JP2021134155A - Novel compound and sensor chip including the same - Google Patents

Novel compound and sensor chip including the same Download PDF

Info

Publication number
JP2021134155A
JP2021134155A JP2020030080A JP2020030080A JP2021134155A JP 2021134155 A JP2021134155 A JP 2021134155A JP 2020030080 A JP2020030080 A JP 2020030080A JP 2020030080 A JP2020030080 A JP 2020030080A JP 2021134155 A JP2021134155 A JP 2021134155A
Authority
JP
Japan
Prior art keywords
formula
integer
compound
compound according
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020030080A
Other languages
Japanese (ja)
Other versions
JP7312403B2 (en
Inventor
豪 南
Takeshi Minami
豪 南
勝正 中原
Katsumasa Nakahara
勝正 中原
俊弘 小池
Toshihiro Koike
俊弘 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
University of Tokyo NUC
Original Assignee
JNC Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, University of Tokyo NUC filed Critical JNC Corp
Priority to JP2020030080A priority Critical patent/JP7312403B2/en
Publication of JP2021134155A publication Critical patent/JP2021134155A/en
Application granted granted Critical
Publication of JP7312403B2 publication Critical patent/JP7312403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

To provide a compound that can be immobilized to inorganic matter to make a sensor chip, the compound exhibiting supramolecular interaction.SOLUTION: The present disclosure provides a cucurbit [n]uril derivative, for example, illustrated by the following formula (where n is 5-20).SELECTED DRAWING: None

Description

本発明は特定の化学物質を検知するレセプターとなる新規化合物、およびそれを用いたセンサーチップに関する。 The present invention relates to a novel compound that serves as a receptor for detecting a specific chemical substance, and a sensor chip using the same.

近年、生活の健康志向に伴い、化学物質を簡便にモニタリングする需要が増えてきている。食品に含まれる栄養分や、環境負荷物質を分析する為にはこれまで大型で高価な質量分析などの分析機器や、高価な分析試薬が必要であった。しかし、今後は迅速で簡便な分析手法が求められ、これにより、人類の暮らしはより快適になると予想される。 In recent years, there has been an increasing demand for easy monitoring of chemical substances with the health consciousness of daily life. In order to analyze nutrients contained in foods and environmentally hazardous substances, large-scale and expensive analytical instruments such as mass spectrometry and expensive analytical reagents have been required so far. However, in the future, a quick and simple analysis method will be required, which is expected to make human life more comfortable.

そうした背景の中、金属などの無機物に自己組織化単分子膜(SAM)を形成させてレセプターとし、目的検知対象物質と相互作用させて電気、光といった外部信号として取り出す研究開発が進んできている。用いる相互作用としては共有結合などの化学反応、抗体−抗原反応、ホスト−ゲストによる超分子認識が知られている。 Against this background, research and development is progressing in which a self-assembled monolayer (SAM) is formed on an inorganic substance such as a metal to serve as a receptor, and then interacts with a target substance to be detected and extracted as an external signal such as electricity or light. .. Known interactions used include chemical reactions such as covalent bonds, antibody-antibody reactions, and supramolecular recognition by host-guest.

これまでに報告された例としては、レセプターが特定の化学物質に特異的に結合することにより信号を取り出していたが、この手法では多品種の化合物に対して対応するレセプターを多品種で製造する必要があり、工業的には現実的ではないと考えられる。それに対して、ある程度の反応サイトの余裕を持ち、多品種の化学物質に対して応答はするが、応答強度が異なるレセプターを少品種だけ製造することの方が、開発速度が高まり、工業的にも理想的である。 As an example reported so far, a signal is extracted by specifically binding a receptor to a specific chemical substance, but this method produces a receptor corresponding to a wide variety of compounds in a wide variety. It is necessary and considered industrially impractical. On the other hand, it is industrially faster to produce only a small number of receptors that have a certain margin of reaction sites and respond to a wide variety of chemical substances, but have different response intensities. Is also ideal.

