JP2021134245A - Reaction solution for insulation material, insulation material, and sealing material - Google Patents

Reaction solution for insulation material, insulation material, and sealing material Download PDF

Info

Publication number
JP2021134245A
JP2021134245A JP2020029583A JP2020029583A JP2021134245A JP 2021134245 A JP2021134245 A JP 2021134245A JP 2020029583 A JP2020029583 A JP 2020029583A JP 2020029583 A JP2020029583 A JP 2020029583A JP 2021134245 A JP2021134245 A JP 2021134245A
Authority
JP
Japan
Prior art keywords
insulating material
reaction solution
parts
mass
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020029583A
Other languages
Japanese (ja)
Inventor
直哉 岸
Naoya Kishi
直哉 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2020029583A priority Critical patent/JP2021134245A/en
Publication of JP2021134245A publication Critical patent/JP2021134245A/en
Pending legal-status Critical Current

Links

Abstract

To provide a reaction solution for insulation material that can be used to form an insulation material having sufficiently high breakdown voltage.SOLUTION: A reaction solution for insulation material contains a norbornene compound and inorganic nitride. In the reaction solution for insulation material, the content of the inorganic nitride is 0.1 pts.mass or more and 15 pts.mass or less relative to the norbornene compound 100 pts.mass.SELECTED DRAWING: None

Description

本発明は、絶縁材料用反応溶液、及びその反応物である絶縁材料、並びに、かかる絶縁材料を含む封止材料に関するものである。 The present invention relates to a reaction solution for an insulating material, an insulating material which is a reaction product thereof, and a sealing material containing such an insulating material.

ノルボルネン骨格を有する単位を含む重合体(以下、「ノルボルネン系重合体」と称することがある。)は、様々な有益な特性を呈し得ることが知られている。かかる特性を活かして、ノルボルネン系重合体は、多様な用途において好適に応用されている。そして近年、各種の用途における適応性を一層向上させる目的の下、ノルボルネン系重合体の改良が試みられている。 It is known that a polymer containing a unit having a norbornene skeleton (hereinafter, may be referred to as "norbornene-based polymer") can exhibit various beneficial properties. Taking advantage of these characteristics, norbornene-based polymers are suitably applied in various applications. In recent years, improvements have been made to norbornene-based polymers for the purpose of further improving adaptability in various applications.

具体的には、例えば特許文献1には、ノルボルネン類などのシクロオレフィンモノマー100質量部に対して、50質量部以上の熱伝導性充填剤を配合して成る、重合性組成物が開示されている。このように、熱伝導性充填剤の高比率で配合した重合性組成物によれば、優れた放熱性を発揮し得る積層体等を提供することができる。また、例えば特許文献2には、ノルボルネン系モノマーと、所定粒径範囲の充填剤と、メタセシス重合触媒を配合してなる、反応射出成形用反応原液が開示されている。そして、特許文献2では、実際に、充填剤としてアルミナを採用して、ノルボルネン系モノマー100質量部に対して、100質量部の割合で配合した場合に、液の増粘が早く、得られる成形体内部に気泡が発生しないことを確認している。 Specifically, for example, Patent Document 1 discloses a polymerizable composition obtained by blending 50 parts by mass or more of a heat conductive filler with 100 parts by mass of a cycloolefin monomer such as norbornene. There is. As described above, according to the polymerizable composition in which the heat conductive filler is blended in a high ratio, it is possible to provide a laminate or the like capable of exhibiting excellent heat dissipation. Further, for example, Patent Document 2 discloses a reaction stock solution for reaction injection molding, which comprises a norbornene-based monomer, a filler in a predetermined particle size range, and a metathesis polymerization catalyst. Then, in Patent Document 2, when alumina is actually adopted as a filler and blended in a ratio of 100 parts by mass with respect to 100 parts by mass of the norbornene-based monomer, the liquid thickens quickly and can be obtained. It has been confirmed that no bubbles are generated inside the body.

特開2010−1000685号公報Japanese Unexamined Patent Publication No. 2010-1000685 特許第5563748号Patent No. 5563748

近年、ノルボルネン系重合体の特性の一つである、高い耐熱性に起因して、絶縁材料としての用途が注目されている。絶縁材料として応用するためには、ノルボルネン系重合体が、高い絶縁破壊電圧を呈し得ることが必要である。しかし、上記従来のノルボルネン系重合体の組成によっては、絶縁破壊電圧を十分に高めることができなかった。 In recent years, due to its high heat resistance, which is one of the characteristics of norbornene-based polymers, its use as an insulating material has attracted attention. In order to apply it as an insulating material, it is necessary that the norbornene-based polymer can exhibit a high dielectric breakdown voltage. However, depending on the composition of the conventional norbornene-based polymer, the dielectric breakdown voltage could not be sufficiently increased.

そこで、本発明は、絶縁破壊電圧の十分に高い絶縁材料の形成に用いることができる、絶縁材料用反応溶液を提供することを目的とする。
また、本発明は、絶縁破壊電圧の十分に高い絶縁材料を提供することを目的とする。
さらに、本発明は、優れた性能を発揮し得る封止材料を提供することを目的とする。
Therefore, an object of the present invention is to provide a reaction solution for an insulating material that can be used for forming an insulating material having a sufficiently high dielectric breakdown voltage.
Another object of the present invention is to provide an insulating material having a sufficiently high dielectric breakdown voltage.
Furthermore, an object of the present invention is to provide a sealing material capable of exhibiting excellent performance.

