JP2021135111A - Feedback deflector system - Google Patents

Feedback deflector system Download PDF

Info

Publication number
JP2021135111A
JP2021135111A JP2020029941A JP2020029941A JP2021135111A JP 2021135111 A JP2021135111 A JP 2021135111A JP 2020029941 A JP2020029941 A JP 2020029941A JP 2020029941 A JP2020029941 A JP 2020029941A JP 2021135111 A JP2021135111 A JP 2021135111A
Authority
JP
Japan
Prior art keywords
deflector
particle beam
correction
irradiation
thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020029941A
Other languages
Japanese (ja)
Inventor
忠通 川久保
Tadamichi Kawakubo
忠通 川久保
健 高山
Takeshi Takayama
健 高山
利一 安達
Riichi Adachi
利一 安達
勝也 岡村
Katsuya Okamura
勝也 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Energy Accelerator Research Organization
Original Assignee
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Energy Accelerator Research Organization filed Critical High Energy Accelerator Research Organization
Priority to JP2020029941A priority Critical patent/JP2021135111A/en
Publication of JP2021135111A publication Critical patent/JP2021135111A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a feedback deflector system that allows a beam to aim and illuminate in real time at an arbitrary location of a cancer target that is spread in a three-dimensional direction and moving and deforming.SOLUTION: A feedback deflector system is configured to include a correction deflector for correcting an irradiation position of a particle beam from a set value to a current position, and a drive power supply circuit for forming an excitation current waveform similar to that of a main deflecting electromagnet on the correction deflector in a time zone until the exciting current waveform of the main deflecting electromagnet of the accelerator for supplying the particle beam reaches a maximum value.SELECTED DRAWING: Figure 3

Description

本発明は、3次元方向に広がりを持ち、動き・変形するガン標的の任意の位置にリアルタイムで照準を合わせてビームを照射可能にするフィードバックデフレクターシステムに関するものである。 The present invention relates to a feedback deflector system that spreads in a three-dimensional direction and makes it possible to irradiate a beam by aiming at an arbitrary position of a moving / deforming gun target in real time.

次世代粒子線セラピーでは、粒子線ビーム(単に「ビーム」ともいう)の加速器から取り出されたビームを照射標的の表面上(2次元的)を隈なく走査して照射するだけでなく、深さ方向も加えた3次元的にもビームを移動させて、連続的照射することが求められている。それらについての検討が、非特許文献1−7に開示されている。 In next-generation particle beam therapy, the beam taken from the accelerator of the particle beam (also simply called "beam") is not only scanned and irradiated on the surface (two-dimensional) of the irradiation target, but also in depth. It is required to move the beam three-dimensionally including the direction and continuously irradiate the beam. A study on them is disclosed in Non-Patent Document 1-7.

ガンには広さだけでなく厚みがあるので、粒子線ガンセラピーにおいては、ガン全体に粒子線ビームを3次元的に連続的走査できることが理想である。 Since the gun is not only wide but also thick, it is ideal in particle beam gun therapy to be able to continuously scan the particle beam in three dimensions throughout the gun.

粒子線ビームの2次元走査の為には加速器と照射対象の間にパルス電磁石(以降「プログラム動作デフレクター」と称する)を配置し、必要な角度だけビームを振れば良い。 For two-dimensional scanning of the particle beam, a pulse electromagnet (hereinafter referred to as "programming deflector") may be placed between the accelerator and the irradiation target, and the beam may be shaken at a required angle.

ここで、加速器内での粒子線ビームエネルギーは、照射標的の表面でブラッグピークを持つ値に達した時間からビームは引き出され、照射標的最深部でのブラッグピークに対応するエネルギーに達する時間まで照射ビームスピルは連続的に引き出される(図5の取り出し時間t1〜t2,非特許文献7)。 Here, the particle beam energy in the accelerator is extracted from the time when the value having the Bragg peak on the surface of the irradiation target is reached, and the beam is irradiated until the time when the energy corresponding to the Bragg peak at the deepest part of the irradiation target is reached. The beam spill is continuously pulled out (take-out time t1 to t2 in FIG. 5, Non-Patent Document 7).

このときデフレクターの磁場が一定であればビームエネルギーの増加に伴い標的におけるビーム照射位置が変化してしまう。これを防ぐ為、先ず照射すべき位置に応じて事前にプログラム動作する設定デフレクターのキック角(励磁最大値)を励磁パルス毎に決め、加速器の主偏向電磁石の励磁パターンと同期した磁場を設定デフレクターに発生させる必要がある。これは適切な駆動電源回路とその動作プログラム制御で容易に実現できる(このシステムを図1に示すように「プログラム動作デフレクターシステム」と呼ぶ)。 At this time, if the magnetic field of the deflector is constant, the beam irradiation position at the target changes as the beam energy increases. In order to prevent this, first, the kick angle (maximum excitation value) of the setting deflector that is programmed in advance according to the position to be irradiated is determined for each excitation pulse, and the magnetic field synchronized with the excitation pattern of the main deflection electromagnet of the accelerator is set. Need to be generated in. This can be easily achieved with an appropriate drive power supply circuit and its operation program control (this system is called a "program operation deflector system" as shown in FIG. 1).