そういった要望の中でククルビット[n]ウリルは親水性及び疎水性を示す空隙の存在により多様な化合物に対して捕集能力を有している事が知られている(特許文献1、特許文献2、非特許文献1)。ククルビット[n]ウリルは、空隙入り口にカルボニル基を有している為、電荷−極性相互作用、極性−極性相互作用、または水素結合によって多様なイオン性化合物、及び極性の大きい化合物を捕集できる点で、他の大環状化合物と異なる。したがってククルビット[n]ウリルはアミノ酸、核酸、金属イオン、有機金属イオン、違法薬物等に対して多様な捕集能力を持ち、さらには、捕集様態も捕集する化合物やククルビット[n]ウリルの環構造の大きさによって異なるため、非常に興味深い化合物である。
ククルビット[n]ウリルを用いた応答は主に溶液中での光学的な応答、核磁気共鳴に対する応答、等温滴定カロリメトリーに対する応答等が知られているが、これらの分析ではやはり比較的大きな分析機器が必要であった。今後簡便な分析の為には超分子的相互作用を有する化合物を金属などの無機物に担持させてチップ状にし、持ち歩けるような状態にするのが望ましい。
It is known that cucurbituril [n] uryl has a collecting ability for various compounds due to the presence of hydrophilic and hydrophobic voids (Patent Documents 1 and 2). , Non-Patent Document 1). Since Kukurubit [n] uryl has a carbonyl group at the void entrance, various ionic compounds and highly polar compounds can be collected by charge-polar interaction, polar-polar interaction, or hydrogen bond. It differs from other macrocyclic compounds in that it. Therefore, cucurbituril [n] uryl has various collection abilities for amino acids, nucleic acids, metal ions, organometallic ions, illegal drugs, etc., and further, cucurbituril [n] uryl is a compound that also collects the collection mode. It is a very interesting compound because it depends on the size of the ring structure.
Responses using Kukurubit [n] uryl are mainly known to be optical responses in solution, responses to nuclear magnetic resonance, responses to isothermal titration calorimetry, etc., but these analyzes are still relatively large analytical instruments. Was needed. For simple analysis in the future, it is desirable to support a compound having a supramolecular interaction on an inorganic substance such as a metal to form a chip so that it can be carried around.

特表2007−500763号公報Special Table 2007-500733, Gazette 特表2007−521487号公報Special Table 2007-521487

Chemical−Reviews,2015年,115巻,12320頁Chemical-Reviews, 2015, Vol. 115, p. 12320

本発明の課題は、無機物に固定化させてセンサーチップにすることができる超分子的相互作用を有する新規な化合物を提供することにある。 An object of the present invention is to provide a novel compound having a supramolecular interaction that can be immobilized on an inorganic substance to form a sensor chip.

本発明者らは、鋭意検討を行った結果、ククルビット[n]ウリルに化学修飾を施すことにより新規な化合物であるククルビット[n]ウリル誘導体を合成し、金属上に固定化させることに成功し、本発明に至った。 As a result of diligent studies, the present inventors have succeeded in synthesizing a novel compound, a kukurubit [n] uryl derivative, by chemically modifying kukurubit [n] uryl and immobilizing it on a metal. , The present invention has been reached.

本発明は、以下の構成を有する。
[1] 式(1)で表される化合物:

Figure 2021134155
(式中、nは5から20の整数であり、mは1から10の整数である。X及びYは独立に酸素、硫黄及びセレンからなる群から選ばれるカルコゲン原子を表し、Rは、SH、COOH、Si(OR、PO(OH)、SS−Rからなる群から選ばれる置換基を表し、Rは炭素数1〜5のアルキル基を表し、Rは有機基を表す。)。
[2] 前記化合物は無機材料と相互作用し、自己組織化単分子膜を形成することができる、[1]に記載の化合物。
[3] 式(2)で表される、[1]に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。)。
[4] 式(3)で表される、[1]に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。)。
[5] 式(4)で表される、[1]に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。)。
[6] 式(5)で表される、[1]に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。)。
[7] 式(6)表される、[1]に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。Rは炭素数1〜5のアルキル基を表す。)。
[8] 無機物と、
前記無機物に固定化させた[1]に記載の化合物と、
を含む、センサーチップ。 The present invention has the following configurations.
[1] Compound represented by formula (1):
Figure 2021134155
(In the formula, n is an integer from 5 to 20, m is an integer from 1 to 10. X and Y represent chalcogen atoms independently selected from the group consisting of oxygen, sulfur and selenium, and R is SH. , COOH, Si (OR 1 ) 3 , PO (OH) 2 , SS-R 2 represents a substituent selected from the group, R 1 represents an alkyl group having 1 to 5 carbon atoms, and R 2 represents an organic group. Represents.).
[2] The compound according to [1], wherein the compound can interact with an inorganic material to form a self-assembled monolayer.
[3] The compound according to [1] represented by the formula (2):
Figure 2021134155
(In the equation, n is an independent integer from 5 to 20, and m is an independent integer from 1 to 10.).
[4] The compound according to [1] represented by the formula (3):
Figure 2021134155
(In the equation, n is an independent integer from 5 to 20, and m is an independent integer from 1 to 10.).
[5] The compound according to [1] represented by the formula (4):
Figure 2021134155
(In the equation, n is an independent integer from 5 to 20, and m is an independent integer from 1 to 10.).
[6] The compound according to [1] represented by the formula (5):
Figure 2021134155
(In the equation, n is an independent integer from 5 to 20, and m is an independent integer from 1 to 10.).
[7] The compound according to [1] represented by the formula (6):
Figure 2021134155
(In the formula, n is an independently integer of 5 to 20, m is an independent integer of 1 to 10. R 1 represents an alkyl group having 1 to 5 carbon atoms.)
[8] Inorganic substances and
The compound according to [1] immobilized on the inorganic substance, and
Including the sensor chip.

本発明の新規な化合物は、無機物に固定化させることにより、特定の化合物を検出するセンサーチップを得ることができる。また、当該センサーチップは、チップ状であるため、持ち歩くことできるようになることも期待され、簡便な分析を可能にする。 By immobilizing the novel compound of the present invention on an inorganic substance, a sensor chip that detects a specific compound can be obtained. Further, since the sensor chip is in the form of a chip, it is expected that the sensor chip can be carried around, which enables simple analysis.

図1は、SAM処理済電極、未処理電極、及びCB[6]粉末のFT−IR測定の結果である。FIG. 1 shows the results of FT-IR measurement of the SAM-treated electrode, the untreated electrode, and the CB [6] powder. 図2は、SAM処理済電極、及び未処理電極の光電子収量分光法による測定の結果である。FIG. 2 shows the results of measurement of the SAM-treated electrode and the untreated electrode by photoelectron yield spectroscopy. 図3の(A)は、未処理電極の接触角測定の際の写真であり、図3(B)は、SAM処理済電極の接触角測定の際の写真である。FIG. 3A is a photograph when measuring the contact angle of the untreated electrode, and FIG. 3B is a photograph when measuring the contact angle of the SAM-treated electrode.

以下、本発明について具体的に説明する。本発明の化合物は、式(1)の構造を有するものである。

Figure 2021134155
Hereinafter, the present invention will be specifically described. The compound of the present invention has the structure of the formula (1).
Figure 2021134155

式(1)中、nは5から20の整数であり、mは1から10の整数である。X及びYは独立に酸素、硫黄及びセレンからなる群から選ばれるカルコゲン原子を表し、Rは、SH、COOH、Si(OR、PO(OH)、SS−Rからなる群から選ばれる置換基を表し、Rは炭素数1〜5のアルキル基を表し、Rは有機基を表す。以下、具体的に説明する。 In equation (1), n is an integer from 5 to 20, and m is an integer from 1 to 10. X and Y represent chalcogen atoms independently selected from the group consisting of oxygen, sulfur and selenium, and R represents the group consisting of SH, COOH, Si (OR 1 ) 3 , PO (OH) 2 and SS-R 2. Represents the substituent of choice, R 1 represents an alkyl group having 1 to 5 carbon atoms, and R 2 represents an organic group. Hereinafter, a specific description will be given.

