JP2021134952A - Boiling type heat transfer pipe - Google Patents

Boiling type heat transfer pipe Download PDF

Info

Publication number
JP2021134952A
JP2021134952A JP2020029780A JP2020029780A JP2021134952A JP 2021134952 A JP2021134952 A JP 2021134952A JP 2020029780 A JP2020029780 A JP 2020029780A JP 2020029780 A JP2020029780 A JP 2020029780A JP 2021134952 A JP2021134952 A JP 2021134952A
Authority
JP
Japan
Prior art keywords
heat transfer
circumferential direction
pipe
type heat
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020029780A
Other languages
Japanese (ja)
Other versions
JP7164557B2 (en
Inventor
友暢 松野
Tomonobu Matsuno
友暢 松野
宏行 ▲高▼橋
宏行 ▲高▼橋
Hiroyuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2020029780A priority Critical patent/JP7164557B2/en
Publication of JP2021134952A publication Critical patent/JP2021134952A/en
Application granted granted Critical
Publication of JP7164557B2 publication Critical patent/JP7164557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a boiling type heat transfer pipe that enables high efficient heat transfer in the overall operation region by maintaining a high heat transfer rate from a heat transfer pipe to liquid refrigerant, even in a case where a heat exchanger is operated at low load.SOLUTION: A boiling type heat transfer pipe comprises a plurality of rows of fins projecting radially outward from a pipe outer peripheral surface and arranged in an annular shape or a spiral shape along a circumferential direction. The fin has a leg part erected on the pipe outer peripheral surface, and a pair of overhanging parts whose tips outside in the radial direction of the leg part extend in opposite directions in a pipe axial direction. Between adjacent fins, a cavity part continuous in the circumferential direction is defined by the overhanging part of one fin and the overhanging part of the other fin that project so as to approach each other. The pair of overhanging parts is provided with a plurality of recess parts recessed radially inward to connect the overhanging parts, along the circumferential direction.SELECTED DRAWING: Figure 3

Description

本発明は、管外で冷媒を沸騰させる熱交換器に用いる沸騰型伝熱管に関する。 The present invention relates to a boiling water reactor used in a heat exchanger that boils a refrigerant outside the tube.

沸騰型伝熱管は、熱交換器である例えばターボ冷凍機及びスクリュー冷凍機等の蒸気圧縮式冷凍機の蒸発器に組み込まれ、液体冷媒(例えば、フロン、液体窒素等)中に浸漬され、この液体冷媒を加熱沸騰させるために使用される。この種の沸騰型伝熱管としては、種々の伝熱面形状が提案されており、例えば、特許文献1のように、空洞内の液体冷媒の沸騰を促進すると共に、管外表面での液体冷媒及び気化した媒体の乱流化を促進させて伝熱性能の向上を図ったものがある。 The boiling type heat transfer tube is incorporated in the evaporator of a steam compression type refrigerator such as a turbo refrigerator and a screw refrigerator, which is a heat exchanger, and is immersed in a liquid refrigerant (for example, freon, liquid nitrogen, etc.). Used to heat and boil liquid refrigerants. Various heat transfer surface shapes have been proposed as this type of boiling type heat transfer tube. For example, as in Patent Document 1, the liquid refrigerant in the cavity is promoted to boil and the liquid refrigerant on the outer surface of the tube is promoted. In addition, there are those that promote the turbulence of the vaporized medium to improve the heat transfer performance.

特開平4−236097号公報Japanese Unexamined Patent Publication No. 4-236097

ところで、近年の冷凍機においては、CO排出量削減などの環境問題を受けて、機器をきめ細かに制御してエネルギー効率を高められるインバータ制御が幅広く導入されるようになった。しかし、インバータ制御を行う場合でも、冷凍機の低負荷時では、蒸発器の液体冷媒を加熱沸騰させる際、伝熱管から液体冷媒への熱伝達率が著しく低下する傾向がある。これは、熱駆動力が小さくなると気泡発生力が低下することに起因している。そのため、冷凍機の低負荷時、つまり、低熱流束域での使用においては、上記した熱伝達率の低下を補うために負荷を増加させる必要が生じ、高効率に熱交換することが困難であった。 By the way, in recent years, in response to environmental problems such as reduction of CO 2 emissions, inverter control that can finely control equipment to improve energy efficiency has been widely introduced. However, even when the inverter is controlled, when the load of the refrigerator is low, the heat transfer coefficient from the heat transfer tube to the liquid refrigerant tends to be significantly lowered when the liquid refrigerant of the evaporator is heated and boiled. This is because the bubble generating force decreases as the thermal driving force decreases. Therefore, when the load of the refrigerator is low, that is, when it is used in a low heat flux region, it is necessary to increase the load in order to compensate for the above-mentioned decrease in heat transfer coefficient, and it is difficult to exchange heat with high efficiency. there were.

そこで本発明は、熱交換器が低負荷で運転される場合であっても、伝熱管から液体冷媒への熱伝達率を高く維持することにより、全運転領域で高効率な熱伝達が可能となる沸騰型伝熱管を提供することを目的とする。 Therefore, the present invention enables highly efficient heat transfer in the entire operating range by maintaining a high heat transfer coefficient from the heat transfer tube to the liquid refrigerant even when the heat exchanger is operated with a low load. It is an object of the present invention to provide a boiling type heat transfer tube.

本発明の一形態によれば、以下の構成が提供される。
管外周面から径方向外側に突出して周方向に沿って環状又はらせん状に配列された複数列のフィンを備え、
前記フィンは、前記管外周面に立設された脚部と、前記脚部の径方向外側の先端が互いに管軸方向の逆向きに延びる一対の張出部とをそれぞれ有し、
管軸方向に隣り合う前記フィン同士の間で、互いに接近するように張り出した一方の前記フィンの張出部と他方の前記フィンの張出部とによって、周方向に連続する空洞部が画成され、
前記空洞部を画成する一対の前記張出部には、径方向内側に窪んで前記張出部同士を連結させる凹部が、周方向に沿った複数箇所に設けられている沸騰型伝熱管。
According to one embodiment of the present invention, the following configurations are provided.
It has a plurality of rows of fins that protrude outward in the radial direction from the outer peripheral surface of the pipe and are arranged in an annular shape or a spiral shape along the circumferential direction.
The fin has a leg portion erected on the outer peripheral surface of the pipe and a pair of overhanging portions whose radial outer tips of the leg portion extend in opposite directions in the pipe axial direction.
Between the fins adjacent to each other in the pipe axis direction, a hollow portion continuous in the circumferential direction is defined by the overhanging portion of one of the fins and the overhanging portion of the other fins that project so as to approach each other. Being done
A boiling type heat transfer tube in which a pair of overhanging portions that define the hollow portion are provided with recesses that are recessed inward in the radial direction to connect the overhanging portions at a plurality of locations along the circumferential direction.

本発明によれば、伝熱管から液体冷媒への熱伝達係数を高く維持することにより、全運転領域で高効率な熱伝達が可能となる。 According to the present invention, by maintaining a high heat transfer coefficient from the heat transfer tube to the liquid refrigerant, highly efficient heat transfer is possible in the entire operating range.