しかし、プログラム動作デフレクターシステムだけでは、ガン標的が動かない場合にしか対応できない。実際のガン標的は呼吸やその他患者の移動に伴い重力の影響で移動・変形(変化)する。但し、その変化は、1ショット当たりのビーム照射時間(10−20ミリ秒)に比すれば、非常に遅く、照射ビームからみれば静止している程である。 However, the program operation deflector system alone can only handle cases where the gun target does not move. The actual cancer target moves and deforms (changes) due to the influence of gravity due to breathing and other movements of the patient. However, the change is very slow compared to the beam irradiation time per shot (10 to 20 milliseconds), and it is almost stationary when viewed from the irradiation beam.

しかし、10Hzの繰り返しの間、ガン標的は移動・変形する。しかもその移動・変形は全く同じパターンで動くわけではない。患者に応じ、又、患者を載せた照射ベッドの操作に応じ、異なる。これにはプログラム動作デフレクターシステムでは対応できない。 However, during the 10 Hz repetition, the gun target moves and deforms. Moreover, the movement and deformation do not move in exactly the same pattern. It depends on the patient and the operation of the irradiation bed on which the patient is placed. This cannot be handled by the program operation deflector system.

個々のケースに応じ、プログラム動作デフレクターシステムに加え、時間的に移動・変形するガン標的に対応するシステム(「フィードバックデフレクターシステム」と呼ぶ、図1参照)を構築する必要がある。 In addition to the program operation deflector system, it is necessary to construct a system (referred to as "feedback deflector system", see FIG. 1) corresponding to a gun target that moves and deforms in time according to each case.

照射すべきガン標的は、呼吸などの人体の生理作用で位置移動するので、先ずそのガン標的の位置(ガン標的プロフィール)をリアルタイムで検出することが課題であった。幸い、ガン標的の金ナノ粒子による標識付けとX線カメラを組み合わせたガン標的検出システムの登場で、その課題は既に解決している(特許文献1)。 Since the cancer target to be irradiated moves due to the physiological action of the human body such as respiration, it was a problem to first detect the position of the cancer target (cancer target profile) in real time. Fortunately, with the advent of a cancer target detection system that combines labeling with gold nanoparticles of a cancer target and an X-ray camera, that problem has already been solved (Patent Document 1).

他方、ガンに照射されたビームより生成される即発ガンマー線を検出することにより、照射ビームの進行軸方向(z軸)の照射ビームのプロフィール、すなわちガン標的の深さ(z軸方向のドーズプロフィール)信号の検出が可能になった(非特許文献8)。 On the other hand, by detecting the prompt gamma rays generated from the beam irradiated to the gun, the profile of the irradiation beam in the traveling axis direction (z-axis) of the irradiation beam, that is, the depth of the cancer target (dose profile in the z-axis direction) ) Signal detection has become possible (Non-Patent Document 8).

z軸方向のドーズプロフィール信号とビームが人体に入射する直前に置いたビーム位置モニターでx−y軸方向の2次元ビームプロフィール信号と用いることでガン標的に照射されたビームの3次元ドーズプロフィール(信号)が把握できる。 The 3D dose profile of the beam radiated to the gun target by using the dose profile signal in the z-axis direction and the 2D beam profile signal in the xy-axis direction on the beam position monitor placed just before the beam enters the human body ( Signal) can be grasped.

計算機によりリアルタイムで検出したビーム照射前のガン標的の現在の位置を示すガン標的プロフィールと、前回のビーム照射の際に取得した3次元ドーズプロフィールとを比較してガン標的の位置の「ズレ」を求める。現在の計算機処理技術では10Hzでの処理は可能である。 The "misalignment" of the position of the cancer target is determined by comparing the cancer target profile, which indicates the current position of the cancer target before beam irradiation, detected in real time by a computer with the 3D dose profile acquired during the previous beam irradiation. Ask. With the current computer processing technology, processing at 10 Hz is possible.

そして、得られたガン標的の位置の「ズレ」を次のビーム照射でどのように補正するかが最大の課題となる。 The biggest issue is how to correct the "misalignment" of the obtained cancer target position by the next beam irradiation.

