支持体に下記一般式(1)に示す化合物及び酵素が共担持されたものである。

Figure 2021136916
一般式(1)中、Yは、−(CH−X、−O、又は−Rを示し、Yが−(CH−Xの場合、Xは、−COO又は−SO を示し、R〜Rは、同一又は異なって、炭素数1〜7の直鎖又は分岐状のアルキル基を示し、nは1〜5の整数を示し、Yが−Oの場合、R〜Rは、同一又は異なって、炭素数1〜7の直鎖又は分岐状のアルキル基を示し、Yが−Rの場合、R〜Rは、同一又は異なって、炭素数2〜7の直鎖又は分岐状のアルキル基を示し、ZはNの対イオンを示す。 The device according to the embodiment of the present invention is a device in which a compound and an enzyme represented by the following general formula (1) are co-supported on a porous support.
Figure 2021136916
In the general formula (1), Y indicates − (CH 2 ) n −X , −O , or −R 4 Z −, and when Y is − (CH 2 ) n −X , X is , -COO - or -SO 3 - indicates, R 1 to R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 7 carbon atoms, n is an integer of from 1 to 5 , Y is -O - case, R 1 to R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 7 carbon atoms, Y is -R 4 Z - case, R 1 ~ R 4 represent linear or branched alkyl groups having 2 to 7 carbon atoms, which are the same or different, and Z represents an N + counter ion.

本実施形態によれば、また、上記デバイスを製造する方法であって、一般式(1)に示す化合物及び酵素を含む液体を多孔質支持体に含浸して、前記化合物及び酵素を多孔質支持体に共担持させることを特徴とするデバイスの製造方法が提供される。 According to the present embodiment, the porous support is impregnated with a liquid containing the compound and the enzyme represented by the general formula (1) in the method for manufacturing the device, and the compound and the enzyme are porously supported. A method for manufacturing a device, characterized in that it is co-supported on a body, is provided.

本実施形態によれば、また、上記デバイスを製造する方法であって、一般式(1)に示す化合物を担持させた多孔質支持体に、酵素を含む液体を含浸して、前記化合物及び酵素を多孔質支持体に共担持させることを特徴とするデバイスの製造方法が提供される。 According to the present embodiment, in the method for manufacturing the above device, the porous support carrying the compound represented by the general formula (1) is impregnated with a liquid containing an enzyme, and the compound and the enzyme are impregnated. Is provided for a method of manufacturing a device, which comprises co-supporting a device on a porous support.

本発明の実施形態によれば、多孔質支持体に担持された酵素の安定性を向上することができる。また、多孔質支持体上での均一な酵素反応を可能にすることができる。 According to the embodiment of the present invention, the stability of the enzyme supported on the porous support can be improved. It can also enable a uniform enzymatic reaction on the porous support.

試験例1における濾紙にベタイン誘導体と共に担持された酵素(HRP)の活性を示すグラフA graph showing the activity of the enzyme (HRP) supported on the filter paper in Test Example 1 together with the betaine derivative. 試験例2におけるHRPの濃度と酵素活性との関係を示すグラフGraph showing the relationship between the concentration of HRP and the enzyme activity in Test Example 2 試験例3におけるベタイン誘導体の濃度と酵素活性との関係を示すグラフGraph showing the relationship between the concentration of the betaine derivative and the enzyme activity in Test Example 3 試験例4におけるSベタイン誘導体と共に担持された酵素の活性を示すグラフGraph showing activity of enzyme carried with S betaine derivative in Test Example 4 試験例4におけるN−オキシド誘導体と共に担持された酵素の活性を示すグラフGraph showing activity of enzyme carried with N-oxide derivative in Test Example 4 試験例4における第四級アンモニウム塩と共に担持された酵素の活性を示すグラフGraph showing activity of enzyme carried with quaternary ammonium salt in Test Example 4 試験例4におけるその他の安定化剤と共に担持された酵素の活性を示すグラフGraph showing the activity of the enzyme carried together with other stabilizers in Test Example 4. 試験例5におけるSベタイン誘導体の濃度と酵素活性との関係を示すグラフGraph showing the relationship between the concentration of the S betaine derivative and the enzyme activity in Test Example 5 試験例6におけるN−オキシド誘導体の濃度と酵素活性との関係を示すグラフGraph showing the relationship between the concentration of the N-oxide derivative and the enzyme activity in Test Example 6 試験例7における発色基質溶液が酵素担持支持体に浸透する様子を示す写真A photograph showing how the color-developing substrate solution in Test Example 7 permeates the enzyme-supported support. 試験例7における発色基質溶液の滴下30秒後の酵素担持支持体の様子とRGB値の計測を行った56点を示す画像An image showing the state of the enzyme-supported support 30 seconds after dropping the color-developing substrate solution in Test Example 7 and 56 points obtained by measuring the RGB values. 試験例11における恒温時間と酵素の活性との関係を示すグラフGraph showing the relationship between the constant temperature time and the activity of the enzyme in Test Example 11 試験例13における恒温乾燥時間と濾紙の質量との関係を示すグラフA graph showing the relationship between the constant temperature drying time and the mass of the filter paper in Test Example 13.

本実施形態に係るデバイスは、多孔質支持体に一般式(1)に示す化合物(以下、化合物(1)という。)及び酵素が共担持されたものである。 The device according to this embodiment is a device in which a compound represented by the general formula (1) (hereinafter referred to as compound (1)) and an enzyme are co-supported on a porous support.

[化合物(1)]
化合物(1)は、多孔質支持体上で酵素を安定化させる安定化剤として用いられるものであり、下記一般式(1)で表される。

Figure 2021136916
一般式(1)中、Yは、−(CH−X、−O、又は−Rを表す。 [Compound (1)]
Compound (1) is used as a stabilizer for stabilizing an enzyme on a porous support, and is represented by the following general formula (1).
Figure 2021136916
In the general formula (1), Y, - (CH 2) n -X -, -O -, or -R 4 Z - represents a.

Yが−(CH−Xの場合、化合物(1)は下記一般式(1A)で表されるベタイン誘導体(Xが−SO のものはSベタイン誘導体と呼ぶ)である。

Figure 2021136916
When Y is − (CH 2 ) n −X , compound (1) is a betaine derivative represented by the following general formula (1A) (X is −SO 3 is called an S betaine derivative). ..
Figure 2021136916

一般式(1A)中、Xは、−COO又は−SO を示す。R〜Rは、同一又は異なって、炭素数1〜7の直鎖又は分岐状のアルキル基を示す。R〜Rは、好ましくは、同一又は異なって炭素数3〜6の直鎖又は分岐状のアルキル基を示し、より好ましくは同一又は異なって炭素数3〜5の直鎖又は分岐状のアルキル基を示し、更に好ましくは、同一又は異なって炭素数3〜5の直鎖のアルキル基を示す。R〜Rは、直鎖又は分岐状のアルキル基であってもこれらの炭素数の合計が9〜15であることが好ましい。nは1〜5の整数を示し、より好ましくは1〜3の整数、更に好ましくは、Xが−COOの場合は1の整数、Xが−SO の場合は3の整数を示す。 In the general formula (1A), X - is, -COO - or -SO 3 - shows the. R 1 to R 3 represent linear or branched alkyl groups having 1 to 7 carbon atoms, which are the same or different from each other. R 1 to R 3 preferably represent the same or different linear or branched alkyl groups having 3 to 6 carbon atoms, and more preferably the same or different linear or branched alkyl groups having 3 to 5 carbon atoms. It shows an alkyl group, more preferably a straight chain alkyl group having 3 to 5 carbon atoms, which is the same or different. It is preferable that R 1 to R 3 have a total of 9 to 15 carbon atoms even if they are linear or branched alkyl groups. n represents an integer of 1 to 5, more preferably an integer of 1 to 3, more preferably an integer of 1 when X is −COO , and an integer of 3 when X − is −SO 3 −. show.

一般式(1A)で表されるベタイン誘導体として、好ましくは、Xが−COO又は−SO を示し、R〜Rが同一又は異なって炭素数3〜5の直鎖又は分岐状のアルキル基を示し、nが1〜3の整数を示す。より好ましくは、Xが−COOを示し、R〜Rが同一又は異なって炭素数3〜5の直鎖又は分岐状のアルキル基を示し、nが1の整数を示す。 As the betaine derivative represented by the general formula (1A), preferably, X represents −COO or −SO 3 , and R 1 to R 3 are the same or different, linear or branched with 3 to 5 carbon atoms. The shape of the alkyl group is shown, and n is an integer of 1 to 3. More preferably, X represents −COO , R 1 to R 3 represent the same or different linear or branched alkyl groups having 3 to 5 carbon atoms, and n represents an integer of 1.

Yが−Oの場合、化合物(1)は下記一般式(1B)で表されるN−オキシド誘導体である。

Figure 2021136916
Y is -O - For compound (1) is N- oxide derivative represented by the following general formula (1B).
Figure 2021136916

一般式(1B)中、R〜Rは、同一又は異なって、炭素数1〜7の直鎖又は分岐状のアルキル基を示す。R〜Rは、好ましくは、同一又は異なって炭素数3〜6の直鎖又は分岐状のアルキル基を示し、より好ましくは、同一又は異なって炭素数3〜5の直鎖又は分岐状のアルキル基を示し、更に好ましくは、同一又は異なって炭素数3〜5の直鎖のアルキル基を示す。R〜Rは、直鎖又は分岐状のアルキル基であってもこれらの炭素数の合計が9〜15であることが好ましい。 In the general formula (1B), R 1 to R 3 represent linear or branched alkyl groups having 1 to 7 carbon atoms, which are the same or different from each other. R 1 to R 3 preferably represent the same or different linear or branched alkyl groups having 3 to 6 carbon atoms, and more preferably the same or different linear or branched alkyl groups having 3 to 5 carbon atoms. , And more preferably, the same or different linear alkyl groups having 3 to 5 carbon atoms. It is preferable that R 1 to R 3 have a total of 9 to 15 carbon atoms even if they are linear or branched alkyl groups.

Yが−Rの場合、化合物(1)は下記一般式(1C)で表される第四級アンモニウム塩である。

Figure 2021136916
Y is -R 4 Z - case, the compound (1) is a quaternary ammonium salt represented by the following general formula (1C).
Figure 2021136916

一般式(1C)中、R〜Rは、同一又は異なって、炭素数2〜7の直鎖又は分岐状のアルキル基を示す。R〜Rは、好ましくは、同一又は異なって炭素数3〜5の直鎖又は分岐状のアルキル基を示し、より好ましくは、同一又は異なって炭素数3又は4の直鎖又は分岐状のアルキル基を示し、更に好ましくは、同一又は異なって炭素数3又は4の直鎖のアルキル基を示す。R〜Rは、直鎖又は分岐状のアルキル基であってもこれらの炭素数の合計が9〜15であることが好ましく、より好ましくは9〜12である。また、R〜Rは、直鎖又は分岐状のアルキル基であってもこれらの炭素数の合計が12〜20であることが好ましく、より好ましくは12〜16である。ZはNの対イオンを示し、例えば、Cl、F、Br、Iのハロゲン化物イオン、NO 、CHCOO、SO 2−、ClO 、BF 、PF 、OH等が挙げられる。 In the general formula (1C), R 1 to R 4 represent linear or branched alkyl groups having 2 to 7 carbon atoms, which are the same or different from each other. R 1 to R 4 preferably represent the same or different linear or branched alkyl groups having 3 to 5 carbon atoms, and more preferably the same or different linear or branched alkyl groups having 3 or 4 carbon atoms. , And more preferably, the same or different linear alkyl groups having 3 or 4 carbon atoms. R 1 to R 3 preferably have a total of 9 to 15 carbon atoms, more preferably 9 to 12, even if they are linear or branched alkyl groups. Further, R 1 to R 4 preferably have a total of 12 to 20 carbon atoms, more preferably 12 to 16 carbon atoms, even if they are linear or branched alkyl groups. Z indicates an N + counterion, for example, Cl , F , Br , I halide ion, NO 3 , CH 3 COO , SO 4 2- , ClO 4 , BF 4 −. , PF 6 , OH − and the like.

化合物(1)としては、上記列挙の各化合物、即ち、ベタイン誘導体、N−オキシド誘導体、及び第四級アンモニウム塩をいずれか1種用いても、2種以上併用してもよい。これらの中でも、酵素に対する安定化効果の観点から、ベタイン誘導体及び/又はN−オキシド誘導体を用いることが好ましく、より好ましくはベタイン誘導体を用いることである。また、ベタイン誘導体としては、Xが−COOのものと−SO のものをそれぞれいずれか1種用いてもよく、2種以上併用してもよい。より好ましくは、酵素に対する安定化効果の観点から、Xが−COOであるベタイン誘導体を用いることである。 As the compound (1), any one of the compounds listed above, that is, a betaine derivative, an N-oxide derivative, and a quaternary ammonium salt may be used, or two or more thereof may be used in combination. Among these, from the viewpoint of stabilizing effect on the enzyme, it is preferable to use a betaine derivative and / or an N-oxide derivative, and more preferably a betaine derivative is used. Further, as the betaine derivative, one having X of −COO and one having −SO 3 may be used, or two or more thereof may be used in combination. More preferably, a betaine derivative in which X − is −COO is used from the viewpoint of stabilizing effect on the enzyme.

[多孔質支持体]
多孔質支持体は、多数の微細な空隙を持ち、酵素を担持可能な担体であり、水不溶性の様々な多孔質材料を用いることができる。多孔質支持体は、繊維質であってもよく、非繊維質であってもよい。
[Porous support]
The porous support is a carrier that has a large number of fine voids and can carry an enzyme, and various water-insoluble porous materials can be used. The porous support may be fibrous or non-fibrous.

多孔質支持体としては、例えば、濾紙等の紙、不織布、織物、編物、ケイ素化合物、又は金属酸化物等が挙げられ、これらのいずれか1種または2種以上組み合わせて用いることができる。2種以上組み合わせる場合、これらの積層体でもよい。これらのうち、繊維質の多孔質支持体である、紙、不織布、織物、編物の材質としては、セルロースが好ましい。 Examples of the porous support include paper such as filter paper, non-woven fabric, woven fabric, knitted fabric, silicon compound, metal oxide and the like, and any one or a combination of two or more of these can be used. When two or more kinds are combined, these laminated bodies may be used. Of these, cellulose is preferable as the material of paper, non-woven fabric, woven fabric, and knitted fabric, which are fibrous porous supports.

非繊維質の多孔質支持体としては無機多孔質支持体が挙げられる。そのうち、ケイ素化合物としては、多孔質構造を持つケイ酸、無水ケイ酸、ケイ酸塩などの各種ケイ素酸化物を用いることができ、例えばシリカゲル、多孔質ケイ酸塩ガラス、多孔質ケイ酸塩セラミックなどが挙げられる。同じく非繊維質の無機多孔質支持体である金属酸化物としては、例えば、酸化アルミニウム(アルミナ)、酸化チタニウム(チタニア)、酸化ジルコニウム(ジルコニア)など、又、それらを混合焼成したコンポジット材料などが挙げられる。 Examples of the non-fibrous porous support include an inorganic porous support. Among them, as the silicon compound, various silicon oxides having a porous structure such as silicic acid, silicic anhydride and silicate can be used, and for example, silica gel, porous silicate glass and porous silicate ceramic can be used. And so on. Examples of metal oxides, which are also non-fibrous inorganic porous supports, include aluminum oxide (alumina), titanium oxide (titania), zirconium oxide (zirconia), and composite materials obtained by mixing and firing them. Can be mentioned.

多孔質支持体としては、本実施形態に係るデバイスの取り扱い性の観点から、シート状であることが好ましい。すなわち、紙、不織布、織物、編物などのシート状の多孔質支持体が好ましく用いられ、また、これらを2種以上積層したものや、非多孔質の基板上に該シート状の多孔質支持体を積層したものでもよい。また、ケイ素化合物や金属酸化物の場合、これらをシート状に形成したものを多孔質支持体として用いてもよく、例えば、アルミニウム基板やガラス基板、プラスチック基板などの非多孔質の基板上に、シリカゲル等のケイ素化合物やアルミナなどの金属酸化物からなる多孔質材料の層が形成されたものも、多孔質支持体として好ましく用いられる。 The porous support is preferably in the form of a sheet from the viewpoint of handleability of the device according to the present embodiment. That is, a sheet-like porous support such as paper, non-woven fabric, woven fabric, or knitted fabric is preferably used, and a sheet-like porous support in which two or more kinds of these are laminated or on a non-porous substrate is used. May be laminated. Further, in the case of a silicon compound or a metal oxide, a sheet formed of these may be used as a porous support, for example, on a non-porous substrate such as an aluminum substrate, a glass substrate, or a plastic substrate. A layer of a porous material made of a silicon compound such as silica gel or a metal oxide such as alumina is also preferably used as the porous support.

[酵素]
酵素としては、デバイスの用途に応じて適宜選択され、特に限定されず、例えば、酸化還元酵素(EC1:オキシドレダクターゼ)、転移酵素(EC2:トランスフェラーゼ)、加水分解酵素(EC3:ヒドロラーゼ)、付加脱離酵素(EC4:リアーゼ)、異性化酵素(EC5:イソメラーゼ)、合成酵素(EC6:リガーゼ)、輸送酵素(EC7:トランスロカーゼ)などを用いることができる。これらはいずれか1種又は2種以上組み合わせて用いることができる。一実施形態として、例えば、ペルオキシダーゼ、グルコースオキシダーゼ、コリンオキシダーゼ、ウリカーゼ、L−グルタミン酸オキシダーゼ、乳酸オキシダーゼ、ガラクトースオキシダーゼなどの酸化還元酵素を用いることが好ましい。酵素は、1種のみ担持させてもよく、2種以上担持させてもよい。
[enzyme]
The enzyme is appropriately selected according to the intended use of the device, and is not particularly limited. For example, oxidoreductase (EC1: oxidoreductase), transfer enzyme (EC2: transferase), hydrolyzing enzyme (EC3: hydrolase), and desorption. A release enzyme (EC4: lyase), an isomerizing enzyme (EC5: isomerase), a synthase (EC6: ligase), a transport enzyme (EC7: translocase) and the like can be used. These can be used alone or in combination of two or more. As one embodiment, it is preferable to use, for example, an oxidoreductase such as peroxidase, glucose oxidase, choline oxidase, uricase, L-glutamate oxidase, lactic acid oxidase, and galactose oxidase. Only one type of enzyme may be supported, or two or more types may be supported.