本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、ノルボルネン化合物に対して、所定の割合で、無機窒化物を配合する処方によれば、絶縁破壊電圧の十分に高い絶縁材料を形成可能な絶縁材料用反応溶液を提供し得ることを新たに見出し、本発明を完成させた。 The present inventor has conducted diligent studies for the purpose of solving the above problems. Then, the present inventor provides a reaction solution for an insulating material capable of forming an insulating material having a sufficiently high dielectric breakdown voltage according to a formulation in which an inorganic nitride is blended with a norbornene compound in a predetermined ratio. We have newly found what we can obtain and completed the present invention.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の絶縁材料用反応溶液は、ノルボルネン化合物と無機窒化物とを含む絶縁材料用反応溶液であって、前記無機窒化物の含有割合が、前記ノルボルネン化合物100質量部あたり、0.1質量部以上15質量部以下であることを特徴とする。かかる組成の絶縁材料用反応溶液によれば、絶縁破壊電圧の十分に高い絶縁材料を形成することができる。 That is, the present invention aims to advantageously solve the above problems, and the reaction solution for an insulating material of the present invention is a reaction solution for an insulating material containing a norbornene compound and an inorganic nitride. The content of the inorganic nitride is 0.1 parts by mass or more and 15 parts by mass or less per 100 parts by mass of the norbornene compound. According to the reaction solution for an insulating material having such a composition, an insulating material having a sufficiently high dielectric breakdown voltage can be formed.

ここで、本発明の絶縁材料用反応溶液において、前記無機窒化物の形状が、球状であることが好ましい。無機窒化物として、球状の無機窒化物を配合すれば、得られる絶縁材料の絶縁破壊電圧を一層高めることができる。 Here, in the reaction solution for an insulating material of the present invention, it is preferable that the shape of the inorganic nitride is spherical. If a spherical inorganic nitride is blended as the inorganic nitride, the breakdown voltage of the obtained insulating material can be further increased.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の絶縁材料は、上述した何れかの絶縁材料用反応溶液の反応物であることを特徴とする。上述した絶縁材料用反応溶液を反応して得られる絶縁材料は、絶縁破壊電圧が十分に高い。 Further, the present invention is intended to advantageously solve the above problems, and the insulating material of the present invention is a reaction product of any of the above-mentioned reaction solutions for insulating materials. The dielectric breakdown voltage of the insulating material obtained by reacting the above-mentioned reaction solution for insulating material is sufficiently high.

更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の封止材料は、上述した絶縁材料を含むことを特徴とする。上述した絶縁材料を含む封止材料は、優れた性能を発揮し得る。 Furthermore, the present invention aims to solve the above problems advantageously, and the sealing material of the present invention is characterized by including the above-mentioned insulating material. A sealing material containing the above-mentioned insulating material can exhibit excellent performance.

本発明によれば、絶縁破壊電圧の十分に高い絶縁材料の形成に用いることができる、絶縁材料用反応溶液を提供することができる。
また、本発明によれば、絶縁破壊電圧の十分に高い絶縁材料を提供することができる。
さらに、本発明によれば、優れた性能を発揮し得る封止材料を提供することができる。
According to the present invention, it is possible to provide a reaction solution for an insulating material that can be used for forming an insulating material having a sufficiently high dielectric breakdown voltage.
Further, according to the present invention, it is possible to provide an insulating material having a sufficiently high dielectric breakdown voltage.
Further, according to the present invention, it is possible to provide a sealing material capable of exhibiting excellent performance.

以下、本発明の実施形態について詳細に説明する。
ここで、本発明の絶縁材料用反応溶液は、絶縁材料を形成する際に好適に用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the reaction solution for an insulating material of the present invention can be suitably used when forming an insulating material.

(絶縁材料用反応溶液)
絶縁材料用反応溶液は、ノルボルネン化合物と無機窒化物とを含む。絶縁材料用反応溶液中において、無機窒化物の含有割合が、ノルボルネン化合物100質量部あたり、0.1質量部以上15質量部以下である。さらに、絶縁材料用反応溶液は、任意で、無機窒化物以外の充填剤、及びその他の添加剤を含有していてもよい。
(Reaction solution for insulating material)
The reaction solution for an insulating material contains a norbornene compound and an inorganic nitride. The content ratio of the inorganic nitride in the reaction solution for an insulating material is 0.1 part by mass or more and 15 parts by mass or less per 100 parts by mass of the norbornene compound. Further, the reaction solution for an insulating material may optionally contain a filler other than the inorganic nitride, and other additives.

<ノルボルネン化合物>
ノルボルネン化合物としては、特に限定されることなく、ノルボルネン環を含む化合物を挙げることができる。例えば、ノルボルネン化合物としては、ビシクロ[2.2.1]ヘプト−2−エン(慣用名:ノルボルネン)、5−エチリデン−ビシクロ[2.2.1]ヘプト−2−エン(慣用名:エチリデンノルボルネン)及びその誘導体(環に置換基を有するもの)等の2環式単量体;トリシクロ[5.2.1.02,6]デカ−3,8−ジエン(慣用名:ジシクロペンタジエン)及びその誘導体等の3環式単量体;1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン(慣用名:メタノテトラヒドロフルオレン)及びその誘導体、テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン(慣用名:テトラシクロドデセン)、9−エチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン及びその誘導体等の4環式単量体;等が挙げられる。これらは、一種単独で、或いは、複数種を併用することができる。中でも、得られる絶縁材料の絶縁破壊電圧を一層高める観点から、ノルボルネン化合物としては、ジシクロペンタジエン、テトラシクロドデセン、又はメタノテトラヒドロフルオレンを少なくとも用いることが好ましく、これらのうちの2種を併用することがより好ましい。
<Norbornene compound>
The norbornene compound is not particularly limited, and examples thereof include a compound containing a norbornene ring. For example, examples of norbornene compounds include bicyclo [2.2.1] hept-2-ene (common name: norbornene) and 5-ethylidene-bicyclo [2.2.1] hept-2-ene (common name: etylidene norbornene). ) And its derivatives (those having a substituent on the ring) and other bicyclic monomers; tricyclo [5.2.1.0 2,6 ] deca-3,8-diene (common name: dicyclopentadiene) And tricyclic monomers such as derivatives thereof; 1,4-methano-1,4,4a, 9a-tetrahydrofluorene (common name: methanotetrahydrofluorene) and its derivatives, tetracyclo [6.2.1.1 3 , 6 . 0 2,7 ] Dodeca-4-ene (trivial name: tetracyclododecene), 9-ethylidenetetracyclo [6.2.1.1 3,6 . 0 2,7 ] Tedeca-4-ene and tetracyclic monomers such as derivatives thereof; and the like. These can be used alone or in combination of two or more. Above all, from the viewpoint of further increasing the breakdown voltage of the obtained insulating material, it is preferable to use at least dicyclopentadiene, tetracyclododecene, or methanotetrahydrofluorene as the norbornene compound, and two of these are used in combination. Is more preferable.