本発明に係る沸騰型伝熱管の一部断面斜視図である。It is a partial cross-sectional perspective view of the boiling type heat transfer tube which concerns on this invention. 第1構成例の沸騰型伝熱管の外周面における一部拡大平面図である。It is a partially enlarged plan view on the outer peripheral surface of the boiling type heat transfer tube of the 1st configuration example. 図2のIII−III線断面を示す断面図である。FIG. 3 is a cross-sectional view showing a cross section taken along line III-III of FIG. 隣り合うフィンの拡大断面図を示す。An enlarged cross-sectional view of adjacent fins is shown. 液体冷媒内に配置された沸騰型伝熱管の管軸方向に直交する断面図である。It is sectional drawing which is orthogonal to the tube axis direction of the boiling type heat transfer tube arranged in the liquid refrigerant. 管外周面で液体冷媒が加熱されて蒸発泡が発生する様子を示す説明図である。It is explanatory drawing which shows a mode that a liquid refrigerant is heated on the outer peripheral surface of a pipe, and evaporative bubbles are generated. 液体冷媒が空洞部の周方向に沿って流れる様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode that the liquid refrigerant flows along the circumferential direction of a cavity part. 第2構成例の沸騰型伝熱管の外周面における一部拡大平面図である。It is a partially enlarged plan view on the outer peripheral surface of the boiling type heat transfer tube of the 2nd configuration example. 沸騰型伝熱管の伝熱性能の評価に使用した試験装置の概略図である。It is the schematic of the test apparatus used for the evaluation of the heat transfer performance of a boiling type heat transfer tube. 試験例1と試験例6における熱流束と総括伝熱係数との関係を示すグラフである。It is a graph which shows the relationship between the heat flux and the total heat transfer coefficient in Test Example 1 and Test Example 6. 試験例1と試験例6における熱流束と管外蒸発熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between the heat flux and the heat transfer coefficient outside the tube in Test Example 1 and Test Example 6. 試験例2と試験例6における熱流束と総括伝熱係数との関係を示すグラフである。It is a graph which shows the relationship between the heat flux and the total heat transfer coefficient in Test Example 2 and Test Example 6. 試験例2と試験例6における熱流束と管外蒸発熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between the heat flux and the heat transfer coefficient outside the tube in Test Example 2 and Test Example 6. 試験例3,4,5と試験例6における熱流束と総括伝熱係数との関係を示すグラフである。It is a graph which shows the relationship between the heat flux and the total heat transfer coefficient in Test Examples 3, 4 and 5 and Test Example 6. 試験例3,4,5と試験例6における熱流束と管外蒸発熱伝達率との関係を示すグラフである。It is a graph which shows the relationship between the heat flux and the heat transfer coefficient outside the tube in Test Examples 3, 4 and 5 and Test Example 6.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
<第1構成例>
図1は本発明に係る沸騰型伝熱管の一部断面斜視図、図2は沸騰型伝熱管の外周面における一部拡大平面図、図3は図2のIII−III線断面を示す断面図である。
沸騰型伝熱管100は、一方向に連続する金属製の管材であって、管外周面に周方向に沿った複数列のフィン11と、管内周面に複数列のリブ13とを備える。また、沸騰型伝熱管100は、管内周面のリブ13を省略して平滑な円筒内面としてもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<First configuration example>
FIG. 1 is a partial cross-sectional perspective view of the boiling type heat transfer tube according to the present invention, FIG. 2 is a partially enlarged plan view of the outer peripheral surface of the boiling type heat transfer tube, and FIG. Is.
The boiling type heat transfer tube 100 is a metal tube material continuous in one direction, and includes a plurality of rows of fins 11 along the circumferential direction on the outer peripheral surface of the tube, and a plurality of rows of ribs 13 on the inner peripheral surface of the tube. Further, the boiling type heat transfer tube 100 may have a smooth cylindrical inner surface by omitting the rib 13 on the inner peripheral surface of the tube.

ここで、本明細書においては、沸騰型伝熱管100の管軸方向をAx方向、周方向をT方向としても表す。 Here, in the present specification, the axial direction of the boiling type heat transfer tube 100 is also represented as the Ax direction, and the circumferential direction is also represented as the T direction.

図1、図2に示すように、フィン11は、管外周面15から径方向外側に突出して形成され、周方向Tに沿って環状又はらせん状になって管外周面15に配列される。フィン11の列は、らせん状である場合、1条であってもよく複数条であってもよい。 As shown in FIGS. 1 and 2, the fins 11 are formed so as to project radially outward from the outer peripheral surface 15 of the pipe, and are arranged on the outer peripheral surface 15 of the pipe in an annular shape or a spiral shape along the circumferential direction T. When the rows of fins 11 are spiral, they may have one row or a plurality of rows.

図3に示すように、フィン11は、脚部11aと、一対の張出部11b,11cとを有する。脚部11aは、管外周面15に立設され、一対の張出部11b,11cは、脚部11aの径方向外側の先端が二股に分かれて、互いに管軸方向Axの逆向きに延びて形成される。管軸方向Axに隣り合うフィン11A,11B同士の間では、互いに接近するように張り出した一方のフィン11Aの張出部11bと他方のフィン11Bの張出部11cとが、周方向Tに連続する空洞部17を画成する。一方、フィン11Aの張出部11bの先端と、フィン11Cの張出部11cの先端との間には、隙間が形成されている。つまり、複数のフィン11により、空洞部17を画成する位置と画成しない位置とが混在することとなる。 As shown in FIG. 3, the fin 11 has a leg portion 11a and a pair of overhanging portions 11b and 11c. The leg portion 11a is erected on the outer peripheral surface 15 of the pipe, and the pair of overhanging portions 11b and 11c have bifurcated ends on the outer side in the radial direction of the leg portion 11a and extend in opposite directions of the pipe axial direction Ax. It is formed. Between the fins 11A and 11B adjacent to each other in the pipe axis direction Ax, the overhanging portion 11b of one fin 11A and the overhanging portion 11c of the other fin 11B that project so as to approach each other are continuous in the circumferential direction T. The hollow portion 17 to be formed is defined. On the other hand, a gap is formed between the tip of the overhanging portion 11b of the fin 11A and the tip of the overhanging portion 11c of the fin 11C. That is, the plurality of fins 11 have a mixture of positions where the cavity 17 is defined and positions where the cavity 17 is not defined.

図4に隣り合うフィン11A,11Bの拡大断面図を示す。
空洞部17の周方向Tに沿った少なくとも一部には、空洞部17を画成する一対の張出部11b,11c同士が径方向内側に窪む凹部19が設けられる。凹部19は、例えば、ディスク27を押し当てて張出部11b,11cを径方向内側に変形させることで形成される。これにより、張出部11b,11c同士が連結して空洞部17としての閉空間を形成する。凹部19の最低高さH1は、フィン11の高さH2より小さくなる。このような凹部19が、周方向に沿って複数箇所に分断して配置される(図2参照)。なお、フィン11の脚部11a、張出部11b,11cの形成方法の詳細については、例えば、特開平7−151485号公報等を参照されたい。
FIG. 4 shows an enlarged cross-sectional view of adjacent fins 11A and 11B.
At least a part of the cavity 17 along the circumferential direction T is provided with a recess 19 in which a pair of overhanging portions 11b and 11c defining the cavity 17 are recessed inward in the radial direction. The recess 19 is formed by, for example, pressing the disc 27 to deform the overhanging portions 11b and 11c inward in the radial direction. As a result, the overhanging portions 11b and 11c are connected to each other to form a closed space as the hollow portion 17. The minimum height H1 of the recess 19 is smaller than the height H2 of the fin 11. Such recesses 19 are divided and arranged at a plurality of locations along the circumferential direction (see FIG. 2). For details on the method of forming the leg portions 11a and the overhanging portions 11b and 11c of the fin 11, refer to, for example, Japanese Patent Application Laid-Open No. 7-151485.

空洞部17の凹部19が形成される部位は、一対の張出部11b,11cが空洞部17内で径方向内側に突出する凸部31を形成することが好ましい。張出部11b,11cが径方向内側に窪むことにより、周方向に連続する空洞部17の管軸方向の断面形状は、凹部19の周方向位置での断面積が他の周方向位置での断面積よりも小さくなる。 In the portion where the concave portion 19 of the hollow portion 17 is formed, it is preferable to form a convex portion 31 in which the pair of overhanging portions 11b and 11c protrude inward in the radial direction in the hollow portion 17. Since the overhanging portions 11b and 11c are recessed inward in the radial direction, the cross-sectional shape of the cavity portion 17 continuous in the circumferential direction in the pipe axis direction is such that the cross-sectional area of the recess 19 in the circumferential direction is the other circumferential position. It is smaller than the cross-sectional area of.

凹部19は、周方向に一定間隔で配置されることが好ましいが、これに限らず、特定の周期性を有して配置されてもよく、ランダムに配置されてもよい。図2に示す凹部19は、平面視で細長状に形成され、その長軸方向が管軸方向Axと平行であるが、長軸方向を管軸方向Axに垂直として形成してもよい。 The recesses 19 are preferably arranged at regular intervals in the circumferential direction, but the present invention is not limited to this, and the recesses 19 may be arranged with a specific periodicity or may be arranged at random. The recess 19 shown in FIG. 2 is formed in an elongated shape in a plan view, and its major axis direction is parallel to the tube axis direction Ax, but the major axis direction may be formed perpendicular to the tube axis direction Ax.

以降の説明では、空洞部17のうち、凹部19が形成された部分を、凹部19が形成されない部分と区別して「狭小部」ともいう。図3の例の場合、フィン11Aとフィン11Bとにより凹部19が形成された位置が狭小部であり、それ以外のフィン11間は狭小部ではない部分となる。 In the following description, the portion of the cavity 17 in which the recess 19 is formed is also referred to as a “narrow portion” to distinguish it from the portion in which the recess 19 is not formed. In the case of the example of FIG. 3, the position where the recess 19 is formed by the fins 11A and 11B is a narrow portion, and the other fins 11 are not narrow portions.

