JP2021136540A - Cover and antenna device - Google Patents

Cover and antenna device Download PDF

Info

Publication number
JP2021136540A
JP2021136540A JP2020030573A JP2020030573A JP2021136540A JP 2021136540 A JP2021136540 A JP 2021136540A JP 2020030573 A JP2020030573 A JP 2020030573A JP 2020030573 A JP2020030573 A JP 2020030573A JP 2021136540 A JP2021136540 A JP 2021136540A
Authority
JP
Japan
Prior art keywords
surface layer
layer
foam
resin
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020030573A
Other languages
Japanese (ja)
Other versions
JP7457528B2 (en
Inventor
辰昌 葛西
Tatsumasa Kasai
辰昌 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2020030573A priority Critical patent/JP7457528B2/en
Publication of JP2021136540A publication Critical patent/JP2021136540A/en
Application granted granted Critical
Publication of JP7457528B2 publication Critical patent/JP7457528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

To provide a cover and an antenna device, capable of suppressing a change of an electric wave transmissivity by a skin thickness fluctuation.SOLUTION: A cover 1 is a resin cover used for an electronic apparatus 10 that performs a communication by using an electric wave with a high frequency band, comprising: a surface layer 2 of which one part is exposed from the electronic apparatus; and an auxiliary layer 3 that contains foam having a density smaller than that of the surface layer, and is arranged in an inner part of the electronic apparatus so as to be contacted to the surface layer. In the cover 1, the minimum value ABS calculated by using a wavelength λ0 in air of the electric wave, a thickness d of the surface layer, N of the magnitude of a complex refractive index of the surface layer, and one or more larger integer number k may be 0.73 or smaller.SELECTED DRAWING: Figure 1

Description

本開示は、カバーおよびアンテナ装置に関する。 The present disclosure relates to covers and antenna devices.

近年、高周波数帯の電波を利用した通信技術の開発が盛んに行われている。例えば携帯電話、自動運転および気象レーダー等の分野において、高周波数帯の電波利用が拡大しており、例えば1から100GHz帯の電波の利用が検討されている。 In recent years, communication technology using radio waves in high frequency bands has been actively developed. For example, in the fields of mobile phones, autonomous driving, weather radar, etc., the use of radio waves in the high frequency band is expanding, and for example, the use of radio waves in the 1 to 100 GHz band is being considered.

例えば、携帯電話の基地局装置は高周波数帯の電波を用いる。特許文献1は、基地局装置を囲むように設けられ、外観を形成するレドームを示す。レドームは外部環境から内部の機器を保護するカバーとして機能する。 For example, a mobile phone base station device uses radio waves in a high frequency band. Patent Document 1 shows a radome that is provided so as to surround a base station apparatus and forms an appearance. The radome acts as a cover that protects the internal equipment from the external environment.

特表2019−508939号公報Special Table 2019-508939

ここで、電波は周波数が高くなるほど減衰しやすいことが知られている。そのため、1から100GHz帯の電波を利用する電子機器において、電波の透過率の大きいカバーを用いることが重要である。特許文献1のような平板状のカバーでは、表面および裏面において電波が反射する。このため、カバーの厚みが変動すると電波の透過率が変化するため、製造安定性が悪い。また、カバーが特定の厚さの場合に、表面および裏面の反射波が干渉して反射が大きくなることがあり、電波の透過率が小さくなり得る。 Here, it is known that radio waves are more likely to be attenuated as the frequency becomes higher. Therefore, it is important to use a cover having a large radio wave transmittance in an electronic device that uses radio waves in the 1 to 100 GHz band. In a flat cover as in Patent Document 1, radio waves are reflected on the front surface and the back surface. Therefore, when the thickness of the cover fluctuates, the transmittance of radio waves changes, resulting in poor manufacturing stability. Further, when the cover has a specific thickness, the reflected waves on the front surface and the back surface may interfere with each other to increase the reflection, and the transmittance of the radio wave may be reduced.

本開示は、上記事情に鑑みてなされたものであり、表皮厚み変動による電波透過率の変化を抑制することが可能なカバーおよびアンテナ装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present invention is to provide a cover and an antenna device capable of suppressing a change in radio wave transmittance due to a change in skin thickness.

本開示の一実施形態に係るカバーは、
高周波数帯の電波を用いて通信する電子機器で使用される樹脂製のカバーであって、
前記電子機器から一部が露出する表層と、
前記表層より密度が小さい発泡体を含み、前記電子機器の内部に前記表層と接して配置される補助層と、を備える。
The cover according to an embodiment of the present disclosure is
A resin cover used in electronic devices that communicate using radio waves in the high frequency band.
The surface layer that is partially exposed from the electronic device,
It contains a foam having a density lower than that of the surface layer, and includes an auxiliary layer that is arranged inside the electronic device in contact with the surface layer.

本開示の一実施形態に係るアンテナ装置は、上記のカバーを備える。 The antenna device according to the embodiment of the present disclosure includes the above-mentioned cover.

本開示によれば、表皮厚み変動による電波透過率の変化を抑制することが可能なカバーおよびアンテナ装置を提供することができる。 According to the present disclosure, it is possible to provide a cover and an antenna device capable of suppressing a change in radio wave transmittance due to a change in skin thickness.

図1は、一実施形態に係るカバーの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a cover according to an embodiment. 図2は、一実施形態に係るカバーを備えるアンテナ装置を例示する図である。FIG. 2 is a diagram illustrating an antenna device including a cover according to an embodiment. 図3は、一実施形態に係るカバーにおける反射波について説明する図である。FIG. 3 is a diagram illustrating a reflected wave in the cover according to the embodiment. 図4は、中間層の構成例を示す図である。FIG. 4 is a diagram showing a configuration example of the intermediate layer. 図5は、中間層の別の構成例を示す図である。FIG. 5 is a diagram showing another configuration example of the intermediate layer. 図6は、複数のカバーの電波の透過率を比較した図である。FIG. 6 is a diagram comparing the transmittances of radio waves of a plurality of covers. 図7は、発泡体を厚さ方向に切断したときの断面を走査電子顕微鏡(SEM)で観察した画像(倍率:400倍)である。FIG. 7 is an image (magnification: 400 times) of a cross section of the foam cut in the thickness direction observed with a scanning electron microscope (SEM). 図8は、従来例のカバーにおける反射波について説明する図である。FIG. 8 is a diagram illustrating a reflected wave in a cover of a conventional example.

(カバーの構成)
図1は、本開示の一実施形態に係るカバー1の構成例を示す図である。カバー1は、高周波数帯の電波を用いて通信する電子機器10で使用される。カバー1は樹脂製である。高周波数帯は、例えば1から100GHzの周波数帯域であるが、これに限定されない。別の例として、高周波数帯は、300MHz以上としてよい。また、別の例として、高周波数帯は、6GHz以上としてよい。
(Cover configuration)
FIG. 1 is a diagram showing a configuration example of a cover 1 according to an embodiment of the present disclosure. The cover 1 is used in an electronic device 10 that communicates using radio waves in a high frequency band. The cover 1 is made of resin. The high frequency band is, for example, a frequency band of 1 to 100 GHz, but is not limited thereto. As another example, the high frequency band may be 300 MHz or higher. Further, as another example, the high frequency band may be 6 GHz or more.

カバー1は、電子機器10が内部に備えるアンテナ6での送受信が可能なように、電子機器10の外部との間で電波を透過させる。例えば、電子機器10の外部からの電波Rのうち、一部の電波Rがカバー1で反射するが、電波Rはカバー1を透過してアンテナ6で受信される。また、カバー1は、電子機器10が内部に備えるアンテナ6等の機器を、外部環境から保護する。 The cover 1 transmits radio waves to and from the outside of the electronic device 10 so that transmission and reception can be performed by the antenna 6 provided inside the electronic device 10. For example, of the radio waves R 0 from the outside of the electronic device 10, a part of the radio waves R 2 is reflected by the cover 1, but the radio waves R 1 pass through the cover 1 and are received by the antenna 6. Further, the cover 1 protects a device such as an antenna 6 provided inside the electronic device 10 from the external environment.

カバー1は、表層2と、補助層3と、を備える。補助層3は、裏層4と、中間層5と、を備えてよい。カバー1の構成は、この例に限定されない。別の例として、補助層3は裏層4だけを備えてよい。 The cover 1 includes a surface layer 2 and an auxiliary layer 3. The auxiliary layer 3 may include a back layer 4 and an intermediate layer 5. The configuration of the cover 1 is not limited to this example. As another example, the auxiliary layer 3 may include only the back layer 4.

ここで、図1のとおり、表層2の表面21の少なくとも一部がyz平面と平行であるように直交座標が設定される。x軸方向は、表面21と垂直な方向である。また、x軸方向は、表層2、中間層5および裏層4の厚さ方向、および、これらの積層方向に対応する。例えば表層2の厚さdは、x軸方向の長さである。 Here, as shown in FIG. 1, the orthogonal coordinates are set so that at least a part of the surface 21 of the surface layer 2 is parallel to the yz plane. The x-axis direction is the direction perpendicular to the surface 21. Further, the x-axis direction corresponds to the thickness direction of the surface layer 2, the intermediate layer 5, and the back layer 4, and the stacking direction thereof. For example, the thickness d of the surface layer 2 is the length in the x-axis direction.

表層2は、電子機器10から一部が露出するように設けられる。例えば、表層2は、表面21が電子機器10から露出し、その他の部分が電子機器10の内部にあってよい。また、裏面22は、表層2における表面21と反対の面である。表層2は、裏面22において、補助層3と接する。表層2は、密度が0.9g/cm以上の樹脂で構成されてよい。また、表層2には適宜塗装等の表面処理が行われていても良い。 The surface layer 2 is provided so that a part of the surface layer 2 is exposed from the electronic device 10. For example, the surface 21 of the surface layer 2 may be exposed from the electronic device 10, and other parts may be inside the electronic device 10. Further, the back surface 22 is a surface opposite to the front surface 21 on the surface layer 2. The front surface layer 2 is in contact with the auxiliary layer 3 on the back surface 22. The surface layer 2 may be made of a resin having a density of 0.9 g / cm 3 or more. Further, the surface layer 2 may be appropriately subjected to surface treatment such as painting.

補助層3は、表層2より密度が小さい発泡体を含み、電子機器10の内部に表層2と接して配置される。補助層3が含む発泡体の最大気泡径は、電波の散乱を抑制できる観点から、一例として1500μm以下であってよい。本実施形態において、補助層3は、発泡体で構成される裏層4および中間層5を含む。図1のとおり、中間層5は、表層2と裏層4との間に配置される。中間層5の平均密度は、表層2の密度より小さく、かつ、裏層4の密度より大きい。カバー1は、表層2から裏層4に向かうにつれて、密度が小さくなる。また、中間層5の厚さは、一例として0.1mm以上かつ50mm以下であってよい。発泡体についての詳細説明は後述する。また、表層2と補助層3の積層方法は特に限定されないが、発泡体の片面を加熱し表面を溶融させて表層と補助層を作製(積層)する方法、ならびに、密度の違う発泡体、表皮を、非常に薄い厚み(例えば、表層中の電波の波長λに対して、その5分の1以下等)の粘着剤、接着剤等による貼合により積層する方法、等がある。尚、粘着剤や接着剤等を用いた貼合による積層の場合には、電波透過率への影響を小さくするために粘着剤、接着剤層の厚みが十分小さいことが好ましい。 The auxiliary layer 3 contains a foam having a density lower than that of the surface layer 2, and is arranged inside the electronic device 10 in contact with the surface layer 2. The maximum bubble diameter of the foam contained in the auxiliary layer 3 may be 1500 μm or less as an example from the viewpoint of suppressing the scattering of radio waves. In the present embodiment, the auxiliary layer 3 includes a back layer 4 and an intermediate layer 5 made of a foam. As shown in FIG. 1, the intermediate layer 5 is arranged between the surface layer 2 and the back layer 4. The average density of the intermediate layer 5 is smaller than that of the surface layer 2 and larger than that of the back layer 4. The density of the cover 1 decreases from the surface layer 2 to the back layer 4. Further, the thickness of the intermediate layer 5 may be 0.1 mm or more and 50 mm or less as an example. A detailed description of the foam will be described later. The method of laminating the surface layer 2 and the auxiliary layer 3 is not particularly limited, but a method of heating one side of the foam to melt the surface to prepare (laminate) the surface layer and the auxiliary layer, and foams and skins having different densities. There is a method of laminating by laminating with an adhesive, an adhesive or the like having a very thin thickness (for example, one-fifth or less of the wavelength λ of the radio wave in the surface layer). In the case of laminating by bonding using an adhesive or an adhesive, it is preferable that the thickness of the adhesive and the adhesive layer is sufficiently small in order to reduce the influence on the radio wave transmittance.

(電子機器)
図2は、カバー1を備える電子機器10の一例であるアンテナ装置を例示する図である。アンテナ装置は、例えば携帯電話の基地局装置である。図2に示すように、アンテナ装置は1つの基地局ユニットで構成されてよい。また、アンテナ装置は複数の基地局ユニットで構成されてよい。基地局ユニットは、アンテナ6を少なくとも一つ以上内部に有する。基地局ユニットは、アンテナ6を含む内部の機器を風雨等から保護し、高周波数帯の電波を用いて通信可能にするために、カバー1を使用する。基地局ユニットは、例えば筐体の一部にカバー1を有し、表層2を外部に露出する。ここで、アンテナ装置は、携帯電話の基地局装置に限定されず、電波を使用して通信する機能を有するものであればよく、例えば気象レーダー装置、衛星放送設備、人工衛星、レーダー、音声通信設備、携帯電話、無線LAN等の他の装置であってよい。ここで、電波を使用して通信する機能は、電波を送信する機能、受信する機能、または送受信する機能である。また、電子機器10は、アンテナ装置に限定されず、例えば車間距離計測または自動運転のための車載装置または携帯端末等の他の装置であってよい。
(Electronics)
FIG. 2 is a diagram illustrating an antenna device which is an example of an electronic device 10 provided with a cover 1. The antenna device is, for example, a base station device for a mobile phone. As shown in FIG. 2, the antenna device may be composed of one base station unit. Further, the antenna device may be composed of a plurality of base station units. The base station unit has at least one antenna 6 inside. The base station unit uses the cover 1 in order to protect the internal equipment including the antenna 6 from wind and rain and to enable communication using radio waves in a high frequency band. The base station unit has, for example, a cover 1 in a part of the housing, and exposes the surface layer 2 to the outside. Here, the antenna device is not limited to the base station device of the mobile phone, and may be any device having a function of communicating using radio waves, for example, a meteorological radar device, satellite broadcasting equipment, artificial satellite, radar, voice communication. It may be equipment, a mobile phone, another device such as a wireless LAN, or the like. Here, the function of communicating using radio waves is a function of transmitting, receiving, or transmitting and receiving radio waves. Further, the electronic device 10 is not limited to the antenna device, and may be another device such as an in-vehicle device for measuring the inter-vehicle distance or automatic driving or a mobile terminal.

ここで、高周波数帯の電波を用いて通信する電子機器10で使用される場合に、カバー1の一部は電子機器10の内部に設けられる。電子機器10の内部は、例えば機器の放熱等によって高温となり得る。信頼性向上の観点から、カバー1は高い耐熱性を有することが好ましい。例えば、電子機器10の内部で機器の近くに配置され得る裏層4は、荷重たわみ温度が100℃以上であることが好ましい。また、カバー1を構成する樹脂は、UL94規格V−0を満たすことが好ましい。 Here, when used in an electronic device 10 that communicates using radio waves in a high frequency band, a part of the cover 1 is provided inside the electronic device 10. The inside of the electronic device 10 can become hot due to heat dissipation of the device, for example. From the viewpoint of improving reliability, the cover 1 preferably has high heat resistance. For example, the back layer 4 that can be arranged near the device inside the electronic device 10 preferably has a deflection temperature under load of 100 ° C. or higher. Further, the resin constituting the cover 1 preferably satisfies the UL94 standard V-0.

(反射波の干渉)
ここで、図8は、従来例であるカバー101における反射波について説明する図である。従来例のカバー101は、本実施形態における補助層3を備えない。つまり、カバー101は、板状の樹脂である表層2だけを備える。図8の例において、カバー101は、アンテナ6を内部に備える電子機器110の筐体に用いられ、表層2の厚さdが(2k−1)×λ/4を満たす。ここで、「k」は1以上の整数である。「λ」は電子機器110が通信する電波の表層2における波長であって、λ/Nで求められる。「λ」は電波の空気中の波長である。また、「N」は表層2の複素屈折率の大きさである。カバー101は空気中に配置されており、空気との屈折率の差によって、表面21および裏面22において、電波の反射が生じる。
(Interference of reflected waves)
Here, FIG. 8 is a diagram illustrating a reflected wave in the cover 101, which is a conventional example. The cover 101 of the conventional example does not include the auxiliary layer 3 in the present embodiment. That is, the cover 101 includes only the surface layer 2 which is a plate-shaped resin. In the example of FIG. 8, the cover 101 is used for the housing of the electronic device 110 having the antenna 6 inside, and the thickness d of the surface layer 2 satisfies (2k-1) × λ / 4. Here, "k" is an integer of 1 or more. “Λ” is a wavelength on the surface layer 2 of the radio wave communicated by the electronic device 110, and is obtained by λ 0 / N. “Λ 0 ” is the wavelength of radio waves in the air. Further, "N" is the magnitude of the complex refractive index of the surface layer 2. The cover 101 is arranged in the air, and the difference in the refractive index from the air causes reflection of radio waves on the front surface 21 and the back surface 22.