なお、ノルボルネン化合物は、任意の位置に置換基を有していてもよい。かかる置換基としては、メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;エチリデン基、プロパン−2−イリデン基等のアルキリデン基;フェニル基等のアリール基;ヒドロキシ基;酸無水物基;カルボキシル基;メトキシカルボニル基等のアルコキシカルボニル基;等が挙げられる。 The norbornene compound may have a substituent at any position. Examples of such substituents include an alkyl group such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; an alkylidene group such as an ethylidene group and a propan-2-idene group; an aryl group such as a phenyl group; a hydroxy group; an acid anhydride. Groups; carboxyl groups; alkoxycarbonyl groups such as methoxycarbonyl groups; and the like.

<無機窒化物>
無機窒化物としては、特に限定されることなく、窒化ホウ素、窒化ケイ素、窒化アルミニウム等が挙げられる。中でも、得られる絶縁材料の絶縁破壊電圧を一層高める観点から、無機窒化物としては窒化ホウ素を配合することが好ましい。
<Inorganic nitride>
The inorganic nitride is not particularly limited, and examples thereof include boron nitride, silicon nitride, and aluminum nitride. Above all, it is preferable to add boron nitride as the inorganic nitride from the viewpoint of further increasing the dielectric breakdown voltage of the obtained insulating material.

絶縁材料用反応溶液中における無機窒化物の配合割合は、上述したように、ノルボルネン化合物100質量部あたり、0.1質量部以上15質量部以下である必要がある。さらに、得られる絶縁材料の絶縁破壊電圧を一層高める観点から、絶縁材料用反応溶液中における無機窒化物の配合割合は、ノルボルネン化合物100質量部あたり、1質量部以上11質量部以下であることがより好ましい。 As described above, the mixing ratio of the inorganic nitride in the reaction solution for the insulating material needs to be 0.1 part by mass or more and 15 parts by mass or less per 100 parts by mass of the norbornene compound. Further, from the viewpoint of further increasing the dielectric breakdown voltage of the obtained insulating material, the blending ratio of the inorganic nitride in the reaction solution for the insulating material is 1 part by mass or more and 11 parts by mass or less per 100 parts by mass of the norbornene compound. More preferred.

無機窒化物の形状は、特に限定されることなく、あらゆる形状であり得る。例えば、無機窒化物の形状は、球状、鱗片状、及び凝集体状等であり得る。中でも、得られる絶縁材料の絶縁破壊電圧を一層高める観点から、無機窒化物が、球状であることが好ましい。 The shape of the inorganic nitride is not particularly limited and may be any shape. For example, the shape of the inorganic nitride can be spherical, scaly, agglomerate, or the like. Above all, the inorganic nitride is preferably spherical from the viewpoint of further increasing the dielectric breakdown voltage of the obtained insulating material.

さらに、無機窒化物は、得られる絶縁材料の絶縁破壊電圧を一層高める観点から、平均粒径が10μm以下であることが好ましく、5μm以下であることがより好ましく、1μm以下であることがさらに好ましい。なお、無機窒化物の平均粒径は、通常、0.01μm以上である。ここで、無機窒化物の平均粒径は、動的光散乱法により測定することができる。 Further, the inorganic nitride has an average particle size of preferably 10 μm or less, more preferably 5 μm or less, still more preferably 1 μm or less, from the viewpoint of further increasing the dielectric breakdown voltage of the obtained insulating material. .. The average particle size of the inorganic nitride is usually 0.01 μm or more. Here, the average particle size of the inorganic nitride can be measured by a dynamic light scattering method.

<充填剤>
任意成分である充填剤としては、絶縁材料用反応溶液の用途に応じて必要とされるものを適宜に配合することができる。配合し得る充填剤としては、例えば、炭酸カルシウム、水酸化カルシウム、ケイ酸カルシウム、硫酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、酸化亜鉛、チタン酸バリウム、シリカ、アルミナ、カーボンブラック、グラファイト、酸化アンチモン、赤燐、各種金属粉、クレー、各種フェライト、ハイドロタルサイト等を挙げることができる。また、上記充填材は、その表面を疎水化処理したものであることが好ましい。疎水化処理した充填材を用いることにより、絶縁材料用反応溶液中における充填材の凝集・沈降を防止でき、また、得られる絶縁材料中における充填材の分散を均一にすることができる。疎水化処理に用いられる処理剤としては、ビニルトリメトキシシラン等のシランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、ステアリン酸等の脂肪酸、油脂、界面活性剤、ワックス等を挙げることができる。なお、充填材の疎水化処理は、絶縁材料用反応溶液を調製する際に、前記処理剤を充填剤と同時に混合することによっても可能である。なお、充填剤の配合量は、必要とされる属性に応じて適宜調節することができるが、絶縁破壊電圧向上効果を損なわない程度の量であることが必要である。
<filler>
As the filler which is an optional component, those required depending on the use of the reaction solution for an insulating material can be appropriately blended. Examples of fillers that can be blended include calcium carbonate, calcium hydroxide, calcium silicate, calcium sulfate, aluminum hydroxide, magnesium hydroxide, titanium oxide, zinc oxide, barium titanate, silica, alumina, carbon black, and graphite. , Antimonium oxide, red phosphorus, various metal powders, clay, various ferrites, hydrotalcite and the like. Further, it is preferable that the surface of the filler is hydrophobized. By using the hydrophobized filler, it is possible to prevent the filler from aggregating and settling in the reaction solution for the insulating material, and it is possible to make the dispersion of the filler uniform in the obtained insulating material. Examples of the treatment agent used for the hydrophobization treatment include silane coupling agents such as vinyltrimethoxysilane, titanate-based coupling agents, aluminate-based coupling agents, fatty acids such as stearic acid, fats and oils, surfactants, and waxes. Can be mentioned. The hydrophobizing treatment of the filler can also be performed by mixing the treating agent at the same time as the filler when preparing the reaction solution for the insulating material. The blending amount of the filler can be appropriately adjusted according to the required attributes, but it is necessary that the amount is such that the effect of improving the dielectric breakdown voltage is not impaired.