(作用)
図5は、液体冷媒内に配置された沸騰型伝熱管100の管軸方向に直交する断面図である。
上記構成の沸騰型伝熱管100を、蒸発器中の液体冷媒21内に、管軸方向を水平にして配置し、沸騰型伝熱管100内に加熱水23を供給する。すると、液体冷媒21が加熱されて、沸騰型伝熱管100の管外周面15で蒸発泡25が発生する。発生した蒸発泡25は、図5に矢印で示すように、管外周面15の下側から上側に向けて周面に沿って移動して、沸騰型伝熱管100の上側から液体冷媒21の液面に向かう。また、一部の蒸発泡25は、図3に示すフィン11の張出部11b,11c同士の隙間から液面に向かう。
(Action)
FIG. 5 is a cross-sectional view of the boiling type heat transfer tube 100 arranged in the liquid refrigerant perpendicular to the tube axis direction.
The boiling type heat transfer tube 100 having the above configuration is arranged in the liquid refrigerant 21 in the evaporator with the tube axis direction horizontal, and the heated water 23 is supplied into the boiling type heat transfer tube 100. Then, the liquid refrigerant 21 is heated, and evaporation bubbles 25 are generated on the outer peripheral surface 15 of the boiling type heat transfer tube 100. As shown by the arrows in FIG. 5, the generated evaporation bubbles 25 move along the peripheral surface from the lower side to the upper side of the outer peripheral surface 15 of the pipe, and the liquid of the liquid refrigerant 21 is moved from the upper side of the boiling type heat transfer tube 100. Head to the face. Further, some of the evaporated bubbles 25 head toward the liquid surface through the gaps between the overhanging portions 11b and 11c of the fins 11 shown in FIG.

図6は、管外周面15で液体冷媒21が加熱されて蒸発泡25が発生する様子を示す説明図である。
空洞部17の内部は、液体冷媒21が流入し、液体冷媒21で満たされている。沸騰型伝熱管100の管内に加熱用の加熱水23が供給されると、フィン11A,11Bは空洞部17内の液体冷媒21を加熱する。このとき、空洞部17に面するフィン11A,11Bの内側面33に沿って液体冷媒21の加熱層21aが形成される。
FIG. 6 is an explanatory view showing how the liquid refrigerant 21 is heated on the outer peripheral surface 15 of the pipe to generate evaporative bubbles 25.
The liquid refrigerant 21 flows into the inside of the cavity 17, and is filled with the liquid refrigerant 21. When the heating water 23 for heating is supplied into the boiling type heat transfer tube 100, the fins 11A and 11B heat the liquid refrigerant 21 in the cavity 17. At this time, the heating layer 21a of the liquid refrigerant 21 is formed along the inner side surfaces 33 of the fins 11A and 11B facing the cavity 17.

また、加熱により発生した液体冷媒21の蒸発泡25がフィン11A,11Bの内側面33を通過する際、その内側面33は液体冷媒21と接しない状態になり、内側面33を介して液体冷媒21に熱伝達されにくくなる。そのため、理想的には、フィン11A,11Bの内側面33を常に液体冷媒21で覆って加熱層21aを生成し、加熱層21aの内側で、蒸発泡25を周方向Tに沿って流動させる形態にするのがよい。 Further, when the evaporative bubbles 25 of the liquid refrigerant 21 generated by heating pass through the inner side surfaces 33 of the fins 11A and 11B, the inner side surfaces 33 are not in contact with the liquid refrigerant 21, and the liquid refrigerant passes through the inner side surfaces 33. It becomes difficult for heat to be transferred to 21. Therefore, ideally, the inner side surfaces 33 of the fins 11A and 11B are always covered with the liquid refrigerant 21 to generate the heating layer 21a, and the evaporation bubbles 25 are allowed to flow along the circumferential direction T inside the heating layer 21a. It is better to do it.

この形態によれば、加熱層21aの液体冷媒21が蒸発泡25の流動に追従するように周方向へ徐々に移動して、内側面33には絶えず新液(新たな液体冷媒21)が連続供給される。その結果、内側面33における熱交換効率が向上する。 According to this embodiment, the liquid refrigerant 21 of the heating layer 21a gradually moves in the circumferential direction so as to follow the flow of the evaporated bubbles 25, and a new liquid (new liquid refrigerant 21) is constantly continuously applied to the inner surface 33. Be supplied. As a result, the heat exchange efficiency on the inner surface 33 is improved.

そして、空洞部17の凹部19が形成された狭小部において、張出部11b,11cは、前述したように径方向内側に窪むことで、径方向内側に向けて突出する凸部31を形成する。凸部31は、空洞部17を流れる液体冷媒21を攪拌して(図6の矢印M)、加熱層21aにおける液体冷媒21の流れを乱流にさせる。これにより、加熱層21aの新液交代が促進され、熱交換効率を更に向上させることができる。 Then, in the narrow portion where the concave portion 19 of the hollow portion 17 is formed, the overhanging portions 11b and 11c are recessed inward in the radial direction as described above to form a convex portion 31 protruding inward in the radial direction. do. The convex portion 31 agitates the liquid refrigerant 21 flowing through the cavity 17 (arrow M in FIG. 6) to make the flow of the liquid refrigerant 21 in the heating layer 21a turbulent. As a result, the replacement of the new liquid in the heating layer 21a is promoted, and the heat exchange efficiency can be further improved.

また、凸部31は、空洞部17の径方向外側の内面に形成されている。そのため、凸部31は、図5に示すような沸騰型伝熱管100の管外周面15に沿って移動する蒸発泡25の流れを妨げることがない。よって、フィン根元部における液体冷媒21の流動抵抗が小さくなり、沸騰型伝熱管100の下方から上方へ流れる蒸発泡25と液体冷媒21との気液2層流を阻害することなく、空洞部17の周方向全体に液体冷媒21を供給できる。また、沸騰型伝熱管100の上方の空洞部17では、蒸発泡25の浮力により気液分離されて、液体冷媒21の供給が促進される。 Further, the convex portion 31 is formed on the inner surface of the cavity portion 17 on the outer side in the radial direction. Therefore, the convex portion 31 does not obstruct the flow of the evaporated bubbles 25 that move along the outer peripheral surface 15 of the boiling type heat transfer tube 100 as shown in FIG. Therefore, the flow resistance of the liquid refrigerant 21 at the fin root portion becomes small, and the cavity portion 17 does not hinder the gas-liquid two-layer flow between the evaporative foam 25 flowing from the lower side to the upper side of the boiling type heat transfer tube 100 and the liquid refrigerant 21. The liquid refrigerant 21 can be supplied in the entire circumferential direction of the above. Further, in the hollow portion 17 above the boiling type heat transfer tube 100, gas-liquid separation is performed by the buoyancy of the evaporative foam 25, and the supply of the liquid refrigerant 21 is promoted.

図7は、液体冷媒が空洞部17の周方向に沿って流れる様子を模式的に示す説明図である。
図7に示すように、空洞部17は、管軸方向の断面形状が周方向に沿って変化し、凹部19が形成された狭小部では、他の周方向位置よりも空洞部17の断面積が小さくなる。よって、空洞部17を流動する液体冷媒21の流れFの流路は、狭小部で窄まり、狭小部では流動抵抗の増加によって流速が低下(流速V2<V1)する。このため、狭小部の流動方向手前側の空洞部17内では、加熱層21aの液体冷媒21が、そのままの位置で加熱され続ける。その結果、空洞部17の内側面33から液体冷媒21への単位時間当たりの伝熱量が小さい場合でも、加熱層21aの液体冷媒21への入熱が蓄積されることで、蒸発泡を発生させやすくなる。
FIG. 7 is an explanatory view schematically showing how the liquid refrigerant flows along the circumferential direction of the cavity 17.
As shown in FIG. 7, in the narrow portion where the cross-sectional shape in the pipe axis direction changes along the circumferential direction and the recess 19 is formed, the cross-sectional area of the cavity 17 is larger than that in the other circumferential positions. Becomes smaller. Therefore, the flow path of the flow F of the liquid refrigerant 21 flowing through the cavity 17 is narrowed in the narrow portion, and the flow velocity decreases in the narrow portion due to the increase in the flow resistance (flow velocity V2 <V1). Therefore, the liquid refrigerant 21 of the heating layer 21a continues to be heated at the same position in the hollow portion 17 on the front side in the flow direction of the narrow portion. As a result, even when the amount of heat transferred from the inner surface 33 of the cavity 17 to the liquid refrigerant 21 per unit time is small, the heat input to the liquid refrigerant 21 of the heating layer 21a is accumulated to generate evaporation bubbles. It will be easier.

つまり、空洞部17の周方向に沿って複数の狭小部が配置されることで、空洞部17には各狭小部で区切られた複数の小区画35が形成される。その小区画35のそれぞれで液体冷媒21の周方向移動が抑制されて、各小区画35内の液体冷媒21の加熱が促進される。このように、空洞部17の周方向に沿った複数箇所で局所的に液体冷媒21が加熱されることで、蒸発泡を効率よく発生させることができる。 That is, by arranging a plurality of narrow portions along the circumferential direction of the cavity portion 17, a plurality of small compartments 35 separated by each narrow portion are formed in the cavity portion 17. The circumferential movement of the liquid refrigerant 21 is suppressed in each of the sub-compartments 35, and the heating of the liquid refrigerant 21 in each sub-compartment 35 is promoted. In this way, the liquid refrigerant 21 is locally heated at a plurality of locations along the circumferential direction of the cavity 17, so that evaporation bubbles can be efficiently generated.