特開2016−144573号公報(画像処理装置および粒子線治療装置/(株)日立製作所、北海道大学)Japanese Unexamined Patent Publication No. 2016-144573 (Image processing device and particle beam therapy device / Hitachi, Ltd., Hokkaido University) 特開2006−310013(全種イオン加速器及びその制御方法/KEK)Japanese Patent Application Laid-Open No. 2006-31013 (All kinds of ion accelerators and their control methods / KEK)

Marco Schippers, “Advances in Beam Delivery Techniques and Accelerators in Particle Therapy”, Chapter 4 in Advances in Particle Therapy edited by Manjit Dosanjh and Jacques Bernier (CRC Press,2018).Marco Schippers, “Advances in Beam Delivery Techniques and Accelerators in Particle Therapy”, Chapter 4 in Advances in Particle Therapy edited by Manjit Dosanjh and Jacques Bernier (CRC Press, 2018). T. Harberer et al., “Magnetic scanning system for heavy ion therapy”, Nucl. Instr. Meth. A 330, 296 (1993).T. Harberer et al., “Magnetic scanning system for heavy ion therapy”, Nucl. Instr. Meth. A 330, 296 (1993). M. Tomizawa et al., “Slow beam extraction at TARN II”, Nucl. Instr. Meth. A 326, 399 (1993).M. Tomizawa et al., “Slow beam extraction at TARN II”, Nucl. Instr. Meth. A 326, 399 (1993). K. Noda et al., “Slow beam extraction by a transverse RF field with AM and FM”, Nucl. Instr. Meth. A 374, 269 (1996).K. Noda et al., “Slow beam extraction by a transverse RF field with AM and FM”, Nucl. Instr. Meth. A 374, 269 (1996). M. Benedikt, P. Bryant, and M. Pullia, “A new concept for the control of a slow-extracted beam in a line with rotational optics”, Nucl. Instr. Meth. A 430, 523 (1999).M. Benedikt, P. Bryant, and M. Pullia, “A new concept for the control of a slow-extracted beam in a line with rotational optics”, Nucl. Instr. Meth. A 430, 523 (1999). W. Chu, B.A. Ludewigt, and T.R. Renner, “Instrument of cancer using proton and light ion beams”, Rev. Sci. Instrum. 64, 2055 (1993).W. Chu, B.A. Ludewigt, and T.R. Renner, “Instrument of cancer using proton and light ion beams”, Rev. Sci. Instrum. 64, 2055 (1993). Leo Kwee Wah, Takumi Monma, Toshikazu Adachi, Tadamichi Kawakubo, Tanuja Dixit, and Ken Takayama, “Compact hadron driver for cancer therapies using continuous energy sweep scanning”, Phys. Rev. Accelerators and Beams 19, 042802 (2016).Leo Kwee Wah, Takumi Monma, Toshikazu Adachi, Tadamichi Kawakubo, Tanuja Dixit, and Ken Takayama, “Compact hadron driver for cancer therapies using continuous energy sweep scanning”, Phys. Rev. Accelerators and Beams 19, 042802 (2016). Ayako Koide et al., “Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton Camera”Nature, Scientific Reports 8, 1-9 (2018).Ayako Koide et al., “Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton Camera” Nature, Scientific Reports 8, 1-9 (2018).

そこで、本発明は、3次元方向に広がりを持ち、動き・変形するガン標的の任意の位置にリアルタイムで照準を合わせてビームを照射可能にする、すなわちリアルタイムで検出したビーム照射前のガン標的の位置と、前回のビーム照射の際のガン標的の位置の「ズレ」を補正するフィードバックデフレクターシステムを提供することを目的とする。 Therefore, the present invention makes it possible to irradiate a beam by aiming at an arbitrary position of a moving / deforming gun target in real time, that is, a gun target before beam irradiation detected in real time. It is an object of the present invention to provide a feedback deflector system that corrects the "misalignment" between the position and the position of the gun target at the time of the previous beam irradiation.

(1)
粒子線ビームの照射位置を設定値から現在位置に補正する補正デフレクターと、
前記粒子線ビームを供給する加速器の主偏向電磁石の励磁電流波形が最大値に達するまでの時間帯で、前記補正デフレクターに前記主偏向電磁石の励磁電流波形と相似する励磁電流波形を形成させる駆動電源回路と、
からなることを特徴とするフィードバックデフレクターシステム。
(2)
前記駆動電源回路によって、前記補正デフレクターに、前回の粒子線ビーム照射時のガン標的の3次元ドーズプロフィールから粒子線ビーム照査前にガン標的プロフィールの位置に補正する磁場強度を発生させることで、前記粒子線ビームの照射位置を設定値から現在位置に補正することを特徴とする(1)に記載のフィードバックデフレクターシステム。
とした。
(1)
A correction deflector that corrects the irradiation position of the particle beam from the set value to the current position,
A drive power source that causes the correction deflector to form an exciting current waveform similar to the exciting current waveform of the main deflecting electromagnet in the time zone until the exciting current waveform of the main deflecting electromagnet of the accelerator that supplies the particle beam reaches the maximum value. Circuit and
A feedback deflector system characterized by consisting of.
(2)
The drive power supply circuit causes the correction deflector to generate a magnetic flux strength that corrects the position of the gun target profile from the three-dimensional dose profile of the gun target at the time of the previous particle beam beam irradiation to the position of the gun target profile before the particle beam beam verification. The feedback deflector system according to (1), wherein the irradiation position of the particle beam is corrected from the set value to the current position.
And said.