<添加剤>
任意成分である添加剤としては、絶縁材料用反応溶液の用途に応じて必要とされるものを適宜に配合することができる。配合し得る添加材としては、例えば、ラジカル発生剤及びその他の改質剤が挙げられる。ラジカル発生剤としては、公知の、有機過酸化物、ジアゾ化合物及び非極性ラジカル発生剤などが挙げられる。中でも、有機過酸化物を好適に用いることができる。有機過酸化物としては、例えば、t−ブチルヒドロペルオキシド、クメンヒドロペルオキシドなどのヒドロペルオキシド類;ジ−t−ブチルペルオキシド、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)−3−ヘキシン、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサンなどのジアルキルペルオキシド類;などが挙げられる。メタセシス重合反応に対する障害が少ない点で、ジアルキルペルオキシド類が好ましい。絶縁材料用反応溶液中のラジカル発生剤の配合量としては、通常、用いる全単量体成分100質量部に対して、0.5質量部以上2.0質量部以下である。なお、その他の添加剤の配合量は、必要とされる属性に応じて適宜調節することができるが、絶縁破壊電圧向上効果を損なわない程度の量であることが必要である。
<Additives>
As the additive which is an optional component, those required depending on the use of the reaction solution for an insulating material can be appropriately blended. Examples of additives that can be blended include radical generators and other modifiers. Examples of the radical generator include known organic peroxides, diazo compounds, non-polar radical generators and the like. Above all, organic peroxides can be preferably used. Examples of organic peroxides include hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide; di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3. -Hexins, dialkyl peroxides such as 2,5-dimethyl-2,5-di (t-butylperoxy) hexane; and the like. Dialkyl peroxides are preferable because they cause less damage to the metathesis polymerization reaction. The amount of the radical generator to be blended in the reaction solution for an insulating material is usually 0.5 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of all the monomer components used. The blending amount of the other additives can be appropriately adjusted according to the required attributes, but it is necessary that the blending amount is such that the effect of improving the dielectric breakdown voltage is not impaired.

<その他のモノマー>
なお、絶縁材料用反応溶液は、絶縁破壊電圧向上効果を損なわない限りにおいて、任意で、ノルボルネン化合物以外の重合性化合物を含んでいてもよい。
<Other monomers>
The reaction solution for an insulating material may optionally contain a polymerizable compound other than the norbornene compound as long as the effect of improving the dielectric breakdown voltage is not impaired.

<絶縁材料用反応溶液の製造方法>
絶縁材料用反応溶液は、特に限定されることなく、ノルボルネン化合物に対して、上記所定量の無機窒化物、及び必要に応じて任意で添加され得る他の充填剤等を添加して、混合装置等を用いた公知の混合方法により混合することにより、調製することができる。なお、使用し得る混合装置としては、例えば、遊星撹拌機、及び自転・公転ミキサー等が挙げられる。また、混合時の混合条件は、必要に応じて、適宜調節することができる。さらにまた、ノルボルネン化合物として、複数種を併用する場合には、かかる複数種のノルボルネン化合物を混合してから、所定量の無機窒化物を混合することが好ましい。
<Manufacturing method of reaction solution for insulating material>
The reaction solution for an insulating material is not particularly limited, and a mixing apparatus is added by adding the above-mentioned predetermined amount of inorganic nitride and other fillers which can be optionally added to the norbornene compound. It can be prepared by mixing by a known mixing method using or the like. Examples of the mixing device that can be used include a planetary stirrer, a rotation / revolution mixer, and the like. Further, the mixing conditions at the time of mixing can be appropriately adjusted as needed. Furthermore, when a plurality of types of norbornene compounds are used in combination, it is preferable to mix the plurality of types of norbornene compounds and then mix a predetermined amount of inorganic nitride.

(絶縁材料)
絶縁材料は、上述した本発明の絶縁材料用反応溶液を反応させることにより得られる反応物である。本発明の絶縁材料は、上述した本発明の絶縁材料用反応溶液の反応物よりなるため、優れた性能を発揮し得る。
(Insulation material)
The insulating material is a reaction product obtained by reacting the above-mentioned reaction solution for insulating material of the present invention. Since the insulating material of the present invention is a reaction product of the above-mentioned reaction solution for insulating material of the present invention, excellent performance can be exhibited.

そして、絶縁材料は、例えば、上述した絶縁材料用反応溶液と、開環重合触媒液とを混合し、開環重合反応させることにより、得ることができる。開環重合反応により得られた絶縁材料は、ノルボルネン化合物に由来する構造単位を含む開環重合体と、無機窒化物とを含有する。よって、絶縁材料中における絶縁材料中における開環重合体と、無機窒化物との比率は、開環重合体100質量部当たり、0.1質量部以上15質量部以下であり、好ましくは、1質量部以上11質量部以下である。 Then, the insulating material can be obtained, for example, by mixing the above-mentioned reaction solution for insulating material and the ring-opening polymerization catalyst solution and causing a ring-opening polymerization reaction. The insulating material obtained by the ring-opening polymerization reaction contains a ring-opening polymer containing a structural unit derived from a norbornene compound and an inorganic nitride. Therefore, the ratio of the ring-opening polymer in the insulating material in the insulating material to the inorganic nitride is 0.1 parts by mass or more and 15 parts by mass or less per 100 parts by mass of the ring-opening polymer, preferably 1. It is 1 part by mass or more and 11 parts by mass or less.