図8に示すように、電子機器110の外部からの電波の入射波Aは、表層2の表面21で固定端反射する。反射波Aは、入射波Aの伝搬の向きであるx軸正方向の反対、つまりx軸負方向に伝搬する。また、電子機器110の外部からの電波の入射波Bは、表層2の裏面22で自由端反射する。反射波Bは、入射波Bの伝搬の向きであるx軸正方向の反対、つまりx軸負方向に伝搬する。表層2の厚さdが(2k−1)×λ/4を満たす場合に、反射波Aの位相と、反射波Bの位相とが揃って強め合う。以下において、表層2の厚さdが(2k−1)×λ/4を満たすことを、強め合い条件が満たされるという。強め合い条件が満たされる場合に反射波が大きくなる。そのため、電子機器110の外部からの電波のうち、カバー101を通過して、アンテナ6に届く電波が小さくなる。つまり、強め合い条件が満たされる場合に、電波の透過率が小さくなる。ここで、強め合い条件がちょうど満たされる場合を透過率減少のピークとして、強め合い条件が満たされる厚さdの近傍においても透過率が小さくなる。ここで、電波の透過率は、電波がカバー1またはカバー101を通過した直後の電波強度をT1、電波がカバー1またはカバー101に入射する直前の電波強度をT2として、T1/T2で示される。 As shown in FIG. 8, the incident wave A of the radio wave from the outside of the electronic device 110 is reflected at the fixed end on the surface 21 of the surface layer 2. The reflected wave A propagates in the opposite direction of the x-axis positive direction, which is the propagation direction of the incident wave A, that is, in the x-axis negative direction. Further, the incident wave B of the radio wave from the outside of the electronic device 110 is reflected at the free end on the back surface 22 of the surface layer 2. The reflected wave B propagates in the opposite direction of the x-axis positive direction, which is the propagation direction of the incident wave B, that is, in the x-axis negative direction. When the thickness d of the surface layer 2 satisfies (2k-1) × λ / 4, the phase of the reflected wave A and the phase of the reflected wave B are aligned and strengthened. In the following, it is said that the strengthening condition is satisfied when the thickness d of the surface layer 2 satisfies (2k-1) × λ / 4. The reflected wave becomes large when the strengthening condition is satisfied. Therefore, among the radio waves from the outside of the electronic device 110, the radio waves that pass through the cover 101 and reach the antenna 6 are reduced. That is, when the strengthening condition is satisfied, the transmittance of the radio wave becomes small. Here, the case where the strengthening condition is just satisfied is regarded as the peak of the decrease in transmittance, and the transmittance becomes small even in the vicinity of the thickness d where the strengthening condition is satisfied. Here, the radio wave transmittance is indicated by T1 / T2, where T1 is the radio wave intensity immediately after the radio wave has passed through the cover 1 or the cover 101, and T2 is the radio wave intensity immediately before the radio wave is incident on the cover 1 or the cover 101. ..

上記の透過率減少のピークはλ/2ごとに生じる。例えば、電子機器110が100GHzの電波の利用する場合にλ/2は約1.5mmとなる。強め合い条件が満たされないように、約1.5mmごとの特定の値を避けて表層2の厚さdを定めることは、設計上の大きな制約となり得る。また、強め合い条件を回避して設計した場合でも、例えば熱膨張、外力による変形または経年変化等によって、表層2の厚さdが強め合い条件を満たすおそれがある。そのため、厚み変動が発生した場合の電波の透過率変動を抑制することが可能な構成が求められていた。 The above-mentioned peak of transmittance decrease occurs every λ / 2. For example, when the electronic device 110 uses a radio wave of 100 GHz, λ / 2 is about 1.5 mm. Determining the thickness d of the surface layer 2 while avoiding a specific value of about 1.5 mm so as not to satisfy the strengthening condition can be a major design constraint. Further, even when the design avoids the strengthening condition, the thickness d of the surface layer 2 may satisfy the strengthening condition due to, for example, thermal expansion, deformation due to an external force, or aging. Therefore, there has been a demand for a configuration capable of suppressing fluctuations in the transmittance of radio waves when fluctuations in thickness occur.

図3は、本実施形態に係るカバー1における反射波について説明する図である。従来例と同じく、カバー1の表層2の厚さdが(2k−1)×λ/4を満たす。また、従来例と同じく、電子機器110の外部からの電波の入射波Aは、表層2の表面21で固定端反射し、反射波Aが生じる。また、電子機器110の外部からの電波の入射波Bは、表層2の裏面22で自由端反射し、反射波Bが生じる。ここで、本実施形態に係るカバー1は、表層2の裏面22が発泡体を含む補助層3と接している。表層2と補助層3とはともに樹脂で構成されており、表層2と補助層3との屈折率の差は、表層2と空気の屈折率の差より小さい。屈折率の差が小さいほど反射率が小さくなるため、裏面22における反射波Bは、従来例の場合に比べて抑えられる。したがって、本実施形態に係るカバー1は、強め合い条件が満たされる場合でも、従来例より電波の透過率を大きくすることができる。 FIG. 3 is a diagram illustrating a reflected wave in the cover 1 according to the present embodiment. Similar to the conventional example, the thickness d of the surface layer 2 of the cover 1 satisfies (2k-1) × λ / 4. Further, as in the conventional example, the incident wave A of the radio wave from the outside of the electronic device 110 is reflected at the fixed end on the surface 21 of the surface layer 2, and the reflected wave A is generated. Further, the incident wave B of the radio wave from the outside of the electronic device 110 is reflected at the free end on the back surface 22 of the surface layer 2, and the reflected wave B is generated. Here, in the cover 1 according to the present embodiment, the back surface 22 of the surface layer 2 is in contact with the auxiliary layer 3 containing the foam. Both the surface layer 2 and the auxiliary layer 3 are made of resin, and the difference in the refractive index between the surface layer 2 and the auxiliary layer 3 is smaller than the difference in the refractive index between the surface layer 2 and the air. Since the reflectance decreases as the difference in the refractive index decreases, the reflected wave B on the back surface 22 is suppressed as compared with the case of the conventional example. Therefore, the cover 1 according to the present embodiment can increase the transmittance of radio waves as compared with the conventional example even when the strengthening condition is satisfied.

ここで、電波が中間層5と裏層4との界面で反射しても、中間層5と裏層4とはともに樹脂で構成されており、中間層5と裏層4との屈折率の差は小さい。そのため、中間層5と裏層4との界面における反射は、反射波の強め合いに影響しないと考えられる。また、上記のとおり、裏層4は、表層2より密度が小さい発泡体で構成される。裏層4の誘電率が表層2の誘電率よりも小さいので、裏層4の屈折率は、表層2の屈折率よりも小さい。よって、裏層4と空気との界面の反射率は、表層2と空気との界面の反射率よりも小さい。さらに、電波がカバー1を伝搬する際に、誘電損失により電波が減衰する。本明細書中で記載する誘電率とは、比誘電率の事を指す。 Here, even if radio waves are reflected at the interface between the intermediate layer 5 and the back layer 4, both the intermediate layer 5 and the back layer 4 are made of resin, and the refractive indexes of the intermediate layer 5 and the back layer 4 are different. The difference is small. Therefore, it is considered that the reflection at the interface between the intermediate layer 5 and the back layer 4 does not affect the strengthening of the reflected waves. Further, as described above, the back layer 4 is composed of a foam having a lower density than the surface layer 2. Since the dielectric constant of the back layer 4 is smaller than the dielectric constant of the surface layer 2, the refractive index of the back layer 4 is smaller than the refractive index of the surface layer 2. Therefore, the reflectance at the interface between the back layer 4 and air is smaller than the reflectance at the interface between the surface layer 2 and air. Further, when the radio wave propagates through the cover 1, the radio wave is attenuated due to the dielectric loss. The dielectric constant described in the present specification refers to a relative permittivity.

ここで、中間層5は一様に同じ密度であってよいが、電波の透過率をさらに大きくするために、密度勾配を有することが好ましい。図4に示すように、中間層5は、密度が異なる複数の層5a、5b、5c、5dを含んでよい。そして、中間層5の密度は、表層2の側から裏層4の側に向かって、段階的に小さくなってよい。つまり、層5aの密度、層5bの密度、層5cの密度および層5dの密度が、この順に、段階的に小さくなってよい。ここで、中間層5が含む複数の層の数は4つに限定されない。中間層5が含む複数の層の数は、1つ、2つ、3つ、または5つ以上であり得る。ここで、隣接する層の間の屈折率の差を小さくするために、中間層5が含む複数の層の数は多い方が好ましい。また、図5に示すように、中間層5の密度は、表層2の側から裏層4の側に向かって、漸近的に小さくなることが、さらに好ましい。表層2から裏層4まで、密度がなだらかに変化することで、カバー1の内部において電波の反射が生じることを抑制可能である。 Here, the intermediate layer 5 may have the same density uniformly, but it is preferable to have a density gradient in order to further increase the transmittance of radio waves. As shown in FIG. 4, the intermediate layer 5 may include a plurality of layers 5a, 5b, 5c, and 5d having different densities. Then, the density of the intermediate layer 5 may gradually decrease from the surface layer 2 side to the back layer 4 side. That is, the density of the layer 5a, the density of the layer 5b, the density of the layer 5c, and the density of the layer 5d may gradually decrease in this order. Here, the number of the plurality of layers included in the intermediate layer 5 is not limited to four. The number of multiple layers included in the intermediate layer 5 can be one, two, three, or five or more. Here, in order to reduce the difference in refractive index between adjacent layers, it is preferable that the number of the plurality of layers included in the intermediate layer 5 is large. Further, as shown in FIG. 5, it is more preferable that the density of the intermediate layer 5 gradually decreases from the surface layer 2 side to the back layer 4 side. By gently changing the density from the surface layer 2 to the back layer 4, it is possible to suppress the reflection of radio waves inside the cover 1.

図6は、構成が異なる複数のカバーの電波の透過率を比較した図である。横軸は、表層2の厚さdを示す。縦軸は、電波の透過率を示す。実線で示される特性曲線TRは、ある高周波数の電波を用いた場合における、従来例のカバー101の、厚さdと電波の透過率との関係を示す。ある高周波数は例えば79GHzである。また、破線または鎖線で示される特性曲線TR、TRおよびTRは、同じ高周波数の電波を用いた場合における、本実施形態に係るカバー1の、厚さdと電波の透過率との関係を示す。特性曲線TRは、補助層3として裏層4だけを備える構成の場合を示す。また、特性曲線TRは、中間層5の厚さが0.5mmで、総厚みが10mmの構成の場合を示す。また、特性曲線TRは、中間層5の厚さが2mmで、総厚みが10mmの構成の場合を示す。 FIG. 6 is a diagram comparing the transmittances of radio waves of a plurality of covers having different configurations. The horizontal axis represents the thickness d of the surface layer 2. The vertical axis shows the transmittance of radio waves. The characteristic curve TR 0 shown by the solid line shows the relationship between the thickness d of the cover 101 of the conventional example and the transmittance of the radio wave when a certain high frequency radio wave is used. Some high frequencies are, for example, 79 GHz. Further, the characteristic curves TR 1 , TR 2 and TR 3 shown by the broken line or the chain line are the thickness d of the cover 1 according to the present embodiment and the transmittance of the radio wave when the same high frequency radio wave is used. Show the relationship. The characteristic curve TR 1 shows a case where only the back layer 4 is provided as the auxiliary layer 3. Further, the characteristic curve TR 2 shows a case where the thickness of the intermediate layer 5 is 0.5 mm and the total thickness is 10 mm. Further, the characteristic curve TR 3 shows a case where the thickness of the intermediate layer 5 is 2 mm and the total thickness is 10 mm.

図6の例において、表層のみの場合には表層中の光の波長λを用いて、表層の厚みがλ/8からλ×3/4の間での厚み変動により透過率の極大値と極小値の差が16%程度である。一方で、表層と裏層(発泡体)を積層した場合には表層厚みが同じ厚みの変動範囲内で透過率変動(極大値と極小値の差)を14%に抑制することが出来る。表層と裏層(発泡体)の間に補助層がある場合にはその効果は更に顕著となる。すなわち、表層厚みが当該範囲内で変動したとしても、得られるカバーの電波透過率変動が小さくなるため、製造安定性を向上することが可能である。また、表層2の厚さdが例えばdおよびdの場合に、強め合い条件が満たされる。強め合い条件はλ/2ごとに満たされる。例えば、dとdとの差はλ/2である。特性曲線TRのように、従来例のカバー101の電波の透過率は、強め合い条件がちょうど満たされる場合を減少のピークとして、強め合い条件が満たされる厚さdの近傍においても小さくなる。 In the example of FIG. 6, in the case of only the surface layer, the wavelength λ of the light in the surface layer is used, and the thickness of the surface layer fluctuates between λ / 8 and λ × 3/4, so that the maximum value and the minimum value of the transmittance are obtained. The difference between the values is about 16%. On the other hand, when the surface layer and the back layer (foam) are laminated, the transmittance fluctuation (difference between the maximum value and the minimum value) can be suppressed to 14% within the fluctuation range of the same thickness of the surface layer. The effect becomes even more remarkable when there is an auxiliary layer between the surface layer and the back layer (foam). That is, even if the surface layer thickness fluctuates within the range, the fluctuation in the radio wave transmittance of the obtained cover becomes small, so that the manufacturing stability can be improved. Further, when the thickness d of the surface layer 2 is, for example, d 1 and d 2 , the strengthening condition is satisfied. The strengthening condition is satisfied every λ / 2. For example, the difference between d 1 and d 2 is λ / 2. As shown in the characteristic curve TR 0 , the transmittance of the radio wave of the cover 101 of the conventional example becomes smaller even in the vicinity of the thickness d where the strengthening condition is satisfied, with the peak of decrease when the strengthening condition is just satisfied.

特性曲線TRのように、本実施形態に係るカバー1は、上記の構成によって、強め合い条件がちょうど満たされる場合でも、電波の透過率が小さくならない。そのため、表層2の厚さdが、強め合い条件が満たされる値およびその近傍の値をとる場合に、カバー1における電波の透過率は、カバー101に比べて、大きく改善される。電波の透過率が大きく改善される厚さdの範囲については後述する。 As in the characteristic curve TR 1, the cover 1 according to the present embodiment does not reduce the transmittance of radio waves even when the strengthening condition is just satisfied by the above configuration. Therefore, when the thickness d of the surface layer 2 takes a value that satisfies the strengthening condition and a value in the vicinity thereof, the transmittance of the radio wave in the cover 1 is greatly improved as compared with the cover 101. The range of the thickness d in which the transmittance of radio waves is greatly improved will be described later.

このように、本実施形態に係るカバー1は、表皮厚み変動による電波透過率の変化を抑制することが可能である。そのため、カバー1は、強め合い条件を回避して設計する必要がなく、高周波数帯の電波を用いて通信する電子機器10で使用される場合であっても自由な設計が可能である。また、発泡体である補助層3を備えることによって、カバー1は重量をあまり増加させずに、x軸方向の長さ、すなわち厚さを増すことができる。よって、カバー1は強度が高まり、変形しにくい。 As described above, the cover 1 according to the present embodiment can suppress the change in the radio wave transmittance due to the change in the skin thickness. Therefore, it is not necessary to design the cover 1 while avoiding the strengthening condition, and the cover 1 can be freely designed even when it is used in the electronic device 10 that communicates using radio waves in a high frequency band. Further, by providing the auxiliary layer 3 which is a foam, the cover 1 can increase the length in the x-axis direction, that is, the thickness without increasing the weight so much. Therefore, the cover 1 has increased strength and is not easily deformed.