本構成の沸騰型伝熱管100によれば、前述した凸部31による液体冷媒21の攪拌効果と、小区画35による局所的な加熱効果によって、相乗的に蒸発泡の発生が促進される。これにより、低熱流束条件下においても高効率で蒸発泡を発生させることができる。 According to the boiling type heat transfer tube 100 having the present configuration, the generation of evaporation bubbles is synergistically promoted by the stirring effect of the liquid refrigerant 21 by the convex portion 31 and the local heating effect by the subsection 35. This makes it possible to generate evaporative bubbles with high efficiency even under low heat flux conditions.

<第2構成例>
図8は、第2構成例の沸騰型伝熱管の外周面における一部拡大平面図である。
第2構成例の沸騰型伝熱管100は、凹部19Aが平面視細長状に形成され、その長軸方向が管軸方向Axから傾斜していること以外は第1構成例と同様である。そのため、以降の説明においては同一の部材又は同一の部位については同一の符号を付与することで、その説明を簡単化又は省略する。
<Second configuration example>
FIG. 8 is a partially enlarged plan view of the outer peripheral surface of the boiling water reactor of the second configuration example.
The boiling type heat transfer tube 100 of the second configuration example is the same as that of the first configuration example except that the recess 19A is formed in a slender shape in a plan view and the major axis direction thereof is inclined from the tube axis direction Ax. Therefore, in the following description, the same members or the same parts are given the same reference numerals to simplify or omit the description.

空洞部17に形成された凹部19Aは、その長軸が管軸方向Axから傾斜することで、狭小部が周方向Tから傾斜して形成される。このため、空洞部17の管軸方向断面の断面積は、狭小部の領域で周方向に沿って連続的又は断続的に変化する。理想的には、空洞部17の断面積は、周方向に沿って緩やかに縮小した後、緩やかに拡大する。言い換えると、空洞部17の断面積は、周方向に沿って増減する。このような傾斜した狭小部によれば、液体冷媒21が通過する際の流動抵抗が第1構成例の場合よりも低下して、液体冷媒21の攪拌効果が高められる。 The concave portion 19A formed in the hollow portion 17 is formed so that the long axis thereof is inclined from the pipe axis direction Ax and the narrow portion is inclined from the circumferential direction T. Therefore, the cross-sectional area of the tube axial cross section of the cavity 17 changes continuously or intermittently along the circumferential direction in the narrow region. Ideally, the cross-sectional area of the cavity 17 gradually shrinks along the circumferential direction and then gradually expands. In other words, the cross-sectional area of the cavity 17 increases or decreases along the circumferential direction. According to such an inclined narrow portion, the flow resistance when the liquid refrigerant 21 passes is lower than that in the case of the first configuration example, and the stirring effect of the liquid refrigerant 21 is enhanced.

凹部19Aの長軸と管軸方向Axとの傾斜角度は、10°〜80°、好ましくは20°〜60°、さらに好ましくは25°〜40°であり、フィンのサイズや液体冷媒21の種類等によって最適な角度に適宜変更できる。 The inclination angle between the long axis of the recess 19A and the axial direction Ax is 10 ° to 80 °, preferably 20 ° to 60 °, more preferably 25 ° to 40 °, and the fin size and the type of liquid refrigerant 21. It can be changed to the optimum angle as appropriate.

沸騰型伝熱管100は、銅、銅合金、アルミニウム、アルミニウム合金、鉄、及びステンレス鋼材、チタン、チタン合金等の熱伝導性を有する金属材料で製造され、特に、銅又は銅合金のような熱伝導率が高い材料であると、なお好適である。 The boiling type heat transfer tube 100 is manufactured of copper, copper alloy, aluminum, aluminum alloy, iron, and a metal material having thermal conductivity such as stainless steel material, titanium, titanium alloy, and particularly heat such as copper or copper alloy. A material having a high conductivity is still more preferable.

次に、上記した各構成の沸騰型伝熱管を用いて、その伝熱性能を評価した結果について説明する。
図9は、沸騰型伝熱管の伝熱性能の評価に使用した試験装置の概略図である。
試験装置は、ステンレス鋼製シェルアンドチューブ熱交換器の凝縮器53及び蒸発器55が配管で接続されており、冷媒が温度差により自然循環するサーモサイフォン型の熱交換器である。凝縮器53及び蒸発器55は、内径が333mm、長さが974mmのタンクである。蒸発器55の中央に、供試管54が3本設置されており、この供試管54の測定有効長は974mmである。タンク56内には加熱水が貯留されている。ここで、タンク56内の加熱水は、タンク56内の冷却コイル59により冷却されている。このタンク56から供給された加熱水は、ヒータ57にて加熱される。ヒータ57により加熱されることにより、供試管54に供給される加熱水は一定温度に制御される。この加熱水は供試管54の一方の端部である入口から供試管内部に供給される。供試管54の他端の出口から排出された加熱水は、タンク56に返戻される。蒸発器55内には液体冷媒が充填されており、供試管54はこの蒸発器55内の液体冷媒中に浸漬される。そして、供試管54内部の加熱水により加熱された液体冷媒は蒸発し、冷媒蒸気となって、凝縮器53に供給される。
Next, the results of evaluating the heat transfer performance of the boiling water reactors having the above-mentioned configurations will be described.
FIG. 9 is a schematic view of a test device used for evaluating the heat transfer performance of a boiling water reactor.
The test device is a thermosiphon type heat exchanger in which a condenser 53 and an evaporator 55 of a stainless steel shell and tube heat exchanger are connected by a pipe, and the refrigerant naturally circulates due to a temperature difference. The condenser 53 and the evaporator 55 are tanks having an inner diameter of 333 mm and a length of 974 mm. Three test tubes 54 are installed in the center of the evaporator 55, and the effective measurement length of the test tubes 54 is 974 mm. Heated water is stored in the tank 56. Here, the heated water in the tank 56 is cooled by the cooling coil 59 in the tank 56. The heated water supplied from the tank 56 is heated by the heater 57. By being heated by the heater 57, the heated water supplied to the test tube 54 is controlled to a constant temperature. This heated water is supplied to the inside of the test tube from the inlet which is one end of the test tube 54. The heated water discharged from the outlet at the other end of the test tube 54 is returned to the tank 56. The evaporator 55 is filled with a liquid refrigerant, and the test tube 54 is immersed in the liquid refrigerant in the evaporator 55. Then, the liquid refrigerant heated by the heated water inside the test tube 54 evaporates and becomes refrigerant vapor, which is supplied to the condenser 53.

凝縮器53においては、管端部をOリングで固定した伝熱管52(有効長974mm)が水平に設置され、冷媒蒸気入口には、蒸発器55から供給される冷媒蒸気が直接伝熱管52に当たらないように、邪魔板が設置されている。伝熱管52内には、タンク51から供給されたブライン液を流し、伝熱管52の外表面で冷媒蒸気を凝縮させる。この凝縮した液体冷媒は、重力で蒸発器55に戻る。 In the condenser 53, a heat transfer tube 52 (effective length 974 mm) in which the end of the tube is fixed by an O-ring is horizontally installed, and the refrigerant vapor supplied from the evaporator 55 is directly connected to the heat transfer tube 52 at the refrigerant vapor inlet. A baffle plate is installed to prevent it from hitting. The brine liquid supplied from the tank 51 flows into the heat transfer tube 52, and the refrigerant vapor is condensed on the outer surface of the heat transfer tube 52. This condensed liquid refrigerant returns to the evaporator 55 by gravity.

蒸発圧力は、蒸発器55上部に設けた圧力取出し口より、半導体ひずみゲージ式圧力伝送器(測定誤差:設定スパンの±0.05%)を使用して測定する。加熱水の出入口温度は、白金測温抵抗体(Pt100Ω、JIS−A級)を、予めクオーツ温度計にて±0.05°Cに校正したものを供試管54の両管端に取り付けた混合器に挿入して混合平均温度を測定する。加熱水流量は電磁流量計(測定誤差:読み値の1.5%)で測定する。試験条件を、下記表1に示す。 The evaporation pressure is measured from a pressure outlet provided on the upper part of the evaporator 55 using a semiconductor strain gauge type pressure transmitter (measurement error: ± 0.05% of the set span). The temperature at the inlet and outlet of the heated water is a mixture of a platinum resistance temperature detector (Pt 100Ω, JIS-A class) calibrated to ± 0.05 ° C with a quartz thermometer in advance and attached to both ends of the test tube 54. Insert into a vessel and measure the mixed average temperature. The flow rate of heated water is measured with an electromagnetic flow meter (measurement error: 1.5% of the reading value). The test conditions are shown in Table 1 below.