<触媒液>
触媒液は、メタセシス重合触媒等の公知の開環重合触媒と、任意成分である老化防止剤等の添加剤とを含有する。メタセシス重合触媒及び任意で併用され得る添加剤としては、特に限定はなく、ルテニウムカルベン錯体等の、公知のものが用いられる(例えば、特開2019−104934号公報、及び特許第6104263号参照)。触媒及び添加剤等の使用量は、重合条件等により適宜選択すればよい。
なお、絶縁材料反応溶液と、触媒液とを用いた重合反応を行う際の、重合温度、重合圧力、重合時間などの重合条件は、適宜調整することができる。
<Catalyst solution>
The catalyst solution contains a known ring-opening polymerization catalyst such as a metathesis polymerization catalyst and an additive such as an anti-aging agent which is an optional component. The metathesis polymerization catalyst and the additive that can be optionally used in combination are not particularly limited, and known ones such as a ruthenium carbene complex are used (see, for example, JP-A-2019-104934 and Patent No. 6104263). The amount of the catalyst, additives, etc. used may be appropriately selected depending on the polymerization conditions and the like.
The polymerization conditions such as the polymerization temperature, the polymerization pressure, and the polymerization time when the polymerization reaction using the insulating material reaction solution and the catalyst solution are carried out can be appropriately adjusted.

<絶縁材料の製造方法>
絶縁材料の製造方法としては、特に限定されることなく、RIM(Reaction Injection Molding)成形法、RTM(Resin Transfer Molding)法、ポッティング法、(固体、液体)トランスファー成形法、圧縮成形法、印刷成形法、真空成型法等を挙げることができる。中でも、本発明の絶縁材料は、ヘテロ元素含有炭化水素基を有するノルボルネン化合物、ヘテロ元素非含有炭化水素基を有するノルボルネン化合物、及びメタセシス重合触媒を含有する配合物を、成形型内で塊状開環重合させるRIM成形法により、好適に製造することができる。絶縁材料の製造時における重合条件は、必要に応じて適宜に調節することができる。
<Manufacturing method of insulating material>
The method for producing the insulating material is not particularly limited, and is not particularly limited, and is RIM (Reaction Injection Molding) molding method, RTM (Resin Transfer Molding) method, potting method, (solid, liquid) transfer molding method, compression molding method, print molding. Examples include the method and the vacuum forming method. Among them, the insulating material of the present invention is a compound ring-opening in a mold containing a norbornene compound having a hetero element-containing hydrocarbon group, a norbornene compound having a hetero element-free hydrocarbon group, and a metathesis polymerization catalyst. It can be suitably produced by the RIM molding method of polymerization. The polymerization conditions during the production of the insulating material can be appropriately adjusted as needed.

(封止材料)
封止材料は、上述した絶縁材料を含む。換言すると、封止材料は、絶縁材料用反応溶液の反応物を含んでなり、さらに言えば、封止材料は、ノルボルネン化合物に由来する構造単位を含む開環重合体と、無機窒化物とを含有する。なお、封止材料中における開環重合体100質量部に対する無機窒化物の割合は、0.1質量部以上15質量部以下であり、好ましくは、1質量部以上11質量部以下である。本発明の封止材料は、絶縁破壊電圧が十分に高いので、優れた性能を発揮し得る。特に、本発明の封止材料は、変圧器、回転機、パワー半導体など比較的高電圧で稼働される電気機器に用いる封止材料として、好適に用いることができる。
(Encapsulating material)
The sealing material includes the insulating material described above. In other words, the encapsulating material comprises a reactant of the reaction solution for an insulating material, and more specifically, the encapsulating material comprises a ring-opening polymer containing a structural unit derived from a norbornene compound and an inorganic nitride. contains. The ratio of the inorganic nitride to 100 parts by mass of the ring-opening polymer in the sealing material is 0.1 parts by mass or more and 15 parts by mass or less, preferably 1 part by mass or more and 11 parts by mass or less. Since the sealing material of the present invention has a sufficiently high dielectric breakdown voltage, it can exhibit excellent performance. In particular, the encapsulating material of the present invention can be suitably used as an encapsulating material used for electrical equipment operated at a relatively high voltage such as a transformer, a rotating machine, and a power semiconductor.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
なお、各例における測定や評価は、以下の方法により行った。また、以下の説明において、量を表す「部」および「%」は、特に断らない限り、質量基準である。
Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these examples.
The measurement and evaluation in each example were carried out by the following methods. Further, in the following description, "parts" and "%" representing quantities are based on mass unless otherwise specified.

(絶縁破壊電圧の測定)
JIS−C2110−1(2010)に準拠し、実施例、比較例で得た試験試料を、絶縁性液体であるフロリナート中で2つの球状電極間に挟んで固定した。10kVまで昇圧した後、10秒間で1kVずつ昇圧させる段階昇圧法により、試験試料に対して電圧印加を行った。試験試料が短絡(ショート)した1段階前の電圧を、当該試験試料の絶縁破壊電圧(Break Down Voltage)として記録した。
さらに、各試験試料について記録した絶縁破壊電圧の値Vを、同じ組成のベースモノマー混合物を用いて得た試験試料について記録した絶縁破壊電圧の値Vと比較して、向上率(%)=V/V×100−100を得た。
(Measurement of dielectric breakdown voltage)
According to JIS-C2110-1 (2010), the test samples obtained in Examples and Comparative Examples were sandwiched and fixed between two spherical electrodes in fluorinert, which is an insulating liquid. A voltage was applied to the test sample by a stepwise step-up method in which the voltage was increased to 10 kV and then increased by 1 kV in 10 seconds. The voltage one step before the test sample was short-circuited was recorded as the breakdown voltage (breakdown voltage) of the test sample.
Furthermore, the value V i of the recorded breakdown voltage for each test sample, as compared to the value V o of the breakdown voltage recorded for obtained test samples using a base monomer mixture of the same composition, improvement rate (%) = to give a V i / V o × 100-100.

(実施例1)
<触媒液の調製>
メタセシス重合触媒として、下記式で示すルテニウム触媒(Zhan 1N)0.6部、及び、老化防止剤としての2,6−ジ−t−ブチル−p−クレゾール(BHT)15部を、シクロペンタノン82部に溶解させることで、触媒液を得た。

Figure 2021134245
上記式中、Mesはメシチル基を示す。 (Example 1)
<Preparation of catalyst solution>
As a metathesis polymerization catalyst, 0.6 part of a ruthenium catalyst (Zhan 1N) represented by the following formula and 15 parts of 2,6-di-t-butyl-p-cresol (BHT) as an antioxidant are used as cyclopentanone. A catalyst solution was obtained by dissolving it in 82 parts.
Figure 2021134245
In the above formula, Mes represents a mesitylene group.