本実施形態に係わるカバー1について、通信に用いられる電波の空気中の波長λ、表層2の厚さd、表層2の複素屈折率の大きさをNおよび1以上の整数kを用いて、以下の式(A)で示される値ABSが求められる。値ABSは、本実施形態に係わるカバー1の表層2の厚さdが、離散的に存在する強め合い条件が満たす値から、どの程度離れているかを示す。離散的に存在する強め合い条件が満たす値は、例えば図6のdおよびdである。「値ABSの最小」は、整数kの値が異なる複数の値ABSのうちで最小となるものを指す。ABSが0の場合は、もっとも強め合いの影響が大きくなる表層dの厚みとなり、ABSが1の場合には、もっとも強め合いの影響が小さくなる表層dの厚みとなる。ここで、ABSの値としては、0.73以下で小さければ小さいほど透過率を向上させる効果が大きくなるが、0.68以下であることが好ましく、0.63以下であることが更に好ましい。

Figure 2021136540
Regarding the cover 1 according to the present embodiment, the wavelength λ 0 of the radio wave used for communication in the air, the thickness d of the surface layer 2, and the magnitude of the complex refractive index of the surface layer 2 are set to N and an integer k of 1 or more. The value ABS represented by the following formula (A) is obtained. The value ABS indicates how far the thickness d of the surface layer 2 of the cover 1 according to the present embodiment is from the value satisfied by the discretely existing strengthening conditions. The values satisfied by the discretely existing strengthening conditions are, for example, d 1 and d 2 in FIG. The “minimum value ABS” refers to the smallest value ABS among a plurality of value ABSs having different values of the integer k. When the ABS is 0, the thickness of the surface layer d has the greatest influence of the strengthening, and when the ABS is 1, the thickness of the surface layer d has the least influence of the strengthening. Here, as the ABS value, the smaller it is 0.73 or less, the greater the effect of improving the transmittance, but it is preferably 0.68 or less, and more preferably 0.63 or less.
Figure 2021136540

(発泡体)
以下、発泡体の具体的な構成が説明される。補助層3に含まれる発泡体は、基材樹脂として熱可塑性樹脂または熱硬化性樹脂を含む。発泡体は、このような基材樹脂を含み、任意選択的に難燃剤等の添加剤を更に含む樹脂組成物を発泡させたものとしてよい。また、発泡体としては、例えば、押出発泡体、射出発泡体、ビーズ発泡体、延伸発泡体および溶剤抽出発泡体等が挙げられる。これらは、それぞれ、後述する押出発泡法、射出発泡法、ビーズ発泡法、延伸発泡法、溶剤抽出発泡法により製造された発泡体を指す。ここで、ビーズ発泡体は、発泡粒子からなる発泡体である。
(Foam)
Hereinafter, the specific configuration of the foam will be described. The foam contained in the auxiliary layer 3 contains a thermoplastic resin or a thermosetting resin as the base resin. The foam may be obtained by foaming a resin composition containing such a base resin and optionally further containing an additive such as a flame retardant. Examples of the foam include an extruded foam, an injection foam, a bead foam, a stretched foam, and a solvent-extracted foam. These refer to foams produced by the extrusion foaming method, the injection foaming method, the bead foaming method, the stretch foaming method, and the solvent extraction foaming method, which will be described later, respectively. Here, the bead foam is a foam composed of foam particles.

基材樹脂の含有量は、樹脂組成物を100質量%として、好適には20質量%以上であり、より好適には40質量%以上であり、更に好適には60質量%以上であり、特に好適には70質量%以上であり、また、好適には100%以下であり、より好適には95%以下である。誘電率や誘電正接を下げるために、基材樹脂が、極性が低い樹脂から成ることが好ましい。 The content of the base resin is preferably 20% by mass or more, more preferably 40% by mass or more, still more preferably 60% by mass or more, and particularly preferably 60% by mass or more, assuming that the resin composition is 100% by mass. It is preferably 70% by mass or more, preferably 100% or less, and more preferably 95% or less. In order to reduce the dielectric constant and the dielectric loss tangent, the base resin is preferably made of a resin having low polarity.

熱可塑性樹脂としては、ポリフェニレンエーテル系樹脂、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリアミド系樹脂、ポリプロピレン系樹脂、ABS樹脂、塩化ビニル系樹脂、アクリル系樹脂、メタクリル酸メチル樹脂、ナイロン系樹脂、フッ素系樹脂、ポリカーボネート系樹脂、ポリウレタン樹脂、ポリエステル系樹脂等が挙げられ、耐熱性、経済性、発泡性の観点からは、ポリフェニレンエーテル系樹脂、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリアミド系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂が好ましい。特に、本開示の発泡体に好適な基材樹脂としては、極性が小さい樹脂および密度が小さい樹脂が好ましく、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、フッ素系樹脂等が挙げられる。これらは、一種単独で用いても、二種以上を組み合わせて用いてよい。 The thermoplastic resin includes polyphenylene ether resin, polystyrene resin, polyethylene resin, polyamide resin, polypropylene resin, ABS resin, vinyl chloride resin, acrylic resin, methyl methacrylate resin, nylon resin, and fluorine resin. Examples thereof include resins, polycarbonate resins, polyurethane resins, polyester resins, etc. From the viewpoints of heat resistance, economy, and foamability, polyphenylene ether resins, polystyrene resins, polyethylene resins, polyamide resins, polypropylene resins, etc. , Acrylic resin and polycarbonate resin are preferable. In particular, as the base resin suitable for the foam of the present disclosure, a resin having a low polarity and a resin having a low density are preferable, and for example, a polyethylene resin, a polypropylene resin, a polycarbonate resin, a polystyrene resin, and a polyphenylene ether resin are used. , Fluorine-based resin and the like. These may be used alone or in combination of two or more.

ポリフェニレンエーテル(PPE)系樹脂は、下記一般式(1)で表される重合体であってよい。ここで、式(1)中、R、R、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、アルコキシ基、フェニル基、またはハロゲンと一般式(1)中のベンゼン環との間に少なくとも2個の炭素原子を有するハロアルキル基若しくはハロアルコキシ基で第3α−炭素原子を含まないもの、を示す。また、式(1)中、nは、重合度を表す整数である。

Figure 2021136540
The polyphenylene ether (PPE) -based resin may be a polymer represented by the following general formula (1). Here, in the formula (1), R 1 , R 2 , R 3 and R 4 are independently represented by a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a phenyl group, or a halogen and the general formula (1). A haloalkyl group or a haloalkoxy group having at least two carbon atoms between the benzene ring and the benzene ring inside, which does not contain the 3α-carbon atom. Further, in the formula (1), n is an integer representing the degree of polymerization.
Figure 2021136540

ポリフェニレンエーテル系樹脂の例としては、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジプロピル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジブチル−1,4−フェニレン)エーテル、ポリ(2,6−ジラウリル−1,4−フェニレン)エーテル、ポリ(2,6−ジフェニル−1,4−ジフェニレン)エーテル、ポリ(2,6−ジメトキシ−1,4−フェニレン)エーテル、ポリ(2,6−ジエトキシ−1,4−フェニレン)エーテル、ポリ(2−メトキシ−6−エトキシ−1,4−フェニレン)エーテル、ポリ(2−エチル−6−ステアリルオキシ−1,4−フェニレン)エーテル、ポリ(2,6−ジクロロ−1,4−フェニレン)エーテル、ポリ(2−メチル−6−フェニル−1,4−フェニレン)エーテル、ポリ(2,6−ジベンジル−1,4−フェニレン)エーテル、ポリ(2−エトキシ−1,4−フェニレン)エーテル、ポリ(2−クロロ−1,4−フェニレン)エーテル、ポリ(2,6−ジブロモ−1,4−フェニレン)エーテル等が挙げられるが、これに限定されるものではない。この中でも特に、RおよびRが炭素数1〜4のアルキル基であり、RおよびRが水素若しくは炭素数1〜4のアルキル基のものが好ましい。これらは一種単独で用いても、二種以上を組み合わせて用いてもよい。 Examples of polyphenylene ether-based resins include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, and poly (2-methyl-6-ethyl). -1,4-phenylene) ether, poly (2-methyl-6-propyl-1,4-phenylene) ether, poly (2,6-dipropyl-1,4-phenylene) ether, poly (2-ethyl-6) -Propyl-1,4-phenylene) ether, poly (2,6-dibutyl-1,4-phenylene) ether, poly (2,6-dilauryl-1,4-phenylene) ether, poly (2,6-diphenyl) -1,4-diphenylene) ether, poly (2,6-dimethoxy-1,4-phenylene) ether, poly (2,6-diethoxy-1,4-phenylene) ether, poly (2-methoxy-6-ethoxy) ether -1,4-phenylene) ether, poly (2-ethyl-6-stearyloxy-1,4-phenylene) ether, poly (2,6-dichloro-1,4-phenylene) ether, poly (2-methyl- 6-Phenyl-1,4-phenylene) ether, poly (2,6-dibenzyl-1,4-phenylene) ether, poly (2-ethoxy-1,4-phenylene) ether, poly (2-chloro-1,2, Examples thereof include, but are not limited to, 4-phenylene) ether and poly (2,6-dibromo-1,4-phenylene) ether. Among these, it is particularly preferable that R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms, and R 3 and R 4 are hydrogen or alkyl groups having 1 to 4 carbon atoms. These may be used alone or in combination of two or more.

本実施形態におけるポリフェニレンエーテル系樹脂の含有量は、基材樹脂100質量%に対して、20〜80質量%であることが好ましく、より好ましくは30〜70質量%であり、更に好ましくは35〜60質量%である。PPE系樹脂の含有量が20質量%以上の場合、優れた耐熱性および難燃性を得やすくなるとともに、誘電率(εr)および誘電正接(tanδ)を低減しやすい。また、PPE系樹脂の含有量が80質量%以下の場合、優れた加工性を得やすくなる。 The content of the polyphenylene ether-based resin in the present embodiment is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and further preferably 35 to 50% by mass with respect to 100% by mass of the base resin. It is 60% by mass. When the content of the PPE-based resin is 20% by mass or more, excellent heat resistance and flame retardancy can be easily obtained, and the dielectric constant (εr) and dielectric loss tangent (tan δ) can be easily reduced. Further, when the content of the PPE resin is 80% by mass or less, excellent processability can be easily obtained.

ポリフェニレンエーテル系樹脂の重量平均分子量(Mw)としては、20,000〜60,000であることが好ましい。ここで、重量平均分子量(Mw)は、樹脂についてゲルパーミュエーションクロマトグラフィー(GPC)による測定を行い、クロマトグラムのピークの分子量を、市販の標準ポリスチレンについての測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して求めた重量平均分子量をいう。 The weight average molecular weight (Mw) of the polyphenylene ether resin is preferably 20,000 to 60,000. Here, the weight average molecular weight (Mw) is measured by gel permeation chromatography (GPC) on the resin, and the molecular weight of the peak of the chromatogram is a calibration curve (standard polystyrene) obtained from the measurement on commercially available standard polystyrene. It refers to the weight average molecular weight obtained by using (created using the peak molecular weight of).

ポリスチレン系樹脂とは、スチレンおよびスチレン誘導体のホモポリマー、スチレンおよびスチレン誘導体を主成分(ポリスチレン系樹脂中に50質量%以上含まれる成分)とする共重合体をいう。スチレン誘導体としては、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、t−ブチルスチレン、α−メチルスチレン、β−メチルスチレン、ジフェニルエチレン、クロロスチレン、ブロモスチレン等が挙げられる。 The polystyrene-based resin refers to a homopolymer of styrene and a styrene derivative, and a copolymer containing styrene and a styrene derivative as main components (components contained in the polystyrene-based resin in an amount of 50% by mass or more). Examples of the styrene derivative include o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene, α-methylstyrene, β-methylstyrene, diphenylethylene, chlorostyrene, bromostyrene and the like.

ホモポリマーのポリスチレン系樹脂としては、例えば、ポリスチレン、ポリα−メチルスチレン、ポリクロロスチレン等が挙げられる。共重合体のポリスチレン系樹脂としては、スチレン−ブタジエン共重合体、スチレン−アクリロニトリル共重合体、スチレン−マレイン酸共重合体、スチレン−無水マレイン酸共重合体、スチレン−マレイミド共重合体、スチレン−N−フェニルマレイミド共重合体、スチレン−N−アルキルマレイミド共重合体、スチレン−N−アルキル置換フェニルマレイミド共重合体、スチレン−アクリル酸共重合体、スチレン−メタクリル酸共重合体、スチレン−メチルアクリレート共重合体、スチレン−メチルメタクリレート共重合体、スチレン−n−アルキルアクリレート共重合体、スチレン−n−アルキルメタクリレート共重合体、エチルビニルベンゼン−ジビニルベンゼン共重合体等の二元共重合体;ABS、ブタジエン−アクリロニトリル−α−メチルベンゼン共重合体等の三元共重合体;スチレングラフトポリエチレン、スチレングラフトエチレン−酢酸ビニル共重合体、(スチレン−アクリル酸)グラフトポリエチレン、スチレングラフトポリアミド等のグラフト共重合体;等が挙げられる。これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。 Examples of the polystyrene-based resin of the homopolymer include polystyrene, polyα-methylstyrene, polychlorostyrene and the like. Examples of the polystyrene-based resin of the copolymer include styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, styrene-maleimide copolymer, and styrene-. N-phenylmaleimide copolymer, styrene-N-alkylmaleimide copolymer, styrene-N-alkyl substituted phenylmaleimide copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methylacrylate Dual copolymers such as copolymers, styrene-methylmethacrylate copolymers, styrene-n-alkylacrylate copolymers, styrene-n-alkylmethacrylate copolymers, ethylvinylbenzene-divinylbenzene copolymers; ABS , A ternary copolymer such as butadiene-acrylonitrile-α-methylbenzene copolymer; grafts such as styrene graft polyethylene, styrene graft ethylene-vinyl acetate copolymer, (styrene-acrylic acid) graft polyethylene, styrene graft polyamide, etc. Polymer; etc. These may be used alone or in combination of two or more.

ポリエチレン系樹脂としては、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレンとα−オレフィンとの共重合体、プロピレン−エチレン共重合体等の樹脂が挙げられる。これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。また、これらのポリエチレン系樹脂は架橋剤等により適宜架橋構造を有していても良い。 Examples of the polyethylene-based resin include resins such as high-density polyethylene, low-density polyethylene, linear low-density polyethylene, a copolymer of ethylene and α-olefin, and a propylene-ethylene copolymer. These may be used alone or in combination of two or more. Further, these polyethylene-based resins may have a crosslinked structure as appropriate with a crosslinking agent or the like.

ポリアミド系樹脂としては、例えば、ポリアミド、ポリアミド共重合体、これらの混合物が挙げられる。ポリアミド系樹脂には、アミノカルボン酸の自己縮合、ラクタムの開環重合、ジアミンとジカルボン酸との重縮合により得られる重合体を含んでよい。ポリアミドとしては、ジアミンとジカルボン酸との重縮合により得られる、ナイロン66、ナイロン610、ナイロン612、ナイロン46、ナイロン1212等、ラクタムの開環重合により得られるナイロン6、ナイロン12等が挙げられる。ポリアミド共重合体としては、例えば、ナイロン6/66、ナイロン66/6、ナイロン66/610、ナイロン66/612、ナイロン66/6T(Tは、テレフタル酸成分を表す)、ナイロン66/6I(Iは、イソフタル酸成分を表す)、ナイロン6T/6I等が挙げられる。これらの混合物としては、例えば、ナイロン66とナイロン6との混合物、ナイロン66とナイロン612との混合物、ナイロン66とナイロン610との混合物、ナイロン66とナイロン6Iとの混合物、ナイロン66とナイロン6Tとの混合物等が挙げられる。これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。 Examples of the polyamide-based resin include polyamides, polyamide copolymers, and mixtures thereof. The polyamide-based resin may contain a polymer obtained by self-condensation of aminocarboxylic acid, ring-opening polymerization of lactam, and polycondensation of diamine and dicarboxylic acid. Examples of the polyamide include nylon 66, nylon 610, nylon 612, nylon 46, nylon 1212 and the like obtained by polycondensation of diamine and dicarboxylic acid, and nylon 6 and nylon 12 obtained by ring-opening polymerization of lactam. Examples of the polyamide copolymer include nylon 6/66, nylon 66/6, nylon 66/610, nylon 66/612, nylon 66 / 6T (T represents a terephthalic acid component), and nylon 66 / 6I (I). Represents an isophthalic acid component), nylon 6T / 6I, and the like. Examples of these mixtures include a mixture of nylon 66 and nylon 6, a mixture of nylon 66 and nylon 612, a mixture of nylon 66 and nylon 610, a mixture of nylon 66 and nylon 6I, and nylon 66 and nylon 6T. Examples thereof include a mixture of. These may be used alone or in combination of two or more.

本実施形態において、PPE系樹脂以外の上記熱可塑性樹脂の含有量は、発泡体の加工性の観点から、基材樹脂100質量%に対して、10〜100質量%であることが好ましく、より好ましくは20〜80質量%である。 In the present embodiment, the content of the thermoplastic resin other than the PPE resin is preferably 10 to 100% by mass with respect to 100% by mass of the base resin from the viewpoint of processability of the foam. It is preferably 20 to 80% by mass.

熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン、メラミン樹脂等が挙げられ、中でもフェノール樹脂、メラミン樹脂が好ましい。これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。 Examples of the thermosetting resin include phenol resin, epoxy resin, unsaturated polyester resin, polyurethane, melamine resin and the like, and among them, phenol resin and melamine resin are preferable. These may be used alone or in combination of two or more.

添加剤としては、難燃剤、難燃助剤、熱安定剤、酸化防止剤、帯電防止剤、無機充填剤、滴下防止剤、紫外線吸収剤、光吸収剤、可塑剤、離型剤、染顔料、ゴム成分、上記基材樹脂以外の樹脂等が挙げられ、本開示の効果を損なわない範囲で添加することができる。 Additives include flame retardants, flame retardants, heat stabilizers, antioxidants, antistatic agents, inorganic fillers, anti-dripping agents, UV absorbers, light absorbers, plasticizers, mold release agents, dye pigments. , Rubber components, resins other than the above-mentioned base resin, and the like can be added as long as the effects of the present disclosure are not impaired.

添加剤の含有量としては、基材樹脂を100質量部として、好適には0〜40質量部であり、より好適には5〜30質量部である。 The content of the additive is preferably 0 to 40 parts by mass, more preferably 5 to 30 parts by mass, with 100 parts by mass of the base resin.