本発明により、補正デフレクターの発生する励磁電流波形は加速器の主偏向電磁石の励磁電流波形と相似になる。又、コンデンサーCの充電電圧を制御するサイリスタScと補正デフレクターへの電流の向きを制御するサイリスタ(Sp1&Sp2)や(Sn1&Sn2)のON/OFFのタイミングを周期ごとに変化させる事により補正デフレクターの磁場(励磁電流波形)の最大振幅は正負を含め可変できる。この操作とエネルギーをスイープしながら連続的な加速器からのビーム取り出し(図5,非特許文献7)の特徴と合わせると、3次元的に移動・変形する臓器のガン標的への精度良い3次元の追尾ビーム照射が可能になる。 According to the present invention, the exciting current waveform generated by the correction deflector becomes similar to the exciting current waveform of the main deflection electromagnet of the accelerator. Further, the magnetic field of the correction deflector (Sn1 & Sn2) is changed by changing the ON / OFF timing of the thyristor Sc that controls the charging voltage of the capacitor C and the thyristor (Sp1 & Sp2) and (Sn1 & Sn2) that control the direction of the current to the correction deflector. The maximum amplitude of the exciting current waveform) can be changed including positive and negative. Combined with the features of continuous beam extraction from the accelerator (Fig. 5, Non-Patent Document 7) while sweeping this operation and energy, the three-dimensionally accurate three-dimensional target of the organ that moves and deforms three-dimensionally. Tracking beam irradiation becomes possible.

図1は、本発明のフィードバックデフレクターシステムを含む粒子線ガンセラピー照射イメージ図である。FIG. 1 is a particle beam gun therapy irradiation image diagram including the feedback deflector system of the present invention. 図2は、本発明の補正デフレクターの断面模式図である。FIG. 2 is a schematic cross-sectional view of the correction deflector of the present invention. 図3は、本発明のフィードバックデフレクターシステムの回路図であるFIG. 3 is a circuit diagram of the feedback deflector system of the present invention. 図4は、図3の回路の動作原理に基づくシミュレーション結果である。FIG. 4 is a simulation result based on the operating principle of the circuit of FIG. 図5は、非特許文献7の連続的なビームの取り出しを示すものである。FIG. 5 shows the continuous beam extraction of Non-Patent Document 7.

以下、添付の図面を参照し、本発明の実施の形態について、詳細に説明する。なお、本発明は下記形態例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the following examples.

図1−3に示す本発明のフィードバックデフレクターシステム1は、3次元方向にビーム照射位置をガン標的の動きに追随して微調整(リアルタイム補正)可能なビーム出射を実現するものであって、図2に示すように、駆動電源回路と補正デフレクターとからなる。図3中の回路の記号は符号の説明を参照のこと。 The feedback deflector system 1 of the present invention shown in FIG. 1-3 realizes beam emission capable of finely adjusting (real-time correction) the beam irradiation position in the three-dimensional direction according to the movement of the gun target. As shown in 2, it consists of a drive power supply circuit and a correction deflector. For the symbols of the circuit in FIG. 3, refer to the explanation of the symbols.

図1の加速器は特許文献2に示す誘導加速シンクロトロン(特許文献2)が例示でき、ビーム取出制御システムは誘導加速セル、加速器で加速され取り出された粒子線ビームは図5のようにエネルギー変化を持ち、非特許文献7に取り出し方法が開示されている。ビーム取り出しタイミング制御信号はフィードバック計算機で求められたズレから与えられる、取り出し時間(t1、t2)に相当する信号である。プログラム動作デフレクターシステムは、駆動電源回路への充電時間があらかじめ設定されている以外はフィードバックデフレクターシステムと同じ構成である。充電時間制御信号は、求められる補正ビームの偏向角を補正デフレクターで実現する磁場を発生させるのに要する充電時間の信号である。 The accelerator of FIG. 1 can be exemplified by the induced acceleration synchrotron (Patent Document 2) shown in Patent Document 2, the beam extraction control system is an induced accelerator cell, and the particle beam beam accelerated and extracted by the accelerator changes energy as shown in FIG. The extraction method is disclosed in Non-Patent Document 7. The beam extraction timing control signal is a signal corresponding to the extraction time (t1, t2) given from the deviation obtained by the feedback computer. The program operation deflector system has the same configuration as the feedback deflector system except that the charging time to the drive power supply circuit is preset. The charging time control signal is a charging time signal required to generate a magnetic field that realizes the required deflection angle of the correction beam with the correction deflector.