一実施形態として、デバイスを検体分析用デバイスとして用いる場合であって、複数の酸化還元酵素を酵素として担持させる際に、酸化還元酵素として、検体に含まれる特定の物質を酸化するオキシダーゼと、特定の物質とオキシダーゼとの反応によって生成される過酸化水素を基質とするペルオキシダーゼとを、多孔質支持体に共担持させてもよい。 One embodiment is a case where the device is used as a sample analysis device, and when a plurality of oxidoreductases are supported as enzymes, the oxidase that oxidizes a specific substance contained in the sample is specified as the oxidoreductase. Peroxidase using hydrogen peroxide produced by the reaction of the substance and oxidase as a substrate may be co-supported on the porous support.

[デバイス]
本実施形態に係るデバイスでは、多孔質支持体に化合物(1)と酵素が共担持されている。ここで、共担持とは、化合物(1)と酵素が共存した状態、即ちいっしょに多孔質支持体に保持されていることをいう。例えば、後述するように、化合物(1)と酵素を含む液体を多孔質支持体に含浸したり、あるいはまた、化合物(1)を予め担持させた多孔質支持体に酵素を含む液体を含浸させたりすることで、化合物(1)と酵素を多孔質支持体に共担持させることができる。
[device]
In the device according to this embodiment, the compound (1) and the enzyme are co-supported on the porous support. Here, co-supporting means that the compound (1) and the enzyme coexist, that is, they are held together on the porous support. For example, as will be described later, the porous support is impregnated with a liquid containing the compound (1) and the enzyme, or the porous support on which the compound (1) is supported in advance is impregnated with the liquid containing the enzyme. By doing so, the compound (1) and the enzyme can be co-supported on the porous support.

化合物(1)と酵素は、乾燥状態で多孔質支持体に担持されてもよく、あるいはまた、湿潤状態で多孔質支持体に担持されてもよい。ここで、湿潤状態とは、化合物(1)と酵素を担持した多孔質支持体が湿気を帯びている状態をいい、例えば発色、発光基質溶液などを含んでもよく、より詳細には含水率が15質量%以上の状態をいう。湿潤状態にある場合の含水率は特に限定しないが、15質量%以上95質量%以下でもよく、15質量%以上70質量%以下でもよく、15質量%以上50質量%以下でもよい。乾燥状態とは、化合物(1)と酵素を担持した多孔質支持体が湿気を帯びていない状態をいい、より詳細には含水率が15質量%未満の状態をいう。 The compound (1) and the enzyme may be supported on the porous support in a dry state, or may be supported on the porous support in a wet state. Here, the wet state means a state in which the porous support carrying the compound (1) and the enzyme is moist, and may contain, for example, a color-developing or luminescent substrate solution, and more specifically, the water content is high. It means a state of 15% by mass or more. The water content in the wet state is not particularly limited, but may be 15% by mass or more and 95% by mass or less, 15% by mass or more and 70% by mass or less, or 15% by mass or more and 50% by mass or less. The dry state means a state in which the porous support carrying the compound (1) and the enzyme is not moistened, and more specifically, a state in which the water content is less than 15% by mass.

ここで、含水率とは、酵素の担持部位において多孔質支持体に含まれる水の質量を水と多孔質支持体(担持した化合物(1)と酵素などの質量も含む)の質量の和で除したものの百分率である。多孔質支持体に含まれる水の質量は、デバイスを温度40℃、相対湿度30%の雰囲気下で質量変化がなくなるまで放置したときの水の量を0(即ち、このときの含水率は0質量%)として、算出される。 Here, the water content is the sum of the mass of water contained in the porous support at the site where the enzyme is supported and the mass of water and the porous support (including the mass of the supported compound (1) and the enzyme). It is the percentage of what is divided. The mass of water contained in the porous support is the amount of water when the device is left in an atmosphere of a temperature of 40 ° C. and a relative humidity of 30% until there is no mass change (that is, the water content at this time is 0). It is calculated as% by mass).

多孔質支持体に担持させる酵素に対するその安定化剤としての化合物(1)の比率としては、特に限定されず、酵素及び化合物(1)の種類に応じて適宜設定することができる。一実施形態として、化合物(1)100質量部に対する酵素の量は、0.01〜20質量部でもよく、0.05〜10質量部でもよく、0.10〜5質量部でもよい。 The ratio of the compound (1) as the stabilizer to the enzyme supported on the porous support is not particularly limited, and can be appropriately set according to the type of the enzyme and the compound (1). In one embodiment, the amount of the enzyme per 100 parts by mass of the compound (1) may be 0.01 to 20 parts by mass, 0.05 to 10 parts by mass, or 0.10 to 5 parts by mass.

多孔質支持体に対する酵素の担持量は、特に限定されず、酵素の種類等に応じて適宜設定することができる。一実施形態として、多孔質支持体に担持される酵素の量は、酵素を担持させる部位における多孔質支持体1cm当たりで、0.010〜3000mgでもよく、1〜250mgでもよい。なお、本明細書において多孔質支持体の体積1cmとは、多孔質材料の空隙を含む体積である。 The amount of the enzyme supported on the porous support is not particularly limited and can be appropriately set according to the type of the enzyme and the like. In one embodiment, the amount of enzyme supported on the porous support may be 0.010 to 3000 mg or 1 to 250 mg per 1 cm 3 of the porous support at the site where the enzyme is supported. In the present specification, the volume of the porous support of 1 cm 3 is the volume including the voids of the porous material.

多孔質支持体に対する化合物(1)の担持量も、特に限定されず、例えば、酵素を担持させる部位における多孔質支持体1cm当たりで、1〜50000mgでもよく、100〜15000mgでもよい。 The amount of the compound (1) supported on the porous support is also not particularly limited, and may be, for example, 1 to 50,000 mg or 100 to 15,000 mg per 1 cm 3 of the porous support at the site where the enzyme is supported.

本実施形態に係るデバイスにおいて、多孔質支持体には、酵素と反応することで発色又は発光を生じさせる発色基質及び/又は発光基質を、酵素及び化合物(1)とともに担持させてもよい。例えばデバイスを検体分析用デバイスとして用いる場合に、酵素と検体に含まれる特定の物質との反応に伴い、発色基質及び/又は発光基質を発色及び/又は発光させれば、目視や彩度変化、吸光度測定により、検体に含まれる特定の物質の有無や濃度を分析できる。 In the device according to the present embodiment, the porous support may carry a color-developing substrate and / or a light-emitting substrate that causes color development or luminescence by reacting with the enzyme together with the enzyme and compound (1). For example, when the device is used as a device for sample analysis, if the color-developing substrate and / or the luminescent substrate is colored and / or luminescent in accordance with the reaction between the enzyme and a specific substance contained in the sample, visual inspection and saturation change can be observed. Absorbance measurement can analyze the presence or absence and concentration of a specific substance contained in a sample.

発色基質及び発光基質は、使用する酵素の種類に応じて適宜選択することができる。発色基質としては、酸化反応などによって、色素分子の極大吸収波長に変化が生じる性質を持つものでもよい。発光基質としては、過酸化水素やアデノシン三リン酸等の化学結合エネルギーを光エネルギーに変換して発光する性質を持つ化学発光基質でもよく、酵素反応などによって蛍光分子の量子収率が上昇し、蛍光発光が増す性質を持つ蛍光発光基質でもよい。 The color-developing substrate and the luminescent substrate can be appropriately selected depending on the type of enzyme used. The color-developing substrate may have the property of changing the maximum absorption wavelength of the dye molecule due to an oxidation reaction or the like. The luminescent substrate may be a chemiluminescent substrate having the property of converting chemical binding energy such as hydrogen peroxide or adenosine triphosphate into light energy to emit light, and the quantum yield of fluorescent molecules increases due to an enzymatic reaction or the like. It may be a fluorescent substrate having a property of increasing fluorescence emission.

例えば、酵素としてペルオキシダーゼを使用する場合、3,3’−ジアミノベンジジン、3,3’−ジアミノベンジジン四塩酸塩、3−アミノ−9−エチルカルバゾール等の代表的な発色基質を用いることができるが、2,2’−アジノビス(3−エチルベンゾチアゾリン−6−硫酸)、トリンダー試薬、3,3’,5,5’−テトラメチルベンジジンなどの他の基質でもよい。また、例えば、上記のように、デバイスを検体分析用デバイスとして用いる場合であって、検体に含まれる特定の物質を酸化するオキシダーゼと、検体に含まれる特定の物質とオキシダーゼとの反応によって生成される過酸化水素を基質とするペルオキシダーゼとを、多孔質支持体に共担持させる場合に、過酸化水素とペルオキシダーゼとの反応にともない、酸化により発色する上記の発色基質を用いてもよい。 For example, when peroxidase is used as an enzyme, typical color-developing substrates such as 3,3'-diaminobenzidine, 3,3'-diaminobenzidine tetrachloride, and 3-amino-9-ethylcarbazole can be used. , 2,2'-Azinobis (3-ethylbenzothiazolin-6-sulfate), Trinder's reagent, 3,3', 5,5'-tetramethylbenzidine and other substrates may be used. Further, for example, as described above, when the device is used as a device for sample analysis, it is generated by the reaction between oxidase that oxidizes a specific substance contained in the sample and the specific substance contained in the sample and oxidase. When peroxidase using hydrogen peroxide as a substrate is co-supported on a porous support, the above-mentioned color-developing substrate that develops color by oxidation due to the reaction between hydrogen peroxide and peroxidase may be used.

多孔質支持体に対する発色基質及び/又は発光基質の担持量は、特に限定されず、発色基質や発光基質の種類等に応じて適宜設定することができる。一実施形態として、多孔質支持体に担持される発色基質及び/又は発光基質の量は、酵素を担持させる部位における多孔質支持体1cm当たりで、0.1〜400mgでもよく、1〜40mgでもよい。 The amount of the color-developing substrate and / or the luminescent substrate supported on the porous support is not particularly limited, and can be appropriately set according to the type of the chromogenic substrate and the luminescent substrate. In one embodiment, the amount of color-developing substrate and / or luminescent substrate supported on the porous support may be 0.1 to 400 mg per 1 cm 3 of the porous support at the site where the enzyme is supported, and may be 1 to 40 mg. But it may be.

[製造方法]
本実施形態に係るデバイスの製造方法としては、
(A)化合物(1)及び酵素を含む液体を多孔質支持体に含浸し、これにより化合物(1)及び酵素を多孔質支持体に共担持させる方法、及び、
(B)化合物(1)を担持させた多孔質支持体に、酵素を含む液体を含浸し、これにより化合物(1)及び酵素を多孔質支持体に共担持させる方法、
が挙げられる。
[Production method]
As a method for manufacturing the device according to the present embodiment,
(A) A method of impregnating a porous support with a liquid containing the compound (1) and an enzyme, thereby co-supporting the compound (1) and the enzyme on the porous support, and
(B) A method of impregnating a porous support carrying the compound (1) with a liquid containing an enzyme, thereby co-supporting the compound (1) and the enzyme on the porous support.
Can be mentioned.

上記(A)について、より詳細には、化合物(1)及び酵素を水性溶媒に溶解した混合溶液を調製し、これを多孔質支持体に含浸させる。ここで、水性溶媒としては、水、各種緩衝液等が挙げられる。混合溶液を多孔質支持体に含浸させる方法としては、混合溶液を多孔質支持体に滴下してもよく、多孔質支持体を混合溶液に浸漬してもよい。混合溶液を多孔質支持体に含浸させた後、加熱等して乾燥させることにより、化合物(1)と酵素を多孔質支持体に乾燥状態で担持させることができる。その際、含水率を制御しつつ不十分に乾燥させることで、化合物(1)と酵素を湿潤状態で担持させることもできる。混合溶液には、化合物(1)及び酵素に加えて、例えば発色基質及び/又は発光基質などの他の成分を添加しておいてもよく、これによりこれら他の成分を更に担持させてもよい。 More specifically, regarding the above (A), a mixed solution in which the compound (1) and the enzyme are dissolved in an aqueous solvent is prepared, and the porous support is impregnated with the mixed solution. Here, examples of the aqueous solvent include water, various buffer solutions, and the like. As a method of impregnating the porous support with the mixed solution, the mixed solution may be dropped onto the porous support, or the porous support may be immersed in the mixed solution. By impregnating the porous support with the mixed solution and then drying it by heating or the like, the compound (1) and the enzyme can be supported on the porous support in a dry state. At that time, the compound (1) and the enzyme can be supported in a wet state by insufficiently drying while controlling the water content. In addition to compound (1) and the enzyme, other components such as a color-developing substrate and / or a luminescent substrate may be added to the mixed solution, whereby these other components may be further supported. ..

上記(B)について、より詳細には、化合物(1)を水性溶媒に溶解した化合物(1)溶液を調製し、これを多孔質支持体に含浸させ、乾燥することによって、化合物(1)を担持させた多孔質支持体を調製する。また酵素を水性溶媒に溶解した酵素溶液を調製する。そして、化合物(1)を担持させた多孔質支持体に、酵素溶液を含浸させる。含浸方法としては、酵素溶液を多孔質支持体に滴下してもよく、酵素溶液に多孔質支持体を浸漬してもよい。その後、加熱等して乾燥させることにより、化合物(1)と酵素を多孔質支持体に乾燥状態で担持させることができ、また、その際、含水率を制御することにより湿潤状態で担持させることもできる。また、例えば発色基質及び/又は発光基質などの他の成分を、上記化合物(1)溶液に添加し、又は、上記酵素溶液に添加しておいてもよく、これによりこれら他の成分を更に担持させてもよい。 More specifically, the compound (1) is obtained by preparing a solution of the compound (1) in which the compound (1) is dissolved in an aqueous solvent, impregnating the porous support with the solution, and drying the solution. Prepare a supported porous support. In addition, an enzyme solution in which the enzyme is dissolved in an aqueous solvent is prepared. Then, the porous support carrying the compound (1) is impregnated with the enzyme solution. As an impregnation method, the enzyme solution may be dropped onto the porous support, or the porous support may be immersed in the enzyme solution. After that, the compound (1) and the enzyme can be supported on the porous support in a dry state by drying by heating or the like, and at that time, the compound (1) and the enzyme can be supported in a wet state by controlling the water content. You can also. Further, other components such as a color-developing substrate and / or a luminescent substrate may be added to the compound (1) solution or added to the enzyme solution, whereby these other components are further supported. You may let me.

多孔質支持体に含浸させる酵素を含む液体(上記の混合溶液、酵素溶液)において、酵素の濃度は特に限定されず、例えば、下限は、1μg/mL以上でもよく、10μg/mL以上でもよく、20μg/mL以上でもよく、30μg/mL以上でもよい。また、上限は、2000μg/mL以下でもよく、1000μg/mL以下でもよく、500μg/mL以下でもよい。 In the liquid containing the enzyme to be impregnated in the porous support (the above mixed solution, the enzyme solution), the concentration of the enzyme is not particularly limited, and for example, the lower limit may be 1 μg / mL or more, or 10 μg / mL or more. It may be 20 μg / mL or more, or 30 μg / mL or more. The upper limit may be 2000 μg / mL or less, 1000 μg / mL or less, or 500 μg / mL or less.

多孔質支持体に含浸させる化合物(1)を含む液体(上記の混合溶液、化合物(1)溶液)において、化合物(1)の濃度は特に限定されず、例えば、下限は、0.001g/L以上でもよく、0.1g/L以上でもよく、1g/L以上でもよく、5g/L以上でもよく、10g/L以上でもよい。また、上限は、500g/L以下でもよく、400g/L以下でもよく、300g/L以下でもよく、200g/L以下でもよく、100g/L以下でもよい。 In the liquid containing the compound (1) to be impregnated in the porous support (the above mixed solution, the solution of the compound (1)), the concentration of the compound (1) is not particularly limited, and for example, the lower limit is 0.001 g / L. It may be 0.1 g / L or more, 1 g / L or more, 5 g / L or more, or 10 g / L or more. The upper limit may be 500 g / L or less, 400 g / L or less, 300 g / L or less, 200 g / L or less, or 100 g / L or less.

上記の混合溶液、化合物(1)溶液又は酵素溶液に発色基質及び/又は発光基質を添加する場合、発色基質及び/又は発光基質の濃度は特に限定されず、例えば、下限は、0.001μg/mL以上でもよく、0.01μg/mL以上でもよい。また、上限は、10μg/mL以下でもよく、100μg/mL以下でもよい。 When a color-developing substrate and / or a luminescent substrate is added to the above mixed solution, compound (1) solution or enzyme solution, the concentration of the chromogenic substrate and / or luminescent substrate is not particularly limited, and for example, the lower limit is 0.001 μg /. It may be mL or more, and may be 0.01 μg / mL or more. The upper limit may be 10 μg / mL or less, or 100 μg / mL or less.

[用途]
本実施形態に係るデバイスの用途は、特に限定されないが、検体分析用デバイスとして用いることが好ましい。例えば、唾液、涙、汗、尿や血液などの生体試料(好ましくは液状の生体試料)を検体として、該検体に含まれる特定の物質の検出や定量などの分析を行うためのデバイスとして用いることができる。
[Use]
The use of the device according to this embodiment is not particularly limited, but it is preferably used as a sample analysis device. For example, using a biological sample such as saliva, tears, sweat, urine or blood (preferably a liquid biological sample) as a sample, and using it as a device for performing analysis such as detection and quantification of a specific substance contained in the sample. Can be done.