ここで、難燃剤としては、特に限定されないが、有機系難燃剤、無機系難燃剤が挙げられる。有機系難燃剤としては、臭素化合物に代表されるハロゲン系化合物、リン系化合物およびシリコーン系化合物に代表される非ハロゲン系化合物等が挙げられる。無機系難燃剤としては、水酸化アルミニウム、水酸化マグネシウムに代表される金属水酸化物、三酸化アンチモン、五酸化アンチモンに代表されるアンチモン系化合物等が挙げられる。これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。 Here, the flame retardant is not particularly limited, and examples thereof include an organic flame retardant and an inorganic flame retardant. Examples of the organic flame retardant include halogen-based compounds typified by bromine compounds, phosphorus-based compounds, non-halogen-based compounds typified by silicone-based compounds, and the like. Examples of the inorganic flame retardant include aluminum hydroxide, metal hydroxide typified by magnesium hydroxide, antimony trioxide, and antimony compounds typified by antimony pentoxide. These may be used alone or in combination of two or more.

上記難燃剤の中でも、環境性の観点から、有機系難燃剤の非ハロゲン系難燃剤が好ましく、リン系の難燃剤、シリコーン系の難燃剤がより好ましい。 Among the above flame retardants, non-halogen flame retardants, which are organic flame retardants, are preferable, and phosphorus flame retardants and silicone flame retardants are more preferable, from the viewpoint of environmental friendliness.

リン系の難燃剤には、リンまたはリン化合物を含むものを用いることができる。リンとしては赤リンが挙げられる。また、リン化合物として、リン酸エステル、リン原子と窒素原子の結合を主鎖に有するホスファゼン化合物等が挙げられる。リン酸エステルとしては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリシクロヘキシルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、ジメチルエチルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、ヒドロキシフェニルジフェニルホスフェート、レゾルシノールビスジフェニルホスフェート等が挙げられ、また、これらを各種の置換基で変性したタイプのリン酸エステル化合物、各種の縮合タイプのリン酸エステル化合物も挙げられる。この中でも、耐熱性、難燃性、発泡性の観点から、トリフェニルホスフェートおよび縮合タイプのリン酸エステル化合物が好ましい。これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。 As the phosphorus-based flame retardant, one containing phosphorus or a phosphorus compound can be used. Examples of phosphorus include red phosphorus. Further, examples of the phosphorus compound include a phosphoric acid ester and a phosphazene compound having a bond between a phosphorus atom and a nitrogen atom in the main chain. Examples of the phosphoric acid ester include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate and cresildiphenyl. Examples thereof include phosphate, dicredylphenyl phosphate, dimethylethyl phosphate, methyldibutyl phosphate, ethyldipropyl phosphate, hydroxyphenyldiphenyl phosphate, resorcinol bisdiphenyl phosphate, etc., and these are modified with various substituents to form a phosphate ester. Compounds and various condensation-type phosphate ester compounds are also included. Among these, triphenylphosphate and condensation type phosphoric acid ester compounds are preferable from the viewpoint of heat resistance, flame retardancy, and foamability. These may be used alone or in combination of two or more.

また、シリコーン系難燃剤としては、(モノまたはポリ)オルガノシロキサンが挙げられる。(モノまたはポリ)オルガノシロキサンとしては、例えば、ジメチルシロキサン、フェニルメチルシロキサン等のモノオルガノシロキサン;これらを重合して得られるポリジメチルシロキサン、ポリフェニルメチルシロキサン;これらの共重合体等のオルガノポリシロキサン等が挙げられる。オルガノポリシロキサンの場合、主鎖および分岐した側鎖の結合基は、水素、アルキル基、フェニル基であり、好ましくはフェニル基、メチル基、エチル基、プロピル基であるが、これに限定されない。末端結合基は、水酸基、アルコキシ基、アルキル基、フェニル基であってよい。シリコーン類の形状にも特に制限はなく、オイル状、ガム状、ワニス状、粉体状、ペレット状などの任意のものが利用可能である。これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。 Examples of the silicone flame retardant include (mono or poly) organosiloxane. Examples of the (mono or poly) organosiloxane include monoorganosiloxanes such as dimethylsiloxane and phenylmethylsiloxane; polydimethylsiloxanes and polyphenylmethylsiloxanes obtained by polymerizing these; organopolysiloxanes such as copolymers thereof. And so on. In the case of organopolysiloxane, the bonding groups of the main chain and the branched side chains are hydrogen, alkyl group and phenyl group, preferably phenyl group, methyl group, ethyl group and propyl group, but are not limited thereto. The terminal bonding group may be a hydroxyl group, an alkoxy group, an alkyl group, or a phenyl group. The shape of the silicones is not particularly limited, and any silicones such as oil, gum, varnish, powder, and pellets can be used. These may be used alone or in combination of two or more.

難燃剤の含有量としては、添加剤の含有量の範囲内としてよいところ、基材樹脂を100質量部として、好適には0〜30質量部であり、より好適には5〜25質量部である。添加する難燃剤が多いほど発泡体の難燃性が向上する効果が得られやすいが、一般に難燃剤を添加すると誘電率および誘電正接を増加させる傾向がある。 The content of the flame retardant may be within the range of the content of the additive, but the base resin is 100 parts by mass, preferably 0 to 30 parts by mass, and more preferably 5 to 25 parts by mass. be. The more the flame retardant added, the easier it is to obtain the effect of improving the flame retardancy of the foam, but in general, the addition of the flame retardant tends to increase the dielectric constant and the dielectric loss tangent.

また、ゴム成分としては、例えば、ブタジエン、イソプレン、1,3−ペンタジエン等が挙げられるが、これに限定されるものではない。これらは、ポリスチレン系樹脂からなる連続相中に粒子状に分散しているものが好ましい。これらゴム成分を添加する方法として、ゴム成分そのものが加えられてもよく、スチレン系エラストマーおよびスチレン−ブタジエン共重合体等の樹脂がゴム成分供給源として用いられてもよい。ゴム成分を添加する場合、ゴム成分の含有量は、添加剤の含有量の範囲内としてよいところ、基材樹脂を100質量部として、0.3〜15質量部が好ましく、0.5〜8質量部がより好ましく、1〜5質量部が更に好ましい。0.3質量部以上であると、樹脂の柔軟性、伸びに優れ、発泡時に発泡セル膜が破膜しにくく、成形加工性および機械強度に優れる発泡体が得られやすい。 Further, examples of the rubber component include, but are not limited to, butadiene, isoprene, 1,3-pentadiene and the like. These are preferably those dispersed in the form of particles in a continuous phase made of a polystyrene-based resin. As a method of adding these rubber components, the rubber component itself may be added, or a resin such as a styrene-based elastomer and a styrene-butadiene copolymer may be used as a rubber component supply source. When the rubber component is added, the content of the rubber component may be within the range of the content of the additive, but the base resin is 100 parts by mass, preferably 0.3 to 15 parts by mass, and 0.5 to 8 parts by mass. Parts by mass are more preferable, and parts by mass of 1 to 5 are even more preferable. When it is 0.3 parts by mass or more, the flexibility and elongation of the resin are excellent, the foamed cell film is less likely to break during foaming, and a foam having excellent molding processability and mechanical strength can be easily obtained.

(発泡体の最大気泡径)
図7は、発泡体の一例を厚さ方向に切断したときの断面を走査電子顕微鏡(SEM)で観察した画像である。図7において、気泡は発泡体の全体に存在する。例えば、気泡12は、その輪郭線の一部が発泡体の表面を示す線11と一致しており、発泡体の表面近くに存在する。また、気泡13は、発泡体の表面から離れて、発泡体の内部に存在する。
(Maximum cell diameter of foam)
FIG. 7 is an image obtained by observing a cross section of an example of a foam when cut in the thickness direction with a scanning electron microscope (SEM). In FIG. 7, the bubbles are present throughout the foam. For example, the bubble 12 has a part of its contour line coincident with the line 11 indicating the surface of the foam and exists near the surface of the foam. Further, the bubbles 13 are present inside the foam, apart from the surface of the foam.

ここで、気泡径の測定は、発泡体を厚さ方向に切断した断面を走査電子顕微鏡(SEM)で観察したときに、気泡の輪郭線上の2点を結ぶ線分の長さのうち、最も長い線分をその気泡の径として測定する。発泡体中の気泡の「最大気泡径」とは、発泡体を切断した断面をSEM等を用いて観察し、気泡12のような気泡の輪郭線の一部が発泡体の表面を示す面と接している気泡と、気泡13のような発泡体の表面から離れて内部に存在する気泡とを、それぞれ最低でも15点以上を測定し、全ての測定値うちで最も大きい値とする。具体的な測定例は実施例に記載した内容を参考にすることが出来る。 Here, the measurement of the bubble diameter is the longest of the lengths of the line segments connecting the two points on the contour line of the bubbles when the cross section of the foam cut in the thickness direction is observed with a scanning electron microscope (SEM). The long line segment is measured as the diameter of the bubble. The "maximum bubble diameter" of a bubble in the foam is a surface in which a cross section of the foam is observed using SEM or the like, and a part of the outline of the bubble such as the bubble 12 shows the surface of the foam. At least 15 points or more are measured for each of the air bubbles in contact and the air bubbles existing inside away from the surface of the foam such as air bubbles 13, and the value is set to the largest value among all the measured values. For specific measurement examples, the contents described in the examples can be referred to.

ここで、電波の波長に対して最大気泡径が小さいほど電波の散乱が起きにくくなる。上記観点より、例えば1から100GHz帯の電波を用いる場合に、発泡体は、発泡体中の気泡の最大気泡径が1500μm以下であることが好ましい。発泡体は、最大気泡径が1300μm以下であることがより好ましい。発泡体は、最大気泡径が1000μm以下であることがさらに好ましい。 Here, the smaller the maximum bubble diameter with respect to the wavelength of the radio wave, the less likely it is that the radio wave is scattered. From the above viewpoint, for example, when radio waves in the 1 to 100 GHz band are used, the maximum bubble diameter of the bubbles in the foam is preferably 1500 μm or less. It is more preferable that the foam has a maximum cell diameter of 1300 μm or less. It is more preferable that the foam has a maximum cell diameter of 1000 μm or less.

発泡体の最大気泡径を上記範囲に制御する方法としては、例えば、ビーズ発泡体の場合、基材樹脂へのガスの含浸圧の開放完了から加温(発泡)開始までの時間を短縮することが挙げられる。これにより発泡する際の加温開始時における発泡粒子中のガスの含浸ムラを低減し、発泡体の気泡径を均一にすると共に、気泡径の増大を防ぐことが出来る。また、一般に、発泡体の最大気泡径を低減する方法としては、例えば、発泡工程における基材樹脂中の発泡剤の濃度を大きくすること、基材樹脂中に発泡時の気泡発生の核剤となる添加剤を添加すること、発泡剤が気体の場合には含浸工程において基材樹脂に含浸させる気体の圧力を高めたり温度を下げたりすること、発泡工程における発泡温度を調整すること、基材樹脂の表面張力を調整すること、および、基材樹脂のガラス転移温度を調整すること等が挙げられる。 As a method of controlling the maximum bubble diameter of the foam within the above range, for example, in the case of bead foam, the time from the completion of releasing the impregnation pressure of the gas into the base resin to the start of heating (foaming) is shortened. Can be mentioned. As a result, uneven impregnation of gas in the foamed particles at the start of heating at the time of foaming can be reduced, the bubble diameter of the foam can be made uniform, and an increase in the bubble diameter can be prevented. In general, as a method of reducing the maximum bubble diameter of the foam, for example, increasing the concentration of the foaming agent in the base resin in the foaming step, or using a nucleating agent for generating bubbles in the base resin during foaming. When the foaming agent is a gas, the pressure of the gas impregnated in the base resin is increased or lowered in the impregnation step, the foaming temperature in the foaming step is adjusted, and the base material is added. Examples include adjusting the surface tension of the resin and adjusting the glass transition temperature of the base resin.

(発泡体の荷重たわみ温度)
本実施形態の発泡体は、ISO75−1、75−2に準拠して測定される荷重たわみ温度(HDT)が60℃以上であることが好ましく、80℃以上がより好ましく、100℃以上が更に好ましい。発泡体の荷重たわみ温度は、製造時に発泡倍率の大小により変化させることができる。発泡体の荷重たわみ温度が60℃以上であると、耐熱性および構造安定性に優れたカバーを得ることができる。また、荷重たわみ温度は樹脂の種類によっても変化する。このため、荷重たわみ温度が高くなりやすい樹脂(一般にガラス転移温度が高い樹脂)を選定することにより発泡体の荷重たわみ温度を向上させることができる。また、荷重たわみ温度が高くなりやすい樹脂を発泡体の基材樹脂として使用した場合、成形時の加熱条件および前述のガス含浸条件等にも依存するが、一般に気泡径が小さくなりやすい傾向がある。ここで、荷重たわみ温度は、具体的には実施例に記載の方法により測定することができる。
(Deflection temperature under load of foam)
The foam of the present embodiment preferably has a deflection temperature under load (HDT) of 60 ° C. or higher, more preferably 80 ° C. or higher, and further 100 ° C. or higher, as measured in accordance with ISO75-1 and 75-2. preferable. The deflection temperature under load of the foam can be changed at the time of manufacture depending on the magnitude of the foaming ratio. When the deflection temperature under load of the foam is 60 ° C. or higher, a cover having excellent heat resistance and structural stability can be obtained. The deflection temperature under load also changes depending on the type of resin. Therefore, the deflection temperature under load of the foam can be improved by selecting a resin (generally a resin having a high glass transition temperature) that tends to have a high deflection temperature under load. Further, when a resin having a high deflection temperature under load is used as the base resin of the foam, the bubble diameter tends to be small in general, although it depends on the heating conditions at the time of molding and the above-mentioned gas impregnation conditions. .. Here, the deflection temperature under load can be specifically measured by the method described in Examples.

(発泡体の難燃性)
本実施形態の発泡体は、UL94規格でV−2以上の難燃性を備えることが好ましく、V−1以上の難燃性を備えることがより好ましく、V−0の難燃性を備えることが更に好ましい。難燃性は、製造時に樹脂の種類および樹脂とともに用いる難燃性の種類および含有量により変化させることができる。発泡体が高い難燃性を備えることによって、仮に電装機器において短絡(ショート)および爆発等により燃焼が生じたとしても、燃焼の広がりを抑制することができる。ここで、UL94規格による難燃性は、具体的には実施例に記載の方法により測定することができる。
(Flame retardancy of foam)
The foam of the present embodiment preferably has a flame retardancy of V-2 or higher, more preferably V-1 or higher, and has a flame retardancy of V-0 according to the UL94 standard. Is more preferable. The flame retardancy can be changed depending on the type of resin used at the time of manufacture and the type and content of flame retardant used together with the resin. Since the foam has high flame retardancy, even if combustion occurs due to a short circuit, an explosion, or the like in the electrical equipment, it is possible to suppress the spread of combustion. Here, the flame retardancy according to the UL94 standard can be specifically measured by the method described in the examples.

(発泡体の炭化水素ガス含有量)
本実施形態の発泡体は、発泡体中に含まれる炭化水素ガスの含有量が1質量%以下であることが好ましく、より好ましくは0.5質量%以下であり、更に好ましくは0.1質量%以下である。炭化水素ガスの含有量が1質量%以下であると、難燃性が維持しやすくなると共に、発泡体成形後の膨張(後ぶくれ)を抑制することができるため、発泡体の寸法安定性の向上、気泡の均一性の向上、最大気泡径の低減が可能である。ここで、炭化水素ガス含有量は、ガスクロマトグラフィーにより測定することができる。
(Hydrocarbon gas content of foam)
The content of the hydrocarbon gas contained in the foam of the present embodiment is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.1% by mass. % Or less. When the content of the hydrocarbon gas is 1% by mass or less, flame retardancy can be easily maintained and expansion (back blistering) after foam molding can be suppressed, so that the dimensional stability of the foam is stable. It is possible to improve the uniformity of bubbles, reduce the maximum bubble diameter. Here, the hydrocarbon gas content can be measured by gas chromatography.

(発泡体の製造方法)
本実施形態の発泡体の製造方法は、特に限定されないが、例えば、押出発泡法、射出発泡法、ビーズ発泡法(型内発泡法)、延伸発泡法、溶剤抽出発泡法等が挙げられる。押出発泡法は、押出機を用いて溶融状態の樹脂に有機または無機発泡剤を圧入し、押出機出口で圧力を開放することによって、一定の断面形状を有する、板状、シート状、または柱状の発泡体を得る方法である。射出発泡法は、発泡性を備える樹脂を射出成形し、金型内にて発泡させることによって、空孔を有する発泡体を得る方法である。ビーズ発泡法または型内発泡法は、発泡粒子を型内に充填し、水蒸気等で加熱して発泡粒子を膨張させると同時に発泡粒子同士を熱融着させることによって、発泡体を得る方法である。延伸発泡法は、予めフィラーなどの添加剤を樹脂中に混錬させておき、樹脂を延伸させることでマイクロボイドを発生させて発泡体を作る方法である。溶剤抽出発泡法は、樹脂中に所定の溶剤に溶解する添加剤を添加しておき、成形品を所定の溶剤に浸して添加剤を抽出させて発泡体を作る方法である。
(Manufacturing method of foam)
The method for producing the foam of the present embodiment is not particularly limited, and examples thereof include an extrusion foaming method, an injection foaming method, a bead foaming method (in-mold foaming method), a stretch foaming method, and a solvent extraction foaming method. In the extrusion foaming method, an organic or inorganic foaming agent is press-fitted into a molten resin using an extruder, and the pressure is released at the outlet of the extruder to have a certain cross-sectional shape, such as a plate shape, a sheet shape, or a columnar shape. It is a method of obtaining the foam of. The injection foaming method is a method of obtaining a foam having pores by injection molding a foamable resin and foaming it in a mold. The bead foaming method or the in-mold foaming method is a method of obtaining a foam by filling the mold with foamed particles and heating them with steam or the like to expand the foamed particles and at the same time heat-sealing the foamed particles to each other. .. The stretch foaming method is a method in which an additive such as a filler is kneaded in a resin in advance and the resin is stretched to generate microvoids to form a foam. The solvent extraction foaming method is a method in which an additive that dissolves in a predetermined solvent is added to a resin, and a molded product is immersed in a predetermined solvent to extract the additive to produce a foam.