図2の補正デフレクターは、ギャップの中に挿入する真空ダクトを薄いSUS楕円パイプで製作するので10Hzの動作でも渦電流による減磁効果を抑制し、発熱を防止した偏向電磁石である。 The correction deflector of FIG. 2 is a deflecting electromagnet that suppresses the demagnetization effect due to eddy current even at 10 Hz operation and prevents heat generation because the vacuum duct to be inserted into the gap is manufactured by a thin SUS elliptical pipe.

本発明は、粒子線ガンセラピーのドライバーである加速器、例えば速い繰り返し誘導加速シンクロトロン(特許文献2)から、一加速周期内で連続的に変化するエネルギーを持って取り出される粒子線ビーム(図5)のガン標的に対する入射位置と入射角を、加速周期内で補正デフレクターにより一定に保持するものである。 According to the present invention, a particle beam beam (FIG. 5) is extracted from an accelerator, which is a driver of particle beam gun therapy, for example, a fast repetitive induced acceleration synchrotron (Patent Document 2) with energy that continuously changes within one acceleration cycle. ) With respect to the gun target, the incident position and the incident angle are kept constant by the correction deflector within the acceleration cycle.

先ず照射粒子線ビームのライン上での補正デフレクターによる曲げ角を加速周期毎に任意に変化させ、ビームを要求される照射位置に固定する。 First, the bending angle of the irradiation particle beam on the line by the correction deflector is arbitrarily changed for each acceleration cycle, and the beam is fixed at the required irradiation position.

次に高速に励磁される偏向電磁石である補正デフレクターの励磁電流波形を加速器の主偏向電磁石の励磁電流波形と相似にする。そのために、図2の2極電磁石断面を持つ補正デフレクターに図3のように駆動電源回路を接続する。駆動電源回路の構成は図3のように100msec以内でフィードバック制御され得るスイッチングパルス電源回路である。走査は正負、逆方向にも自由に実現できる。 Next, the exciting current waveform of the correction deflector, which is a deflecting electromagnet excited at high speed, is made similar to the exciting current waveform of the main deflecting electromagnet of the accelerator. Therefore, the drive power supply circuit is connected to the correction deflector having the bipolar electromagnet cross section of FIG. 2 as shown in FIG. The configuration of the drive power supply circuit is a switching pulse power supply circuit that can be feedback-controlled within 100 msec as shown in FIG. Scanning can be freely realized in both positive and negative directions.

充電コンデンサーCのキャパシタンスと補正デフレクターのインダクタンスの積が加速器の偏向電磁石の励磁周期と一定の関係を満たすようにキャパシタンスを選ぶ。 The capacitance is selected so that the product of the capacitance of the charging capacitor C and the inductance of the correction deflector satisfies a certain relationship with the excitation period of the deflecting electromagnet of the accelerator.

補正デフレクターの励磁電流波形の最大振幅を正負の符号を含め、外部制御信号によって加速周期毎に変化させる。コンデンサーCに充電する電圧を充電用サイリスタScのOFFタイミングをコントロールする事により任意に調整する。補正デフレクターの電流をONするタイミングでサイリスタS0と補正デフレクター順方向電流発生用サイリスタSp1及びSp2をONにするか、補正デフレクター逆方向電流発生用サイリスタSn1およびSn2をONにするかで補正デフレクターに流す電流の向きを変える。 The maximum amplitude of the exciting current waveform of the correction deflector, including positive and negative signs, is changed for each acceleration cycle by an external control signal. The voltage for charging the capacitor C is arbitrarily adjusted by controlling the OFF timing of the charging thyristor Sc. Thyristor S0 and correction deflector forward current generation thyristors Sp1 and Sp2 are turned on at the timing when the correction deflector current is turned on, or correction deflector reverse current generation thyristors Sn1 and Sn2 are turned on to flow to the correction deflector. Change the direction of the current.

図3の回路動作は、次の通りである。
(A)
充電コンデンサーCの充電用サイリスタScをONにして直流高圧電源V0から充電コンデンサーCに充電する。
The circuit operation of FIG. 3 is as follows.
(A)
The charging thyristor Sc of the charging capacitor C is turned on to charge the charging capacitor C from the DC high-voltage power supply V0.

(B)
充電コンデンサーCが所定(ビーム照射全体を司る制御系が決定する)の電圧に達したら充電用サイリスタScをOFFする。充電用サイリスタScにトリガーによりOFFする機能が付いていな場合は、破線で囲まれた付属回路(S1 OFF circuit)により充電用サイリスタScを強制OFFする。
(B)
When the charging capacitor C reaches a predetermined voltage (determined by the control system that controls the entire beam irradiation), the charging thyristor Sc is turned off. If the charging thyristor Sc does not have a function to turn off by a trigger, the charging thyristor Sc is forcibly turned off by the attached circuit (S1 OFF cycle) surrounded by a broken line.