Figure 2021134952
Figure 2021134952

熱伝達率は以下の各数式により算出した。先ず、加熱水伝熱量Qは、数式1により求めた。 The heat transfer coefficient was calculated by each of the following mathematical formulas. First, the heat transfer amount Qc of heated water was calculated by Equation 1.

Figure 2021134952
Figure 2021134952

ここで、Gは加熱水体積流量、ρは加熱水密度、cpcは加熱水定圧比熱、TCoutは加熱水出口温度、TCinは加熱水入口温度である。なお、加熱水の物性値は、物性値表より作成した相関式を用いて、加熱水出入口温度測定値の算術平均値により算出した値を使用した。対数平均温度差ΔTは、下記数式2で定義される。 Here, G c is the volume flow rate of the heated water, ρ c is the density of the heated water, c pc is the constant pressure specific heat of the heated water, T Cout is the hot water outlet temperature, and T Cin is the heated water inlet temperature. As the physical property value of the heated water, the value calculated by the arithmetic mean value of the temperature measurement value of the heated water inlet / outlet using the correlation formula prepared from the physical property value table was used. The logarithmic mean temperature difference ΔT m is defined by the following mathematical formula 2.

Figure 2021134952
Figure 2021134952

ここで、Tは冷媒飽和温度である。この冷媒飽和温度Tは、蒸発圧力の測定値と冷媒物性値より算出した。 Here, T s is the refrigerant saturation temperature. The refrigerant saturation temperature T s is calculated from the measured value and the refrigerant property values of the evaporation pressure.

そして、供試管フィン加工部の外表面積A基準の熱伝達率である総括伝熱係数Kを、下記数式3により求めた。 Then, the total heat transfer coefficient K 0 , which is the heat transfer coefficient based on the outer surface area A 0 of the fin processed portion of the test tube, was obtained by the following mathematical formula 3.

Figure 2021134952
Figure 2021134952

ここで、供試管フィン加工部の外表面積Aは、下記数式4に示すように、供試管フィン加工部外径Dより算出した包絡面を基準とした。 Here, the outer surface area A 0 of the test tube fin processed portion is based on the envelope surface calculated from the outer diameter D 0 of the test tube fin processed portion, as shown in the following mathematical formula 4.

Figure 2021134952
Figure 2021134952

ここで、lは供試管伝熱有効長である。また、外表面積基準の熱流束qは、供試管フィン加工部の外表面積Aを基準として、下記数式5により求めた。 Here, l is the effective heat transfer length of the test tube. Further, the heat flux q 0 based on the outer surface area was calculated by the following mathematical formula 5 with the outer surface area A 0 of the test tube fin processed portion as a reference.

Figure 2021134952
Figure 2021134952

管外蒸発熱伝達率hは、下記数式6にて求めた。 The extratube heat transfer coefficient h 0 was calculated by the following mathematical formula 6.

Figure 2021134952
Figure 2021134952

ここで、hは管内側熱伝達率、Aは供試管フィン加工部の内表面積、Rwallは管壁熱抵抗であり、これらは以下のように求める。 Here, h i tube side heat transfer coefficient, A i is the inner surface area of the test試管fin processing unit, R wall is tube wall thermal resistance, they are determined as follows.

供試管フィン加工部の内表面積Aは、下記数式7にて定義される。 Internal surface area A i of the test試管fin processing unit is defined by the following equation 7.

Figure 2021134952
Figure 2021134952

ここで、Dimaxは供試管フィン加工部最大内径である。また、管壁熱抵抗Rwallは、下記数式8にて定義して求める。 Here, Dimax is the maximum inner diameter of the test tube fin processed portion. Further, the tube wall thermal resistance R wall is defined and obtained by the following mathematical formula 8.

Figure 2021134952
Figure 2021134952

ここで、kwallは管壁の熱伝導率である。更に、管内側熱伝達率h及び管内側ヌッセルト数Nuは、関数形がディタス・ベルター(Dittus-Boelter)の式で表されると仮定し、下記数式9にて定義して求める。 Here, k wall is the thermal conductivity of the tube wall. Further, the heat transfer coefficient h i inside the tube and the Nusselt number Nu i inside the tube are obtained by defining them by the following equation 9 on the assumption that the functional form is expressed by the equation of Dittus-Boelter.

Figure 2021134952
Figure 2021134952

ここで、Cは実験的に求められる係数、kCHは加熱水の熱伝導率、PrCHは加熱水のプラントル数である。また、加熱水のレイノルズ数ReCHは、下記数式10にて定義して求めた。 Here, C i is a coefficient determined empirically, k CH thermal conductivity of the heating water, Pr CH is the Prandtl number of the heated water. Further, the Reynolds number Re CH of the heated water was determined by defining it by the following mathematical formula 10.

Figure 2021134952
Figure 2021134952

ここで、VCiは加熱水平均流速、νは加熱水の動粘性係数である。なお、管内側熱伝達率hを求めるためのC値は、事前にウィルソンプロット(Wilson-plot)法を使用して予め試験して求めた。 Here, VCi is the average flow velocity of the heated water, and ν C is the kinematic viscosity coefficient of the heated water. Incidentally, C i values for determining the tube side heat transfer coefficient h i was determined by testing in advance in advance using the Wilson plot (Wilson-plot) technique.

表2、表3は、作製した試験例1〜6の供試管の寸法およびC値を示す。 Table 2, Table 3 shows the dimensions and C i values of the test試管of the prepared test examples 1-6.

Figure 2021134952
Figure 2021134952

Figure 2021134952
Figure 2021134952

各供試管には、管外周面に前述したフィンと凹部を設け、管内周面に表3に示すリブを設けてある。試験例1,2は、特に凹部の形状を異ならせている。試験例1は、図8に示す平行四辺形の凹部を有する第2構成例の伝熱管であり、試験例2は、図2に示す長方形の凹部を有する第1構成例の伝熱管である。試験例3〜5は、平面視で長方形の凹部19の周方向長さを変化させている。試験例3では、凹部の長軸は管軸方向、試験例4,5では長軸が周方向であり、試験例5が最も凹部の周方向長さが大きくなるようにした。つまり、凹部の周方向長さは、試験例3、試験例4、試験例5の順に大きくなっている。ただし、試験例3〜5は、周長に対する凹部の存在比率が等しくなるように、周方向の配置ピッチを調整している。 Each test tube is provided with the fins and recesses described above on the outer peripheral surface of the tube, and the ribs shown in Table 3 are provided on the inner peripheral surface of the tube. In Test Examples 1 and 2, the shape of the recess is particularly different. Test Example 1 is a heat transfer tube of a second configuration example having a parallelogram recess shown in FIG. 8, and Test Example 2 is a heat transfer tube of the first configuration example having a rectangular recess shown in FIG. In Test Examples 3 to 5, the circumferential length of the rectangular recess 19 is changed in a plan view. In Test Example 3, the long axis of the concave portion is in the pipe axis direction, in Test Examples 4 and 5, the long axis is in the circumferential direction, and in Test Example 5, the circumferential length of the concave portion is set to be the largest. That is, the circumferential length of the recess increases in the order of Test Example 3, Test Example 4, and Test Example 5. However, in Test Examples 3 to 5, the arrangement pitch in the circumferential direction is adjusted so that the abundance ratio of the recesses to the peripheral length is equal.

試験例6は、本形態に係る構成を備えない供試管の試験例を示し、試験例1〜5との比較対象として用いる。ここでは、試験例6の試験条件として、特開2017−20736号公報を用いるものとする。 Test Example 6 shows a test example of a test tube not having the configuration according to this embodiment, and is used as a comparison target with Test Examples 1 to 5. Here, JP-A-2017-20736 is used as the test conditions for Test Example 6.

上記した試験例1〜6の供試管について、管内周面の径方向内側から管外周面の径方向外側への伝熱性能を示す総括伝熱係数Kと、管内周面から径方向外側への伝熱性能を示す管外蒸発熱伝達率hとを求めた。その結果を図10〜図15に示す。 The test試管Test Example 1-6 described above, the overall heat transfer coefficient K 0 showing the heat transfer performance from the radially inner pipe circumference radially outward of the tube outer peripheral surface from the tube circumference radially outward The extratube heat transfer coefficient h 0 , which indicates the heat transfer performance of the above, was determined. The results are shown in FIGS. 10 to 15.

図10は、試験例1と試験例6における熱流束qと総括伝熱係数Kとの関係を示すグラフである。図11は、試験例1と試験例6における熱流束qと管外蒸発熱伝達率hとの関係を示すグラフである。 FIG. 10 is a graph showing the relationship between the heat flux q 0 and the overall heat transfer coefficient K 0 in Test Example 1 and Test Example 6. FIG. 11 is a graph showing the relationship between the heat flux q 0 and the extratube heat transfer coefficient h 0 in Test Example 1 and Test Example 6.