<サンプル板の成形>
ノルボルネン化合物としての、ジシクロペンタジエン(以下、「DCP」と略すことがある。分子量:132.2g/mol)を2.78g(約0.02mol)と、テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン(以下、「TCD」と略すことがある。分子量:160.85g/mol)を9.65g(約0.06mol)とを、それぞれ量り取って混合し、ベースモノマー混合物を得た。得られたベースモノマー混合物に対して、平均粒径0.5μmの球状窒化ホウ素(デンカ社製)0.21g(ベースモノマー混合物100部に対して、1.7部)を加え、自転・公転ミキサー(シンキー社製、ARE−310)を用いて、回転数2000rpmにて6分間混錬し、絶縁材料用反応溶液を得た。得られた絶縁材料用反応溶液を撹拌しながら上記触媒液0.41gを加えて撹拌により混合し重合性組成物を得た。
<Molding of sample plate>
Dicyclopentadiene (hereinafter, may be abbreviated as "DCP". Molecular weight: 132.2 g / mol) as a norbornene compound is 2.78 g (about 0.02 mol) and tetracyclo [6.2.1.1 3]. , 6 . 0 2,7 ] Dodeca-4-ene (hereinafter, may be abbreviated as "TCD". Molecular weight: 160.85 g / mol) and 9.65 g (about 0.06 mol) are weighed and mixed. A base monomer mixture was obtained. To the obtained base monomer mixture, 0.21 g of spherical boron nitride (manufactured by Denka Co., Ltd.) having an average particle size of 0.5 μm (1.7 parts with respect to 100 parts of the base monomer mixture) was added, and a rotation / revolution mixer was added. (ARE-310 manufactured by Shinky Co., Ltd.) was kneaded at a rotation speed of 2000 rpm for 6 minutes to obtain a reaction solution for an insulating material. While stirring the obtained reaction solution for insulating material, 0.41 g of the above catalyst solution was added and mixed by stirring to obtain a polymerizable composition.

金型として縦100mm×横100mm×厚さ0.15mmの空間を有するステンレス製雄型を準備し、上記にて得られた重合性組成物を空間に注ぎ、空隙が入らないように注意しながら上面にもう1枚の平面平滑なステンレス板を被せ、プレス成型機にて温度80℃、圧力10MPaにて10分間加熱し、さらに120℃、圧力10MPaにて10分間加熱することで塊状開環重合反応を行ってサンプル板を得た。
得られたサンプル板から40mm×40mmの切片を切り出し試験試料とし、上記の方法に従って、23℃における絶縁破壊電圧の測定を行った。結果を表1に示す。
As a mold, prepare a male stainless steel mold having a space of 100 mm in length × 100 mm in width × 0.15 mm in thickness, pour the polymerizable composition obtained above into the space, and be careful not to enter voids. The upper surface is covered with another flat and smooth stainless steel plate, heated by a press molding machine at a temperature of 80 ° C. and a pressure of 10 MPa for 10 minutes, and further heated at 120 ° C. and a pressure of 10 MPa for 10 minutes to carry out massive ring-opening polymerization. The reaction was carried out to obtain a sample plate.
A section of 40 mm × 40 mm was cut out from the obtained sample plate and used as a test sample, and the dielectric breakdown voltage at 23 ° C. was measured according to the above method. The results are shown in Table 1.

(実施例2)
実施例1と同じベースモノマー混合物に対し、平均粒径0.5μmの球状窒化ホウ素0.46g(ベースモノマー混合物100部に対して、3.7部)加えて、実施例1と同様に混錬し、触媒液を加えて金型により成形してサンプル板を得て絶縁破壊電圧の測定を実施した。結果を表1に示す。
(Example 2)
To the same base monomer mixture as in Example 1, 0.46 g of spherical boron nitride having an average particle size of 0.5 μm (3.7 parts with respect to 100 parts of the base monomer mixture) was added and kneaded in the same manner as in Example 1. Then, the catalyst solution was added and molded by a mold to obtain a sample plate, and the dielectric breakdown voltage was measured. The results are shown in Table 1.

(実施例3)
ベースモノマー混合物の調製にあたり、DCPを8.33g(約0.06mol)と、ノルボルネン化合物としての1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン(以下、「MTF」と略すことがある。分子量:182.95g/mol)を3.66g(約0.02mol)とを、それぞれ量り取って混合し、ベースモノマー混合物を得た。得られたベースモノマー混合物に対して、平均粒径0.5μmの球状窒化ホウ素0.21g(ベースモノマー混合物100部に対して、1.7部)を加えて、実施例1と同様に混錬し、触媒液を加えて金型により成形してサンプル板を得て絶縁破壊電圧の測定を実施した。結果を表1に示す。
(Example 3)
In preparing the base monomer mixture, 2.33 g (about 0.06 mol) of DCP and 1,4-methano-1,4,4a, 9a-tetrahydrofluorene as a norbornene compound (hereinafter, abbreviated as "MTF") may be abbreviated. There is. Molecular weight: 182.95 g / mol) and 3.66 g (about 0.02 mol) were weighed and mixed to obtain a base monomer mixture. To the obtained base monomer mixture, 0.21 g of spherical boron nitride having an average particle size of 0.5 μm (1.7 parts with respect to 100 parts of the base monomer mixture) was added and kneaded in the same manner as in Example 1. Then, the catalyst solution was added and molded by a mold to obtain a sample plate, and the dielectric breakdown voltage was measured. The results are shown in Table 1.

(実施例4)
実施例3と同じベースモノマー混合物に対し、平均粒径0.5μmの球状窒化ホウ素1.29g(ベースモノマー混合物100部に対して、10.8部)加えて、実施例1と同様に混錬し、触媒液を加えて金型により成形してサンプル板を得て絶縁破壊電圧の測定を実施した。結果を表1に示す。
(Example 4)
To the same base monomer mixture as in Example 3, 1.29 g of spherical boron nitride having an average particle size of 0.5 μm (10.8 parts with respect to 100 parts of the base monomer mixture) was added and kneaded in the same manner as in Example 1. Then, the catalyst solution was added and molded by a mold to obtain a sample plate, and the dielectric breakdown voltage was measured. The results are shown in Table 1.