なお、付属回路(S1 OFF circuit)の強制OFF動作は以下の通りである。
a.充電用サイリスタScをOFFしたいタイミングでScOFF回路用サイリスタS1をONする。
b.充電用サイリスタScは逆電流によりOFFする。又、ScOFF回路用サイリスタS1を流れる電流はScOFF回路用コンデンサーC1が充電されるとゼロとなり、その時点でScOFF回路用サイリスタS1はOFFとなる。
c.電荷放電用サイリスタS2をONにしてScOFF回路用コンデンサーC1に充電された電荷をC1電荷放電用抵抗R1を通して放電する。
d.ScOFF回路用コンデンサーC1の電荷がゼロとなったら電荷放電用サイリスタS2を流れる電流はゼロとなるのでC1電荷放電用サイリスタS2もOFFとなる。
e.上記の一連の動作は次に充電コンデンサーCの充電の為に充電用サイリスタScをONするまでに終了する。
The forced OFF operation of the attached circuit (S1 OFF circuit) is as follows.
a. The ScOFF circuit thyristor S1 is turned on at the timing when the charging thyristor Sc is desired to be turned off.
b. The charging thyristor Sc is turned off by a reverse current. Further, the current flowing through the ScOFF circuit thyristor S1 becomes zero when the ScOFF circuit capacitor C1 is charged, and at that point, the ScOFF circuit thyristor S1 is turned off.
c. The charge discharge thyristor S2 is turned on, and the charge charged in the ScOFF circuit capacitor C1 is discharged through the C1 charge discharge resistor R1.
d. When the charge of the ScOFF circuit capacitor C1 becomes zero, the current flowing through the charge discharge thyristor S2 becomes zero, so that the C1 charge discharge thyristor S2 also turns off.
e. The above series of operations is completed by the time the charging thyristor Sc is turned on for charging the charging capacitor C.

(C)
補正デフレクターに正電流(即ち図3中の補正デフレクターにおいて上から下への向き)を流したいタイミング(ビーム照射全体を司る制御系が決定する)でサイリスタS0及び、補正デフレクター順方向電流発生用サイリスタSp1、Sp2を同時にONする。逆に負電流を流したい時(即ち図中のLで下から上への向き)はサイリスタS0及び、補正デフレクター逆方向電流発生用サイリスタSn1、Sn2を同時にONする。
(C)
The thyristor S0 and the thyristor for generating the forward current of the correction deflector are at the timing when the positive current (that is, the direction from top to bottom in the correction deflector in FIG. 3) is desired to flow through the correction deflector (the control system that controls the entire beam irradiation is determined). Sp1 and Sp2 are turned on at the same time. On the contrary, when it is desired to pass a negative current (that is, the direction from bottom to top at L in the figure), the thyristor S0 and the correction deflectors Sn1 and Sn2 for generating the reverse current are turned on at the same time.

(D)
充電コンデンサーCの電圧が減少してゼロ電位になった瞬間、サイリスタS0をOFFにする。この後、補正デフレクターに流れる電流は臨界減衰用抵抗Rにより速やかにゼロとなる。
(D)
The moment the voltage of the charging capacitor C decreases to zero potential, the thyristor S0 is turned off. After that, the current flowing through the correction deflector quickly becomes zero due to the critical attenuation resistor R.

(F)
これで一連の補正デフレクターを含む電源回路の周期動作は終了し、再び(A)に戻る。
(F)
This completes the periodic operation of the power supply circuit including the series of correction deflectors, and returns to (A) again.

次に、図3示す回路動作で説明した動作原理に基づき粒子線ビームの3D照射制御をした取り出しをシミュレーションした結果を以下に示す。但し、シミュレーション時間は主ベンド磁石の4周期分である。補正デフレクター電流が加速器周期ごとに自由自在にピーク値や電流の向きを変え得る事を示すために1発目から4発目にかけて正、負、正、正の向きとし、その電流の絶対値もさまざまに変化させている。 Next, the results of simulating the extraction of the particle beam beam under 3D irradiation control based on the operating principle described in the circuit operation shown in FIG. 3 are shown below. However, the simulation time is for 4 cycles of the main bend magnet. In order to show that the corrected deflector current can freely change the peak value and the direction of the current for each accelerator cycle, the directions are positive, negative, positive, and positive from the first shot to the fourth shot, and the absolute value of the current is also It is changing in various ways.