押出発泡の場合、得られる発泡体は板状、シート状等となり、これを加工するには所望の形状に切断する抜き工程、切り取ったパーツを貼り合わせる熱貼り工程等が必要になる。一方、ビーズ発泡法の場合、所望の形状の型を作成し、そこに発泡粒子を充填させて成形するため、発泡体は複雑な形状に成形され得る。射出発泡法の場合でも、発泡体を複雑な形状に成形することは可能であるが、ビーズ発泡の場合には、発泡体の発泡倍率を高めやすく、断熱性に加えて柔軟性を発現しやすい。 In the case of extrusion foaming, the obtained foam is in the form of a plate, a sheet, or the like, and in order to process this, a punching step of cutting into a desired shape, a heat pasting step of laminating the cut parts, and the like are required. On the other hand, in the case of the bead foaming method, since a mold having a desired shape is created and foamed particles are filled therein for molding, the foam can be molded into a complicated shape. Even in the case of the injection foaming method, it is possible to mold the foam into a complicated shape, but in the case of bead foaming, it is easy to increase the foaming ratio of the foam, and it is easy to develop flexibility in addition to heat insulation. ..

発泡剤としては、特には限定されず、一般的に用いられているガスを使用することができる。その例として、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等の無機ガス;トリクロロフルオロメタン(R11)、ジクロロジフルオロメタン(R12)、クロロジフルオロメタン(R22)、テトラクロロジフルオロエタン(R112)ジクロロフルオロエタン(R141b)クロロジフルオロエタン(R142b)、ジフルオロエタン(R152a)、HFC−245fa、HFC−236ea、HFC−245ca、HFC−225ca等のフルオロカーボン;プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン等の飽和炭化水素;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2−メチルフラン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチルn−プロピルケトン、メチルn-ブチルケトン、メチルi−ブチルケトン、メチルn−アミルケトン、メチルn−ヘキシルケトン、エチルn−プロピルケトン、エチルn−ブチルケトン等のケトン類;メタノール、エタノール、プロピルアルコール、i−プロピルアルコール、ブチルアルコール、i−ブチルアルコール、t−ブチルアルコール等のアルコール類;蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステル等のカルボン酸エステル類;塩化メチル、塩化エチル等の塩素化炭化水素類;等が挙げられる。これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。 The foaming agent is not particularly limited, and a commonly used gas can be used. Examples are inorganic gases such as air, carbon dioxide, nitrogen gas, oxygen gas, ammonia gas, hydrogen gas, argon gas, helium gas, neon gas; trichlorofluoromethane (R11), dichlorodifluoromethane (R12), chlorodifluoromethane. Fluorocarbons such as (R22), tetrachlorodifluoroether (R112) dichlorofluoroethane (R141b) chlorodifluoroethane (R142b), difluoroethane (R152a), HFC-245fa, HFC-236ea, HFC-245ca, HFC-225ca; Saturated hydrocarbons such as butane, i-butane, n-pentane, i-pentane, neopentane; dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methylfuran, tetrahydrofuran , Ethers such as tetrahydropyran; dimethyl ketone, methyl ethyl ketone, diethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, methyl i-butyl ketone, methyl n-amyl ketone, methyl n-hexyl ketone, ethyl n-propyl ketone, ethyl Ketones such as n-butylketone; alcohols such as methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, t-butyl alcohol; methyl formic acid ester, ethyl formic acid ester, propyl ester formic acid, formic acid Carboxylic acid esters such as butyl ester, amyl ester of acid, methyl propionic acid ester, ethyl propionic acid ester; chlorinated hydrocarbons such as methyl chloride and ethyl chloride; and the like can be mentioned. These may be used alone or in combination of two or more.

難燃性の観点から、発泡剤は可燃性および支燃性がないかまたは少ないことが好ましく、ガスの安全性の観点から、無機ガスがより好ましい。また、無機ガスは炭化水素等の有機ガスに比べて樹脂に溶けにくく、発泡工程または成形工程の後に樹脂からガスが抜けやすいので、成形後の発泡体の経時での寸法安定性がより優れる利点もある。更に、無機ガスを用いた場合、残存ガスによる樹脂の可塑化が起こりにくい。そのため、熟成等の工程を経ずに、より早い段階から優れた耐熱性を発現しやすいメリットがある。無機ガスの中でも、樹脂への溶解性、取り扱いの容易さの観点から、炭酸ガスが好ましい。また、炭化水素系の有機ガスは一般に可燃性が高く、発泡体中に残存した場合に難燃性が悪化する傾向にある。 From the viewpoint of flame retardancy, the foaming agent is preferably flammable and has no or little flammability, and from the viewpoint of gas safety, an inorganic gas is more preferable. In addition, the inorganic gas is less soluble in the resin than the organic gas such as hydrocarbons, and the gas is easily released from the resin after the foaming step or the molding step, so that the foam after molding has an advantage that the dimensional stability of the foam over time is more excellent. There is also. Further, when an inorganic gas is used, plasticization of the resin due to the residual gas is unlikely to occur. Therefore, there is an advantage that excellent heat resistance can be easily exhibited from an earlier stage without going through a process such as aging. Among the inorganic gases, carbon dioxide is preferable from the viewpoint of solubility in resin and ease of handling. In addition, hydrocarbon-based organic gases are generally highly flammable, and when they remain in the foam, their flame retardancy tends to deteriorate.

ビーズ発泡法に用いる発泡粒子は、基材樹脂に発泡剤を含有(含浸)させて、発泡を生じさせることにより得ることができる。具体的には、基材樹脂(ペレット状、ビーズ状等)を耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤(ガス)を圧入して基材樹脂に発泡剤(ガス)を含浸させた後、圧力を開放して圧力容器から発泡炉に基材樹脂ペレットを移送し、基材樹脂ペレットを発泡炉内で攪拌羽を回転させながら加圧水蒸気により加温して発泡させることにより、発泡粒子を製造する方法が挙げられる。基材樹脂に対して発泡剤(ガス)を含浸させる際の条件は、特には限定されることなく、発泡剤(ガス)の基材樹脂への含浸をより効率的に進める観点から、例えば、含浸圧が0.3〜30MPa、含浸温度が−20〜100℃、および、含浸時間が10分〜96時間であることが好ましい。また、発泡炉内の加圧水蒸気の最大蒸気圧は、所望の倍率を得やすく外観を良化する観点から、30〜700kPa・Gであることが好ましい。上記発泡粒子の製造方法において、耐圧容器内の放圧(含浸圧の開放)を完了してから発泡炉内で加圧水蒸気により加温を開始するまでの時間は、600秒未満であることが好ましく、300秒以内であることがより好ましく、120秒以内であることが更に好ましく、60秒以内であることが特に好ましい。当該時間が上記範囲内であると、基材樹脂に含浸させたガスが不均一に拡散することを抑制することができるため、気泡径を均一にすると共に、気泡径の増大を防ぐことができる。 The foamed particles used in the bead foaming method can be obtained by impregnating (impregnating) the base resin with a foaming agent to cause foaming. Specifically, a base resin (pellet, bead, etc.) is housed in a pressure-resistant container, the gas in the container is replaced with dry air, and then a foaming agent (gas) is press-fitted into the base resin. After impregnating with (gas), the pressure is released to transfer the base resin pellets from the pressure vessel to the foaming furnace, and the base resin pellets are heated by pressurized steam while rotating the stirring blades in the foaming furnace. Examples thereof include a method of producing foamed particles by foaming. The conditions for impregnating the base resin with the foaming agent (gas) are not particularly limited, and from the viewpoint of more efficiently impregnating the base resin with the foaming agent (gas), for example, It is preferable that the impregnation pressure is 0.3 to 30 MPa, the impregnation temperature is -20 to 100 ° C., and the impregnation time is 10 minutes to 96 hours. Further, the maximum vapor pressure of the pressurized steam in the foaming furnace is preferably 30 to 700 kPa · G from the viewpoint of easily obtaining a desired magnification and improving the appearance. In the above method for producing foamed particles, the time from the completion of releasing pressure in the pressure-resistant container (release of impregnation pressure) to the start of heating with pressurized steam in the foaming furnace is preferably less than 600 seconds. , 300 seconds or less, more preferably 120 seconds or less, and particularly preferably 60 seconds or less. When the time is within the above range, it is possible to suppress the non-uniform diffusion of the gas impregnated in the base resin, so that the bubble diameter can be made uniform and the increase in the bubble diameter can be prevented. ..

発泡粒子を用いて発泡体を成形する方法としては、特に限定されないが、例えば、発泡粒子を成形用金型のキャビティ内に充填し、加熱することによって膨張を生じさせると同時に発泡粒子同士を熱融着させた後、冷却により生成物を固化し、成形する方法が挙げられる。発泡粒子の充填方法は、特には限定されず、公知の方法を用いることができる。発泡粒子を成形用金型のキャビティ内に充填する前に、発泡粒子に対してガスによる加圧処理を行うことが好ましい。発泡粒子の気泡に一定のガス圧力を付与することで、得られる発泡体を構成する発泡粒子同士を強固に融着させ、成形体の剛性および外観を改善することが出来る。加圧処理に用いるガスとしては、特には限定されないが、取り扱い容易性および経済性の観点から、空気および無機ガスが好ましい。加圧処理の方法としては、特には限定されないが、発泡粒子を加圧容器内に充填後、加圧ガスを導入し、最大圧力0.1〜20MPaまで10分〜96時間かけて昇圧することにより、該加圧容器内にガスを供給する手法等が挙げられる。発泡粒子を成形する際の加熱方法は、水蒸気等の熱媒体を用いた加熱、IRヒーター等のヒーターによる加熱、マイクロ波を用いた加熱等が挙げられる。熱媒体を用いた加熱を行う際は、汎用の熱媒体としてよく、樹脂を効率的に加熱する観点から、水蒸気であることが好ましい。 The method for molding the foam using the foamed particles is not particularly limited, but for example, the foamed particles are filled in the cavity of the molding die and heated to cause expansion, and at the same time, the foamed particles are heated with each other. Examples thereof include a method in which the product is solidified by cooling after being fused and molded. The method for filling the foamed particles is not particularly limited, and a known method can be used. Before filling the cavity of the molding die with the foamed particles, it is preferable to pressurize the foamed particles with a gas. By applying a constant gas pressure to the bubbles of the foamed particles, the foamed particles constituting the obtained foam can be firmly fused to each other, and the rigidity and appearance of the molded product can be improved. The gas used for the pressurizing treatment is not particularly limited, but air and an inorganic gas are preferable from the viewpoint of ease of handling and economy. The method of the pressurizing treatment is not particularly limited, but after filling the foamed particles in the pressurized container, a pressurized gas is introduced and the pressure is increased to a maximum pressure of 0.1 to 20 MPa over 10 minutes to 96 hours. Therefore, a method of supplying gas into the pressurized container can be mentioned. Examples of the heating method for forming the foamed particles include heating using a heat medium such as steam, heating with a heater such as an IR heater, and heating using microwaves. When heating using a heat medium, it may be a general-purpose heat medium, and steam is preferable from the viewpoint of efficiently heating the resin.

本実施形態において発泡体を目的の形状に加工する方法としては、特には限定されないが、発泡粒子または溶融樹脂を金型に充填し成形する方法、鋸刃および型ぬき刃等の刃物により切断する方、ミルにより切削する方法、複数の発泡体を熱および接着剤により接着させる方法等が挙げられる。 In the present embodiment, the method of processing the foam into a desired shape is not particularly limited, but is limited to a method of filling a mold with foamed particles or molten resin to form the foam, and cutting with a cutting tool such as a saw blade and a die-cutting blade. A method of cutting with a mill, a method of adhering a plurality of foams with heat and an adhesive, and the like.

本実施形態の発泡体は、単独で使用してもよいし、未発泡樹脂等と組み合わせて使用してもよい。その際、各々成形加工した物が接着されてもよいし、一体成形されてもよい。 The foam of the present embodiment may be used alone or in combination with an unfoamed resin or the like. At that time, each molded product may be adhered or integrally molded.

本実施形態の発泡体の形状、大きさ、厚さ等は、特に限定されず、カバー1の形状、大きさ、厚さ等に応じて適宜定められてよい。 The shape, size, thickness, etc. of the foam of the present embodiment are not particularly limited, and may be appropriately determined according to the shape, size, thickness, etc. of the cover 1.

以下、実施例により本開示を更に詳細に説明するが、本開示は下記の実施例に何ら限定されるものではない。 Hereinafter, the present disclosure will be described in more detail by way of examples, but the present disclosure is not limited to the following examples.

(1)発泡体の最大気泡径
実施例および比較例にて得られた発泡体を厚さ方向に切断し、その断面を、キーエンス社製3Dリアルサーフェスビュー顕微鏡VE−9800を用いて倍率30〜400倍の範囲で観察し、発泡体の最大気泡径が求められた。尚、断面測定時の倍率は、後述する気泡径を速成する際の測定対象となる気泡が1画面に少なくとも5個以上含まれるように設定した。ここで、気泡径を測定する際には、断面画像から鮮明に全体を観察可能な気泡のみを測定対象とし、気泡の輪郭線上の2点を結ぶ線分の長さのうち、最も長い線分をその気泡の径として測定した。また、発泡体の表面と接している気泡を30点以上、発泡体の表面から厚み方向に20〜80%の範囲に含まれる気泡を30点以上測定し、そのすべての測定値から最大の値となったものを最大気泡径とした。
(1) Maximum Bubble Diameter of Foam The foams obtained in Examples and Comparative Examples are cut in the thickness direction, and the cross section thereof is cut at a magnification of 30 to 30 using a 3D real surface view microscope VE-9800 manufactured by KEYENCE CORPORATION. The maximum cell diameter of the foam was determined by observing in the range of 400 times. The magnification at the time of cross-section measurement was set so that at least 5 bubbles to be measured when the bubble diameter was rapidly formed, which will be described later, were included in one screen. Here, when measuring the bubble diameter, only the bubble whose entire shape can be clearly observed from the cross-sectional image is the measurement target, and the longest line segment among the lengths of the line segments connecting the two points on the contour line of the bubble. Was measured as the diameter of the bubble. In addition, 30 or more bubbles in contact with the surface of the foam and 30 or more bubbles contained in the range of 20 to 80% in the thickness direction from the surface of the foam were measured, and the maximum value was measured from all the measured values. The maximum bubble diameter was defined as.

(2)ABS
実施例および比較例のカバー1について、通信に用いられる電波の空気中の波長λ、表層2の厚さd、表層2の複素屈折率の大きさをNおよび1以上の整数kを用いて、以下の式(A)で示される値ABSが求められる。値ABSは、実施例および比較例のカバー1表層2の厚さdが、離散的に存在する強め合い条件が満たす値から、どの程度離れているかを示す。離散的に存在する強め合い条件が満たす値は、例えば図6のdおよびdである。「値ABSの最小」は、整数kの値が異なる複数の値ABSのうちで最小となるものを指す。ABSが0の場合は、もっとも強め合いの影響が大きくなる表層dの厚みとなり、ABSが1の場合には、もっとも強め合いの影響が小さくなる表層dの厚みとなる。

Figure 2021136540
(2) ABS
For cover 1 of Examples and Comparative Examples, the wavelength λ 0 of the radio wave used for communication in the air, the thickness d of the surface layer 2, and the magnitude of the complex refractive index of the surface layer 2 are N and an integer k of 1 or more. , The value ABS represented by the following formula (A) is obtained. The value ABS indicates how far the thickness d of the cover 1 surface layer 2 of Examples and Comparative Examples is from the value satisfied by the discretely existing strengthening conditions. The values satisfied by the discretely existing strengthening conditions are, for example, d 1 and d 2 in FIG. The “minimum value ABS” refers to the smallest value ABS among a plurality of value ABSs having different values of the integer k. When the ABS is 0, the thickness of the surface layer d has the greatest influence of the strengthening, and when the ABS is 1, the thickness of the surface layer d has the least influence of the strengthening.
Figure 2021136540

(3)発泡体の密度
後述の実施例および比較例で得られた発泡体より、30mm角、10mm厚さを目安にサンプルを切り出し、当該サンプルの質量W[g]を測定し、サンプル体積V[cm]を質量で除して密度が算出された。ここで、上記切り出しが難しい場合には各実施例および各比較例と同じ材料を準備してサンプル質量を測定し、水没法により体積を測定し、それぞれの値を使用して密度を算出してもよい。また、補助層、裏層、中間層等の厚み方向の密度分布を測定する方法は特に限定されないが、例えば、各層を層方向に切り出し、重量測定、および水没法による体積測定を行い、密度を計算することが出来る。
(3) Density of foam A sample is cut out from the foams obtained in Examples and Comparative Examples described later with a thickness of 30 mm square and 10 mm as a guide, and the mass W [g] of the sample is measured to measure the sample volume V. The density was calculated by dividing [cm 3] by mass. Here, when the above cutting out is difficult, the same materials as in each Example and each Comparative Example are prepared, the sample mass is measured, the volume is measured by the submersion method, and the density is calculated using each value. May be good. The method for measuring the density distribution in the thickness direction of the auxiliary layer, the back layer, the intermediate layer, etc. is not particularly limited. Can be calculated.