図10に示すように、熱流束の全域にわたり、試験例1の統括伝熱係数は試験例6の総括伝熱係数よりも大きくなった。特に低熱流束域(例えば20kW/m以下)においては、試験例6では熱流束の低下に伴って総括伝熱係数の減少度合いが大きくなるが、試験例1では熱流束が5kW/mであっても総括伝熱係数が8.5kW/(mK)以上に維持され、低熱流束時における総括伝熱係数の低下が抑制された。 As shown in FIG. 10, the overall heat transfer coefficient of Test Example 1 was larger than the overall heat transfer coefficient of Test Example 6 over the entire area of the heat flux. Especially in a low heat flux region (for example, 20 kW / m 2 or less), in Test Example 6, the degree of decrease in the overall heat transfer coefficient increases as the heat flux decreases, but in Test Example 1, the heat flux is 5 kW / m 2 Even so, the total heat transfer coefficient was maintained at 8.5 kW / (m 2 K) or higher, and the decrease in the total heat transfer coefficient at the time of low heat flux was suppressed.

また、図11に示すように、管外蒸発熱伝達率hについても、全体的に試験例1が試験例6よりも大きく、低熱流束時における管外蒸発熱伝達率hの低下は、試験例6よりも試験例1が大きく改善された。 Further, as shown in FIG. 11, for the extravascular evaporation heat transfer coefficient h 0, overall Test Example 1 is larger than the test example 6, reduction of extravascular evaporation heat transfer coefficient h 0 at low heat flux , Test Example 1 was greatly improved as compared with Test Example 6.

図12は、試験例2と試験例6における熱流束qと総括伝熱係数Kとの関係を示すグラフである。図13は、試験例2と試験例6における熱流束qと管外蒸発熱伝達率hとの関係を示すグラフである。 FIG. 12 is a graph showing the relationship between the heat flux q 0 and the overall heat transfer coefficient K 0 in Test Example 2 and Test Example 6. FIG. 13 is a graph showing the relationship between the heat flux q 0 and the extratube heat transfer coefficient h 0 in Test Example 2 and Test Example 6.

図12に示すように、熱流束の全域にわたり、試験例2の統括伝熱係数は試験例6の総括伝熱係数よりも大きくなった。特に低熱流束域(例えば20kW/m以下)においては、試験例6では熱流束の低下に伴って総括伝熱係数の減少度合いが大きくなるが、試験例2では熱流束が5kW/mであっても総括伝熱係数が8.5kW/(mK)以上に維持され、低熱流束時における総括伝熱係数の低下が抑制された。 As shown in FIG. 12, the overall heat transfer coefficient of Test Example 2 was larger than the overall heat transfer coefficient of Test Example 6 over the entire area of the heat flux. Especially in the low heat flux region (e.g. 20 kW / m 2 or less), but the degree of decrease overall heat transfer coefficient with decreasing heat flux in Test Example 6 increases the heat flux in Test Example 2 is 5 kW / m 2 Even so, the total heat transfer coefficient was maintained at 8.5 kW / (m 2 K) or higher, and the decrease in the total heat transfer coefficient at the time of low heat flux was suppressed.

また、図13に示すように、管外蒸発熱伝達率hについても、全体的に試験例2が試験例6よりも大きく、低熱流束時における管外蒸発熱伝達率hの低下は、試験例6よりも試験例2が大きく改善された。 Further, as shown in FIG. 13, regarding the out-of-tube heat transfer coefficient h 0 , Test Example 2 was larger than Test Example 6 as a whole, and the decrease in the out-of-tube heat transfer coefficient h 0 at the time of low heat flux was , Test Example 2 was greatly improved as compared with Test Example 6.

図14は、試験例3,4,5と試験例6における熱流束qと総括伝熱係数Kとの関係を示すグラフである。図15は、試験例3,4,5と試験例6における熱流束qと管外蒸発熱伝達率hとの関係を示すグラフである。 FIG. 14 is a graph showing the relationship between the heat flux q 0 and the overall heat transfer coefficient K 0 in Test Examples 3, 4, and 5. FIG. 15 is a graph showing the relationship between the heat flux q 0 and the extratube heat transfer coefficient h 0 in Test Examples 3, 4, and 5.

図14に示すように、総括伝熱係数Kは、試験例3,4,5共に試験例6よりも大きく、低熱流束時における減少も抑えられている。
図15に示すように、管外蒸発熱伝達率hは、熱流束が30kW/m以上の場合に試験例5が試験例6より低くなるが、その場合でも20kW/(mK)以上に維持されている。また、試験例3,4,5は、低熱流束時における減少も抑えられている。
As shown in FIG. 14, the overall heat transfer coefficient K 0 is larger than that of Test Example 6 in all of Test Examples 3, 4 and 5, and the decrease at the time of low heat flux is suppressed.
As shown in FIG. 15, the extratube heat transfer coefficient h 0 is lower in Test Example 5 than in Test Example 6 when the heat flux is 30 kW / m 2 or more, but even in that case, it is 20 kW / (m 2 K). It is maintained above. Further, in Test Examples 3, 4 and 5, the decrease at the time of low heat flux is also suppressed.

以上より、試験例1〜5の総括伝熱係数Kと管外蒸発熱伝達率hは、試験例6の熱流束が30kW/mの場合と略同等か、それ以上の値を維持され、低熱流束時においても、総括伝熱係数Kと管外蒸発熱伝達率hの低下を抑制できる。そのため、本発明の沸騰型伝熱管を用いた熱交換器が低負荷で運転される場合であっても、伝熱管から液体冷媒への熱伝達率を高く維持することにより、全運転領域で高効率な熱伝達が可能となる。 From the above, the overall heat transfer coefficient K 0 and the extratube heat transfer coefficient h 0 of Test Examples 1 to 5 are maintained at values substantially equal to or higher than the case where the heat flux of Test Example 6 is 30 kW / m 2. Therefore, even when the heat flux is low, it is possible to suppress a decrease in the overall heat transfer coefficient K 0 and the extratube heat transfer coefficient h 0. Therefore, even when the heat exchanger using the boiling type heat transfer tube of the present invention is operated with a low load, the heat transfer coefficient from the heat transfer tube to the liquid refrigerant is maintained high, so that the heat transfer coefficient is high in the entire operating range. Efficient heat transfer is possible.

このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 As described above, the present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the combination of the configurations of the embodiments with each other, the description of the specification, and the well-known technique. This is also the subject of the present invention and is included in the scope for which protection is sought.

以上の通り、本明細書には次の事項が開示されている。
(1) 管外周面から径方向外側に突出して周方向に沿って環状又はらせん状に配列された複数列のフィンを備え、
前記フィンは、前記管外周面に立設された脚部と、前記脚部の径方向外側の先端が互いに管軸方向の逆向きに延びる一対の張出部とをそれぞれ有し、
管軸方向に隣り合う前記フィン同士の間で、互いに接近するように張り出した一方の前記フィンの張出部と他方の前記フィンの張出部とによって、周方向に連続する空洞部が画成され、
前記空洞部を画成する一対の前記張出部には、径方向内側に窪んで前記張出部同士を連結させる凹部が、周方向に沿った複数箇所に設けられている沸騰型伝熱管。
この沸騰型伝熱管によれば、一対の張出部によって画成される空洞部に、径方向内側に窪んで張出部同士を連結させる凹部が、周方向に沿った複数箇所に狭小部を形成して配置される。そして、空洞部の各狭小部で区切られた小区画のそれぞれで、液体冷媒の周方向移動が抑制されることで、各小区画内の液体冷媒の加熱が促進される。このように、空洞部内の周方向に沿った複数箇所で局所的に液体冷媒が加熱され、蒸発泡が効率よく発生するようになる。
As described above, the following matters are disclosed in this specification.
(1) A plurality of rows of fins are provided, which protrude outward in the radial direction from the outer peripheral surface of the pipe and are arranged in an annular shape or a spiral shape along the circumferential direction.
The fin has a leg portion erected on the outer peripheral surface of the pipe and a pair of overhanging portions whose radial outer tips of the leg portion extend in opposite directions in the pipe axial direction.
Between the fins adjacent to each other in the pipe axis direction, a hollow portion continuous in the circumferential direction is defined by the overhanging portion of one of the fins and the overhanging portion of the other fins that project so as to approach each other. Being done
A boiling type heat transfer tube in which a pair of overhanging portions that define the hollow portion are provided with recesses that are recessed inward in the radial direction to connect the overhanging portions at a plurality of locations along the circumferential direction.
According to this boiling type heat transfer tube, in the cavity defined by a pair of overhangs, recesses that are recessed inward in the radial direction to connect the overhangs are narrowed at a plurality of locations along the circumferential direction. Formed and placed. Then, the heating of the liquid refrigerant in each of the small compartments is promoted by suppressing the movement of the liquid refrigerant in the circumferential direction in each of the small compartments divided by each of the narrow portions of the hollow portion. In this way, the liquid refrigerant is locally heated at a plurality of locations along the circumferential direction in the cavity, and evaporation bubbles are efficiently generated.