その場合、当該デバイスを用いて酵素反応をさせる際に、生体試料とともに上記発色基質及び/又は発光基質を含む試料溶液を、デバイスに添加して分析を行うようにしてもよい。 In that case, when the enzyme reaction is carried out using the device, a sample solution containing the color-developing substrate and / or the luminescent substrate may be added to the device together with the biological sample for analysis.

以下、実施例により更に詳細に説明するが、本発明はこれによって制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

(使用試薬)
・リン酸水素二ナトリウム(富士フイルム和光純薬製、型番194−02875)
・リン酸二水素ナトリウム(富士フイルム和光純薬製、型番198−14505)
・3,3’−ジアミノベンジジン(DAB、東京化成工業製、型番D3756)
・3,3’−ジアミノベンジジン四塩酸塩(DAB塩酸塩、富士フイルム和光純薬製、型番343−00901)
・過酸化水素水(富士フイルム和光純薬製、型番081−04215)
・3−アミノ−9−エチルカルバゾール(AEC、富士フイルム和光純薬製、型番014−14752)
・D−(+)−グルコース(富士フイルム和光純薬製、型番047−31161)
・塩化コリン(富士フイルム和光純薬製、型番033−09812)
・尿酸(富士フイルム和光純薬製、型番217−01612)
・L−グルタミン酸ナトリウム(東京化成工業製、型番G0188)
・L−乳酸(富士フイルム和光純薬製、型番129−02666)
・D−(+)−ガラクトース(関東化学製、型番17001−30)
・牛血清アルブミン(BSA、シグマアルドリッチ製、型番A7030)
・トレハロース(富士フイルム和光純薬製、型番202−18452)
・α−シクロデキストリン(富士フイルム和光純薬製、型番033−08332)
(Reagent used)
-Disodium hydrogen phosphate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 194-02875)
-Sodium dihydrogen phosphate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 198-14505)
・ 3,3'-Diaminobenzidine (DAB, manufactured by Tokyo Chemical Industry, model number D3756)
3,3'-diaminobenzidine tetrachloride (DAB hydrochloride, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 343-0901)
-Hydrogen peroxide solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 081-04215)
3-Amino-9-ethylcarbazole (AEC, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 014-14752)
-D- (+)-Glucose (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 047-31161)
・ Choline chloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 033-09812)
-Uric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 217-01612)
-Sodium L-glutamate (manufactured by Tokyo Chemical Industry, model number G0188)
・ L-lactic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 129-02666)
-D- (+)-galactose (manufactured by Kanto Chemical Co., Inc., model number 17001-30)
-Bovine serum albumin (BSA, manufactured by Sigma-Aldrich, model number A7030)
・ Trehalose (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 202-18452)
-Α-Cyclodextrin (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 033-08332)

(使用酵素)
・西洋わさび由来ペルオキシダーゼ(HRP、富士フイルム和光純薬製、型番169−10791)
・グルコースオキシダーゼ(Aspergillus niger由来)(GOD、富士フイルム和光純薬製、型番074−02401)
・コリンオキシダーゼ(Alcaligenes sp.由来)(COD、富士フイルム和光純薬製、型番037−14401)
・ウリカーゼ(Candida sp.由来)(富士フイルム和光純薬製、型番218−00721)
・L−グルタミン酸オキシダーゼ(Streptomyces sp.由来)(シグマアルドリッチ製、型番G1924)
・乳酸オキシダーゼ(Aerococcus viridans由来)(LOX、シグマアルドリッチ製、型番L9795)
・ガラクトースオキシダーゼ(Dactylium dendroides由来)(シグマアルドリッチ製、型番G7907)
(Enzyme used)
・ Peroxidase derived from horseradish (HRP, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 169-10791)
-Glucose oxidase (derived from Aspergillus niger) (GOD, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 074-02401)
-Choline oxidase (derived from Alcaligenes sp.) (COD, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., model number 037-14401)
-Uricase (derived from Candida sp.) (Made by Fujifilm Wako Pure Chemical Industries, Ltd., model number 218-00721)
L-Glutamic acid oxidase (derived from Streptomyces sp.) (Manufactured by Sigma-Aldrich, model number G1924)
-Lactic acid oxidase (derived from Aerococcus viridans) (LOX, manufactured by Sigma-Aldrich, model number L9795)
-Galactose oxidase (derived from Dactylium derivatives) (manufactured by Sigma-Aldrich, model number G7907)

(ベタイン誘導体)
・ベタイン誘導体(ベタイン1〜5、Sベタイン1〜4):下記式に示す通りであり、これらは下記文献1〜3を参照して合成した。

Figure 2021136916
・文献1:K.Koumoto,H.Ochiai,N.Sugimoto,“Structural effect of synthetic zwitterionic cosolutes on the stability of DNA duplexes”,Tetrahedron,64,168−174(2008)
・文献2:Y.Nakagawa,S.Sehata,S.Fujii,H.Yamamoto,A.Tsuda,K.Koumoto,“Mechanistic study on the facilitation of enzymatic hydrolysis by α−glucosidase in the presence of betaine−type metabolite analogs”,Tetrahedron,70,5895−5903(2014)
・文献3:Y.Nakagawa,K.Takagi,R.Genjima,K.Koumoto,“Significance of anionic functional group in betaine−type metabolite analogs on the facilitation of enzyme reactions”,Bioprocess Biosys.Eng.,38,1811−1817(2015) (Betaine derivative)
-Betaine derivatives (betaines 1 to 5, S betaines 1 to 4): as shown in the following formulas, and these were synthesized with reference to the following documents 1 to 3.
Figure 2021136916
・ Reference 1: K.K. Koumoto, H. et al. Ochiai, N.M. Sugimoto, "Structural effect of zwitterionic cosolutes on the stability of DNA duplexes", Tetrahedron, 64, 168-174 (2008).
・ Reference 2: Y. Nakagawa, S.A. Shehata, S.M. Fujii, H.M. Yamamoto, A.M. Tsuda, K.K. Komoto, "Mechanistic study on the facilityation of electronics hydrorysis by α-glucosidase in the pressense of betaine-type
・ Reference 3: Y. Nakagawa, K.K. Takagi, R.M. Genjima, K. et al. Komoto, "Significance of anionic functional group in betaine-type metabolite analogs on the facilities. Eng. , 38, 1811-1817 (2015)

(N−オキシド誘導体)
・N−オキシド1〜5:下記式に示す通りであり、これらは下記文献4を参照して合成した。

Figure 2021136916
・文献4:T.Aoki,Y.Nakagawa,R.Genjima,K.Koumoto,“Structural effect of amine N−oxides on the facilitation of α−glucosidase−catalyzed hydrolysis reactions”,Bioprocess Biosys.Eng.,43,541−548(2020) (N-oxide derivative)
-N-oxides 1 to 5: as shown in the following formulas, which were synthesized with reference to the following document 4.
Figure 2021136916
・ Reference 4: T.I. Aoki, Y. Nakagawa, R.M. Genjima, K. et al. Komoto, "Structural effect of amine N-oxides on the facilityation of α-glucosidase-catalysis reactions", Biophases Biosys. Eng. , 43,541-548 (2020)

(第四級アンモニウム塩)
・アンモニウム塩1:テトラメチルアンモニウムクロリド(東京化成工業製、型番T0136)
・アンモニウム塩2:テトラエチルアンモニウムクロリド(東京化成工業製、型番T0095)
・アンモニウム塩3:テトラ−n−プロピルアンモニウムクロリド(東京化成工業製、型番T2106)
・アンモニウム塩4:テトラ−n−ブチルアンモニウムクロリド(東京化成工業製、型番T0055)
・アンモニウム塩5:テトラ−n−アミルアンモニウムクロリド(東京化成工業製、型番T1433)

Figure 2021136916
(Quaternary ammonium salt)
-Ammonium salt 1: Tetramethylammonium chloride (manufactured by Tokyo Chemical Industry, model number T0136)
-Ammonium salt 2: Tetraethylammonium chloride (manufactured by Tokyo Chemical Industry, model number T0905)
-Ammonium salt 3: Tetra-n-propylammonium chloride (manufactured by Tokyo Chemical Industry, model number T2106)
-Ammonium salt 4: Tetra-n-butylammonium chloride (manufactured by Tokyo Chemical Industry, model number T0055)
-Ammonium salt 5: Tetra-n-ammonium ammonium chloride (manufactured by Tokyo Chemical Industry, model number T1433)
Figure 2021136916

(多孔質支持体)
多孔質支持体として以下の6種類を使用した。
・濾紙(No.5B、40mmφ、桐山製作所製)
・綿織物(綿100%、手芸用)
・シリカゲル(メルク製、1.05554.0001、アルミニウムシート表面にシリカゲルの担体層を設けたもの)
・アルミナ(メルク製、1.05550.0001、アルミニウムシート表面に酸化アルミニウムの担体層を設けたもの)
多孔質支持体はそれぞれ切り取って用いた。濾紙は直径1.2cmの円形に切り取り、綿織物、シリカゲル、アルミナは1.3cm×1.3cmの正方形に切り取ったものを使用した。
(Porous support)
The following 6 types were used as the porous support.
・ Filter paper (No. 5B, 40 mmφ, manufactured by Kiriyama Glass Co., Ltd.)
・ Cotton fabric (100% cotton, for handicrafts)
-Silica gel (made by Merck, 1.05554.001, with a silica gel carrier layer provided on the surface of an aluminum sheet)
-Alumina (made by Merck, 1.05550.0001, with a carrier layer of aluminum oxide provided on the surface of the aluminum sheet)
Each of the porous supports was cut out and used. The filter paper was cut into a circle with a diameter of 1.2 cm, and the cotton fabric, silica gel, and alumina were cut into a square of 1.3 cm × 1.3 cm.

(使用機器)
・恒温乾燥機(WFO−500、EYELA東京理科器械製)
・色彩計(NR−12A、日本電色工業製)
(Used equipment)
・ Constant temperature dryer (WFO-500, manufactured by EYELA Tokyo University of Science)
・ Color meter (NR-12A, manufactured by Nippon Denshoku Industries)

(発色基質溶液)
・発色基質溶液(DAB):
2.6mgのDABを1000mMのベタイン4水溶液900μLで溶解させることでDAB保存溶液を調製した。実験では、DAB保存溶液のうち800μLを取り出し、3200μLの蒸留水で希釈し、100mMの過酸化水素水を400μL加え、発色基質溶液とした。
(Coloring substrate solution)
-Coloring substrate solution (DAB):
A DAB storage solution was prepared by dissolving 2.6 mg of DAB in 900 μL of 1000 mM betaine 4 aqueous solution. In the experiment, 800 μL of the DAB storage solution was taken out, diluted with 3200 μL of distilled water, and 400 μL of 100 mM hydrogen peroxide solution was added to prepare a color-developing substrate solution.

・発色基質溶液(DAB塩酸塩):
2.6mgのDAB塩酸塩を1000mMのベタイン4水溶液900μLで溶解させることでDAB塩酸塩保存溶液を調製した。実験では、DAB塩酸塩保存溶液のうち800μLを取り出し、3200μLの蒸留水で希釈し、100mMの過酸化水素水を400μL加え、発色基質溶液とした。
-Coloring substrate solution (DAB hydrochloride):
A DAB hydrochloride preservation solution was prepared by dissolving 2.6 mg of DAB hydrochloride in 900 μL of 1000 mM betaine 4 aqueous solution. In the experiment, 800 μL of the DAB hydrochloride storage solution was taken out, diluted with 3200 μL of distilled water, and 400 μL of 100 mM hydrochloric acid solution was added to prepare a color-developing substrate solution.

・発色基質溶液(AEC):
2.6mgのAECを1000mMのベタイン4水溶液900μLで溶解させることでAEC保存溶液を調製した。実験では、AEC保存溶液のうち800μLを取り出し、3200μLの蒸留水で希釈し、100mMの過酸化水素水を400μL加え、発色基質溶液とした。
-Coloring substrate solution (AEC):
An AEC storage solution was prepared by dissolving 2.6 mg of AEC in 900 μL of 1000 mM betaine 4 aqueous solution. In the experiment, 800 μL of the AEC storage solution was taken out, diluted with 3200 μL of distilled water, and 400 μL of 100 mM hydrogen peroxide solution was added to prepare a color-developing substrate solution.

・発色基質溶液(グルコース+DAB):
2.6mgのDABを1000mMのベタイン4水溶液900μLで溶解させることでDAB保存溶液を調製した。実験では、DAB保存溶液のうち800μLを取り出し、3200μLの蒸留水で希釈し、1000mMのD−(+)−グルコース水溶液を400μL加え、発色基質溶液とした。
-Coloring substrate solution (glucose + DAB):
A DAB storage solution was prepared by dissolving 2.6 mg of DAB in 900 μL of 1000 mM betaine 4 aqueous solution. In the experiment, 800 μL of the DAB storage solution was taken out, diluted with 3200 μL of distilled water, and 400 μL of a 1000 mM D- (+)-glucose aqueous solution was added to prepare a color-developing substrate solution.

・発色基質溶液(塩化コリン+DAB):
2.6mgのDABを1000mMのベタイン4水溶液900μLで溶解させることでDAB保存溶液を調製した。実験では、DAB保存溶液のうち800μLを取り出し、3200μLの蒸留水で希釈し、1000mMの塩化コリン水溶液を400μL加え、発色基質溶液とした。
-Coloring substrate solution (choline chloride + DAB):
A DAB storage solution was prepared by dissolving 2.6 mg of DAB in 900 μL of 1000 mM betaine 4 aqueous solution. In the experiment, 800 μL of the DAB storage solution was taken out, diluted with 3200 μL of distilled water, and 400 μL of a 1000 mM choline chloride aqueous solution was added to prepare a color-developing substrate solution.

・発色基質溶液(尿酸+DAB):
2.6mgのDABを1000mMのベタイン4水溶液900μLで溶解させることでDAB保存溶液を調製した。実験では、DAB保存溶液のうち800μLを取り出し、3200μLの蒸留水で希釈し、10mMの尿酸水溶液を400μL加え、発色基質溶液とした。
-Coloring substrate solution (uric acid + DAB):
A DAB storage solution was prepared by dissolving 2.6 mg of DAB in 900 μL of 1000 mM betaine 4 aqueous solution. In the experiment, 800 μL of the DAB storage solution was taken out, diluted with 3200 μL of distilled water, and 400 μL of a 10 mM uric acid aqueous solution was added to prepare a color-developing substrate solution.

・発色基質溶液(L−グルタミン酸+DAB):
2.6mgのDABを1000mMのベタイン4水溶液900μLで溶解させることでDAB保存溶液を調製した。実験では、DAB保存溶液のうち800μLを取り出し、3200μLの蒸留水で希釈し、1000mMのL−グルタミン酸ナトリウム水溶液を400μL加え、発色基質溶液とした。
-Coloring substrate solution (L-glutamic acid + DAB):
A DAB storage solution was prepared by dissolving 2.6 mg of DAB in 900 μL of 1000 mM betaine 4 aqueous solution. In the experiment, 800 μL of the DAB storage solution was taken out, diluted with 3200 μL of distilled water, and 400 μL of a 1000 mM sodium L-glutamate aqueous solution was added to prepare a color-developing substrate solution.

・発色基質溶液(乳酸+DAB):
2.6mgのDABを1000mMのベタイン4水溶液900μLで溶解させることでDAB保存溶液を調製した。実験では、DAB保存溶液のうち800μLを取り出し、3200μLの蒸留水で希釈し、1000mMのL−乳酸水溶液を400μL加え、発色基質溶液とした。
-Coloring substrate solution (lactic acid + DAB):
A DAB storage solution was prepared by dissolving 2.6 mg of DAB in 900 μL of 1000 mM betaine 4 aqueous solution. In the experiment, 800 μL of the DAB storage solution was taken out, diluted with 3200 μL of distilled water, and 400 μL of a 1000 mM L-lactic acid aqueous solution was added to prepare a color-developing substrate solution.

・発色基質溶液(ガラクトース+DAB):
2.6mgのDABを1000mMのベタイン4水溶液900μLで溶解させることでDAB保存溶液を調製した。実験では、DAB保存溶液のうち800μLを取り出し、3200μLの蒸留水で希釈し、1000mMのD−(+)−ガラクトース水溶液を400μL加え、発色基質溶液とした。
-Coloring substrate solution (galactose + DAB):
A DAB storage solution was prepared by dissolving 2.6 mg of DAB in 900 μL of 1000 mM betaine 4 aqueous solution. In the experiment, 800 μL of the DAB storage solution was taken out, diluted with 3200 μL of distilled water, and 400 μL of a 1000 mM D- (+)-galactose aqueous solution was added to prepare a color-developing substrate solution.