(4)発泡体の荷重たわみ温度(HDT)
後述の実施例および比較例で得られた発泡体の荷重たわみ温度は、ISO75−1、75−2に準拠して、以下に記載のとおり測定した。
まず、後述の実施例および比較例で得られた発泡体から、長さ80mm×幅13mm×厚み10mmのサンプルを切り出した。得られたサンプルを株式会社東洋精機製作所製のHDT試験装置マシンテスト(型式3M−2)に支点間距離が64mmとなるようにセットした。セットしたサンプルの中央部分に対して、押し込み治具をセットし、0.45MPaの力を加えた状態でオイルバス中に浸漬させた。その後、温度を120℃/時間の速度で上昇させながら、曲げ閾値0.34mmとなるまで押し込み治具が移動した時点でのサンプル温度を荷重たわみ温度(℃)とした。
(4) Deflection temperature under load (HDT) of foam
The deflection temperature under load of the foams obtained in Examples and Comparative Examples described later was measured as described below in accordance with ISO75-1 and 75-2.
First, a sample having a length of 80 mm, a width of 13 mm, and a thickness of 10 mm was cut out from the foams obtained in Examples and Comparative Examples described later. The obtained sample was set in an HDT test device machine test (model 3M-2) manufactured by Toyo Seiki Seisakusho Co., Ltd. so that the distance between fulcrums was 64 mm. A pushing jig was set with respect to the central portion of the set sample, and the sample was immersed in an oil bath with a force of 0.45 MPa applied. Then, while raising the temperature at a rate of 120 ° C./hour, the sample temperature at the time when the pushing jig was moved until the bending threshold was 0.34 mm was defined as the deflection temperature under load (° C.).

(5)発泡体の難燃性
後述の実施例および比較例で得られた発泡体について、米国UL規格のUL−94垂直法(20mm垂直燃焼試験)に準拠した試験を行い、難燃性の評価を行った。
以下に測定方法の詳細を示す。
発泡体から切り出した、長さ125mm、幅13mm、厚さ5mmの試験片を5本用いた。試験片をクランプに垂直に取付け、20mm炎による10秒間接炎を2回行い、その燃焼挙動によりV−0、V−1、V−2の判定を行った。
V−0:1回目、2回目ともに有炎燃焼持続時間は10秒以内、更に2回目の有炎燃焼持続時間と無炎燃焼時間の合計が30秒以内、更に5本の試験片の有炎燃焼時間の合計が50秒以内、固定用クランプの位置まで燃焼する試料がない、燃焼落下物による綿着火なし。
V−1:1回目、2回目ともに有炎燃焼持続時間は30秒以内、更に2回目の有炎燃焼持続時間と無炎燃焼時間の合計が60秒以内、更に5本の試験片の有炎燃焼時間の合計が250秒以内、固定用クランプの位置まで燃焼する試料がない、燃焼落下物による綿着火なし。
V−2:1回目、2回目ともに有炎燃焼持続時間は30秒以内、更に2回目の有炎燃焼持続時間と無炎燃焼時間の合計が60秒以内、更に5本の試験片の有炎燃焼時間の合計が250秒以内、固定用クランプの位置まで燃焼する試料がない、燃焼落下物による綿着火有り。
なお、上記V−0、V−1、V−2のいずれにも該当しないものは不適合(×)とした。
(5) Flame Retardantity of Foam The foams obtained in Examples and Comparative Examples described later are tested in accordance with the UL-94 vertical method (20 mm vertical combustion test) of the US UL standard, and are flame retardant. Evaluation was performed.
The details of the measurement method are shown below.
Five test pieces having a length of 125 mm, a width of 13 mm, and a thickness of 5 mm cut out from the foam were used. The test piece was attached vertically to the clamp, and indirect flame for 10 seconds with a 20 mm flame was performed twice, and V-0, V-1, and V-2 were judged based on the combustion behavior.
V-0: The flame combustion duration of the first and second times is within 10 seconds, the total of the flame combustion duration and non-flame combustion time of the second time is within 30 seconds, and the flames of 5 test pieces are further. The total burning time is within 50 seconds, there is no sample that burns to the position of the fixing clamp, and there is no cotton ignition due to burning fallen objects.
V-1: The flame burning duration for both the 1st and 2nd times is within 30 seconds, the total of the 2nd flame burning duration and the non-flame burning time is within 60 seconds, and 5 test pieces are inflamed. The total burning time is within 250 seconds, there is no sample that burns to the position of the fixing clamp, and there is no cotton ignition due to burning fallen objects.
V-2: The flame combustion duration for both the first and second times is within 30 seconds, the total of the flame combustion duration and non-flame combustion time for the second time is within 60 seconds, and five more test pieces are inflamed. The total burning time is within 250 seconds, there is no sample that burns to the position of the fixing clamp, and there is cotton ignition due to burning fallen objects.
Those that do not correspond to any of the above V-0, V-1, and V-2 are marked as nonconforming (x).

(6)表皮・発泡体の誘電率εrおよび誘電正接tanδ
実施例および比較例に記載の方法を参考にして、表層と同じ材料の450mm×450mm×3mmの樹脂板、裏層と同じ材料の450mm×450mm×10mm厚みの発泡体を準備した。
続いて、KEYCOM社製周波数変化法誘電率・誘電正接測定装置DPS10−02の誘電体レンズ付き透過減衰測定治具に前記サンプルをセットし、室温(温度26℃、湿度60%)の条件において、透過減衰量と位相変化量を測定した。得られた結果とサンプルの厚みをもとに、透過減衰量と位相変化量の計算値と実測値とのフィッティングを実施し、最も良くフィッティングされたときの誘電率、誘電正接を求めて、誘電率、誘電正接の測定値とした。尚、誘電率および誘電正接は、容量法(平行電極法)、空洞共振器法、スプリットポスト誘電体共振器法、フリースペース法等によっても測定できる。また、未発泡の樹脂材料と、ある倍率の発泡体の誘電特性が分かれば、Wagnerの理論等によって任意の倍率の発泡体の誘電特性を予測して、その値を適用することもできる。ここで、複素誘電率Erは、以下の式で示される。
Er=εr+εr”、tanδ=εr”/ εr
Er:複素誘電率
εr:誘電率(複素誘電率の実数部)
εr”:複素誘電率の虚数部
(6) Dielectric constant εr and dielectric loss tangent tan δ of epidermis / foam
With reference to the methods described in Examples and Comparative Examples, a 450 mm × 450 mm × 3 mm resin plate made of the same material as the surface layer and a foam having a thickness of 450 mm × 450 mm × 10 mm made of the same material as the back layer were prepared.
Subsequently, the sample was set in a transmission attenuation measuring jig with a dielectric lens of the frequency change method dielectric constant / dielectric loss tangent measuring device DPS10-02 manufactured by KEYCOM, and at room temperature (temperature 26 ° C., humidity 60%). The amount of transmission attenuation and the amount of phase change were measured. Based on the obtained result and the thickness of the sample, the calculated value of the transmission attenuation amount and the phase change amount and the measured value are fitted, and the permittivity and the dielectric loss tangent at the time of the best fitting are obtained. The measured values of rate and dielectric loss tangent were used. The dielectric constant and the dielectric loss tangent can also be measured by the capacitance method (parallel electrode method), the cavity resonator method, the split post dielectric resonator method, the free space method, or the like. Further, if the dielectric properties of the unfoamed resin material and the foam having a certain magnification are known, the dielectric properties of the foam having an arbitrary magnification can be predicted by Wagner's theory or the like, and the value can be applied. Here, the complex permittivity Er is expressed by the following equation.
Er = εr + εr ”, tan δ = εr” / εr
Er: Complex permittivity εr: Permittivity (real part of complex permittivity)
εr ”: Imaginary part of complex permittivity

(7)複素屈折率
後述の実施例および比較例の表層2の複素屈折率は、前記方法に準じて測定した誘電率、誘電正接を用いて、以下の通り算出できる。
=Er
N:複素屈折率、Er:複素誘電率
(7) Complex Refractive Index The complex refractive index of the surface layer 2 of Examples and Comparative Examples described later can be calculated as follows using the dielectric constant and the dielectric loss tangent measured according to the above method.
N 2 = Er
N: complex refractive index, Er: complex permittivity

(8)電波透過率の計算
実施例および比較例に記載の電波透過率の計算は、予め実測値と計算値が概ね一致することを確認した上で、前記方法にて算出または測定した各層の誘電率、各層の誘電正接、各層の複素屈折率、各層の構成、各層の厚み、および電波周波数を用いて、特性マリックス法により実施した。
(8) Calculation of radio wave transmittance The calculation of the radio wave transmittance described in Examples and Comparative Examples is performed for each layer calculated or measured by the above method after confirming in advance that the measured values and the calculated values are substantially the same. It was carried out by the characteristic Marix method using the dielectric constant, the dielectric loss tangent of each layer, the complex refractive index of each layer, the composition of each layer, the thickness of each layer, and the radio frequency.

(9)表層2の厚み変動により発生する電波透過率変動量の計算
後述の実施例および比較例において、表層2の厚み変動により発生する電波透過率変動量の計算は以下の通り実施した。まず、前述の干渉の影響を鑑みて、表層2の厚み変動範囲は、λ/8からλ×3/4の厚みの範囲とした。ここで、表層中における電波の波長をλとした。次に、前述の方法で確認した誘電率、誘電正接を用い、実施例および比較例に記載の構成(総厚み、中間層の厚みを一定とする)で表層の厚みが変動した場合の電波透過率を計算した。得られた結果から、前記範囲内で表層の厚みを変更した場合の、透過率極大値と、透過率極小値との差を表層2の厚み変動により発生する電波透過率変動量とした。
(9) Calculation of Radio Transmittance Fluctuation Amount Generated by Thickness Fluctuation of Surface Layer 2 In the examples and comparative examples described later, the calculation of the radio wave transmittance fluctuation amount generated by the thickness fluctuation of the surface layer 2 was carried out as follows. First, in consideration of the influence of the above-mentioned interference, the thickness fluctuation range of the surface layer 2 is set to the range of the thickness from λ / 8 to λ × 3/4. Here, the wavelength of the radio wave in the surface layer is defined as λ. Next, using the dielectric constant and dielectric loss tangent confirmed by the above method, radio wave transmission when the thickness of the surface layer fluctuates according to the configurations described in Examples and Comparative Examples (the total thickness and the thickness of the intermediate layer are constant). The rate was calculated. From the obtained results, the difference between the maximum transmittance value and the minimum transmittance value when the thickness of the surface layer was changed within the above range was defined as the amount of fluctuation in the transmittance caused by the change in the thickness of the surface layer 2.

(実施例1)
補助層用の発泡体の作製:
ポリスチレン系樹脂(PS)としてGP685(PSジャパン株式会社製)を60質量%と、ポリフェニレンエーテル系樹脂(PPE)としてS201A(旭化成株式会社製)を40質量%とを、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。次に、特開平4−372630号公報の実施例1に記載の方法に準じ、基材樹脂ペレットを耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤として二酸化炭素(気体)を注入し、圧力3.0MPa、温度10℃の条件下で3時間かけて基材樹脂ペレットに対して二酸化炭素を含浸させた後、圧力容器から取り出してすぐに基材樹脂ペレットを移送し、基材樹脂ペレットを発泡炉内で攪拌羽を77rpmにて回転させながら最大330kPa・Gの加圧水蒸気により発泡し、発泡粒子を得た。このとき、含浸を終えて放圧を完了した時点から加圧蒸気の導入開始までの時間は10秒であった。また、発泡粒子の炭化水素ガスの含有量を発泡直後にガスクロマトグラフィーにより測定したが、検出限界(0.01質量%)以下であった。
(Example 1)
Preparation of foam for auxiliary layer:
60% by mass of GP685 (manufactured by PS Japan Corporation) as a polystyrene resin (PS) and 40% by mass of S201A (manufactured by Asahi Kasei Corporation) as a polyphenylene ether resin (PPE) are heated, melted and kneaded by an extruder. After that, it was extruded to prepare a base resin pellet. Next, according to the method described in Example 1 of JP-A-4-372630, the base resin pellets are housed in a pressure-resistant container, the gas in the container is replaced with dry air, and then carbon dioxide (carbon dioxide) is used as a foaming agent. Gas) is injected, and the base resin pellets are impregnated with carbon dioxide for 3 hours under the conditions of a pressure of 3.0 MPa and a temperature of 10 ° C., and then the base resin pellets are immediately transferred after being taken out from the pressure vessel. Then, the base resin pellet was foamed by pressurized steam of a maximum of 330 kPa · G while rotating the stirring blade at 77 rpm in the foaming furnace to obtain foamed particles. At this time, the time from the time when the impregnation was completed and the pressure release was completed to the start of introduction of the pressurized steam was 10 seconds. The hydrocarbon gas content of the foamed particles was measured by gas chromatography immediately after foaming, and was below the detection limit (0.01% by mass).

その後、この発泡粒子を容器内に入れ、加圧空気を導入(0.4MPaまで4時間かけて昇圧し、その後0.4MPaで16時間保持)することで、加圧処理を施した。これを、水蒸気孔を有する型内成形金型内に充填し、水蒸気で加熱して発泡粒子を相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡粒子からなる補助層用の発泡体を得た。 Then, the foamed particles were placed in a container, and pressurized air was introduced (pressurized to 0.4 MPa over 4 hours and then held at 0.4 MPa for 16 hours) to perform a pressurizing treatment. This is filled in an in-mold molding die having steam holes, heated with steam to expand and fuse the foamed particles to each other, cooled, taken out from the molding mold, and assisted by the foamed particles. A foam for the layer was obtained.

表層用の樹脂板の作製:
ポリスチレン系樹脂(PS)としてGP685(PSジャパン株式会社製)を60質量%と、ポリフェニレンエーテル系樹脂(PPE)としてS201A(旭化成株式会社製)を40質量%とを、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。得られた基材樹脂ペレットを型枠内に敷き詰め、270℃の温度で熱プレス法により厚み0.5mmの表層用の樹脂板を作製した。
Fabrication of resin plate for surface layer:
60% by mass of GP685 (manufactured by PS Japan Corporation) as a polystyrene resin (PS) and 40% by mass of S201A (manufactured by Asahi Kasei Corporation) as a polyphenylene ether resin (PPE) are heated, melted and kneaded by an extruder. After that, it was extruded to prepare a base resin pellet. The obtained base resin pellets were spread in a mold to prepare a resin plate for a surface layer having a thickness of 0.5 mm by a hot press method at a temperature of 270 ° C.

表層と補助層の積層体の作製:
熱プレス機において、下面の温度を270℃、上面の温度を30℃に設定し、下面の上に前記表層用の樹脂板を配置し、周りにSU304製の枠を設置する事でプレス時に樹脂板が押し広げられ、厚みが変動しないようにした。続いて、表層用の樹脂板の上に、補助層用の発泡体を配置し、熱プレス機の上面と下面の距離が樹脂板と発泡体の厚みの合計値よりも2mmだけ小さくなるまでプレスし、その状態で1分間保持することで表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
Preparation of laminated body of surface layer and auxiliary layer:
In the heat press machine, the temperature of the lower surface is set to 270 ° C. and the temperature of the upper surface is set to 30 ° C., the resin plate for the surface layer is placed on the lower surface, and a frame made of SU304 is installed around the resin plate during pressing. The board was pushed open so that the thickness did not fluctuate. Subsequently, the foam for the auxiliary layer is placed on the resin plate for the surface layer, and pressed until the distance between the upper surface and the lower surface of the heat press machine is smaller than the total thickness of the resin plate and the foam by 2 mm. Then, by holding in that state for 1 minute, a laminated body of a surface layer, an intermediate layer, and an auxiliary layer was obtained. Table 1 shows the results of evaluating the obtained laminate.

(実施例2)
表層と補助層の積層体の作製工程において、熱プレス時の保持時間を3分間へ変更した事以外は、実施例1と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 2)
In the step of producing the laminated body of the surface layer and the auxiliary layer, the laminated body of the surface layer, the intermediate layer, and the auxiliary layer was obtained by the same method as in Example 1 except that the holding time at the time of hot pressing was changed to 3 minutes. .. Table 1 shows the results of evaluating the obtained laminate.

(実施例3)
表層と補助層の積層体の作製工程において、プレス機の上面と下面の距離を樹脂板と発泡体の厚みの合計値よりも5mmだけ小さくなるまでプレスした事以外は、実施例1と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 3)
The same as in Example 1 except that the distance between the upper surface and the lower surface of the press machine was pressed to be 5 mm smaller than the total thickness of the resin plate and the foam in the step of producing the laminated body of the surface layer and the auxiliary layer. By the method, a laminated body of a surface layer, an intermediate layer, and an auxiliary layer was obtained. Table 1 shows the results of evaluating the obtained laminate.