(2) 前記空洞部を画成する一対の前記張出部は、前記空洞部を径方向内側に突出させる凸部を形成する(1)に記載の沸騰型伝熱管。
この沸騰型伝熱管によれば、凸部が空洞部を流れる液体冷媒を攪拌して、液体冷媒の流れを乱流にできる。これにより、空洞部内の液体冷媒の新液交代を促進させて、熱交換効率を更に向上させることができる。
(2) The boiling type heat transfer tube according to (1), wherein the pair of overhanging portions that define the cavity portion form a convex portion that projects the cavity portion inward in the radial direction.
According to this boiling type heat transfer tube, the liquid refrigerant whose convex portion flows through the hollow portion can be agitated to make the flow of the liquid refrigerant turbulent. As a result, it is possible to promote the replacement of new liquid of the liquid refrigerant in the cavity and further improve the heat exchange efficiency.

(3) 前記凹部は、平面視細長状に形成され、その長軸方向が管軸方向と平行又は垂直である(1)又は(2)に記載の沸騰型伝熱管。
この沸騰型伝熱管によれば、空洞部を流れる液体冷媒の流速を効率よく低下させ、凹部により形成される狭小部同士の間で、液体冷媒の加熱を促進できる。
(3) The boiling type heat transfer tube according to (1) or (2), wherein the recess is formed in a slender shape in a plan view, and the major axis direction thereof is parallel or perpendicular to the tube axis direction.
According to this boiling type heat transfer tube, the flow velocity of the liquid refrigerant flowing through the cavity can be efficiently reduced, and the heating of the liquid refrigerant can be promoted between the narrow portions formed by the recesses.

(4) 前記凹部は、平面視細長状に形成され、その長軸方向が管軸方向から傾斜している(1)又は(2)に記載の沸騰型伝熱管。
この沸騰型伝熱管によれば、空洞部を流れる液体冷媒の凹部における流動抵抗を低減させ、凹部により形成される狭小部同士の間での液体冷媒の加熱と、空洞部内での液体冷媒の流動とを良好にバランスさせることができる。
(4) The boiling type heat transfer tube according to (1) or (2), wherein the recess is formed in a slender shape in a plan view, and the major axis direction thereof is inclined from the tube axis direction.
According to this boiling type heat transfer tube, the flow resistance of the liquid refrigerant flowing through the cavity in the recess is reduced, the liquid refrigerant is heated between the narrow portions formed by the recess, and the liquid refrigerant flows in the cavity. Can be well balanced.

(5) 前記空洞部を画成する一対の前記張出部は、前記凹部の形成位置における管軸方向断面で閉空間を形成する(1)〜(4)のいずれか1つに記載の沸騰型伝熱管。
この沸騰型伝熱管によれば、閉空間が形成されることで管軸方向断面の断面積が凹部の形成位置で他の周位置よりも小さくなり、液体冷媒の流れが窄められる。これにより、液体冷媒の流れが抑制されて同じ位置で加熱されやすくなり、蒸発泡の発生が促進される。
(5) The boiling according to any one of (1) to (4), wherein the pair of overhanging portions that define the hollow portion form a closed space in a cross section in the pipe axis direction at the position where the recess is formed. Type heat transfer tube.
According to this boiling type heat transfer tube, the cross-sectional area of the cross section in the axial direction of the tube becomes smaller than the other peripheral positions at the position where the recess is formed due to the formation of the closed space, and the flow of the liquid refrigerant is narrowed. As a result, the flow of the liquid refrigerant is suppressed and the liquid refrigerant is easily heated at the same position, and the generation of evaporative bubbles is promoted.

(6) 前記凹部は、周方向に一定間隔で配置されている(1)〜(5)のいずれか1つに記載の沸騰型伝熱管。
この沸騰型伝熱管によれば、凹部により形成される狭小部同士の間の小区画が、それぞれ周方向に均一となり、同じ条件で液体冷媒が加熱される。これにより、液体冷媒が周方向に均一に加熱されて、ムラの少ない熱交換が行える。
(6) The boiling type heat transfer tube according to any one of (1) to (5), wherein the recesses are arranged at regular intervals in the circumferential direction.
According to this boiling type heat transfer tube, the small sections formed by the recesses between the narrow portions become uniform in the circumferential direction, and the liquid refrigerant is heated under the same conditions. As a result, the liquid refrigerant is uniformly heated in the circumferential direction, and heat exchange with less unevenness can be performed.

(7) 管内周面から径方向内側に突出して形成され、周方向に沿って環状又はらせん状に配列された複数列のリブを備える(1)〜(6)のいずれか1つに記載の沸騰型伝熱管。
この沸騰型伝熱管によれば、管内周面にリブが設けられることで、管内を流れる液との接触面積が増加して、伝熱効率を向上できる。
(7) 7. Boiling type heat transfer tube.
According to this boiling type heat transfer tube, by providing ribs on the inner peripheral surface of the tube, the contact area with the liquid flowing in the tube is increased, and the heat transfer efficiency can be improved.

(8) 管外周面から径方向外側に突出して周方向に沿って環状又はらせん状に配列された複数列のフィンを備え、
前記フィンは、前記管外周面に立設された脚部と、前記脚部の径方向外側の先端が互いに管軸方向の逆向きに延びる一対の張出部とをそれぞれ有し、
管軸方向に隣り合う前記フィン同士の間で、互いに接近するように張り出した一方の前記フィンの張出部と他方の前記フィンの張出部とによって、周方向に連続する空洞部が画成され、
前記空洞部は、周方向において断面積が増減するように画成される沸騰型伝熱管。
この沸騰型伝熱管によれば、一対の張出部によって画成される空洞部は、周方向において連続し、かつ、周方向における断面積が増減するように画成される。そして、周方向における断面積が増減することにより、空洞部は狭小部とそれ以外の部分にて構成され、各狭小部で区切られた小区画のそれぞれで、液体冷媒の周方向移動が抑制されることで、各小区画内の液体冷媒の加熱が促進される。このように、空洞部内の周方向に沿った複数箇所で局所的に液体冷媒が加熱され、蒸発泡が効率よく発生するようになる。
(8) A plurality of rows of fins are provided, which protrude outward in the radial direction from the outer peripheral surface of the pipe and are arranged in an annular shape or a spiral shape along the circumferential direction.
The fin has a leg portion erected on the outer peripheral surface of the pipe and a pair of overhanging portions whose radial outer tips of the leg portion extend in opposite directions in the pipe axial direction.
Between the fins adjacent to each other in the pipe axis direction, a hollow portion continuous in the circumferential direction is defined by the overhanging portion of one of the fins and the overhanging portion of the other fins that project so as to approach each other. Being done
The cavity is a boiling water reactor defined so that the cross-sectional area increases or decreases in the circumferential direction.
According to this boiling type heat transfer tube, the hollow portion defined by the pair of overhanging portions is defined so as to be continuous in the circumferential direction and the cross-sectional area in the circumferential direction increases or decreases. Then, as the cross-sectional area in the circumferential direction increases or decreases, the cavity is composed of a narrow portion and other portions, and the circumferential movement of the liquid refrigerant is suppressed in each of the subsections separated by each narrow portion. This promotes the heating of the liquid refrigerant in each subsection. In this way, the liquid refrigerant is locally heated at a plurality of locations along the circumferential direction in the cavity, and evaporation bubbles are efficiently generated.