<試験例1:ベタイン誘導体の効果1>
ベタイン誘導体を安定化剤として、それによる安定化効果を調べるために、下記実施例1〜5及び比較例1の実験を行った。多孔質支持体として濾紙を、酵素としてHRPを使用し、酵素活性測定では発色基質溶液(DAB)を用いた。この場合の酵素の反応機構は次式のとおりである。
HRP(基質:過酸化水素(H)):
HRP+DAB+H→HRP+DAB(酸化体)+H
<Test Example 1: Effect of betaine derivative 1>
In order to investigate the stabilizing effect of the betaine derivative as a stabilizer, the following experiments of Examples 1 to 5 and Comparative Example 1 were carried out. Filter paper was used as the porous support, HRP was used as the enzyme, and a color-developing substrate solution (DAB) was used for the enzyme activity measurement. The reaction mechanism of the enzyme in this case is as follows.
HRP (Substrate: Hydrogen peroxide (H 2 O 2 )):
HRP + DAB + H 2 O 2 → HRP + DAB (oxidizer) + H 2 O

リン酸緩衝液(pH7.0)とHRP水溶液とベタイン誘導体水溶液を混合することでHRP+ベタイン誘導体水溶液を得た。なお、リン酸緩衝液はリン酸水素二ナトリウムとリン酸二水素ナトリウムで調製した(以下同じ)。食品用ラップフィルムによりステージを作製した支持台を金属製の缶の内部に置き、濾紙を金属製の缶と直接接触しないようにステージ上に静置した。静置した濾紙にHRP+ベタイン誘導体水溶液を30μL滴下し、40℃で50分間恒温乾燥機内に静置し、酵素を担持した濾紙(酵素担持支持体)を作製した。作製直後の酵素担持支持体における担持された酵素の活性を評価した。酵素活性は、25℃の雰囲気下で、酵素担持支持体に発色基質溶液(DAB)を70μL滴下し、30秒後の彩度(C)を色彩計で測定し、評価した。実施例1〜5及び比較例1の酵素担持支持体の更なる詳細は以下のとおりである。 An aqueous solution of HRP + betaine derivative was obtained by mixing a phosphate buffer solution (pH 7.0), an aqueous solution of HRP and an aqueous solution of betaine derivative. The phosphate buffer was prepared with disodium hydrogen phosphate and sodium dihydrogen phosphate (the same applies hereinafter). A support base made of a food wrap film was placed inside a metal can, and the filter paper was allowed to stand on the stage so as not to come into direct contact with the metal can. 30 μL of an aqueous solution of HRP + betaine derivative was added dropwise to the allowed filter paper, and the mixture was allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare an enzyme-supported filter paper (enzyme-supported support). The activity of the supported enzyme in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (DAB) onto the enzyme-supported support under an atmosphere of 25 ° C., and measuring the saturation (C * ) after 30 seconds with a colorimeter. Further details of the enzyme-supported supports of Examples 1 to 5 and Comparative Example 1 are as follows.

[実施例1]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのベタイン4と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+ベタイン4水溶液を得た。このHRP+ベタイン4水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのベタイン4と0.0015mgのHRPを担持させた。
[Example 1]
These aqueous solutions were mixed so that 24.339 g / L betaine 4 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + betaine 4 aqueous solution. By dropping 30 μL of this HRP + betaine 4 aqueous solution onto the filter paper and drying it, 0.7302 mg of betaine 4 and 0.0015 mg of HRP were supported on the filter paper.

[実施例2]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのベタイン1と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+ベタイン1水溶液を得た。このHRP+ベタイン1水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのベタイン1と0.0015mgのHRPを担持させた。
[Example 2]
These aqueous solutions were mixed so that 24.339 g / L betaine 1 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain HRP + betaine 1 aqueous solution. By dropping 30 μL of this HRP + betaine 1 aqueous solution onto the filter paper and drying it, 0.7302 mg of betaine 1 and 0.0015 mg of HRP were supported on the filter paper.

[実施例3]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのベタイン2と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+ベタイン2水溶液を得た。このHRP+ベタイン2水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのベタイン2と0.0015mgのHRPを担持させた。
[Example 3]
These aqueous solutions were mixed so that 24.339 g / L betaine 2 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain HRP + betaine 2 aqueous solution. By dropping 30 μL of this HRP + betaine 2 aqueous solution onto the filter paper and drying it, 0.7302 mg of betaine 2 and 0.0015 mg of HRP were supported on the filter paper.

[実施例4]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのベタイン3と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+ベタイン3水溶液を得た。このHRP+ベタイン3水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのベタイン3と0.0015mgのHRPを担持させた。
[Example 4]
These aqueous solutions were mixed so that 24.339 g / L betaine 3 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + betaine 3 aqueous solution. By dropping 30 μL of this HRP + betaine 3 aqueous solution onto the filter paper and drying it, 0.7302 mg of betaine 3 and 0.0015 mg of HRP were supported on the filter paper.

[実施例5]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのベタイン5と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+ベタイン5水溶液を得た。このHRP+ベタイン5水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのベタイン5と0.0015mgのHRPを担持させた。
[Example 5]
These aqueous solutions were mixed so that 24.339 g / L betaine 5 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain HRP + betaine 5 aqueous solution. By dropping 30 μL of this HRP + betaine 5 aqueous solution onto the filter paper and drying it, 0.7302 mg of betaine 5 and 0.0015 mg of HRP were supported on the filter paper.

[比較例1](安定化剤を含まない酵素担持支持体)
100mMのリン酸緩衝溶液(pH7.0)中に50μg/mLのHRPが含まれるようにHRP水溶液を混合し、HRP水溶液を得た。このHRP水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.0015mgのHRPを担持させた。
[Comparative Example 1] (Enzyme-supported support containing no stabilizer)
An aqueous HRP solution was mixed so that 50 μg / mL of HRP was contained in a 100 mM phosphate buffer solution (pH 7.0) to obtain an aqueous HRP solution. By dropping 30 μL of this HRP aqueous solution onto the filter paper and drying it, 0.0015 mg of HRP was supported on the filter paper.

Figure 2021136916
Figure 2021136916

結果は、表1及び図1に示す通りである。安定化剤100質量部に対するHRPの質量部を一定とし、40℃で50分間恒温乾燥させた酵素担持支持体における担持された酵素(HRP)の活性を調べたところ、ベタイン4(非添加と比べ3.7倍)>ベタイン5(非添加と比べ3.3倍)>ベタイン3(非添加と比べ3.2倍)>ベタイン2(非添加と比べ2.3倍)>ベタイン1(非添加と比べ1.3倍)>ベタイン非添加の序列となった。酵素(HRP)の質量部は一定であることから、すべてのベタイン誘導体が多孔質支持体に担持された酵素の恒温乾燥による変性、失活を抑制する(安定化する)ことが示された。ベタイン3、4、5において安定化効果が高かったが、特に、ベタイン4でその効果が顕著であった。 The results are shown in Table 1 and FIG. When the activity of the supported enzyme (HRP) in the enzyme-supported support which was constantly dried at 40 ° C. for 50 minutes with the mass part of HRP constant with respect to 100 parts by mass of the stabilizer was examined, betaine 4 (compared to non-added) was examined. 3.7 times)> Betaine 5 (3.3 times compared to non-added)> Betaine 3 (3.2 times compared to non-added)> Betaine 2 (2.3 times compared to non-added)> Betaine 1 (non-added) Compared to 1.3 times)> Betaine-free order. Since the mass part of the enzyme (HRP) was constant, it was shown that all betaine derivatives suppress (stabilize) denaturation and inactivation of the enzyme supported on the porous support due to constant temperature drying. The stabilizing effect was high in betaines 3, 4, and 5, but the effect was particularly remarkable in betaine 4.

<試験例2:ベタイン誘導体の効果2>
ベタイン誘導体による安定化効果に及ぼす酵素の適した濃度を調べるために以下の実験を行った。多孔質支持体として濾紙を、酵素としてHRPを使用し、酵素活性測定では発色基質溶液(DAB)を用いた。濾紙に滴下するHRP+ベタイン4水溶液中のHRPの濃度を0〜400μg/mLの範囲で変化させたこと以外は試験例1と同様の方法により酵素担持支持体を作製し、その酵素活性を評価した。
<Test Example 2: Effect of betaine derivative 2>
The following experiments were carried out to investigate the suitable concentration of the enzyme on the stabilizing effect of the betaine derivative. Filter paper was used as the porous support, HRP was used as the enzyme, and a color-developing substrate solution (DAB) was used for the enzyme activity measurement. An enzyme-supported support was prepared by the same method as in Test Example 1 except that the concentration of HRP in the HRP + betaine 4 aqueous solution dropped on the filter paper was changed in the range of 0 to 400 μg / mL, and its enzyme activity was evaluated. ..

より詳細には、100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのベタイン4と0〜400μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+ベタイン4水溶液を得た。このHRP+ベタイン4水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのベタイン4と0〜0.012mgのHRPを共担持させた。また、比較のため、ベタイン4を添加せず、その他は同様にして、濾紙に0〜0.012mgのHRPを担持させた。 More specifically, these aqueous solutions are mixed so that 24.339 g / L betaine 4 and 0-400 μg / mL HRP are contained in 100 mM phosphate buffer (pH 7.0), and HRP + betaine 4 An aqueous solution was obtained. By dropping 30 μL of this HRP + betaine 4 aqueous solution onto the filter paper and drying it, 0.7302 mg of betaine 4 and 0 to 0.012 mg of HRP were co-supported on the filter paper. For comparison, betaine 4 was not added, and 0 to 0.012 mg of HRP was supported on the filter paper in the same manner for the others.

結果を図2に示す。ベタイン4非存在下ではHRPの添加濃度の増加に伴い、彩度が緩やかに上昇していき、200μg/mL以上の濃度で飽和挙動を示した。HRPの添加濃度が400μg/mLの時、彩度は21.6であった。 The results are shown in FIG. In the absence of betaine 4, the saturation gradually increased as the concentration of HRP added increased, and showed saturation behavior at a concentration of 200 μg / mL or more. When the HRP addition concentration was 400 μg / mL, the saturation was 21.6.

一方、ベタイン4を24.339g/Lの濃度で共担持させた酵素担持支持体の酵素活性は、HRPの添加濃度が数μg/mL付近から急激に彩度が上昇し、100μg/mL以上で20.6となり、その値は飽和した。この濃度以上では彩度に変化はなく、担持された失活していないHRPによって発色基質が完全に酸化されたものと考えられる。加えて、ベタイン4共担持条件下では、このHRPの添加濃度範囲において常に彩度が高かった。これは、共担持されたベタイン4が、酵素が失活される恒温乾燥操作を経てもHRPを失活させず、安定化し、活性を保持していることを示している。 On the other hand, the enzyme activity of the enzyme-supported support in which betaine 4 was co-supported at a concentration of 24.339 g / L rapidly increased in saturation from the concentration of HRP added around several μg / mL, and was 100 μg / mL or more. It became 20.6, and the value was saturated. Above this concentration, there was no change in saturation, and it is considered that the chromogenic substrate was completely oxidized by the supported, uninactivated HRP. In addition, under the betaine 4-co-supporting condition, the saturation was always high in this HRP addition concentration range. This indicates that the co-supported betaine 4 does not inactivate HRP, stabilizes it, and retains its activity even after undergoing a constant temperature drying operation in which the enzyme is inactivated.

<試験例3:ベタイン誘導体の効果3>
多孔質支持体に担持された酵素の安定化に及ぼすベタイン誘導体の適した濃度を調べるために以下の実験を行った。多孔質支持体として濾紙を、酵素としてHRPを、ベタイン誘導体として試験例1で安定化効果が高かったベタイン3、4、5を使用し、酵素活性測定では発色基質溶液(DAB)を用いた。濾紙に滴下するHRP+ベタイン3、4、5水溶液中のベタイン誘導体の濃度を0〜85.641g/Lの範囲で変化させたこと以外は試験例1と同様の方法により酵素担持支持体を作製し、その酵素活性を評価した。
<Test Example 3: Effect of betaine derivative 3>
The following experiments were performed to determine the suitable concentration of betaine derivative on the stabilization of the enzyme supported on the porous support. Filter paper was used as the porous support, HRP was used as the enzyme, betaines 3, 4, and 5 having a high stabilizing effect in Test Example 1 were used as the betaine derivative, and a color-developing substrate solution (DAB) was used for the enzyme activity measurement. An enzyme-supported support was prepared by the same method as in Test Example 1 except that the concentration of the betaine derivative in the HRP + betaine 3, 4, and 5 aqueous solutions dropped on the filter paper was changed in the range of 0 to 85.641 g / L. , The enzyme activity was evaluated.

より詳細には、100mMのリン酸緩衝液(pH7.0)中に0〜85.641g/Lのベタイン3、4、5と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+ベタイン誘導体水溶液を得た。このHRP+ベタイン誘導体水溶液を濾紙にそれぞれ30μL滴下し乾燥させることで、濾紙に0〜2.569mgのベタイン誘導体と0.0015mgのHRPを担持させた。 More specifically, these aqueous solutions are mixed so that 0 to 85.641 g / L betaine 3, 4, 5 and 50 μg / mL HRP are contained in 100 mM phosphate buffer (pH 7.0). , HRP + betaine derivative aqueous solution was obtained. By dropping 30 μL of this aqueous solution of HRP + betaine derivative onto the filter paper and drying it, 0 to 2.569 mg of the betaine derivative and 0.0015 mg of HRP were supported on the filter paper.

結果を図3に示す。ベタイン誘導体の構造の違いに伴って彩度が最大となる添加濃度に差異が生じることが示された。ベタイン3では60.393g/L(濾紙上にベタイン3は1.812mg担持されている)で最大となり、ベタイン4では24.339g/L(濾紙上にベタイン4は0.7302mg担持されている)、ベタイン5では5.709g/L(濾紙上にベタイン5は0.1713mg担持されている)で彩度が最大となった。すなわち、ベタイン誘導体を安定化剤として用いる場合は、誘導体ごとに適した添加濃度範囲に調べ、設定することが好ましい。なお、添加濃度を変化させたとしても、ベタイン3、5においてベタイン4の最大彩度を超えることはなかった。 The results are shown in FIG. It was shown that the addition concentration at which the saturation is maximized differs with the difference in the structure of the betaine derivative. Betaine 3 has a maximum of 60.393 g / L (1.812 mg of betaine 3 is supported on the filter paper), and betaine 4 has 24.339 g / L (0.7302 mg of betaine 4 is supported on the filter paper). , Betaine 5 had the maximum saturation at 5.709 g / L (0.1713 mg of betaine 5 was supported on the filter paper). That is, when a betaine derivative is used as a stabilizer, it is preferable to investigate and set an addition concentration range suitable for each derivative. Even if the addition concentration was changed, the maximum saturation of betaine 4 was not exceeded in betaines 3 and 5.

<試験例4:種々の安定化剤の効果>
多孔質支持体に担持された酵素に対するベタイン誘導体による安定化効果の優位性を調べるために以下の実験を行った。多孔質支持体として濾紙を、酵素としてHRPを使用し、酵素活性測定では発色基質溶液(DAB)を用いた。安定化剤として、Sベタイン誘導体(Sベタイン1〜4)、N−オキシド誘導体(N−オキシド1〜5)、第四級アンモニウム塩(アンモニウム塩1〜5)、その他の安定化剤(BSA、トレハロース、α−シクロデキストリン)を使用した。ベタイン誘導体を、Sベタイン誘導体(表2)、N−オキシド誘導体(表3)、第四級アンモニウム塩(表4)、その他の安定化剤(表5)に変えたこと以外は試験例1と同様の方法によって酵素担持支持体を作製し、その酵素活性を評価した。
<Test Example 4: Effect of various stabilizers>
The following experiments were conducted to investigate the superiority of the stabilizing effect of the betaine derivative on the enzyme supported on the porous support. Filter paper was used as the porous support, HRP was used as the enzyme, and a color-developing substrate solution (DAB) was used for the enzyme activity measurement. As stabilizers, S betaine derivatives (S betaines 1 to 4), N-oxide derivatives (N-oxides 1 to 5), quaternary ammonium salts (ammonium salts 1 to 5), and other stabilizers (BSA, Trehalose, α-cyclodextrin) was used. Test Example 1 except that the betaine derivative was changed to an S betaine derivative (Table 2), an N-oxide derivative (Table 3), a quaternary ammonium salt (Table 4), and other stabilizers (Table 5). An enzyme-bearing support was prepared by the same method, and its enzyme activity was evaluated.

まず、Sベタイン誘導体による検討結果として下記実施例6〜9について説明する。 First, Examples 6 to 9 below will be described as the results of the study using the S betaine derivative.

[実施例6]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのSベタイン1と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+Sベタイン1水溶液を得た。このHRP+Sベタイン1水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのSベタイン1と0.0015mgのHRPを担持させた。
[Example 6]
These aqueous solutions were mixed so that 24.339 g / L of S betaine 1 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain 1 aqueous solution of HRP + S betaine. By dropping 30 μL of this HRP + S betaine 1 aqueous solution onto the filter paper and drying it, 0.7302 mg of S betaine 1 and 0.0015 mg of HRP were supported on the filter paper.

[実施例7]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのSベタイン2と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+Sベタイン2水溶液を得た。このHRP+Sベタイン2水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのSベタイン2と0.0015mgのHRPを担持させた。
[Example 7]
These aqueous solutions were mixed so that 24.339 g / L of S betaine 2 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + S betaine 2 aqueous solution. By dropping 30 μL of this HRP + S betaine 2 aqueous solution onto the filter paper and drying it, 0.7302 mg of S betaine 2 and 0.0015 mg of HRP were supported on the filter paper.

[実施例8]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのSベタイン3と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+Sベタイン3水溶液を得た。このHRP+Sベタイン3水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのSベタイン3と0.0015mgのHRPを担持させた。
[Example 8]
These aqueous solutions were mixed so that 24.339 g / L of S betaine 3 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + S betaine 3 aqueous solution. By dropping 30 μL of this HRP + S betaine 3 aqueous solution onto the filter paper and drying it, 0.7302 mg of S betaine 3 and 0.0015 mg of HRP were supported on the filter paper.

[実施例9]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのSベタイン4と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+Sベタイン4水溶液を得た。このHRP+Sベタイン4水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのSベタイン4と0.0015mgのHRPを担持させた。
[Example 9]
These aqueous solutions were mixed so that 24.339 g / L of S betaine 4 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + S betaine 4 aqueous solution. By dropping 30 μL of this HRP + S betaine 4 aqueous solution onto the filter paper and drying it, 0.7302 mg of S betaine 4 and 0.0015 mg of HRP were supported on the filter paper.