(実施例5)
ベースモノマー混合物の調製にあたり、TCDを6.43g(約0.04mol)と、MTFを7.32g(約0.02mol)とを、それぞれ量り取って混合して、ベースモノマー混合物を得た。得られたベースモノマー混合物に対して、平均粒径0.5μmの球状窒化ホウ素0.24g(ベースモノマー混合物100部に対して、1.7部)を加えて、実施例1と同様に混錬し、触媒液を加えて金型により成形してサンプル板を得て絶縁破壊電圧の測定を実施した。結果を表1に示す。
(Example 5)
In preparing the base monomer mixture, 6.43 g (about 0.04 mol) of TCD and 7.32 g (about 0.02 mol) of MTF were weighed and mixed to obtain a base monomer mixture. To the obtained base monomer mixture, 0.24 g of spherical boron nitride having an average particle size of 0.5 μm (1.7 parts with respect to 100 parts of the base monomer mixture) was added and kneaded in the same manner as in Example 1. Then, the catalyst solution was added and molded by a mold to obtain a sample plate, and the dielectric breakdown voltage was measured. The results are shown in Table 1.

(実施例6)
実施例1と同じベースモノマー混合物に対し、平均粒径8.0μmの鱗片状窒化ホウ素0.46g(ベースモノマー混合物100部に対して、3.7部)を加えて、実施例1と同様に混錬し、触媒液を加えて金型により成形してサンプル板を得て絶縁破壊電圧の測定を実施した。結果を表1に示す。
(Example 6)
To the same base monomer mixture as in Example 1, 0.46 g of scaly boron nitride having an average particle size of 8.0 μm (3.7 parts with respect to 100 parts of the base monomer mixture) was added in the same manner as in Example 1. The mixture was kneaded, a catalyst solution was added, and the mixture was molded by a mold to obtain a sample plate, and the dielectric breakdown voltage was measured. The results are shown in Table 1.

(比較例1)
実施例1と同じベースモノマー混合物を調製し、窒化ホウ素は加えずベースモノマー混合物のみの樹脂液とし、得られた樹脂液を用いて実施例1と同様にサンプル板を成形し絶縁破壊電圧の測定を行った。結果を表1に示す。
(Comparative Example 1)
The same base monomer mixture as in Example 1 was prepared, a resin solution containing only the base monomer mixture was prepared without adding boron nitride, and a sample plate was formed using the obtained resin solution in the same manner as in Example 1 to measure the breakdown voltage. Was done. The results are shown in Table 1.

(比較例2)
実施例3と同じベースモノマー混合物を調製し、窒化ホウ素は加えずベースモノマー混合物のみの樹脂液とし、得られた樹脂液を用いて実施例1と同様にサンプル板を成形し絶縁破壊電圧の測定を行った。結果を表1に示す。
(Comparative Example 2)
The same base monomer mixture as in Example 3 was prepared, a resin solution containing only the base monomer mixture was prepared without adding boron nitride, and a sample plate was formed using the obtained resin solution in the same manner as in Example 1 to measure the breakdown voltage. Was done. The results are shown in Table 1.

(比較例3)
実施例5と同じベースモノマー混合物を調製し、窒化ホウ素は加えずベースモノマー混合物のみの樹脂液とし、得られた樹脂液を用いて実施例1と同様にサンプル板を成形し絶縁破壊電圧の測定を行った。結果を表1に示す。
(Comparative Example 3)
The same base monomer mixture as in Example 5 was prepared, a resin solution containing only the base monomer mixture was prepared without adding boron nitride, and a sample plate was formed using the obtained resin solution in the same manner as in Example 1 to measure the breakdown voltage. Was done. The results are shown in Table 1.

(比較例4)
実施例1と同じベースモノマー混合物に対し、平均粒径0.5μmの球状窒化ホウ素3.11g(ベースモノマー混合物100部に対して、25部)加えて、実施例1と同様に混錬し、触媒液を加えて金型により成形してサンプル板を得て絶縁破壊電圧の測定を実施した。結果を表1に示す。
(Comparative Example 4)
To the same base monomer mixture as in Example 1, 3.11 g of spherical boron nitride having an average particle size of 0.5 μm (25 parts with respect to 100 parts of the base monomer mixture) was added and kneaded in the same manner as in Example 1. A catalyst solution was added and molded by a mold to obtain a sample plate, and the dielectric breakdown voltage was measured. The results are shown in Table 1.

(比較例5)
実施例3と同じベースモノマー混合物に対し、平均粒径0.5μmの球状窒化ホウ素7.43g(ベースモノマー混合物100部に対して、62部)加えて、実施例1と同様に混錬した。得られた樹脂組成物は粘土状となり流動性が低いため成形できなかった。
(Comparative Example 5)
To the same base monomer mixture as in Example 3, 7.43 g of spherical boron nitride having an average particle size of 0.5 μm (62 parts with respect to 100 parts of the base monomer mixture) was added and kneaded in the same manner as in Example 1. The obtained resin composition became clay-like and had low fluidity, so that it could not be molded.

なお、表1において、
「NB」は、ノルボルネン化合物を、
「TCD」は、テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エンを、
「MTF」は、1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレンを、
「DCP」は、ジシクロペンタジエンを、
「BN」は、窒化ホウ素を、
それぞれ示す。
In Table 1,
"NB" is a norbornene compound,
"TCD" is tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-en,
"MTF" is 1,4-methano-1,4,4a, 9a-tetrahydrofluorene,
"DCP" is dicyclopentadiene,
"BN" is boron nitride,
Each is shown.