図4に主偏向電磁石の励磁電流波形を示す。上述した動作により充電コンデンサーCは充電用サイリスタScのOFFタイングにより「充電コンデンサーの電圧波形」に図4に示したように大小様々に異なる充電電圧となる。補正デフレクターに通電すべきタイミングで順方向電流発生用サイリスタ(Sp1&Sp2)をONにするか逆方向電流発生用サイリスタ(Sn1&Sn2)をONにするかで図4の「補正デフレクター励磁電流波形」に示すように電流の向きやその絶対値を自由に変化させる事が出来る。 FIG. 4 shows the exciting current waveform of the main deflection electromagnet. Due to the above-mentioned operation, the charging capacitor C becomes a charging voltage of various sizes as shown in FIG. 4 in the “voltage waveform of the charging capacitor” due to the OFF timing of the charging thyristor Sc. As shown in "Correction deflector exciting current waveform" of FIG. 4, whether the forward current generation thyristor (Sp1 & Sp2) is turned ON or the reverse current generation thyristor (Sn1 & Sn2) is turned ON at the timing when the correction deflector should be energized. The direction of the current and its absolute value can be changed freely.

図4の場合は加速器周期毎に[順→逆→順→順]の電流発生用サイリスタをONにしている。但し全ての励磁電流波形ともそのゼロ電流がゼロからピーク電流までの時間中、その励磁電流波形は完全に主偏向電磁石の励磁電流波形と相似である。 In the case of FIG. 4, the current generation thyristor of [forward → reverse → forward → forward] is turned on for each accelerator cycle. However, the exciting current waveforms of all the exciting current waveforms are completely similar to the exciting current waveforms of the main deflection electromagnet during the time when the zero current is from zero to the peak current.

1 フィードバックデフレクターシステム
V0 直流高圧電源
Rc 充電抵抗
S1 ScOFF回路用サイリスタ
C1 ScOFF回路用コンデンサー
S2 C1電荷放電用サイリスタ
R1 C1電荷放電用抵抗
Sc 充電用サイリスタ
S0 サイリスタ
C 充電コンデンサー
D 臨界減衰用ダイオード
R 臨界減衰用抵抗
Sp1、Sp2 補正デフレクター順方向電流発生用サイリスタ
Sn1、Sn2 補正デフレクター逆方向電流発生用サイリスタ
1 Feedback deflector system V0 DC high-voltage power supply Rc Charging resistance S1 ScOFF circuit thyristor C1 ScOFF circuit condenser S2 C1 Charge discharge thyristor R1 C1 Charge discharge resistance Sc Charging thyristor S0 Thyristor C Charging condenser D Critical attenuation diode R Resistance Sp1, Sp2 Compensation deflector Forward current generation thyristor Sn1, Sn2 Correction deflector Reverse current generation thyristor

Claims (2)

粒子線ビームの照射位置を設定値から現在位置に補正する補正デフレクターと、
前記粒子線ビームを供給する加速器の主偏向電磁石の励磁電流波形が最大値に達するまでの時間帯で、前記補正デフレクターに前記主偏向電磁石の励磁電流波形と相似する励磁電流波形を形成させる駆動電源回路と、
からなることを特徴とするフィードバックデフレクターシステム。
A correction deflector that corrects the irradiation position of the particle beam from the set value to the current position,
A drive power source that causes the correction deflector to form an exciting current waveform similar to the exciting current waveform of the main deflecting electromagnet in the time zone until the exciting current waveform of the main deflecting electromagnet of the accelerator that supplies the particle beam reaches the maximum value. Circuit and
A feedback deflector system characterized by consisting of.
前記駆動電源回路によって、前記補正デフレクターに、
前回の粒子線ビーム照射時のガン標的の3次元ドーズプロフィールから粒子線ビーム照査前にガン標的プロフィールの位置に補正する磁場強度を発生させることで、
前記粒子線ビームの照射位置を設定値から現在位置に補正することを特徴とする請求項1に記載のフィードバックデフレクターシステム。
By the drive power supply circuit, the correction deflector
By generating a magnetic field strength that corrects the position of the gun target profile before the particle beam beam verification from the 3D dose profile of the gun target at the time of the previous particle beam beam irradiation.
The feedback deflector system according to claim 1, wherein the irradiation position of the particle beam is corrected from a set value to a current position.
JP2020029941A 2020-02-25 2020-02-25 Feedback deflector system Pending JP2021135111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020029941A JP2021135111A (en) 2020-02-25 2020-02-25 Feedback deflector system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020029941A JP2021135111A (en) 2020-02-25 2020-02-25 Feedback deflector system

Publications (1)

Publication Number Publication Date
JP2021135111A true JP2021135111A (en) 2021-09-13

Family

ID=77660954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020029941A Pending JP2021135111A (en) 2020-02-25 2020-02-25 Feedback deflector system

Country Status (1)