Figure 2021136916
Figure 2021136916

結果は表2及び図4に示す通りであり、ベタイン誘導体の代わりにSベタイン誘導体を同量の質量部で濾紙に共担持したHRPの活性を調べたところ、ベタイン4(非添加と比べ3.7倍)>Sベタイン3(非添加と比べ3.3倍)>Sベタイン4(非添加と比べ3.3倍)>Sベタイン2(非添加と比べ1.3倍)>Sベタイン1(非添加と比べ1.1倍)の序列になった。Sベタイン3、4でその効果は高かったが、ベタイン4が最高であった。 The results are shown in Table 2 and FIG. 4. When the activity of HRP in which the S betaine derivative was co-supported on the filter paper in the same amount by mass instead of the betaine derivative was examined, betaine 4 (compared to the non-additive) 3. 7 times)> S betaine 3 (3.3 times compared to non-added)> S betaine 4 (3.3 times compared to non-added)> S betaine 2 (1.3 times compared to non-added)> S betaine 1 ( The order was 1.1 times that of non-additive. The effect was high with S betaines 3 and 4, but betaine 4 was the best.

次に、N−オキシド誘導体による検討結果として下記実施例10〜14について説明する。 Next, Examples 10 to 14 below will be described as the results of the study using the N-oxide derivative.

[実施例10]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのN−オキシド1と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+N−オキシド1水溶液を得た。このHRP+N−オキシド1水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのN−オキシド1と0.0015mgのHRPを担持させた。
[Example 10]
These aqueous solutions were mixed so that 24.339 g / L of N-oxide 1 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + N-oxide 1 aqueous solution. .. By dropping 30 μL of this HRP + N-oxide 1 aqueous solution onto the filter paper and drying it, 0.7302 mg of N-oxide 1 and 0.0015 mg of HRP were supported on the filter paper.

[実施例11]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのN−オキシド2と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+N−オキシド2水溶液を得た。このHRP+N−オキシド2水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのN−オキシド2と0.0015mgのHRPを担持させた。
[Example 11]
These aqueous solutions were mixed so that 24.339 g / L of N-oxide 2 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + N-oxide 2 aqueous solution. .. By dropping 30 μL of this HRP + N-oxide 2 aqueous solution onto the filter paper and drying it, 0.7302 mg of N-oxide 2 and 0.0015 mg of HRP were supported on the filter paper.

[実施例12]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのN−オキシド3と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+N−オキシド3水溶液を得た。このHRP+N−オキシド3水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのN−オキシド3と0.0015mgのHRPを担持させた。
[Example 12]
These aqueous solutions were mixed so that 24.339 g / L of N-oxide 3 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + N-oxide 3 aqueous solution. .. By dropping 30 μL of this HRP + N-oxide 3 aqueous solution onto the filter paper and drying it, 0.7302 mg of N-oxide 3 and 0.0015 mg of HRP were supported on the filter paper.

[実施例13]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのN−オキシド4と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+N−オキシド4水溶液を得た。このHRP+N−オキシド4水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのN−オキシド4と0.0015mgのHRPを担持させた。
[Example 13]
These aqueous solutions were mixed so that 24.339 g / L of N-oxide 4 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + N-oxide 4 aqueous solution. .. By dropping 30 μL of this HRP + N-oxide 4 aqueous solution onto the filter paper and drying it, 0.7302 mg of N-oxide 4 and 0.0015 mg of HRP were supported on the filter paper.

[実施例14]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのN−オキシド5と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+N−オキシド5水溶液を得た。このHRP+N−オキシド5水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのN−オキシド5と0.0015mgのHRPを担持させた。
[Example 14]
These aqueous solutions were mixed so that 24.339 g / L of N-oxide 5 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + N-oxide 5 aqueous solution. .. By dropping 30 μL of this HRP + N-oxide 5 aqueous solution onto the filter paper and drying it, 0.7302 mg of N-oxide 5 and 0.0015 mg of HRP were supported on the filter paper.

Figure 2021136916
Figure 2021136916

結果は表3及び図5に示す通りであり、ベタイン誘導体の代わりにN−オキシド誘導体を同量の質量部で濾紙に共担持したHRPの活性を調べたところ、ベタイン4(非添加と比べ3.7倍)>N−オキシド5(非添加と比べ3.2倍)>N−オキシド4(非添加と比べ3.1倍)>N−オキシド3(非添加と比べ3.0倍)>N−オキシド2(非添加と比べ1.9倍)>N−オキシド1(非添加と比べ1.1倍)の序列になった。N−オキシド3、4、5でその効果は高かったが、ベタイン4が最高であった。また、N−オキシド3、4、5の彩度はSベタイン3、4の彩度より少し低い値を示した。 The results are shown in Table 3 and FIG. 5. When the activity of HRP in which an N-oxide derivative was co-supported on the filter paper in the same amount by mass instead of the betaine derivative was examined, betaine 4 (3 compared to non-added) was examined. .7 times)> N-oxide 5 (3.2 times compared to non-added)> N-oxide 4 (3.1 times compared to non-added)> N-oxide 3 (3.0 times compared to non-added)> The order was N-oxide 2 (1.9 times compared to non-added)> N-oxide 1 (1.1 times compared to non-added). The effect was high with N-oxides 3, 4, and 5, but betaine 4 was the best. The saturation of N-oxides 3, 4 and 5 was slightly lower than that of S betaine 3, 4 and 4.

次に、第四級アンモニウム塩による検討結果として下記実施例15〜18及び参考例1について説明する。 Next, Examples 15 to 18 and Reference Example 1 below will be described as the results of the examination using the quaternary ammonium salt.

[実施例15]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのアンモニウム塩2と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+アンモニウム塩2水溶液を得た。このHRP+アンモニウム塩2水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのアンモニウム塩2と0.0015mgのHRPを担持させた。
[Example 15]
These aqueous solutions were mixed so that 24.339 g / L ammonium salt 2 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain 2 aqueous solutions of HRP + ammonium salt. By dropping 30 μL of this HRP + ammonium salt 2 aqueous solution onto the filter paper and drying it, 0.7302 mg of ammonium salt 2 and 0.0015 mg of HRP were supported on the filter paper.

[実施例16]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのアンモニウム塩3と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+アンモニウム塩3水溶液を得た。このHRP+アンモニウム塩3水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのアンモニウム塩3と0.0015mgのHRPを担持させた。
[Example 16]
These aqueous solutions were mixed so that 24.339 g / L ammonium salt 3 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain 3 aqueous solutions of HRP + ammonium salt. By dropping 30 μL of this HRP + ammonium salt 3 aqueous solution onto the filter paper and drying it, 0.7302 mg of ammonium salt 3 and 0.0015 mg of HRP were supported on the filter paper.

[実施例17]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのアンモニウム塩4と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+アンモニウム塩4水溶液を得た。このHRP+アンモニウム塩4水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのアンモニウム塩4と0.0015mgのHRPを担持させた。
[Example 17]
These aqueous solutions were mixed so that 24.339 g / L ammonium salt 4 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain HRP + ammonium salt 4 aqueous solution. By dropping 30 μL of this HRP + ammonium salt 4 aqueous solution onto the filter paper and drying it, 0.7302 mg of ammonium salt 4 and 0.0015 mg of HRP were supported on the filter paper.

[実施例18]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのアンモニウム塩5と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+アンモニウム塩5水溶液を得た。このHRP+アンモニウム塩5水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのアンモニウム塩5と0.0015mgのHRPを担持させた。
[Example 18]
These aqueous solutions were mixed so that 24.339 g / L ammonium salt 5 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain 5 aqueous solutions of HRP + ammonium salt. By dropping 30 μL of this HRP + ammonium salt 5 aqueous solution onto the filter paper and drying it, 0.7302 mg of ammonium salt 5 and 0.0015 mg of HRP were supported on the filter paper.

[参考例1]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのアンモニウム塩1と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+アンモニウム塩1水溶液を得た。このHRP+アンモニウム塩1水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのアンモニウム塩1と0.0015mgのHRPを担持させた。
[Reference example 1]
These aqueous solutions were mixed so that 24.339 g / L ammonium salt 1 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain 1 aqueous solution of HRP + ammonium salt. By dropping 30 μL of this HRP + ammonium salt 1 aqueous solution onto the filter paper and drying it, 0.7302 mg of ammonium salt 1 and 0.0015 mg of HRP were supported on the filter paper.

Figure 2021136916
Figure 2021136916

結果は表4及び図6に示す通りであり、ベタイン誘導体の代わりに第四級アンモニウム塩を同量の質量部で濾紙に共担持したHRPの活性を調べたところ、ベタイン4(非添加と比べ3.7倍)>アンモニウム塩3(非添加と比べ2.5倍)>アンモニウム塩4(非添加と比べ2.4倍)>アンモニウム塩5(非添加と比べ1.7倍)>アンモニウム塩2(非添加と比べ1.3倍)>アンモニウム塩1(非添加と比べ0.6倍)の序列になった。アンモニウム塩2、5でその効果が少しあり、アンモニウム塩3、4でその効果はやや高かったが、ベタイン4が最高であった。第四級アンモニウム塩は、Sベタイン誘導体、N−オキシド誘導体と比較して彩度の上昇(安定化効果)はかなり小さかった。 The results are shown in Table 4 and FIG. 6. When the activity of HRP in which a quaternary ammonium salt was co-supported on the filter paper in the same amount by mass instead of the betaine derivative was examined, betaine 4 (compared to non-added) was examined. 3.7 times)> Ammonium salt 3 (2.5 times compared to non-added)> Ammonium salt 4 (2.4 times compared to non-added)> Ammonium salt 5 (1.7 times compared to non-added)> Ammonium salt The order was 2 (1.3 times that of non-addition)> ammonium salt 1 (0.6 times that of no addition). Ammonium salts 2 and 5 had a slight effect, and ammonium salts 3 and 4 had a slightly higher effect, but betaine 4 was the highest. The increase in saturation (stabilizing effect) of the quaternary ammonium salt was considerably smaller than that of the S betaine derivative and the N-oxide derivative.

次に、その他の安定化剤による検討結果として下記比較例2〜4について説明する。 Next, Comparative Examples 2 to 4 below will be described as the results of examination using other stabilizers.

[比較例2]
100mMのリン酸緩衝液(pH7.0)中に24.339g/LのBSAと50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+BSA水溶液を得た。このHRP+BSA水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのBSAと0.0015mgのHRPを担持させた。
[Comparative Example 2]
These aqueous solutions were mixed so that 24.339 g / L BSA and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + BSA aqueous solution. By dropping 30 μL of this HRP + BSA aqueous solution onto the filter paper and drying it, 0.7302 mg of BSA and 0.0015 mg of HRP were supported on the filter paper.

[比較例3]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのトレハロースと50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+トレハロース水溶液を得た。このHRP+トレハロース水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのトレハロースと0.0015mgのHRPを担持させた。
[Comparative Example 3]
These aqueous solutions were mixed so that 24.339 g / L trehalose and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + trehalose aqueous solution. By dropping 30 μL of this HRP + trehalose aqueous solution onto the filter paper and drying it, 0.7302 mg of trehalose and 0.0015 mg of HRP were supported on the filter paper.

[比較例4]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのα−シクロデキストリンと50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+α−シクロデキストリン水溶液を得た。このHRP+α−シクロデキストリン水溶液を濾紙に30μL滴下し乾燥させることで、濾紙に0.7302mgのα−シクロデキストリンと0.0015mgのHRPを担持させた。
[Comparative Example 4]
These aqueous solutions were mixed so that 24.339 g / L α-cyclodextrin and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + α-cyclodextrin aqueous solution. .. By dropping 30 μL of this HRP + α-cyclodextrin aqueous solution onto the filter paper and drying it, 0.7302 mg of α-cyclodextrin and 0.0015 mg of HRP were supported on the filter paper.

Figure 2021136916
Figure 2021136916

結果は表5及び図7に示す通りであり、ベタイン誘導体の代わりにその他の安定化剤を同量の質量部で濾紙に共担持したHRPの活性を調べたところ、ベタイン4(非添加と比べ3.7倍)>BSA(非添加と比べ3.4倍)>α−シクロデキストリン(非添加と比べ2.3倍)>トレハロース(非添加と比べ0.8倍)の序列になった。BSAでその効果は高かったが、ベタイン4の方が高い値を示した。また、BSAの彩度は、ベタイン3、5、Sベタイン3、4と同程度であった。 The results are shown in Table 5 and FIG. 7. When the activity of HRP in which other stabilizers were co-supported on the filter paper in the same amount by mass instead of the betaine derivative was examined, betaine 4 (compared to non-added) was examined. The order was 3.7 times)> BSA (3.4 times compared to non-added)> α-cyclodextrin (2.3 times compared to non-added)> trehalose (0.8 times compared to non-added). The effect was high with BSA, but betaine 4 showed a higher value. The saturation of BSA was about the same as that of betaines 3, 5 and S betaines 3, 4.

以上の結果をまとめると、安定化剤としてベタイン4が最も高いHRPの安定化効果を示し、次いで、ベタイン3、5、Sベタイン3、4、BSA、さらにそれに次いで、N−オキシド3、4、5が効果を示すことが明らかとなった。 Summarizing the above results, betaine 4 as a stabilizer showed the highest stabilizing effect on HRP, followed by betaines 3, 5, S betaines 3, 4, BSA, and then N-oxides 3, 4, It became clear that 5 shows an effect.

<試験例5:Sベタイン誘導体の濃度検討>
ベタイン誘導体としてSベタイン3、4を用い、濾紙に滴下するHRP+Sベタイン誘導体水溶液中のSベタイン3、4の濃度を0〜153.74g/Lの範囲で変化させたこと以外は試験例1と同様の方法により酵素担持支持体を作製し、その酵素活性を評価した。
<Test Example 5: Examination of concentration of S betaine derivative>
Same as Test Example 1 except that S betaine 3 and 4 were used as the betaine derivative and the concentration of S betaine 3 and 4 in the aqueous solution of HRP + S betaine derivative dropped on the filter paper was changed in the range of 0 to 153.74 g / L. An enzyme-supported support was prepared by the above method, and its enzyme activity was evaluated.

より詳細には、100mMのリン酸緩衝液(pH7.0)中に0〜153.74g/LのSベタイン3、4と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+Sベタイン誘導体水溶液を得た。このHRP+Sベタイン誘導体水溶液を濾紙にそれぞれ30μL滴下し乾燥させることで、濾紙に0〜4.612mgのSベタイン誘導体と0.0015mgのHRPを担持させた。 More specifically, these aqueous solutions were mixed so that 0 to 153.74 g / L of S betaine 3, 4 and 50 μg / mL of HRP were contained in 100 mM phosphate buffer (pH 7.0). An aqueous solution of HRP + S betaine derivative was obtained. By dropping 30 μL of each of the HRP + S betaine derivative aqueous solution onto the filter paper and drying the filter paper, 0 to 4.612 mg of the S betaine derivative and 0.0015 mg of HRP were supported on the filter paper.

結果を図8に示す。Sベタイン誘導体の構造の違いに伴って彩度が最大となる添加濃度に差異が生じることが示された。Sベタイン3では79.623g/L(濾紙上にSベタイン3は2.389mg担持されている)で最大となり、Sベタイン4では30.749g/L(濾紙上にSベタイン4は0.922mg担持されている)で彩度が最大となった。すなわち、Sベタイン誘導体を安定化剤として用いる場合も、誘導体ごとに適した添加濃度範囲に調べ、設定することが好ましい。なお、添加濃度を変化させたとしても、Sベタイン3、4においてベタイン4の最大彩度を超えることはなかった。 The results are shown in FIG. It was shown that the addition concentration at which the saturation is maximized differs with the difference in the structure of the S betaine derivative. S betaine 3 had a maximum of 79.623 g / L (S betaine 3 was supported on the filter paper at 2.389 mg), and S betaine 4 had a maximum of 30.794 g / L (S betaine 4 was supported on the filter paper at 0.922 mg). The saturation was maximized. That is, even when the S betaine derivative is used as a stabilizer, it is preferable to check and set the addition concentration range suitable for each derivative. Even if the addition concentration was changed, the maximum saturation of betaine 4 was not exceeded in S betaines 3 and 4.

<試験例6:N−オキシド誘導体の濃度検討>
ベタイン誘導体の代わりにN−オキシド誘導体(N−オキシド3〜5)を用い、濾紙に滴下するHRP+N−オキシド誘導体水溶液中のN−オキシド3〜5の濃度を0〜79.635g/Lの範囲で変化させたこと以外は試験例1と同様の方法により酵素担持支持体を作製し、その酵素活性を評価した。
<Test Example 6: Examination of concentration of N-oxide derivative>
An N-oxide derivative (N-oxide 3 to 5) is used instead of the betaine derivative, and the concentration of N-oxide 3 to 5 in the HRP + N-oxide derivative aqueous solution dropped on the filter paper is in the range of 0 to 79.635 g / L. An enzyme-bearing support was prepared by the same method as in Test Example 1 except that it was changed, and its enzyme activity was evaluated.

より詳細には、100mMのリン酸緩衝液(pH7.0)中に0〜79.635g/LのN−オキシド3〜5と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+N−オキシド誘導体水溶液を得た。このHRP+N−オキシド誘導体水溶液を濾紙にそれぞれ30μL滴下し乾燥させることで、濾紙に0〜2.389mgのN−オキシド誘導体と0.0015mgのHRPを担持させた。 More specifically, these aqueous solutions are mixed so that 0-79.635 g / L of N-oxides 3-5 and 50 μg / mL of HRP are contained in 100 mM phosphate buffer (pH 7.0). , HRP + N-oxide derivative aqueous solution was obtained. By dropping 30 μL of each of the HRP + N-oxide derivative aqueous solution onto the filter paper and drying the filter paper, 0 to 2.389 mg of the N-oxide derivative and 0.0015 mg of HRP were supported on the filter paper.