11,11A,11B フィン
11a 脚部
11b,11c 張出部
13 リブ
15 管外周面
17 空洞部
19,19A 凹部
21 液体冷媒
23 加熱水
25 蒸発泡
31 凸部
33 内側面
35 小区画
52 伝熱管
53 凝縮器
54 供試管
55 蒸発器
11, 11A, 11B Fins 11a Legs 11b, 11c Overhangs 13 Ribs 15 Tube outer circumference 17 Cavities 19, 19A Concave 21 Liquid refrigerant 23 Heating water 25 Evaporative bubbles 31 Convex 33 Inner side 35 Subsection 52 Heat transfer tube 53 Condenser 54 Test tube 55 Evaporator

Claims (8)

管外周面から径方向外側に突出して周方向に沿って環状又はらせん状に配列された複数列のフィンを備え、
前記フィンは、前記管外周面に立設された脚部と、前記脚部の径方向外側の先端が互いに管軸方向の逆向きに延びる一対の張出部とをそれぞれ有し、
管軸方向に隣り合う前記フィン同士の間で、互いに接近するように張り出した一方の前記フィンの張出部と他方の前記フィンの張出部とによって、周方向に連続する空洞部が画成され、
前記空洞部を画成する一対の前記張出部には、径方向内側に窪んで前記張出部同士を連結させる凹部が、周方向に沿った複数箇所に設けられている沸騰型伝熱管。
It has a plurality of rows of fins that protrude outward in the radial direction from the outer peripheral surface of the pipe and are arranged in an annular shape or a spiral shape along the circumferential direction.
The fin has a leg portion erected on the outer peripheral surface of the pipe and a pair of overhanging portions whose radial outer tips of the leg portion extend in opposite directions in the pipe axial direction.
Between the fins adjacent to each other in the pipe axis direction, a hollow portion continuous in the circumferential direction is defined by the overhanging portion of one of the fins and the overhanging portion of the other fins that project so as to approach each other. Being done
A boiling type heat transfer tube in which a pair of overhanging portions that define the hollow portion are provided with recesses that are recessed inward in the radial direction to connect the overhanging portions at a plurality of locations along the circumferential direction.
前記空洞部を画成する一対の前記張出部は、前記空洞部を径方向内側に突出させる凸部を形成する請求項1に記載の沸騰型伝熱管。 The boiling type heat transfer tube according to claim 1, wherein the pair of overhanging portions that define the cavity portion form a convex portion that projects the cavity portion inward in the radial direction. 前記凹部は、平面視細長状に形成され、その長軸方向が管軸方向と平行又は垂直である請求項1又は2に記載の沸騰型伝熱管。 The boiling type heat transfer tube according to claim 1 or 2, wherein the recess is formed in a slender shape in a plan view, and the major axis direction thereof is parallel or perpendicular to the tube axis direction. 前記凹部は、平面視細長状に形成され、その長軸方向が管軸方向から傾斜している請求項1又は2に記載の沸騰型伝熱管。 The boiling type heat transfer tube according to claim 1 or 2, wherein the recess is formed in a slender shape in a plan view, and the major axis direction thereof is inclined from the tube axis direction. 前記空洞部を画成する一対の前記張出部は、前記凹部の形成位置における管軸方向断面で閉空間を形成する請求項1〜4のいずれか1項に記載の沸騰型伝熱管。 The boiling type heat transfer tube according to any one of claims 1 to 4, wherein the pair of overhanging portions that define the cavity portion form a closed space in a cross section in the tube axial direction at the position where the recess is formed. 前記凹部は、周方向に一定間隔で配置されている請求項1〜5のいずれか1項に記載の沸騰型伝熱管。 The boiling type heat transfer tube according to any one of claims 1 to 5, wherein the recesses are arranged at regular intervals in the circumferential direction. 管内周面から径方向内側に突出して形成され、周方向に沿って環状又はらせん状に配列された複数列のリブを備える請求項1〜6のいずれか1項に記載の沸騰型伝熱管。 The boiling type heat transfer tube according to any one of claims 1 to 6, which is formed so as to project radially inward from the inner peripheral surface of the tube and includes a plurality of rows of ribs arranged in an annular shape or a spiral shape along the circumferential direction. 管外周面から径方向外側に突出して周方向に沿って環状又はらせん状に配列された複数列のフィンを備え、
前記フィンは、前記管外周面に立設された脚部と、前記脚部の径方向外側の先端が互いに管軸方向の逆向きに延びる一対の張出部とをそれぞれ有し、
管軸方向に隣り合う前記フィン同士の間で、互いに接近するように張り出した一方の前記フィンの張出部と他方の前記フィンの張出部とによって、周方向に連続する空洞部が画成され、
前記空洞部は、周方向において断面積が増減するように画成される沸騰型伝熱管。
It has a plurality of rows of fins that protrude outward in the radial direction from the outer peripheral surface of the pipe and are arranged in an annular shape or a spiral shape along the circumferential direction.
The fin has a leg portion erected on the outer peripheral surface of the pipe and a pair of overhanging portions whose radial outer tips of the leg portion extend in opposite directions in the pipe axial direction.
Between the fins adjacent to each other in the pipe axis direction, a hollow portion continuous in the circumferential direction is defined by the overhanging portion of one of the fins and the overhanging portion of the other fins that project so as to approach each other. Being done
The cavity is a boiling water reactor defined so that the cross-sectional area increases or decreases in the circumferential direction.
JP2020029780A 2020-02-25 2020-02-25 Boiling heat transfer tube Active JP7164557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020029780A JP7164557B2 (en) 2020-02-25 2020-02-25 Boiling heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020029780A JP7164557B2 (en) 2020-02-25 2020-02-25 Boiling heat transfer tube

Publications (2)

Publication Number Publication Date
JP2021134952A true JP2021134952A (en) 2021-09-13
JP7164557B2 JP7164557B2 (en) 2022-11-01

Family

ID=77660822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020029780A Active JP7164557B2 (en) 2020-02-25 2020-02-25 Boiling heat transfer tube

Country Status (1)

Country Link
JP (1) JP7164557B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101760A (en) * 1978-01-27 1979-08-10 Kobe Steel Ltd Manufacture of heat transmitting tube
JPS5942486U (en) * 1982-09-08 1984-03-19 株式会社神戸製鋼所 Heat exchanger tubes for boiling type heat exchangers
JPH04236097A (en) * 1991-01-14 1992-08-25 Furukawa Electric Co Ltd:The Heat transfer tube
US5697430A (en) * 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
JP2005164126A (en) * 2003-12-02 2005-06-23 Hitachi Cable Ltd Boiling heat transfer tube and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101760A (en) * 1978-01-27 1979-08-10 Kobe Steel Ltd Manufacture of heat transmitting tube
JPS5942486U (en) * 1982-09-08 1984-03-19 株式会社神戸製鋼所 Heat exchanger tubes for boiling type heat exchangers
JPH04236097A (en) * 1991-01-14 1992-08-25 Furukawa Electric Co Ltd:The Heat transfer tube
US5697430A (en) * 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
JP2005164126A (en) * 2003-12-02 2005-06-23 Hitachi Cable Ltd Boiling heat transfer tube and its manufacturing method

Also Published As

Publication number Publication date
JP7164557B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
Vicente et al. Heat transfer and pressure drop for low Reynolds turbulent flow in helically dimpled tubes
Han et al. Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations
Chang et al. Sub-atmospheric boiling heat transfer and thermal performance of two-phase loop thermosyphon
Bahiraei et al. Thermal-hydraulic performance of a nanofluid in a shell-and-tube heat exchanger equipped with new trapezoidal inclined baffles: Nanoparticle shape effect
Kruzel et al. Heat transfer and pressure drop during refrigerants condensation in compact heat exchangers
Memory et al. Nucleate pool boiling of R-114 and R-114-oil mixtures from smooth and enhanced surfaces—II. Tube bundles
Belyaev et al. An experimental study of flow boiling in minichannels at high reduced pressure
Ali et al. Condensation heat transfer enhancement using steam-ethanol mixtures on horizontal finned tube
Swain et al. Flow boiling of distilled water over plain tube bundle with uniform and varying heat flux along the height of the tube bundle
Ho et al. Forced convection condensation of R134a in three-dimensional conical pin fin tubes
Mohamed Experimental study of heat transfer and flow characteristics of liquid falling film on a horizontal fluted tube
Kedzierski et al. Pool boiling of R515A, R1234ze (E), and R1233zd (E) on a reentrant cavity surface
Abbas et al. Experimental study of ammonia flooded boiling on a triangular pitch plain tube bundle
JP6738593B2 (en) Boiling heat transfer tube
Moharana et al. Experimental assessment of enhanced 2x3 Semi-Closed microstructure tube bundle as an alternative in shell and tube heat exchangers
Vaisi et al. Experimental examination of condensation heat transfer enhancement with different perforated tube inserts
Pysz et al. Flow boiling of R1233zd (E) in a 3 mm vertical tube at moderate and high reduced pressures
Liu et al. An experimental investigation on the effects of air on filmwise condensation of PF-5060 dielectric fluid on plain and finned tube bundles
Chang et al. Thermal performance improvement with scale imprints over boiling surface of two-phase loop thermosyphon at sub-atmospheric conditions
JP2021134952A (en) Boiling type heat transfer pipe
Elsaid et al. Performance improvement for chilled water air conditioning cooling coils with various dimple fin geometries
Ren et al. Pre-CHF boiling heat transfer performance on tube bundles with or without enhanced surfaces-a review
Wang et al. Precise determination of R134a boiling bundle effect on a column of reentrant cavity tubes
Spindler et al. Flow boiling heat transfer of R134a and R404A in a microfin tube at low mass fluxes and low heat fluxes
Niezgoda-Żelasko et al. Refrigerant boiling at low heat flux in vertical tubes with heat transfer enhancing fittings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7164557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150