Figure 2021134245
表1より、実施例1〜6で得られた、無機窒化物の含有割合が所定範囲である絶縁材料用反応溶液を用いて得られた絶縁材料は、同じベースモノマーを用いて無機窒化物を配合せずに得た共重合体と比較して、絶縁破壊電圧が向上していたことが分かる。
また、表1の比較例4より、絶縁材料用反応溶液に無機窒化物を配合した場合であっても、その割合が所定範囲外である場合には、絶縁破壊電圧向上効果を奏することができなかったことが分かる。
さらにまた、表1の比較例5より、絶縁材料用反応溶液に無機窒化物を配合した場合であっても、その割合が多すぎると、絶縁材料を形成することすらできない場合があったことが分かる。
Figure 2021134245
From Table 1, the insulating materials obtained by using the reaction solution for insulating materials having a predetermined content ratio of inorganic nitrides obtained in Examples 1 to 6 were prepared by using the same base monomer as inorganic nitrides. It can be seen that the dielectric breakdown voltage was improved as compared with the copolymer obtained without blending.
Further, according to Comparative Example 4 in Table 1, even when the inorganic nitride is blended in the reaction solution for the insulating material, if the ratio is out of the predetermined range, the effect of improving the dielectric breakdown voltage can be obtained. It turns out that it wasn't.
Furthermore, according to Comparative Example 5 in Table 1, even when the inorganic nitride was blended in the reaction solution for the insulating material, if the ratio was too large, it may not even be possible to form the insulating material. I understand.

本発明によれば、絶縁破壊電圧の十分に高い絶縁材料の形成に用いることができる、絶縁材料用反応溶液を提供することができる。
また、本発明によれば、絶縁破壊電圧の十分に高い絶縁材料を提供することができる。
さらに、本発明によれば、優れた性能を発揮し得る封止材料を提供することができる。
According to the present invention, it is possible to provide a reaction solution for an insulating material that can be used for forming an insulating material having a sufficiently high dielectric breakdown voltage.
Further, according to the present invention, it is possible to provide an insulating material having a sufficiently high dielectric breakdown voltage.
Further, according to the present invention, it is possible to provide a sealing material capable of exhibiting excellent performance.

Claims (4)

ノルボルネン化合物と無機窒化物とを含む絶縁材料用反応溶液であって、
前記無機窒化物の含有割合が、前記ノルボルネン化合物100質量部あたり、0.1質量部以上15質量部以下である絶縁材料用反応溶液。
A reaction solution for an insulating material containing a norbornene compound and an inorganic nitride.
A reaction solution for an insulating material in which the content ratio of the inorganic nitride is 0.1 parts by mass or more and 15 parts by mass or less per 100 parts by mass of the norbornene compound.
前記無機窒化物の形状が、球状である請求項1に記載の絶縁材料用反応溶液。 The reaction solution for an insulating material according to claim 1, wherein the shape of the inorganic nitride is spherical. 請求項1又は2に記載の絶縁材料用反応溶液の反応物である、絶縁材料。 An insulating material which is a reaction product of the reaction solution for an insulating material according to claim 1 or 2. 請求項3に記載の絶縁材料を含む、封止材料。 A sealing material containing the insulating material according to claim 3.
JP2020029583A 2020-02-25 2020-02-25 Reaction solution for insulation material, insulation material, and sealing material Pending JP2021134245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020029583A JP2021134245A (en) 2020-02-25 2020-02-25 Reaction solution for insulation material, insulation material, and sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020029583A JP2021134245A (en) 2020-02-25 2020-02-25 Reaction solution for insulation material, insulation material, and sealing material

Publications (1)

Publication Number Publication Date
JP2021134245A true JP2021134245A (en) 2021-09-13

Family

ID=77660337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020029583A Pending JP2021134245A (en) 2020-02-25 2020-02-25 Reaction solution for insulation material, insulation material, and sealing material

Country Status (1)

Country Link
JP (1) JP2021134245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022028A1 (en) 2021-08-19 2023-02-23 Mcppイノベーション合同会社 Thermoplastic elastomer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022028A1 (en) 2021-08-19 2023-02-23 Mcppイノベーション合同会社 Thermoplastic elastomer composition

Similar Documents

Publication Publication Date Title
TWI598385B (en) Insulated thermal interface material
KR102241359B1 (en) Norbornene cross-linked polymer and method for producing same
JP3814301B2 (en) Adhesive composition containing perfluorinated hydrocarbon polymer and use thereof
TW201630959A (en) Epoxy resin, epoxy resin composition, epoxy resin composition containing inorganic filler, resin sheet, cured product and epoxy compound
CN106459718B (en) Thermally and electrically conductive adhesive composition
KR101970771B1 (en) Resin composition, resin sheet, resin sheet with metal foil, hardened resin sheet, structure, and semiconductor device for power or light source
CN110431189B (en) Addition-curable silicone composition
JP7153635B2 (en) Curable resin composition, cured product thereof, and structure containing cured product
JP6689823B2 (en) Resin molded product and manufacturing method thereof
WO2021043052A1 (en) Method for preparing thermally conductive interface material
JP2021134245A (en) Reaction solution for insulation material, insulation material, and sealing material
TW201920506A (en) Paste composition, semiconductor device, and electrical/electronic component
CN109689742A (en) The manufacturing method of curable resin mixture and hardening resin composition
US11879029B2 (en) Polymerizable composition, cycloolefin-based polymer, and metal/resin composite
TWI725558B (en) Thermosetting resin composition
JP2017031239A (en) Aryl ether-modified biphenylaralkyl novolak resin, aryl-modified biphenylaralkyl novolak resin, method for producing the same, and composition using the same
JP7351297B2 (en) Thermosetting resin composition for semiconductor encapsulation materials, semiconductor encapsulation materials, and semiconductor devices
Lo et al. Effects of mixing procedures on the volume fraction of silver particles in conductive adhesives
JP3772327B2 (en) High frequency components
KR20210040771A (en) Curable resin composition, cured product thereof, and structure including cured product thereof
Jasmee et al. Preparation of GNPs Thermally Conductive Adhesive at Different Epoxy Resin/Curing Agent Ratio and Mixing Method
JP2023070490A (en) thermosetting composition
WO2021240878A1 (en) Thermosetting resin composition
JP2024048035A (en) Water-based composition and cured coating film
JP2013249396A (en) Method for producing molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240423