結果を図9に示す。N−オキシド誘導体の構造の違いに伴って彩度が最大となる添加濃度に差異が生じることが示された。N−オキシド3では15.93g/L(濾紙上にN−オキシド3は0.478mg担持されている)で最大となり、N−オキシド4では20.14g/L(濾紙上にN−オキシド4は0.604mg担持されている)、N−オキシド5では24.34g/L(濾紙上にN−オキシド5は0.730mg担持されている)で彩度が最大となった。すなわち、N−オキシド誘導体を安定化剤として用いる場合も、誘導体ごとに適した添加濃度範囲に調べ、設定することが好ましい。なお、添加濃度を変化させたとしても、N−オキシド3、4、5においてベタイン4の最大彩度を超えることはなかった。 The results are shown in FIG. It was shown that the addition concentration at which the saturation is maximized differs with the difference in the structure of the N-oxide derivative. The maximum was 15.93 g / L for N-oxide 3 (0.478 mg of N-oxide 3 was carried on the filter paper), and 20.14 g / L for N-oxide 4 (N-oxide 4 was carried on the filter paper). The saturation was maximized at 24.34 g / L (0.730 mg of N-oxide 5 was carried on the filter paper) and 24.34 g / L of N-oxide 5 (0.604 mg was carried). That is, even when an N-oxide derivative is used as a stabilizer, it is preferable to check and set an addition concentration range suitable for each derivative. Even if the addition concentration was changed, the maximum saturation of betaine 4 was not exceeded in N-oxides 3, 4, and 5.

<試験例7:比較例(安定化剤の違いによる酵素担持支持体の特性評価)>
試験例4において、ベタイン誘導体以外で、BSAがベタイン4に次いで高いHRPの安定化効果を示した。しかし、BSAとベタイン誘導体を安定化剤として酵素担持支持体を作製すると、酵素担持支持体の特性に明らかな違いが現れる。そこで、作製された酵素担持支持体の性状の違いについて評価した。多孔質支持体として濾紙を、酵素としてHRPを、安定化剤としてベタイン4、BSAを使用した。評価する性状の違いとしては、発色基質溶液(DAB)の浸透速度、発色後の濾紙の色調の斑の2点である。
<Test Example 7: Comparative Example (Characteristic Evaluation of Enzyme-Supported Support by Difference in Stabilizer)>
In Test Example 4, BSA showed the highest HRP stabilizing effect next to betaine 4 other than betaine derivatives. However, when an enzyme-supported support is prepared using BSA and a betaine derivative as stabilizers, a clear difference appears in the characteristics of the enzyme-supported support. Therefore, the difference in the properties of the produced enzyme-supported support was evaluated. Filter paper was used as the porous support, HRP was used as the enzyme, and betaine 4 and BSA were used as the stabilizer. There are two differences in the properties to be evaluated: the permeation rate of the color-developing substrate solution (DAB) and the color unevenness of the filter paper after color development.

より詳細には、実施例1と同様の方法でHRPとベタイン4を共担持させた酵素担持支持体を、また比較例2と同様の方法でHRPとBSAを共担持させた酵素担持支持体をそれぞれ作製した。作製したそれぞれの支持体に発色基質溶液(DAB)を70μL滴下し、濾紙への発色基質溶液の浸透の様子を撮影した。滴下1秒後、2秒後の写真を図10に示す。また、発色基質溶液が濾紙へ浸透し終わるまでに要した時間を表6に示す。浸透し終わるまでに要した時間は、発色基質溶液が濾紙全体に行き渡るまでの時間と定義し、動画撮影してコマ送りから浸透時間を判定した。 More specifically, an enzyme-supported support in which HRP and betaine 4 are co-supported in the same manner as in Example 1 and an enzyme-supported support in which HRP and BSA are co-supported in the same manner as in Comparative Example 2 are used. Each was prepared. 70 μL of the color-developing substrate solution (DAB) was added dropwise to each of the prepared supports, and the state of permeation of the color-developing substrate solution into the filter paper was photographed. A photograph 1 second and 2 seconds after the dropping is shown in FIG. Table 6 shows the time required for the color-developing substrate solution to completely permeate the filter paper. The time required to complete the permeation was defined as the time required for the color-developing substrate solution to spread over the entire filter paper, and the permeation time was determined from frame advance by shooting a moving image.

また同時に、発色基質溶液の滴下30秒後の濾紙を撮影し、濾紙上の任意の56点を選び(図11の右側の画像参照)、画像を白黒(グレースケール)に変換後、Photoshop(Adobe製)のRGBの色調解析機能を使って各点の色調(RGB値、白黒のため3つの座標値はすべて同じ値を示す)をそれぞれ数値化した。得られた56点のRGB値の平均値と標準誤差を表6に示す。 At the same time, the filter paper 30 seconds after the dropping of the color-developing substrate solution is photographed, an arbitrary 56 points on the filter paper are selected (see the image on the right side of FIG. 11), the image is converted to black and white (grayscale), and then Photoshop (Adobe) The color tone of each point (RGB value, black and white, so all three coordinate values show the same value) was quantified using the RGB color tone analysis function of (manufactured by). Table 6 shows the average value and standard error of the obtained 56 RGB values.

Figure 2021136916
Figure 2021136916

図10より、HRPとBSAを共担持した酵素担持支持体では発色基質溶液が撥水され、2秒経っても浸透せずに液滴となって残存していることがわかる。一方、ベタイン4を共担持した酵素担持支持体では、滴下後1秒以内に溶液は濾紙全体へ浸透し、全体が均一に発色した。この浸透速度の違いは濾紙上での酵素による基質の発色反応で斑が生じる原因となった。 From FIG. 10, it can be seen that in the enzyme-supported support co-supporting HRP and BSA, the color-developing substrate solution was water-repellent and remained as droplets without penetrating even after 2 seconds. On the other hand, in the enzyme-supported support co-supporting betaine 4, the solution permeated the entire filter paper within 1 second after the dropping, and the whole was uniformly colored. This difference in permeation rate caused spots to occur in the color reaction of the substrate by the enzyme on the filter paper.

図11より、HRPとベタイン4を共担持した酵素担持支持体では全体が均一に染まっていることが見て取れるが、BSAを共担持した酵素担持支持体では発色していない部分が多く見られる。RGB値にすると、BSAを共担持した酵素担持支持体では発色斑に伴う白色由来の高い数値が多く含まれ、RGB値はベタイン4と比較して30も大きくなった。加えて、発色斑が顕著であるため、標準誤差も2倍になった。BSAは安定化剤としてやや劣るもののベタイン4とほぼ同等の安定化効果を持つが、浸透速度に問題があるため、検体分析用デバイスへ応用すると、発色斑の問題を生じる可能性が高い。つまり、デバイスへ応用した際の性能面でこれら2つの安定化剤には大きな差異があることがわかる。 From FIG. 11, it can be seen that the whole of the enzyme-supported support co-supporting HRP and betaine 4 is dyed uniformly, but many parts of the enzyme-supported support co-supporting BSA are not colored. In terms of RGB values, the enzyme-supported support co-supporting BSA contained many high values derived from white color associated with color development spots, and the RGB value was 30 higher than that of betaine 4. In addition, the standard error was doubled due to the remarkable coloration spots. Although BSA is slightly inferior as a stabilizer, it has a stabilizing effect almost equal to that of betaine 4, but has a problem of permeation rate. Therefore, when it is applied to a sample analysis device, it is highly likely that a problem of color spots will occur. In other words, it can be seen that there is a large difference between these two stabilizers in terms of performance when applied to a device.

<試験例8:多孔質支持体の影響>
ベタイン誘導体が示す多孔質支持体に担持された酵素の安定化に及ぼす多孔質支持体の影響について検討した。多孔質支持体として綿織物、シリカゲル、アルミナを、酵素としてHRPを、安定化剤としてベタイン4を使用した。多孔質支持体を濾紙から他の支持体に変えたこと以外は、試験例1と同様の方法によって下記実施例19〜21の酵素担持支持体を作製し、その酵素活性を評価した。なお、実施例19〜21では、いずれも、安定化剤であるベタイン4を非添加とし、その他は各実施例と同様にして作製した酵素担持支持体を、コントロールとして同様に彩度を測定した。
<Test Example 8: Effect of Porous Support>
The effect of the porous support on the stabilization of the enzyme supported on the porous support shown by the betaine derivative was investigated. Cotton fabric, silica gel, and alumina were used as the porous support, HRP was used as the enzyme, and betaine 4 was used as the stabilizer. The enzyme-supported supports of Examples 19 to 21 below were prepared by the same method as in Test Example 1 except that the porous support was changed from the filter paper to another support, and the enzyme activity thereof was evaluated. In each of Examples 19 to 21, the saturation was measured in the same manner as the enzyme-supported support prepared in the same manner as in each Example, in which betaine 4, which is a stabilizer, was not added. ..

[実施例19〜21]
100mMのリン酸緩衝液(pH7.0)中に24.339g/Lのベタイン4と50μg/mLのHRPが含まれるようにこれらの水溶液を混合して、HRP+ベタイン4水溶液を得た。このHRP+ベタイン4水溶液を多孔質支持体に30μL滴下し乾燥させることで、多孔質支持体には0.7302mgのベタイン4と0.0015mgのHRPを担持させた。
[Examples 19 to 21]
These aqueous solutions were mixed so that 24.339 g / L betaine 4 and 50 μg / mL HRP were contained in 100 mM phosphate buffer (pH 7.0) to obtain an HRP + betaine 4 aqueous solution. By dropping 30 μL of this HRP + betaine 4 aqueous solution onto the porous support and drying it, 0.7302 mg of betaine 4 and 0.0015 mg of HRP were supported on the porous support.

Figure 2021136916
Figure 2021136916

結果は表7に示すとおりである。表7において酵素活性の評価は、各多孔質支持体における安定化剤非添加の彩度に対する安定化剤添加時の彩度の比で示した(倍数表示)。様々な多孔質支持体にHRPとベタイン4を共担持させた酵素担持支持体を作製したところ、すべての支持体で彩度の上昇が確認された。多孔質支持体によって差はあるものの、ベタイン誘導体による安定化は濾紙以外の様々な多孔質支持体においても効果を発現する。 The results are shown in Table 7. In Table 7, the evaluation of the enzyme activity is shown by the ratio of the saturation when the stabilizer is added to the saturation when the stabilizer is not added in each porous support (multiple display). When enzyme-supported supports in which HRP and betaine 4 were co-supported on various porous supports were prepared, an increase in saturation was confirmed in all the supports. Stabilization with betaine derivatives also exerts its effect on various porous supports other than filter paper, although there are differences depending on the porous support.

<試験例9:酵素担持支持体の作製方法による影響>
酵素およびベタイン誘導体の多孔質支持体への担持方法による影響を調べた。多孔質支持体としては濾紙を、酵素としてHRPを、安定化剤としてはベタイン4を使用した。試験例1と同様の方法によってHRP+ベタイン4水溶液を得た。同じ濃度でHRPを含まないベタイン4水溶液、また、ベタイン4を含まないHRP水溶液もそれぞれ調製した。詳細は下記実施例22、23のとおりである。
<Test Example 9: Effect of method for producing enzyme-supported support>
The effect of the enzyme and betaine derivative on the porous support was investigated. Filter paper was used as the porous support, HRP was used as the enzyme, and betaine 4 was used as the stabilizer. An aqueous solution of HRP + betaine 4 was obtained by the same method as in Test Example 1. A betaine 4 aqueous solution containing no HRP and an HRP aqueous solution containing no betaine 4 at the same concentration were also prepared. Details are as shown in Examples 22 and 23 below.

[実施例22](酵素+ベタイン誘導体水溶液に多孔質支持体を浸漬し、酵素およびベタイン誘導体を担持させる)
多孔質支持体(濾紙)をHRP+ベタイン4水溶液(2.0mL)に30秒間浸漬した後、取り出し、40℃で50分間恒温乾燥機内に静置し、酵素担持支持体を作製した。作製直後の酵素担持支持体における酵素活性を評価した。酵素活性は、25℃で酵素担持支持体に調製した発色基質溶液(DAB)を70μL滴下し、30秒後の彩度(C)を色彩計で測定し、評価した。
[Example 22] (Immerse a porous support in an aqueous enzyme + betaine derivative solution to support the enzyme and betaine derivative)
The porous support (filter paper) was immersed in HRP + betaine 4 aqueous solution (2.0 mL) for 30 seconds, then taken out and allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare an enzyme-supported support. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (DAB) prepared on an enzyme-supported support at 25 ° C. and measuring the saturation (C * ) after 30 seconds with a colorimeter.

[実施例23](多孔質支持体にベタイン誘導体を担持後、酵素を担持させる)
多孔質支持体(濾紙)にベタイン4水溶液を30μL滴下し、40℃で50分間恒温乾燥機内に静置し、ベタイン4を担持した濾紙を作製した。その濾紙にHRP水溶液を30μL滴下し、さらに40℃で50分間恒温乾燥機内に静置し、酵素担持支持体を作製した。作製直後の酵素担持支持体における酵素活性を実施例22と同様に評価した。
[Example 23] (A betaine derivative is supported on a porous support, and then an enzyme is supported).
30 μL of an aqueous solution of betaine 4 was added dropwise to the porous support (filter paper), and the mixture was allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare a filter paper carrying betaine 4. 30 μL of the HRP aqueous solution was added dropwise to the filter paper, and the mixture was further allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare an enzyme-supported support. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated in the same manner as in Example 22.

Figure 2021136916
Figure 2021136916

結果を表8に示す。実施例1、22、23の評価結果より、多孔質支持体への酵素および安定化剤(ベタイン誘導体)の担持方法は、混合溶液の多孔質支持体への滴下であっても、混合溶液への多孔質支持体の浸漬であっても、さらに、ベタイン誘導体を担持した濾紙への酵素溶液の滴下であっても同様の結果が得られることが示された。このように、酵素はベタイン誘導体と同時、または、ベタイン誘導体の担持後に担持させても作製されたデバイスの機能に違いはない。 The results are shown in Table 8. From the evaluation results of Examples 1, 22 and 23, the method of supporting the enzyme and the stabilizer (betaine derivative) on the porous support is to the mixed solution even if the mixed solution is dropped onto the porous support. It was shown that the same result can be obtained by immersing the porous support of the above or by dropping the enzyme solution on the filter paper carrying the betaine derivative. As described above, there is no difference in the function of the prepared device even if the enzyme is supported at the same time as the betaine derivative or after the betaine derivative is supported.

<試験例10:発色基質の違いによる影響>
酵素担持支持体における酵素反応における発色基質溶液の違いが及ぼす影響について調べた。多孔質支持体として濾紙、安定化剤としてベタイン4、基質として発色基質溶液(DAB)の代わりに、発色基質溶液(DAB塩酸塩)、発色基質溶液(AEC)を使用した。詳細は下記実施例24、25のとおりである。
<Test Example 10: Effect of difference in color-developing substrate>
The effect of the difference in the color-developing substrate solution on the enzyme reaction in the enzyme-supported support was investigated. Filter paper was used as the porous support, betaine 4 was used as the stabilizer, and a color-developing substrate solution (DAB hydrochloride) and a color-developing substrate solution (AEC) were used instead of the color-developing substrate solution (DAB) as the substrate. Details are as shown in Examples 24 and 25 below.

[実施例24](発色基質溶液(DAB塩酸塩))
試験例1と同様の方法で酵素担持支持体を作製した。作製直後の酵素担持支持体における酵素活性を評価した。酵素活性は、25℃の雰囲気下で、酵素担持支持体に発色基質溶液(DAB塩酸塩)を70μL滴下し、30秒後の彩度(C)を色彩計で測定し、評価した。また、ベタイン4を含まない酵素担持支持体も参照として用意した。
[Example 24] (Coloring substrate solution (DAB hydrochloride))
An enzyme-supported support was prepared in the same manner as in Test Example 1. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (DAB hydrochloride) onto the enzyme-supported support under an atmosphere of 25 ° C., and measuring the saturation (C * ) after 30 seconds with a colorimeter. An enzyme-supported support containing no betaine 4 was also prepared as a reference.

[実施例25](発色基質溶液(AEC))
試験例1と同様の方法で酵素担持支持体を作製した。作製直後の酵素担持支持体における酵素活性を評価した。酵素活性は、25℃の雰囲気下で、酵素担持支持体に発色基質溶液(AEC)を70μL滴下し、30秒後の彩度(C)を色彩計で測定し、評価した。また、ベタイン4を含まない酵素担持支持体も参照として用意した。
[Example 25] (Coloring Substrate Solution (AEC))
An enzyme-supported support was prepared in the same manner as in Test Example 1. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (AEC) onto the enzyme-supported support under an atmosphere of 25 ° C., and measuring the saturation (C * ) after 30 seconds with a colorimeter. An enzyme-supported support containing no betaine 4 was also prepared as a reference.

Figure 2021136916
Figure 2021136916

結果は表9に示すとおりであり、発色基質溶液を変更しても、ベタイン誘導体によって、多孔質支持体に担持された酵素の変性、失活が抑制され、安定化効果が得られることが示された。 The results are shown in Table 9, and it is shown that even if the color-developing substrate solution is changed, the betaine derivative suppresses the denaturation and inactivation of the enzyme supported on the porous support, and a stabilizing effect can be obtained. Was done.

<試験例11:恒温保存に及ぼす影響>
作製した酵素担持支持体の保存安定性について評価した。多孔質支持体として濾紙を、安定化剤としてベタイン4を、酵素としてHRPを使用し、HRP水溶液の濃度を100μg/mLとし、酵素活性測定では発色基質溶液(DAB)を用いて、下記実施例26、比較例5、6を行った。
<Test Example 11: Effect on constant temperature storage>
The storage stability of the prepared enzyme-supported support was evaluated. Using filter paper as the porous support, betaine 4 as the stabilizer, HRP as the enzyme, the concentration of the HRP aqueous solution to 100 μg / mL, and the color-developing substrate solution (DAB) for the enzyme activity measurement, the following Examples 26, Comparative Examples 5 and 6 were performed.