(実施例4)
表層用の樹脂板の厚みを1mmに変更した以外は、実施例1と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 4)
A laminated body of the surface layer, the intermediate layer, and the auxiliary layer was obtained by the same method as in Example 1 except that the thickness of the resin plate for the surface layer was changed to 1 mm. Table 1 shows the results of evaluating the obtained laminate.

(実施例5)
表層用の樹脂板の厚みを1mmに変更した以外は、実施例2と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 5)
A laminated body of the surface layer, the intermediate layer, and the auxiliary layer was obtained by the same method as in Example 2 except that the thickness of the resin plate for the surface layer was changed to 1 mm. Table 1 shows the results of evaluating the obtained laminate.

(実施例6)
表層用の樹脂板の厚みを2mmに変更した以外は、実施例1と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 6)
A laminated body of the surface layer, the intermediate layer, and the auxiliary layer was obtained by the same method as in Example 1 except that the thickness of the resin plate for the surface layer was changed to 2 mm. Table 1 shows the results of evaluating the obtained laminate.

(実施例7)
表層用の樹脂板の厚みを2mmに変更した以外は、実施例2と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 7)
A laminated body of the surface layer, the intermediate layer, and the auxiliary layer was obtained by the same method as in Example 2 except that the thickness of the resin plate for the surface layer was changed to 2 mm. Table 1 shows the results of evaluating the obtained laminate.

(実施例8)
表層用の樹脂板の厚みを2mmに変更した以外は、実施例3と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 8)
A laminated body of the surface layer, the intermediate layer, and the auxiliary layer was obtained by the same method as in Example 3 except that the thickness of the resin plate for the surface layer was changed to 2 mm. Table 1 shows the results of evaluating the obtained laminate.

(実施例9)
実施例6を参考に、表層用の樹脂板、補助層として発泡倍率10.0cm/gの発泡体を作製し、表層、補助層を接着剤を用いて貼合して積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 9)
With reference to Example 6, a resin plate for the surface layer and a foam having a foaming ratio of 10.0 cm 3 / g as an auxiliary layer were prepared, and the surface layer and the auxiliary layer were bonded together with an adhesive to obtain a laminate. .. Table 1 shows the results of evaluating the obtained laminate.

(実施例10〜14)
実施例1〜実施例9と同様の方法にて、表層と補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Examples 10 to 14)
A laminate of the surface layer and the auxiliary layer was obtained in the same manner as in Examples 1 to 9. Table 1 shows the results of evaluating the obtained laminate.

(実施例15)
補助層用の発泡体の作製:
ポリフェニレンエーテル系樹脂(PPE)としてS201A(旭化成株式会社製)を60質量%と、非ハロゲン系難燃剤としてビスフェノールA−ビス(ジフェニルホスフェート)(BBP)を15質量%と、ゴム濃度が6質量%の耐衝撃性ポリスチレン樹脂(HIPS)を10質量%と、汎用ポリスチレン樹脂(PS)としてGP685(PSジャパン(株)製)を15質量%とを加え、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。
(Example 15)
Preparation of foam for auxiliary layer:
60% by mass of S201A (manufactured by Asahi Kasei Co., Ltd.) as a polyphenylene ether resin (PPE), 15% by mass of bisphenol A-bis (diphenyl phosphate) (BBP) as a non-halogen flame retardant, and 6% by mass of rubber concentration. 10% by mass of impact-resistant polystyrene resin (HIPS) and 15% by mass of GP685 (manufactured by PS Japan Co., Ltd.) as general-purpose polystyrene resin (PS), extruded after heat-melt kneading with an extruder. Base resin pellets were prepared.

特開平4−372630号公報の実施例1に記載の方法に準じ、基材樹脂ペレットを耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤として二酸化炭素(気体)を注入し、圧力3.0MPa、温度10℃の条件下で3時間かけて基材樹脂ペレットに対して二酸化炭素を含浸させた後、圧力容器から取り出してすぐに基材樹脂ペレットを移送し、基材樹脂ペレットを発泡炉内で攪拌羽を77rpmにて回転させながら最大330kPa・Gの加圧水蒸気により発泡し、発泡粒子を得た。このとき、含浸を終えて放圧を完了した時点から加圧蒸気の導入開始までの時間は10秒であった。また、発泡粒子の炭化水素ガスの含有量を発泡直後にガスクロマトグラフィーにより測定したが、検出限界(0.01質量%)以下であった。 According to the method described in Example 1 of JP-A-4-372630, the base resin pellets are housed in a pressure-resistant container, the gas in the container is replaced with dry air, and then carbon dioxide (gas) is used as a foaming agent. After injecting and impregnating the base resin pellets with carbon dioxide under the conditions of a pressure of 3.0 MPa and a temperature of 10 ° C. for 3 hours, the base resin pellets were immediately transferred from the pressure vessel and transferred to the base resin pellets. The material resin pellets were foamed with pressurized steam of a maximum of 330 kPa · G while rotating the stirring blade at 77 rpm in a foaming furnace to obtain foamed particles. At this time, the time from the time when the impregnation was completed and the pressure release was completed to the start of introduction of the pressurized steam was 10 seconds. The hydrocarbon gas content of the foamed particles was measured by gas chromatography immediately after foaming, and was below the detection limit (0.01% by mass).

その後、この発泡粒子を容器内に入れ、加圧空気を導入(0.4MPaまで4時間かけて昇圧し、その後0.4MPaで16時間保持)することで、加圧処理を施した。これを、水蒸気孔を有する型内成形金型内に充填し、水蒸気で加熱して発泡粒子を相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡粒子からなる補助層用の発泡体を得た。 Then, the foamed particles were placed in a container, and pressurized air was introduced (pressurized to 0.4 MPa over 4 hours and then held at 0.4 MPa for 16 hours) to perform a pressurizing treatment. This is filled in an in-mold molding die having steam holes, heated with steam to expand and fuse the foamed particles to each other, cooled, taken out from the molding mold, and assisted by the foamed particles. A foam for the layer was obtained.

表層用の樹脂板の作製:
ポリフェニレンエーテル系樹脂(PPE)としてS201A(旭化成株式会社製)を60質量%と、非ハロゲン系難燃剤としてビスフェノールA−ビス(ジフェニルホスフェート)(BBP)を15質量%と、ゴム濃度が6質量%の耐衝撃性ポリスチレン樹脂(HIPS)を10質量%と、汎用ポリスチレン樹脂(PS)としてGP685(PSジャパン(株)製)を15質量%とを加え、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。得られた基材樹脂ペレットを型枠内に敷き詰め、270℃の温度で熱プレス法により厚み3mmの表層用の樹脂板を作製した。
Fabrication of resin plate for surface layer:
60% by mass of S201A (manufactured by Asahi Kasei Co., Ltd.) as a polyphenylene ether resin (PPE), 15% by mass of bisphenol A-bis (diphenyl phosphate) (BBP) as a non-halogen flame retardant, and 6% by mass of rubber concentration. 10% by mass of impact-resistant polystyrene resin (HIPS) and 15% by mass of GP685 (manufactured by PS Japan Co., Ltd.) as general-purpose polystyrene resin (PS), extruded after heat-melt kneading with an extruder. Base resin pellets were prepared. The obtained base resin pellets were spread in a mold to prepare a resin plate for a surface layer having a thickness of 3 mm by a hot press method at a temperature of 270 ° C.

表層と補助層の積層体の作製:
熱プレス機において、下面の温度を250℃、上面の温度を30℃に設定し、下面の上に前記表層用の樹脂板を配置し、周りにSU304製の枠を設置する事でプレス時に樹脂板が押し広げられ、厚みが変動しないようにした。続いて、表層用の樹脂板の上に、補助層用の発泡体を配置し、熱プレス機の上面と下面の距離が樹脂板と発泡体の厚みの合計値よりも2mmだけ小さくなるまでプレスし、その状態で3分間保持することで表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
Preparation of laminated body of surface layer and auxiliary layer:
In the heat press machine, the temperature of the lower surface is set to 250 ° C. and the temperature of the upper surface is set to 30 ° C., the resin plate for the surface layer is placed on the lower surface, and a frame made of SU304 is installed around the resin plate during pressing. The board was pushed open so that the thickness did not fluctuate. Subsequently, the foam for the auxiliary layer is placed on the resin plate for the surface layer, and pressed until the distance between the upper surface and the lower surface of the heat press machine is smaller than the total thickness of the resin plate and the foam by 2 mm. Then, by holding in that state for 3 minutes, a laminated body of a surface layer, an intermediate layer, and an auxiliary layer was obtained. Table 1 shows the results of evaluating the obtained laminate.

(実施例16)
表層用の樹脂板の厚みを2mmに変更した以外は、実施例15と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 16)
A laminated body of the surface layer, the intermediate layer, and the auxiliary layer was obtained by the same method as in Example 15 except that the thickness of the resin plate for the surface layer was changed to 2 mm. Table 1 shows the results of evaluating the obtained laminate.

(実施例17)
表層用の樹脂板の厚みを0.5mmに変更した事、表層と補助層の積層体の作製工程において、熱プレス時の保持時間を3分間から1分間へ変更した事以外は、実施例15と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 17)
Example 15 except that the thickness of the resin plate for the surface layer was changed to 0.5 mm and the holding time during hot pressing was changed from 3 minutes to 1 minute in the step of producing the laminated body of the surface layer and the auxiliary layer. A laminated body of a surface layer, an intermediate layer, and an auxiliary layer was obtained by the same method as in the above. Table 1 shows the results of evaluating the obtained laminate.

(実施例18)
表層用の樹脂板の厚みを0.5mmに変更した事以外は、実施例15と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 18)
A laminated body of the surface layer, the intermediate layer, and the auxiliary layer was obtained by the same method as in Example 15 except that the thickness of the resin plate for the surface layer was changed to 0.5 mm. Table 1 shows the results of evaluating the obtained laminate.

(実施例19)
表層用の樹脂板の厚みを0.5mmに変更した事、表層と補助層の積層体の作製工程において、プレス機の上面と下面の距離を樹脂板と発泡体の厚みの合計値よりも5mmだけ小さくなるまでプレスした事以外は、実施例15と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 19)
The thickness of the resin plate for the surface layer was changed to 0.5 mm, and in the process of manufacturing the laminated body of the surface layer and the auxiliary layer, the distance between the upper surface and the lower surface of the press machine was 5 mm more than the total thickness of the resin plate and the foam. A laminated body of a surface layer, an intermediate layer, and an auxiliary layer was obtained in the same manner as in Example 15 except that the sheets were pressed until they became as small as possible. Table 1 shows the results of evaluating the obtained laminate.

(実施例20)
表層用の樹脂板の厚みを1.0mmに変更した事以外は、実施例15と同様の方法にて表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 20)
A laminated body of the surface layer, the intermediate layer, and the auxiliary layer was obtained by the same method as in Example 15 except that the thickness of the resin plate for the surface layer was changed to 1.0 mm. Table 1 shows the results of evaluating the obtained laminate.

(実施例21)
実施例16と同様の方法にて、表層と補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 21)
A laminate of the surface layer and the auxiliary layer was obtained by the same method as in Example 16. Table 1 shows the results of evaluating the obtained laminate.

(実施例22)
実施例16を参考に、表層用の樹脂板を準備し、更に発泡粒子を作製する際の加圧水蒸気圧を変化させることで、中間層として発泡倍率3.0cm/gの発泡体、裏層として発泡倍率10.0cm/gの発泡体を作製し、表層、中間層、裏層を接着剤を用いて貼合して積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 22)
By preparing a resin plate for the surface layer with reference to Example 16 and further changing the pressurized vapor pressure when producing the foamed particles, a foam having a foaming ratio of 3.0 cm 3 / g and a back layer as an intermediate layer. A foam having a foaming ratio of 10.0 cm 3 / g was prepared, and the surface layer, the intermediate layer, and the back layer were bonded together with an adhesive to obtain a laminated body. Table 1 shows the results of evaluating the obtained laminate.

(実施例23)
補助層用の発泡体の作製:
ポリスチレン系樹脂(PS)であるGP685(PSジャパン株式会社製)100質量%を、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。次に、特開平4−372630号公報の実施例1に記載の方法に準じ、基材樹脂ペレットを耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤として二酸化炭素(気体)を注入し、圧力3.0MPa、温度10℃の条件下で3時間かけて基材樹脂ペレットに対して二酸化炭素を含浸させた後、圧力容器から取り出してすぐに基材樹脂ペレットを移送し、基材樹脂ペレットを発泡炉内で攪拌羽を77rpmにて回転させながら最大70kPa・Gの加圧水蒸気により発泡し、発泡粒子を得た。このとき、含浸を終えて放圧を完了した時点から加圧蒸気の導入開始までの時間は10秒であった。また、発泡粒子の炭化水素ガスの含有量を発泡直後にガスクロマトグラフィーにより測定したが、検出限界(0.01質量%)以下であった。
(Example 23)
Preparation of foam for auxiliary layer:
100% by mass of GP685 (manufactured by PS Japan Corporation), which is a polystyrene resin (PS), was extruded by heating, melting and kneading with an extruder to prepare a base resin pellet. Next, according to the method described in Example 1 of JP-A-4-372630, the base resin pellets are housed in a pressure-resistant container, the gas in the container is replaced with dry air, and then carbon dioxide (carbon dioxide) is used as a foaming agent. Gas) is injected, and the base resin pellets are impregnated with carbon dioxide for 3 hours under the conditions of a pressure of 3.0 MPa and a temperature of 10 ° C., and then the base resin pellets are immediately transferred after being taken out from the pressure vessel. Then, the base resin pellet was foamed by pressurized steam of a maximum of 70 kPa · G while rotating the stirring blade at 77 rpm in the foaming furnace to obtain foamed particles. At this time, the time from the time when the impregnation was completed and the pressure release was completed to the start of introduction of the pressurized steam was 10 seconds. The hydrocarbon gas content of the foamed particles was measured by gas chromatography immediately after foaming, and was below the detection limit (0.01% by mass).

その後、この発泡粒子を容器内に入れ、加圧空気を導入(0.4MPaまで4時間かけて昇圧し、その後0.4MPaで16時間保持)することで、加圧処理を施した。これを、水蒸気孔を有する型内成形金型内に充填し、水蒸気で加熱して発泡粒子を相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡粒子からなる補助層用の発泡体を得た。 Then, the foamed particles were placed in a container, and pressurized air was introduced (pressurized to 0.4 MPa over 4 hours and then held at 0.4 MPa for 16 hours) to perform a pressurizing treatment. This is filled in an in-mold molding die having steam holes, heated with steam to expand and fuse the foamed particles to each other, cooled, taken out from the molding mold, and assisted by the foamed particles. A foam for the layer was obtained.

表層用の樹脂板の作製:
ポリスチレン系樹脂(PS)であるGP685(PSジャパン株式会社製)100質量%を、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。得られた基材樹脂ペレットを型枠内に敷き詰め、200℃の温度で熱プレス法により厚み1.0mmの表層用の樹脂板を作製した。
Fabrication of resin plate for surface layer:
100% by mass of GP685 (manufactured by PS Japan Corporation), which is a polystyrene resin (PS), was extruded by heating, melting and kneading with an extruder to prepare a base resin pellet. The obtained base material resin pellets were spread in a mold, and a resin plate for a surface layer having a thickness of 1.0 mm was prepared by a heat pressing method at a temperature of 200 ° C.

表層と補助層の積層体の作製:
熱プレス機において、下面の温度を150℃、上面の温度を30℃に設定し、下面の上に前記表層用の樹脂板を配置し、周りにSU304製の枠を設置する事でプレス時に樹脂板が押し広げられ、厚みが変動しないようにした。続いて、表層用の樹脂板の上に、補助層用の発泡体を配置し、熱プレス機の上面と下面の距離が樹脂板と発泡体の厚みの合計値よりも2mmだけ小さくなるまでプレスし、その状態で3分間保持することで表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
Preparation of laminated body of surface layer and auxiliary layer:
In the heat press machine, the temperature of the lower surface is set to 150 ° C. and the temperature of the upper surface is set to 30 ° C., the resin plate for the surface layer is placed on the lower surface, and a frame made of SU304 is installed around the resin plate during pressing. The board was pushed open so that the thickness did not fluctuate. Subsequently, the foam for the auxiliary layer is placed on the resin plate for the surface layer, and pressed until the distance between the upper surface and the lower surface of the heat press machine is smaller than the total thickness of the resin plate and the foam by 2 mm. Then, by holding in that state for 3 minutes, a laminated body of a surface layer, an intermediate layer, and an auxiliary layer was obtained. Table 1 shows the results of evaluating the obtained laminate.

(実施例24)
補助層用の発泡体の作製:
特開平4−372630号公報の実施例に記載の方法と同様の方法にて発泡粒子(3次発泡粒子)を得た。得られた発泡粒子(3次発泡粒子)の炭化水素ガスの含有量を発泡直後に測定したが、検出限界(0.01質量%)以下であった。
(Example 24)
Preparation of foam for auxiliary layer:
Foamed particles (tertiary foamed particles) were obtained by the same method as described in Examples of JP-A-4-372630. The hydrocarbon gas content of the obtained foamed particles (tertiary foamed particles) was measured immediately after foaming, and was below the detection limit (0.01% by mass).