Country Link
JP (1) JP2021135111A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082651A1 (en) * 2005-02-04 2006-08-10 Mitsubishi Denki Kabushiki Kaisha Particle beam irradiation method and particle beam irradiator for use therein
JP2006310013A (en) * 2005-04-27 2006-11-09 High Energy Accelerator Research Organization Accelerator for all kinds of ions and controlling method therefor
WO2011058833A1 (en) * 2009-11-10 2011-05-19 三菱電機株式会社 Particle beam radiation system and particle beam radiation method
US20110233423A1 (en) * 2008-05-22 2011-09-29 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
JP2012011038A (en) * 2010-07-01 2012-01-19 Hitachi Ltd Deflection device and particle beam therapy apparatus
JP2012029821A (en) * 2010-07-30 2012-02-16 Hitachi Ltd Particle beam medical treatment system and particle beam irradiation method
WO2012120615A1 (en) * 2011-03-07 2012-09-13 三菱電機株式会社 Particle beam radiation device and particle beam therapy device
WO2013157116A1 (en) * 2012-04-19 2013-10-24 三菱電機株式会社 Gantry-type particle beam illumination device, and particle beam therapy device comprising same
JP2016144573A (en) * 2015-02-09 2016-08-12 株式会社日立製作所 Image processing apparatus and particle beam therapeutic apparatus
JP2017029235A (en) * 2015-07-29 2017-02-09 株式会社東芝 Particle beam transport system and segment thereof
JP2017196140A (en) * 2016-04-27 2017-11-02 株式会社東芝 Particle beam transport apparatus and irradiation therapy apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082651A1 (en) * 2005-02-04 2006-08-10 Mitsubishi Denki Kabushiki Kaisha Particle beam irradiation method and particle beam irradiator for use therein
JP2006310013A (en) * 2005-04-27 2006-11-09 High Energy Accelerator Research Organization Accelerator for all kinds of ions and controlling method therefor
US20110233423A1 (en) * 2008-05-22 2011-09-29 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
WO2011058833A1 (en) * 2009-11-10 2011-05-19 三菱電機株式会社 Particle beam radiation system and particle beam radiation method
JP2012011038A (en) * 2010-07-01 2012-01-19 Hitachi Ltd Deflection device and particle beam therapy apparatus
JP2012029821A (en) * 2010-07-30 2012-02-16 Hitachi Ltd Particle beam medical treatment system and particle beam irradiation method
WO2012120615A1 (en) * 2011-03-07 2012-09-13 三菱電機株式会社 Particle beam radiation device and particle beam therapy device
WO2013157116A1 (en) * 2012-04-19 2013-10-24 三菱電機株式会社 Gantry-type particle beam illumination device, and particle beam therapy device comprising same
JP2016144573A (en) * 2015-02-09 2016-08-12 株式会社日立製作所 Image processing apparatus and particle beam therapeutic apparatus
JP2017029235A (en) * 2015-07-29 2017-02-09 株式会社東芝 Particle beam transport system and segment thereof
JP2017196140A (en) * 2016-04-27 2017-11-02 株式会社東芝 Particle beam transport apparatus and irradiation therapy apparatus

Similar Documents

Publication Publication Date Title
US8071966B2 (en) Control device for controlling an irradiation procedure, particle therapy unit, and method for irradiating a target volume
JP5456562B2 (en) Charged particle beam generator, charged particle beam irradiation device, and operation method thereof
EP2134420B1 (en) Determination of control parameters for irradiation of a moving target volume in a body
US7919765B2 (en) Non-continuous particle beam irradiation method and apparatus
US7122978B2 (en) Charged-particle beam accelerator, particle beam radiation therapy system using the charged-particle beam accelerator, and method of operating the particle beam radiation therapy system
JP4873563B2 (en) Particle accelerator, operation method thereof, and particle beam irradiation apparatus
JP5735101B2 (en) Particle beam generator and method for controlling the same
JP5745069B2 (en) Charged particle beam irradiation system and method of operating charged particle beam irradiation system
JP2001009050A (en) Radiotherapy device
CN103717261B (en) Apparatus and method for producing X-ray radiation
JP2008206563A (en) Multileaf collimator
JPWO2012117538A1 (en) Particle beam irradiation system
US9099271B2 (en) Method and system for operating electron guns in magnetic fields
CN1631061A (en) Particle accelerator
WO2017081826A1 (en) Particle beam therapy system
JP2021135111A (en) Feedback deflector system
WO2021058756A1 (en) System for radiation therapy
TWI537023B (en) Particle beam therapy apparatus
CN108744314B (en) Radiotherapy apparatus
JP2014028310A (en) Particle beam irradiation system
Lim et al. Design of a radiotherapy machine using the 6-MeV C-band standing-wave accelerator
US20230319973A1 (en) Accelerator and particle beam transport systems and methods
JPH11354300A (en) Timing control device for particle accelerator
US20210274634A1 (en) Beam transport line for radiotherapy systems and radiotherapy system thereof
JP2021144853A (en) Induction acceleration synchrotron

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20220408

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230207

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20230207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240226