[実施例26、比較例5、6]
酵素担持支持体は、HRP+ベタイン4水溶液におけるHRPの濃度を100μg/mLとした以外は実施例1と同様の方法で作製し、恒温乾燥直後から24時間恒温静置した際の活性の変化を調べた。恒温静置の温度は37℃とした。比較例5として、特許文献1において保存安定性の高いことが証明されているα−シクロデキストリンを選択し、比較例4と同様の方法で作製したものの活性変化を調べた。また、比較例6として、安定化剤を含まない酵素担持支持体も比較例1と同様の方法で作製し、その活性変化を調べた。
[Example 26, Comparative Examples 5 and 6]
The enzyme-supported support was prepared by the same method as in Example 1 except that the concentration of HRP in the HRP + betaine 4 aqueous solution was 100 μg / mL, and the change in activity when the enzyme was allowed to stand at a constant temperature for 24 hours immediately after drying at a constant temperature was examined. rice field. The constant temperature standing temperature was 37 ° C. As Comparative Example 5, α-cyclodextrin, which has been proved to have high storage stability in Patent Document 1, was selected, and the activity change of the one prepared by the same method as in Comparative Example 4 was examined. In addition, as Comparative Example 6, an enzyme-supported support containing no stabilizer was also prepared in the same manner as in Comparative Example 1, and its activity change was examined.

結果は図12に示すとおりであり、安定化剤を含まない比較例6の酵素担持支持体では、3日で完全に酵素活性が失われてしまった。HRPとα−シクロデキストリンを共担持した比較例5の酵素担持支持体では7日で86%の酵素活性が失われてしまった。一方、ベタイン4を共担持した実施例26の酵素担持支持体では7日経過しても67%の活性が残っていた。ベタイン4を共担持した実施例26の酵素担持支持体の7日後の彩度を、HRPとα−シクロデキストリンを共担持した比較例5の酵素担持支持体で酵素活性が保持される時間に換算すると、22時間となり、ベタイン4による安定化効果がきわめて高いことが実証されたこととなる。すなわち、ベタイン4は既存の安定化剤よりも高い安定化能力を持つことが示された。 The results are as shown in FIG. 12, and the enzyme-supported support of Comparative Example 6 containing no stabilizer completely lost the enzyme activity in 3 days. In the enzyme-supported support of Comparative Example 5 in which HRP and α-cyclodextrin were co-supported, 86% of the enzyme activity was lost in 7 days. On the other hand, in the enzyme-supported support of Example 26 co-supporting betaine 4, 67% of the activity remained even after 7 days. The saturation of the enzyme-supported support of Example 26 co-supporting betaine 4 after 7 days was converted into the time during which the enzyme activity was retained in the enzyme-supported support of Comparative Example 5 co-supporting HRP and α-cyclodextrin. Then, it became 22 hours, which proved that the stabilizing effect of betaine 4 was extremely high. That is, betaine 4 was shown to have a higher stabilizing ability than existing stabilizers.

<試験例12:複数の酵素を担持した酵素担持支持体>
検査に用いる酵素担持支持体では、一般に複数の酵素を担持し、様々な検体の検出を行っている。ベタイン誘導体が複数の酵素の担持にも有効に機能しうるか確かめるために、以下の実施例27〜32を行った。多孔質支持体として濾紙を、安定化剤としてベタイン4を、酵素としてHRP、GOD、COD、ウリカーゼ、L−グルタミン酸オキシダーゼ、LOX、ガラクトースオキシダーゼを使用した。なお、実施例27〜32では、いずれも、安定化剤であるベタイン4を非添加とし、その他は各実施例と同様にして作製した酵素担持支持体を、コントロールとして同様に彩度を測定した。
<Test Example 12: Enzyme-supported support supporting a plurality of enzymes>
The enzyme-supported support used for the test generally carries a plurality of enzymes and detects various samples. In order to confirm whether the betaine derivative can effectively function for supporting a plurality of enzymes, the following Examples 27 to 32 were carried out. Filter paper was used as the porous support, betaine 4 was used as the stabilizer, and HRP, GOD, COD, uricase, L-glutamate oxidase, LOX, and galactose oxidase were used as the enzymes. In each of Examples 27 to 32, betaine 4, which is a stabilizer, was not added, and the saturation of the enzyme-supported supports prepared in the same manner as in each of the other examples was measured in the same manner as a control. ..

[実施例27]
100mMのリン酸緩衝液(pH7.0)とHRP水溶液とGOD水溶液とベタイン4水溶液を混合することでHRP+GOD+ベタイン4水溶液を得た。その際、HRP+GOD+ベタイン4水溶液30μL中に含まれるベタイン4、HRP、GODの質量が表10に示すとおりとなるように混合した。食品用ラップフィルムによりステージを作製した支持台を金属製の缶の内部に置き、濾紙を金属製の缶と直接接触しないようにステージ上に静置した。静置した濾紙にHRP+GOD+ベタイン4水溶液を30μL滴下し、40℃で50分間恒温乾燥機内に静置し、HRPとGODを担持した濾紙(酵素担持支持体)を作製した。作製直後の酵素担持支持体における酵素活性を評価した。酵素活性は、25℃の雰囲気下で、酵素担持支持体に発色基質溶液(グルコース+DAB)を70μL滴下し、30秒後の彩度(C)を色彩計で測定し、評価した。
[Example 27]
HRP + GOD + betaine 4 aqueous solution was obtained by mixing 100 mM phosphate buffer (pH 7.0), HRP aqueous solution, GOD aqueous solution and betaine 4 aqueous solution. At that time, the masses of betaine 4, HRP, and GOD contained in 30 μL of the HRP + GOD + betaine 4 aqueous solution were mixed as shown in Table 10. A support base made of a food wrap film was placed inside a metal can, and the filter paper was allowed to stand on the stage so as not to come into direct contact with the metal can. 30 μL of an aqueous solution of HRP + GOD + betaine 4 was added dropwise to the standable filter paper, and the mixture was allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare a filter paper (enzyme-supported support) carrying HRP and GOD. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (glucose + DAB) onto the enzyme-supported support under an atmosphere of 25 ° C., and measuring the saturation (C * ) after 30 seconds with a colorimeter.

この場合の酵素の反応機構は次式のとおりである。
HRP+GOD(基質:グルコース):
GOD+グルコース→GOD+グルコン酸+H
HRP+DAB+H→HRP+DAB(酸化体)+H
The reaction mechanism of the enzyme in this case is as follows.
HRP + GOD (Substrate: Glucose):
GOD + glucose → GOD + gluconic acid + H 2 O 2
HRP + DAB + H 2 O 2 → HRP + DAB (oxidizer) + H 2 O

[実施例28]
100mMのリン酸緩衝液(pH7.0)とHRP水溶液とCOD水溶液とベタイン4水溶液を混合することでHRP+COD+ベタイン4水溶液を得た。その際、HRP+COD+ベタイン4水溶液30μL中に含まれるベタイン4、HRP、CODの質量が表10に示すとおりとなるように混合した。食品用ラップフィルムによりステージを作製した支持台を金属製の缶の内部に置き、濾紙を金属製の缶と直接接触しないようにステージ上に静置した。静置した濾紙にHRP+COD+ベタイン4水溶液を30μL滴下し、40℃で50分間恒温乾燥機内に静置し、HRPとCODを担持した濾紙(酵素担持支持体)を作製した。作製直後の酵素担持支持体における酵素活性を評価した。酵素活性は、25℃の雰囲気下で、酵素担持支持体に発色基質溶液(塩化コリン+DAB)を70μL滴下し、30秒後の彩度(C)を色彩計で測定し、評価した。
[Example 28]
HRP + COD + betaine 4 aqueous solution was obtained by mixing 100 mM phosphate buffer (pH 7.0), HRP aqueous solution, COD aqueous solution and betaine 4 aqueous solution. At that time, the masses of betaine 4, HRP, and COD contained in 30 μL of the HRP + COD + betaine 4 aqueous solution were mixed as shown in Table 10. A support base made of a food wrap film was placed inside a metal can, and the filter paper was allowed to stand on the stage so as not to come into direct contact with the metal can. 30 μL of an aqueous solution of HRP + COD + betaine 4 was added dropwise to the standable filter paper, and the mixture was allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare a filter paper (enzyme-supported support) carrying HRP and COD. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (choline chloride + DAB) onto the enzyme-supported support under an atmosphere of 25 ° C., and measuring the saturation (C * ) after 30 seconds with a colorimeter.

この場合の酵素の反応機構は次式のとおりである。
HRP+COD(基質:塩化コリン):
COD+塩化コリン→COD+グリシンベタイン+H
HRP+DAB+H→HRP+DAB(酸化体)+H
The reaction mechanism of the enzyme in this case is as follows.
HRP + COD (Substrate: Choline Chloride):
COD + choline chloride → COD + glycine betaine + H 2 O 2
HRP + DAB + H 2 O 2 → HRP + DAB (oxidizer) + H 2 O

[実施例29]
100mMのリン酸緩衝液(pH7.0)とHRP水溶液とウリカーゼ水溶液とベタイン4水溶液を混合することでHRP+ウリカーゼ+ベタイン4水溶液を得た。その際、HRP+ウリカーゼ+ベタイン4水溶液30μL中に含まれるベタイン4、HRP、ウリカーゼの質量が表10に示すとおりとなるように混合した。食品用ラップフィルムによりステージを作製した支持台を金属製の缶の内部に置き、濾紙を金属製の缶と直接接触しないようにステージ上に静置した。静置した濾紙にHRP+ウリカーゼ+ベタイン4水溶液を30μL滴下し、40℃で50分間恒温乾燥機内に静置し、HRPとウリカーゼを担持した濾紙(酵素担持支持体)を作製した。作製直後の酵素担持支持体における酵素活性を評価した。酵素活性は、25℃の雰囲気下で、酵素担持支持体に発色基質溶液(尿酸+DAB)を70μL滴下し、2時間後の彩度(C)を色彩計で測定し、評価した。
[Example 29]
HRP + uricase + betaine 4 aqueous solution was obtained by mixing 100 mM phosphate buffer (pH 7.0), HRP aqueous solution, uricase aqueous solution and betaine 4 aqueous solution. At that time, the masses of betaine 4, HRP, and uricase contained in 30 μL of the aqueous solution of HRP + uricase + betaine 4 were mixed as shown in Table 10. A support base made of a food wrap film was placed inside a metal can, and the filter paper was allowed to stand on the stage so as not to come into direct contact with the metal can. 30 μL of an aqueous solution of HRP + uricase + betaine 4 was added dropwise to the allowed filter paper, and the mixture was allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare a filter paper (enzyme-supported support) carrying HRP and uricase. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (uric acid + DAB) onto the enzyme-supported support in an atmosphere of 25 ° C. and measuring the saturation (C * ) after 2 hours with a colorimeter.

この場合の酵素の反応機構は次式のとおりである。
HRP+ウリカーゼ(基質:尿酸):
ウリカーゼ+尿酸→ウリカーゼ+アラントイン+H
HRP+DAB+H→HRP+DAB(酸化体)+H
The reaction mechanism of the enzyme in this case is as follows.
HRP + uricase (substrate: uric acid):
Uricase + uric acid → uricase + allantoin + H 2 O 2
HRP + DAB + H 2 O 2 → HRP + DAB (oxidizer) + H 2 O

[実施例30]
100mMのリン酸緩衝液(pH7.0)とHRP水溶液とL−グルタミン酸オキシダーゼ水溶液とベタイン4水溶液を混合することでHRP+L−グルタミン酸オキシダーゼ+ベタイン4水溶液を得た。その際、HRP+L−グルタミン酸オキシダーゼ+ベタイン4水溶液30μL中に含まれるベタイン4、HRP、L−グルタミン酸オキシダーゼの質量が表11に示すとおりとなるように混合した。食品用ラップフィルムによりステージを作製した支持台を金属製の缶の内部に置き、濾紙を金属製の缶と直接接触しないようにステージ上に静置した。静置した濾紙にHRP+L−グルタミン酸オキシダーゼ+ベタイン4水溶液を30μL滴下し、40℃で50分間恒温乾燥機内に静置し、HRPとL−グルタミン酸オキシダーゼを担持した濾紙(酵素担持支持体)を作製した。作製直後の酵素担持支持体における酵素活性を評価した。酵素活性は、25℃の雰囲気下で、酵素担持支持体に発色基質溶液(L−グルタミン酸ナトリウム+DAB)を70μL滴下し、2時間後の彩度(C)を色彩計で測定し、評価した。
[Example 30]
HRP + L-glutamate oxidase + betaine 4 aqueous solution was obtained by mixing 100 mM phosphate buffer (pH 7.0), HRP aqueous solution, L-glutamate oxidase aqueous solution and betaine 4 aqueous solution. At that time, the masses of betaine 4, HRP, and L-glutamate oxidase contained in 30 μL of the HRP + L-glutamate oxidase + betaine 4 aqueous solution were mixed as shown in Table 11. A support base made of a food wrap film was placed inside a metal can, and the filter paper was allowed to stand on the stage so as not to come into direct contact with the metal can. 30 μL of HRP + L-glutamate oxidase + betaine 4 aqueous solution was added dropwise to the allowed filter paper, and the mixture was allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare a filter paper (enzyme-supported support) carrying HRP and L-glutamate oxidase. .. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (sodium L-glutamate + DAB) onto the enzyme-supported support under an atmosphere of 25 ° C. and measuring the saturation (C * ) after 2 hours with a colorimeter. ..

この場合の酵素の反応機構は次式のとおりである。
HRP+L−グルタミン酸オキシダーゼ(基質:L−グルタミン酸ナトリウム):
L−グルタミン酸オキシダーゼ+L−グルタミン酸ナトリウム→L−グルタミン酸オキシダーゼ+2−オキソグルタル酸+H
HRP+DAB+H→HRP+DAB(酸化体)+H
The reaction mechanism of the enzyme in this case is as follows.
HRP + L-glutamate oxidase (substrate: sodium L-glutamate):
L-glutamate oxidase + sodium L-glutamate → L-glutamate oxidase + 2-oxoglutamate + H 2 O 2
HRP + DAB + H 2 O 2 → HRP + DAB (oxidizer) + H 2 O

[実施例31]
100mMのリン酸緩衝液(pH7.0)とHRP水溶液とLOX水溶液とベタイン4水溶液を混合することでHRP+LOX+ベタイン4水溶液を得た。その際、HRP+LOX+ベタイン4水溶液30μL中に含まれるベタイン4、HRP、LOXの質量が表11に示すとおりとなるように混合した。食品用ラップフィルムによりステージを作製した支持台を金属製の缶の内部に置き、濾紙を金属製の缶と直接接触しないようにステージ上に静置した。静置した濾紙にHRP+LOX+ベタイン4水溶液を30μL滴下し、40℃で50分間恒温乾燥機内に静置し、HRPとLOXを担持した濾紙(酵素担持支持体)を作製した。作製直後の酵素担持支持体における酵素活性を評価した。酵素活性は、25℃の雰囲気下で、酵素担持支持体に発色基質溶液(乳酸+DAB)を70μL滴下し、2時間後の彩度(C)を色彩計で測定し、評価した。
[Example 31]
HRP + LOX + betaine 4 aqueous solution was obtained by mixing 100 mM phosphate buffer (pH 7.0), HRP aqueous solution, LOX aqueous solution and betaine 4 aqueous solution. At that time, the masses of betaine 4, HRP, and LOX contained in 30 μL of the HRP + LOX + betaine 4 aqueous solution were mixed as shown in Table 11. A support base made of a food wrap film was placed inside a metal can, and the filter paper was allowed to stand on the stage so as not to come into direct contact with the metal can. 30 μL of an aqueous solution of HRP + LOX + betaine 4 was added dropwise to the standable filter paper, and the mixture was allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare a filter paper (enzyme-supported support) carrying HRP and LOX. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (lactic acid + DAB) onto the enzyme-supported support in an atmosphere of 25 ° C. and measuring the saturation (C * ) after 2 hours with a colorimeter.

この場合の酵素の反応機構は次式のとおりである。
HRP+LOX(基質:乳酸):
LOX+乳酸→LOX+ピルビン酸+H
HRP+DAB+H→HRP+DAB(酸化体)+H
The reaction mechanism of the enzyme in this case is as follows.
HRP + LOX (Substrate: Lactic acid):
LOX + lactic acid → LOX + pyruvic acid + H 2 O 2
HRP + DAB + H 2 O 2 → HRP + DAB (oxidizer) + H 2 O

[実施例32]
リン酸緩衝液(pH7.0)とHRP水溶液とガラクトースオキシダーゼ水溶液とベタイン4水溶液を混合することでHRP+ガラクトースオキシダーゼ+ベタイン4水溶液を得た。その際、HRP+ガラクトースオキシダーゼ+ベタイン4水溶液30μL中に含まれるベタイン4、HRP、ガラクトースオキシダーゼの質量が表11に示すとおりとなるように混合した。食品用ラップフィルムによりステージを作製した支持台を金属製の缶の内部に置き、濾紙を金属製の缶と直接接触しないようにステージ上に静置した。静置した濾紙にHRP+ガラクトースオキシダーゼ+ベタイン4水溶液を30μL滴下し、40℃で50分間恒温乾燥機内に静置し、HRPとガラクトースオキシダーゼを担持した濾紙(酵素担持支持体)を作製した。作製直後の酵素担持支持体における酵素活性を評価した。酵素活性は、25℃の雰囲気下で、酵素担持支持体に発色基質溶液(ガラクトース+DAB)を70μL滴下し、1時間後の彩度(C)を色彩計で測定し、評価した。
[Example 32]
HRP + galactose oxidase + betaine 4 aqueous solution was obtained by mixing phosphate buffer (pH 7.0), HRP aqueous solution, galactose oxidase aqueous solution and betaine 4 aqueous solution. At that time, the masses of betaine 4, HRP, and galactose oxidase contained in 30 μL of the aqueous solution of HRP + galactose oxidase + betaine 4 were mixed as shown in Table 11. A support base made of a food wrap film was placed inside a metal can, and the filter paper was allowed to stand on the stage so as not to come into direct contact with the metal can. 30 μL of HRP + galactose oxidase + betaine 4 aqueous solution was added dropwise to the allowed filter paper, and the mixture was allowed to stand in a constant temperature dryer at 40 ° C. for 50 minutes to prepare a filter paper (enzyme-supported support) carrying HRP and galactose oxidase. The enzyme activity in the enzyme-supported support immediately after preparation was evaluated. The enzyme activity was evaluated by dropping 70 μL of a color-developing substrate solution (galactose + DAB) onto the enzyme-supported support in an atmosphere of 25 ° C. and measuring the saturation (C * ) after 1 hour with a colorimeter.