式(1)で表される化合物は、ククルビットウリル構造(環状構造)を含む化合物である。nは、当該化合物を構成するグリコールウリル単位の数を表し、5〜20の整数を表す。検査対象物との相互作用の強さや、入手容易性の観点から、nは5〜12の整数が好ましく、5〜10の整数がさらに好ましい。 The compound represented by the formula (1) is a compound containing a cucurbituril structure (cyclic structure). n represents the number of glycoluril units constituting the compound, and represents an integer of 5 to 20. From the viewpoint of the strength of interaction with the inspection object and the availability, n is preferably an integer of 5 to 12, and more preferably an integer of 5 to 10.

式(1)中、mはメチレン基単位の数を表し、mが大きければ、メチレンスペーサーの長さが長くなるものであり、1から20の整数を表す。検査対象物との相互作用の強さや、固定化のしやすさ、扱いやすさの観点から、mは2から18の整数が好ましく、3から15がさらに好ましい。なお、メチルスペーサーとは、ククルビットウリル部分(ククルビットウリル構造)と、金属等の無機物とを結ぶ連続したメチレン基のことを言う。 In the formula (1), m represents the number of methylene group units, and when m is large, the length of the methylene spacer becomes long, and represents an integer of 1 to 20. From the viewpoint of the strength of interaction with the inspection object, the ease of immobilization, and the ease of handling, m is preferably an integer of 2 to 18, and more preferably 3 to 15. The methyl spacer refers to a continuous methylene group connecting a cucurbituril moiety (cucurbituril structure) and an inorganic substance such as a metal.

式(1)中、X及びYは、独立に酸素、硫黄及びセレンからなる群から選ばれるカルコゲン原子を表す。式(1)中、複数のXが存在するが、すべてのXが同一のカルコゲン原子である必要はなく、互いに異なっていてもよい。なお、合成しやすさの観点から、Xとしては、硫黄原子及び酸素原子が好ましく、酸素原子が最も好ましい。
また、YはXと同一でも異なっていてもよく、好ましいYは、硫黄原子及び酸素原子であり、酸素原子が最も好ましい。
In formula (1), X and Y represent chalcogen atoms independently selected from the group consisting of oxygen, sulfur and selenium. Although there are a plurality of Xs in the formula (1), not all Xs need to be the same chalcogen atom and may be different from each other. From the viewpoint of ease of synthesis, as X, a sulfur atom and an oxygen atom are preferable, and an oxygen atom is most preferable.
Further, Y may be the same as or different from X, and preferably Y is a sulfur atom and an oxygen atom, and an oxygen atom is most preferable.

Rはメチレンスペーサーの末端官能基である。RはSH、COOH、Si(OR、PO(OH)、SS−Rからなる群から選ばれる置換基であることが好ましい。Rに含まれるS原子、O原子、Si原子又はP原子が、無機物の表面と結合することにより、式(1)の化合物は、同じ配向性を有しながら、無機物の表面に固定化することができる。 R is the terminal functional group of the methylene spacer. R is preferably a substituent selected from the group consisting of SH, COOH, Si (OR 1 ) 3 , PO (OH) 2 and SS-R 2. By bonding the S atom, O atom, Si atom or P atom contained in R to the surface of the inorganic substance, the compound of the formula (1) is immobilized on the surface of the inorganic substance while having the same orientation. Can be done.

上記のうち、Si(ORのRは、アルコキシ基のアルキル基部分であり、炭素数1〜5であることが好ましく、1〜2であることがより好ましい。 Of the above, R 1 of Si (OR 1 ) 3 is an alkyl group portion of an alkoxy group, preferably having 1 to 5 carbon atoms, and more preferably 1 to 2 carbon atoms.

また、SS−RのRは、有機基であれば特に限定されるものではない。Rの具体例としては、アルキル、アルケニル、ククルビットウリル構造等を挙げることができる。RがSS−Rの場合は、無機物の表面に固定する場合、SとSが切断され、ククルビットウリル構造を含む化合物の硫黄原子が、無機物の表面に固定する。なお、切断された−S−Rを含む化合物も無機物の表面に固定することもでき、この点から考えると、Rは、ククルビットウリル構造を含むことが好ましい。 Also, R 2 in SS-R 2 is not limited particularly as long as it is an organic group. Specific examples of R 2 include alkyl, alkenyl, cucurbituril structures and the like. When R is SS-R 2 , when fixing to the surface of the inorganic substance, S and S are cleaved, and the sulfur atom of the compound containing the cucurbituril structure is fixed to the surface of the inorganic substance. The cleaved compound containing —S—R 2 can also be fixed to the surface of the inorganic substance, and from this point of view, R 2 preferably contains a cucurbituril structure.