その後、この発泡粒子を容器内に入れ、加圧空気を導入(0.4MPaまで4時間かけて昇圧し、その後0.4MPaで16時間保持)することで、加圧処理を施した。これを、水蒸気孔を有する型内成形金型内に充填し、水蒸気で加熱して発泡粒子を相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡粒子からなる補助層用の発泡体を得た。 Then, the foamed particles were placed in a container, and pressurized air was introduced (pressurized to 0.4 MPa over 4 hours and then held at 0.4 MPa for 16 hours) to perform a pressurizing treatment. This is filled in an in-mold molding die having steam holes, heated with steam to expand and fuse the foamed particles to each other, cooled, taken out from the molding mold, and assisted by the foamed particles. A foam for the layer was obtained.

表層用の樹脂板の作製:
低密度ポリエチレン(PE)(密度922kg/m、MI=7.0g/10分)100質量%を、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。得られた基材樹脂ペレットを型枠内に敷き詰め、200℃の温度で熱プレス法により厚み1.0mmの表層用の樹脂板を作製した。
Fabrication of resin plate for surface layer:
100% by mass of low-density polyethylene (PE) (density 922 kg / m 3 , MI = 7.0 g / 10 minutes) was extruded by heating, melting and kneading with an extruder to prepare a base resin pellet. The obtained base material resin pellets were spread in a mold, and a resin plate for a surface layer having a thickness of 1.0 mm was prepared by a heat pressing method at a temperature of 200 ° C.

表層と補助層の積層体の作製:
熱プレス機において、下面の温度を150℃、上面の温度を30℃に設定し、下面の上に前記表層用の樹脂板を配置し、周りにSU304製の枠を設置する事でプレス時に樹脂板が押し広げられ、厚みが変動しないようにした。続いて、表層用の樹脂板の上に、補助層用の発泡体を配置し、熱プレス機の上面と下面の距離が樹脂板と発泡体の厚みの合計値よりも2mmだけ小さくなるまでプレスし、その状態で3分間保持することで表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
Preparation of laminated body of surface layer and auxiliary layer:
In the heat press machine, the temperature of the lower surface is set to 150 ° C. and the temperature of the upper surface is set to 30 ° C., the resin plate for the surface layer is placed on the lower surface, and a frame made of SU304 is installed around the resin plate during pressing. The board was pushed open so that the thickness did not fluctuate. Subsequently, the foam for the auxiliary layer is placed on the resin plate for the surface layer, and pressed until the distance between the upper surface and the lower surface of the heat press machine is smaller than the total thickness of the resin plate and the foam by 2 mm. Then, by holding in that state for 3 minutes, a laminated body of a surface layer, an intermediate layer, and an auxiliary layer was obtained. Table 1 shows the results of evaluating the obtained laminate.

(実施例25)
補助層用の発泡体の作製:
特開2006−077218号公報を参考に、以下の手順で発泡体を作製した。
(Example 25)
Preparation of foam for auxiliary layer:
A foam was prepared by the following procedure with reference to JP-A-2006-07728.

まず、150mmのバレル内径を有するスクリュー型押出機の供給領域に、900kg/時間の速度で、低密度ポリエチレン(PE)(密度922kg/m、MI=7.0g/10分)を、この樹脂100質量部に対し気泡核形成剤として1.2質量部のタルク粉末(粒径8.0μm)と0.8質量部のガス透過調整剤(ステアリン酸モノグリセリド)とともに供給した。押出機のバレル温度を190〜210℃に調整し、押出機の先端に取り付けた発泡剤注入口からn−ブタン100質量%からなる発泡剤をこの樹脂100質量部に対し3質量部を圧入し、当該溶融樹脂組成物と混合して発泡性溶融混合物とした。 First, low-density polyethylene (PE) (density 922 kg / m 3 , MI = 7.0 g / 10 minutes) was applied to the supply area of a screw extruder having a barrel inner diameter of 150 mm at a rate of 900 kg / hour. It was supplied together with 1.2 parts by mass of talc powder (particle size 8.0 μm) and 0.8 parts by mass of a gas permeation adjuster (stearic acid monoglyceride) as a bubble nucleating agent with respect to 100 parts by mass. The barrel temperature of the extruder is adjusted to 190 to 210 ° C., and 3 parts by mass of a foaming agent consisting of 100% by mass of n-butane is press-fitted into 100 parts by mass of this resin from a foaming agent injection port attached to the tip of the extruder. , Was mixed with the molten resin composition to obtain an effervescent melt mixture.

この発泡性溶融混合物を押出機の出口に取り付けた冷却装置で108℃まで冷却した後、約4.0mmの平均厚みと約226mm幅の開口部形状を有するオリフィスプレートより、常温、大気圧下の雰囲気中に連続的に押し出して発泡させ、樹脂発泡体の引き取り速度を調整しながら成形して、厚み52mm、幅560mm、長さ1000mm、密度100kg/mの板状発泡体を得た。この樹脂発泡体中に含まれる炭化水素ガスの含有量は、2.4質量%であった。40℃環境下で3か月保管し、炭化水素ガスの含有量が検出下限以下(0.01質量%)となったことを確認した。得られた発泡体を補助層用の発泡体とした。 This effervescent melt mixture is cooled to 108 ° C. by a cooling device attached to the outlet of the extruder, and then at room temperature and atmospheric pressure from an orifice plate having an average thickness of about 4.0 mm and an opening shape of about 226 mm width. The resin foam was continuously extruded into the atmosphere and foamed, and molded while adjusting the take-up speed of the resin foam to obtain a plate-shaped foam having a thickness of 52 mm, a width of 560 mm, a length of 1000 mm, and a density of 100 kg / m 3. The content of the hydrocarbon gas contained in this resin foam was 2.4% by mass. It was stored in an environment of 40 ° C. for 3 months, and it was confirmed that the content of hydrocarbon gas was below the lower limit of detection (0.01% by mass). The obtained foam was used as a foam for the auxiliary layer.

表層用の樹脂板の作製:
低密度ポリエチレン(PE)(密度922kg/m、MI=7.0g/10分)100質量%を、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。得られた基材樹脂ペレットを型枠内に敷き詰め、200℃の温度で熱プレス法により厚み1.0mmの表層用の樹脂板を作製した。
Fabrication of resin plate for surface layer:
100% by mass of low-density polyethylene (PE) (density 922 kg / m 3 , MI = 7.0 g / 10 minutes) was extruded by heating, melting and kneading with an extruder to prepare a base resin pellet. The obtained base material resin pellets were spread in a mold, and a resin plate for a surface layer having a thickness of 1.0 mm was prepared by a heat pressing method at a temperature of 200 ° C.

表層と補助層の積層体の作製:
熱プレス機において、下面の温度を150℃、上面の温度を30℃に設定し、下面の上に前記表層用の樹脂板を配置し、周りにSU304製の枠を設置する事でプレス時に樹脂板が押し広げられ、厚みが変動しないようにした。続いて、表層用の樹脂板の上に、補助層用の発泡体を配置し、熱プレス機の上面と下面の距離が樹脂板と発泡体の厚みの合計値よりも2mmだけ小さくなるまでプレスし、その状態で3分間保持することで表層、中間層、補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
Preparation of laminated body of surface layer and auxiliary layer:
In the heat press machine, the temperature of the lower surface is set to 150 ° C. and the temperature of the upper surface is set to 30 ° C., the resin plate for the surface layer is placed on the lower surface, and a frame made of SU304 is installed around the resin plate during pressing. The board was pushed open so that the thickness did not fluctuate. Subsequently, the foam for the auxiliary layer is placed on the resin plate for the surface layer, and pressed until the distance between the upper surface and the lower surface of the heat press machine is smaller than the total thickness of the resin plate and the foam by 2 mm. Then, by holding in that state for 3 minutes, a laminated body of a surface layer, an intermediate layer, and an auxiliary layer was obtained. Table 1 shows the results of evaluating the obtained laminate.

(実施例26)
実施例11と同様の方法にて、表層と補助層の積層体を得た。得られた積層体を評価した結果を表1に示す。
(Example 26)
A laminate of the surface layer and the auxiliary layer was obtained by the same method as in Example 11. Table 1 shows the results of evaluating the obtained laminate.

(比較例1〜15)
実施例1〜26を参考に、表層用の樹脂板のみを作製した。得られた表層用の樹脂板を評価した結果を表2に示す。
(Comparative Examples 1 to 15)
With reference to Examples 1 to 26, only a resin plate for the surface layer was produced. Table 2 shows the results of evaluating the obtained resin plate for the surface layer.

(参考例1)
基材樹脂ペレットから発泡粒子を製造する際に、含浸圧の開放を完了した時点から加温(加圧蒸気の導入)開始までの時間を600秒へ変更したこと以外は、実施例21と同様の方法にて、表層と補助層の積層体を得た。得られた積層体を評価した結果を表2に示す。
(Reference example 1)
Similar to Example 21 except that the time from the completion of releasing the impregnation pressure to the start of heating (introduction of pressurized steam) was changed to 600 seconds when producing the foamed particles from the base resin pellets. A laminated body of a surface layer and an auxiliary layer was obtained by the method of. Table 2 shows the results of evaluating the obtained laminate.

実施例および比較例の構成は、表1および表2のとおりである。これらの実施例および比較例に対して上記の評価が実行された。表1、表2に示すように、表層と補助層が存在することによって、表層の厚み変動により発生する電波透過率の変動量が低減できることが分かった。また、表1の増加量に示すように、ほとんどの実施例も表皮材のみの場合に比べて増加量の向上がみられた。 The configurations of Examples and Comparative Examples are as shown in Tables 1 and 2. The above evaluation was performed on these examples and comparative examples. As shown in Tables 1 and 2, it was found that the presence of the surface layer and the auxiliary layer can reduce the amount of fluctuation in the radio wave transmittance generated by the fluctuation in the thickness of the surface layer. In addition, as shown in the increase amount in Table 1, in most of the examples, the increase amount was improved as compared with the case where only the skin material was used.

Figure 2021136540
Figure 2021136540

Figure 2021136540
Figure 2021136540

上記の検討によると、表層と裏層を積層することにより、表層の厚みが変動することによって起きる透過率変動が抑制できるため、生産の安定性が向上する。また、上記の式(A)で示される値ABSの最小が0.73以下である場合に、電波の透過率が改善される。 According to the above examination, by laminating the surface layer and the back layer, the change in the transmittance caused by the change in the thickness of the surface layer can be suppressed, so that the stability of production is improved. Further, when the minimum value ABS represented by the above formula (A) is 0.73 or less, the transmittance of radio waves is improved.

本開示によれば、高周波数帯の電波を用いて通信する電子機器10で使用され、表皮厚み変動による電波透過率の変化を抑制することが可能なカバー1を提供することができる。 According to the present disclosure, it is possible to provide a cover 1 that is used in an electronic device 10 that communicates using radio waves in a high frequency band and can suppress a change in radio wave transmittance due to a change in skin thickness.

1 カバー
2 表層
3 補助層
4 裏層
5 中間層
6 アンテナ
10 電子機器
21 表面
22 裏面
101 カバー
110 電子機器
1 Cover 2 Surface 3 Auxiliary layer 4 Back layer 5 Intermediate layer 6 Antenna 10 Electronic device 21 Front surface 22 Back surface 101 Cover 110 Electronic device

Claims (10)

高周波数帯の電波を用いて通信する電子機器で使用される樹脂製のカバーであって、
前記電子機器から一部が露出する表層と、
前記表層より密度が小さい発泡体を含み、前記電子機器の内部に前記表層と接して配置される補助層と、を備えるカバー。
A resin cover used in electronic devices that communicate using radio waves in the high frequency band.
The surface layer that is partially exposed from the electronic device,
A cover including an auxiliary layer containing a foam having a density lower than that of the surface layer and arranged inside the electronic device in contact with the surface layer.
前記電波の空気中の波長λ、前記表層の厚さd、前記表層の複素屈折率の大きさをNおよび1以上の整数kを用いて、以下の式(A)で示される値ABSの最小が0.73以下である、請求項1に記載のカバー。
Figure 2021136540
Using N and an integer k of 1 or more for the wavelength λ 0 of the radio wave in the air, the thickness d of the surface layer, and the magnitude of the complex refractive index of the surface layer, the value ABS represented by the following formula (A). The cover of claim 1, wherein the minimum is 0.73 or less.
Figure 2021136540
前記表層の密度は、0.90g/cm以上である、請求項1または2に記載のカバー。 The cover according to claim 1 or 2, wherein the surface layer has a density of 0.90 g / cm 3 or more. 切断した断面における前記発泡体の最大気泡径は、1500μm以下である、請求項1から3のいずれか一項に記載のカバー。 The cover according to any one of claims 1 to 3, wherein the maximum bubble diameter of the foam in the cut cross section is 1500 μm or less. 前記補助層は、前記発泡体で構成される裏層および中間層を含み、
前記中間層は、前記表層と前記裏層との間に配置され、
前記中間層の平均密度は、前記表層の密度より小さく、かつ、前記裏層の密度より大きい、請求項1から4のいずれか一項に記載のカバー。
The auxiliary layer includes a back layer and an intermediate layer composed of the foam.
The intermediate layer is arranged between the surface layer and the back layer.
The cover according to any one of claims 1 to 4, wherein the average density of the intermediate layer is smaller than the density of the surface layer and larger than the density of the back layer.
前記中間層の密度は、前記表層の側から前記裏層の側に向かって、段階的に小さくなる、請求項5に記載のカバー。 The cover according to claim 5, wherein the density of the intermediate layer gradually decreases from the surface layer side to the back layer side. 前記中間層の密度は、前記表層の側から前記裏層の側に向かって、漸近的に小さくなる、請求項5に記載のカバー。 The cover according to claim 5, wherein the density of the intermediate layer asymptotically decreases from the surface layer side to the back layer side. 前記裏層は、荷重たわみ温度が100℃以上である、請求項5から7のいずれか一項に記載のカバー。 The cover according to any one of claims 5 to 7, wherein the back layer has a deflection temperature under load of 100 ° C. or higher. 前記樹脂は、UL94規格V−0を満たす、請求項1から8のいずれか一項に記載のカバー。 The cover according to any one of claims 1 to 8, wherein the resin satisfies UL94 standard V-0. 請求項1から9のいずれか一項に記載のカバーを備える、アンテナ装置。 An antenna device comprising the cover according to any one of claims 1 to 9.
JP2020030573A 2020-02-26 2020-02-26 Cover and antenna equipment Active JP7457528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030573A JP7457528B2 (en) 2020-02-26 2020-02-26 Cover and antenna equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030573A JP7457528B2 (en) 2020-02-26 2020-02-26 Cover and antenna equipment

Publications (2)

Publication Number Publication Date
JP2021136540A true JP2021136540A (en) 2021-09-13
JP7457528B2 JP7457528B2 (en) 2024-03-28

Family

ID=77661818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030573A Active JP7457528B2 (en) 2020-02-26 2020-02-26 Cover and antenna equipment

Country Status (1)

Country Link
JP (1) JP7457528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176591A1 (en) * 2021-02-19 2022-08-25 旭化成株式会社 Cover

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198203A (en) * 1986-02-25 1987-09-01 Matsushita Electric Works Ltd Plane antenna
JP2000049518A (en) * 1998-07-30 2000-02-18 Kajima Corp Method and device for installing phs base station antenna on radio wave reflective wall

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198203A (en) * 1986-02-25 1987-09-01 Matsushita Electric Works Ltd Plane antenna
JP2000049518A (en) * 1998-07-30 2000-02-18 Kajima Corp Method and device for installing phs base station antenna on radio wave reflective wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176591A1 (en) * 2021-02-19 2022-08-25 旭化成株式会社 Cover

Also Published As

Publication number Publication date
JP7457528B2 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
KR101371899B1 (en) Expandable beads, molded body using the same, and production method for molded body
JP5722066B2 (en) Multilayer structure
JP7158600B2 (en) SPACER, METHOD FOR MANUFACTURING SAME, AND COMPOSITE
JP2024120943A (en) Laminate
JP7457528B2 (en) Cover and antenna equipment
JP5642521B2 (en) Foamed bead molded body and manufacturing method thereof
JP7355838B2 (en) Containers, storage devices, electrical parts storage bodies
TWI820604B (en) Cover body
JP6247459B2 (en) Foamed particles and foamed particle molded body
WO2023095842A1 (en) Radome for radar
JP2022100556A (en) Device for transmitting and receiving radio waves and cover material
CN116868078A (en) Cover body
JP2021197210A (en) Composite article
WO2023171330A1 (en) Bead foam body and foam particles, and manufacturing methods therfor
WO2021166667A1 (en) Lithium-ion battery module
JP2019178262A (en) Foam core material for automobile roof substrate and manufacturing method therefor
WO2022045083A1 (en) Composite non-combustible molded body
US20240300152A1 (en) Expandable beads, method for producing the same, and molded body
WO2024043103A1 (en) Method for producing foam beads, amorphous resin foam beads, crystalline resin foam beads and foam molded body
JP2022094801A (en) LIB cooling plate and LIB cooling kit
JP2016202753A (en) Heated toilet seat foam and heated toilet seat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7457528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150