この場合の酵素の反応機構は次式のとおりである。
HRP+ガラクトースオキシダーゼ(基質:ガラクトース):
ガラクトースオキシダーゼ+ガラクトース→ガラクトースオキシダーゼ+ガラクトン酸+H
HRP+DAB+H→HRP+DAB(酸化体)+H
The reaction mechanism of the enzyme in this case is as follows.
HRP + galactose oxidase (substrate: galactose):
Galactose oxidase + galactose → galactose oxidase + galactonic acid + H 2 O 2
HRP + DAB + H 2 O 2 → HRP + DAB (oxidizer) + H 2 O

Figure 2021136916
Figure 2021136916

Figure 2021136916
Figure 2021136916

表10及び表11より、複数の酵素を担持した酵素担持支持体においてもベタイン誘導体による安定化効果が確認された。HRP+GODの場合はベタイン誘導体非添加時と比較して1.63倍、HRP+CODの場合はベタイン誘導体非添加時と比較して2.55倍、HRP+ウリカーゼの場合はベタイン誘導体非添加時と比較して1.60倍、HRP+L−グルタミン酸オキシダーゼの場合はベタイン誘導体非添加時と比較して2.39倍、HRP+LOXの場合はベタイン誘導体非添加時と比較して1.29倍、HRP+ガラクトースオキシダーゼの場合はベタイン誘導体非添加時と比較して1.45倍となり、基質や反応機構が異なる様々な酵素の支持体への担持に対してベタイン誘導体が幅広く安定化効果を示すことが明らかになった。 From Tables 10 and 11, the stabilizing effect of the betaine derivative was confirmed even in the enzyme-supported support supporting a plurality of enzymes. In the case of HRP + GOD, 1.63 times as compared with the case where the betaine derivative was not added, in the case of HRP + COD, 2.55 times as compared with the case where the betaine derivative was not added, and in the case of HRP + uricase, as compared with the case where the betaine derivative was not added. 1.60 times, HRP + L-glutamate oxidase 2.39 times compared to when betaine derivative was not added, HRP + LOX 1.29 times compared to when betaine derivative was not added, HRP + galactose oxidase It was 1.45 times that when the betaine derivative was not added, and it was clarified that the betaine derivative has a wide stabilizing effect on the support of various enzymes having different substrates and reaction mechanisms.

<試験例13:酵素担持支持体に含まれる水の影響1>
検査に用いる酵素担持支持体では、混入する水分が酵素担持支持体の安定性に影響を及ぼす場合がある。酵素担持支持体に水が含まれた状態でも同様の安定化効果が働くか確かめるために、以下の実施例33〜39を行った。多孔質支持体として濾紙を、安定化剤としてベタイン4を、酵素としてHRPを使用した。
<Test Example 13: Effect of water contained in enzyme-supported support 1>
In the enzyme-supported support used for the test, the mixed water content may affect the stability of the enzyme-supported support. In order to confirm whether the same stabilizing effect works even when the enzyme-supported support contains water, the following Examples 33 to 39 were carried out. Filter paper was used as the porous support, betaine 4 was used as the stabilizer, and HRP was used as the enzyme.

まず、試験例1と同様の方法で、食品用ラップフィルムによりステージを作製した支持台を金属製の缶の内部に置き、濾紙を金属製の缶と直接接触しないようにステージ上に静置した。静置した濾紙にHRP+ベタイン4水溶液を100μL滴下し、温度40℃、相対湿度30%で0〜60分間恒温乾燥機内に静置し、時間変化に伴う濾紙の質量変化を測定した。 First, in the same manner as in Test Example 1, a support base on which a stage was made from a food wrap film was placed inside a metal can, and the filter paper was allowed to stand on the stage so as not to come into direct contact with the metal can. .. 100 μL of an aqueous solution of HRP + betaine 4 was added dropwise to the filter paper that had been allowed to stand, and the mixture was allowed to stand in a constant temperature dryer at a temperature of 40 ° C. and a relative humidity of 30% for 0 to 60 minutes, and the change in mass of the filter paper with time was measured.

結果は、図13に示す通りである。時間経過とともに水の蒸発に伴って質量は減少していき、40分以降で収束し、50分以降は一定値に収束した。試験例13で示す50分間の恒温静置では添加した水は蒸発してしまっていること、即ち含水率0質量%の乾燥状態にあることがわかる。 The results are as shown in FIG. With the passage of time, the mass decreased with the evaporation of water, converged after 40 minutes, and converged to a constant value after 50 minutes. It can be seen that the added water has evaporated in the constant temperature standing for 50 minutes shown in Test Example 13, that is, it is in a dry state with a water content of 0% by mass.

恒温静置時間を20分間(実施例33:含水率45質量%)、25分間(実施例34:含水率33質量%)、30分間(実施例35:含水率21質量%)、35分間(実施例36:含水率11質量%)、37分間(実施例37:含水率8質量%)、40分間(実施例38:含水率2質量%)、50分間(実施例39:含水率0質量%)に変え、湿潤した状態での濾紙の恒温安定性を評価した。含水率を制御した酵素担持支持体を調製後、密閉されて水分が外に漏れ出さないチャック付きポリ袋に封入し、25℃で24時間恒温乾燥機内に静置し、24時間後の酵素活性を試験例1と同様の方法により評価した。 Constant temperature standing time is 20 minutes (Example 33: moisture content 45% by mass), 25 minutes (Example 34: moisture content 33% by mass), 30 minutes (Example 35: moisture content 21% by mass), 35 minutes ( Example 36: Moisture content 11% by mass), 37 minutes (Example 37: Moisture content 8% by mass), 40 minutes (Example 38: Moisture content 2% by mass), 50 minutes (Example 39: Moisture content 0 mass) %), And the constant temperature stability of the filter paper in a wet state was evaluated. After preparing an enzyme-supported support with a controlled water content, it is sealed in a plastic bag with a chuck that is sealed so that water does not leak out, and is allowed to stand in a constant temperature dryer at 25 ° C. for 24 hours. Was evaluated by the same method as in Test Example 1.

結果は、表12に示す通りである。含水率が2〜45質量%の範囲で彩度には大きな差はなかった。また、これらの彩度は含水率0質量%のものと同程度の値であり、酵素担持支持体は乾燥状態でも湿潤状態でも本技術が適用できることが示された。 The results are as shown in Table 12. There was no significant difference in saturation in the range of 2 to 45% by mass of water content. Further, these saturation values were about the same as those having a water content of 0% by mass, and it was shown that the present technique can be applied to the enzyme-supported support in both a dry state and a wet state.

Figure 2021136916
Figure 2021136916

<試験例14:酵素担持支持体に含まれる水の影響2>
検査に用いる酵素担持支持体では、操作の簡便化を図るために担持後、再溶解しにくい発色、発光基質水溶液を含ませた湿潤状態で検査に供される場合も製品として想定される。発色、発光基質を添加し、酵素担持支持体に水が含まれた状態でも同様の安定化効果が働き、検査紙としての機能が発現するか確かめるために、以下の実施例40〜42を行った。多孔質支持体として濾紙を、安定化剤としてベタイン4を、酵素としてHRPを、発色基質としてDABを使用した。
<Test Example 14: Effect of water contained in enzyme-supported support 2>
In the enzyme-supported support used for the test, in order to simplify the operation, it is assumed that the product is supported and then subjected to the test in a wet state containing a color that is difficult to redissolve and an aqueous solution of a luminescent substrate. In order to confirm whether the same stabilizing effect works even when the enzyme-supported support contains water by adding a color-developing and luminescent substrate and the function as a test paper is exhibited, the following Examples 40 to 42 are performed. rice field. Filter paper was used as the porous support, betaine 4 was used as the stabilizer, HRP was used as the enzyme, and DAB was used as the color-developing substrate.

100mMのリン酸緩衝液(pH7.0)中に7.302g/Lのベタイン4と15μg/mLのHRPと157.489μg/mLのDABが含まれるようにこれらの水溶液を混合して、HRP+ベタイン4+DAB水溶液を得た。 These aqueous solutions are mixed so that 7.302 g / L betaine 4, 15 μg / mL HRP and 157.489 μg / mL DAB are contained in 100 mM phosphate buffer (pH 7.0), and HRP + betaine. A 4 + DAB aqueous solution was obtained.

ステージ上に静置した3枚の濾紙にHRP+ベタイン4+DAB水溶液をそれぞれ100μL滴下し、温度40℃、相対湿度30%で20分間(実施例40:含水率45質量%)、30分間(実施例41:含水率21質量%)、50分間(実施例42:含水率0質量%)、恒温乾燥機内にそれぞれの濾紙を静置し、発色基質を含む乾燥又は湿潤した状態の酵素担持支持体を作製した。含水率を制御した酵素担持支持体を調製後、密閉されて水分が外に漏れ出さないチャック付きポリ袋に封入し、25℃で24時間恒温乾燥機内に静置し、24時間後の酵素活性を評価した。 100 μL of each of HRP + betaine 4 + DAB aqueous solution was dropped onto three sheets of filter paper that had been allowed to stand on the stage, and the temperature was 40 ° C. and the relative humidity was 30% for 20 minutes (Example 40: moisture content 45% by mass) for 30 minutes (Example 41). : Moisture content 21% by mass), 50 minutes (Example 42: Moisture content 0% by mass), each filter paper is allowed to stand in a constant temperature dryer to prepare a dried or wet enzyme-supporting support containing a color-developing substrate. bottom. After preparing an enzyme-supported support with a controlled water content, it is sealed in a plastic bag with a chuck that is sealed so that water does not leak out, and is allowed to stand in a constant temperature dryer at 25 ° C. for 24 hours, and the enzyme activity after 24 hours. Was evaluated.

酵素活性は、25℃の雰囲気下で、酵素担持支持体に下記基質溶液を70μL滴下し、30秒後の彩度(C)を色彩計で測定し、評価した。基質溶液としては、9.0mMの過酸化水素水を用いた。 The enzyme activity was evaluated by dropping 70 μL of the following substrate solution onto the enzyme-supported support in an atmosphere of 25 ° C. and measuring the saturation (C * ) after 30 seconds with a colorimeter. As the substrate solution, a 9.0 mM hydrogen peroxide solution was used.

結果は、表13に示す通りである。含水率が0質量%と21質量%、45質量%で彩度には差はなかった。すなわち、発色基質を含み、湿潤状態の酵素担持支持体に対しても本技術が適用できることが示された。 The results are as shown in Table 13. The water content was 0% by mass, 21% by mass, and 45% by mass, and there was no difference in saturation. That is, it was shown that this technique can be applied to an enzyme-supported support that contains a color-developing substrate and is in a wet state.

Figure 2021136916
Figure 2021136916

Claims (7)

多孔質支持体に下記一般式(1)に示す化合物及び酵素が共担持されたデバイス。
Figure 2021136916
一般式(1)中、Yは、−(CH−X、−O、又は−Rを示し、
Yが−(CH−Xの場合、Xは、−COO又は−SO を示し、R〜Rは、同一又は異なって、炭素数1〜7の直鎖又は分岐状のアルキル基を示し、nは1〜5の整数を示し、
Yが−Oの場合、R〜Rは、同一又は異なって、炭素数1〜7の直鎖又は分岐状のアルキル基を示し、
Yが−Rの場合、R〜Rは、同一又は異なって、炭素数2〜7の直鎖又は分岐状のアルキル基を示し、ZはNの対イオンを示す。
A device in which a compound and an enzyme represented by the following general formula (1) are co-supported on a porous support.
Figure 2021136916
In the general formula (1), Y, - (CH 2) n -X -, -O -, or -R 4 Z - indicates,
For, X - - Y is - (CH 2) n -X is -COO - or -SO 3 - indicates, R 1 to R 3 are the same or different, straight-chain having 1 to 7 carbon atoms or Indicates a branched alkyl group, where n represents an integer of 1-5,
Y is -O - case, R 1 to R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 7 carbon atoms,
When Y is −R 4 Z , R 1 to R 4 represent the same or different linear or branched alkyl groups having 2 to 7 carbon atoms, and Z represents an N + counterion.
一般式(1)においてR〜Rの炭素数の合計が9〜15である、請求項1に記載のデバイス。 The device according to claim 1, wherein the total number of carbon atoms of R 1 to R 3 is 9 to 15 in the general formula (1). 前記多孔質支持体が紙、不織布、織物、編物、ケイ素化合物、及び金属酸化物からなる群から選択される少なくとも一つを含む、請求項1又は2に記載のデバイス。 The device according to claim 1 or 2, wherein the porous support comprises at least one selected from the group consisting of paper, non-woven fabric, woven fabric, knitted fabric, silicon compound, and metal oxide. 前記酵素が酸化還元酵素、転移酵素、加水分解酵素、付加脱離酵素、異性化酵素、合成酵素、及び輸送酵素からなる群から選択される少なくとも1種を含む、請求項1〜3のいずれか1項に記載のデバイス。 Any of claims 1 to 3, wherein the enzyme comprises at least one selected from the group consisting of oxidoreductases, transfer enzymes, hydrolase enzymes, desorption enzymes, isomerases, synthases, and transport enzymes. The device according to item 1. 一般式(1)に示す化合物及び酵素が乾燥状態又は湿潤状態で多孔質支持体に共担持されている、請求項1〜4のいずれか1項に記載のデバイス。 The device according to any one of claims 1 to 4, wherein the compound and enzyme represented by the general formula (1) are co-supported on a porous support in a dry state or a wet state. 請求項1〜5のいずれか1項に記載のデバイスを製造する方法であって、
一般式(1)に示す化合物及び酵素を含む液体を多孔質支持体に含浸して、前記化合物及び酵素を多孔質支持体に共担持させることを特徴とするデバイスの製造方法。
The method for manufacturing the device according to any one of claims 1 to 5.
A method for producing a device, which comprises impregnating a porous support with a liquid containing a compound and an enzyme represented by the general formula (1) to co-support the compound and the enzyme on the porous support.
請求項1〜5のいずれか1項に記載のデバイスを製造する方法であって、
一般式(1)に示す化合物を担持させた多孔質支持体に、酵素を含む液体を含浸して、前記化合物及び酵素を多孔質支持体に共担持させることを特徴とするデバイスの製造方法。

The method for manufacturing the device according to any one of claims 1 to 5.
A method for producing a device, which comprises impregnating a porous support carrying a compound represented by the general formula (1) with a liquid containing an enzyme to co-support the compound and the enzyme on the porous support.

JP2020037096A 2020-03-04 2020-03-04 Device and method for producing the same Pending JP2021136916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037096A JP2021136916A (en) 2020-03-04 2020-03-04 Device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037096A JP2021136916A (en) 2020-03-04 2020-03-04 Device and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021136916A true JP2021136916A (en) 2021-09-16

Family

ID=77666728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037096A Pending JP2021136916A (en) 2020-03-04 2020-03-04 Device and method for producing the same

Country Status (1)

Country Link
JP (1) JP2021136916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999146A (en) * 2021-12-10 2022-02-01 福州大学 Synthesis method of 4-guanidinobutyric acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999146A (en) * 2021-12-10 2022-02-01 福州大学 Synthesis method of 4-guanidinobutyric acid

Similar Documents

Publication Publication Date Title
FI81119C (en) Test strip for ethanol determination, alcohol oxidase composition and ethanol assay method
CN1211659C (en) Compositions containing a urea derivative dye for detecting an analyte
FI85774C (en) Stable composition for the determination of peroxidatively active substances
US4900666A (en) Colorimetric ethanol analysis method and test device
US20120315659A1 (en) Reagentless Ceria-Based Colorimetric Sensor
US5811254A (en) Broad range total available chlorine test strip
Li et al. Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform
EP0575515B1 (en) Stabilization of enzyme containing reagent composition for determination of an analyte
JPH0550275B2 (en)
CN104245952B (en) The determination method of material in blood sample
FI77896B (en) KOMPOSITION FOER BESTAEMNING AV URINSYRA ELLER KOLESTEROL I ETT VAETSKEPROV.
JPS5818079B2 (en) Test device for semi-quantitative measurement of urinary glucose, method for producing the same, and method for measuring urinary glucose
JP2021136916A (en) Device and method for producing the same
JPS60178358A (en) Glucose detecting ink composition and tester formed by using the same
CN110146499B (en) Dry sheet detection reagent card for quantitatively detecting hydrogen peroxide concentration and preparation method thereof
HUT65982A (en) Reagent mixtures composition for blood-test, process for production of the composition, and process for examination blood-samples of glucose-content
JP3127160B2 (en) Improved methods and reagents for measuring an analyte
HU177004B (en) Analytical apparatus for determining materials of peroxidative activity
JPS6259782B2 (en)
KR100379646B1 (en) Reagent composition, test piece and measurement kit
Wu et al. On-line monitoring of methanol in n-hexane by an organic-phase alcohol biosensor
CN107941880B (en) Reaction reagent for improving storage stability of glucose sensor comprising betaine derivative, and glucose sensor
WO2016030711A1 (en) Stable phosphatase substrate formulation and uses thereof
US20100233747A1 (en) Method and means for the enzymatic determination of ethanol
Júnior et al. Biosensors for the polyphenolic content of wine determination

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240528