式(1)の化合物は、好ましくは、以下の式(2)乃至(6)で表される化合物とすることができる。 The compound of the formula (1) can preferably be a compound represented by the following formulas (2) to (6).

Figure 2021134155
Figure 2021134155

Figure 2021134155
Figure 2021134155

Figure 2021134155
Figure 2021134155

Figure 2021134155
Figure 2021134155

Figure 2021134155
Figure 2021134155

式(2)〜(6)において、n及びmは式(1)と同様である。また、式(6)のRは炭素数1〜5のアルキル基を表す。各式中に、mやRが複数ある場合は、mやRはそれぞれ互いに同じであっても異なっていてもよい。
式(1)の化合物の特徴の一つとして、金属等の無機物と相互作用し、自己組織化単分子膜を形成することができる。ククルビットウリル構造は、ホスト分子として機能することが期待できるため、無機物とメチルスペーサーにより隔てたククルビットウリル部分が新しい機能を発揮できる可能性がある。
In the formulas (2) to (6), n and m are the same as those in the formula (1). Further, R 1 in the formula (6) represents an alkyl group having 1 to 5 carbon atoms. When there are a plurality of m and R 1 in each equation, m and R 1 may be the same or different from each other.
One of the characteristics of the compound of the formula (1) is that it can interact with an inorganic substance such as a metal to form a self-assembled monolayer. Since the cucurbituril structure can be expected to function as a host molecule, there is a possibility that the cucurbituril moiety separated from the inorganic substance by a methyl spacer can exert a new function.

式(1)の化合物の用途として、無機物の上に式(1)の化合物を固定化させたセンサーチップとして利用することができる。具体的には、式(1)の化合物を用いたセンサーチップは、カルノシン、アンセリン及びバレニン等のイミダゾールジペプチドの検出に利用することができる。 As a use of the compound of the formula (1), it can be used as a sensor chip in which the compound of the formula (1) is immobilized on an inorganic substance. Specifically, the sensor chip using the compound of the formula (1) can be used for detecting imidazole dipeptides such as carnosine, anserine and ophidine.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.

実施例1
ククルビット[6]ウリル(以下CB[6]と称す。)二量体の合成
(第1工程)ビスイミダゾリニウム塩内包CB[6]−モノヒドロキシ体の合成

Figure 2021134155
Example 1
Synthesis of cucurbituril [6] uril (hereinafter referred to as CB [6]) dimer (first step) Synthesis of bisimidazolinium salt-encapsulating CB [6] -monohydroxy form
Figure 2021134155

当該合成は、参考文献:Zhao,N.;Lloyd,G.O.;Scherman,O.A.Chem.Commun.2012,48(25),3070−3072.に則り、以下のように合成した。 The synthesis is described in References: Zhao, N. et al. Lloyd, G.M. O. Scherman, O.D. A. Chem. Commun. 2012, 48 (25), 3070-3072. According to the above, it was synthesized as follows.

大気下、100mLの二口ナスフラスコに還流冷却器を取り付け、CB[6](0.5g,0.5mmol)、3,3’−(オクタン−1,8−ジイル)ビス(1−エチル−イミダゾリニウム)ブロミド(232mg,0.5mmol)、水(50mL)を入れ、85℃へ昇温し、1時間攪拌した。ある程度溶解したのを確認した後、ここに(NH(114mg,0.5mmoL)を加えた。12時間攪拌した後、室温に戻し、ロータリーエバポレーターにより水を留去した。得られた固体を水を展開溶媒として逆相カラムクロマトグラフィー(樹脂:三菱ケミカル製、CHP 20P)を用いて分離した。10mLずつ分画し、LC/MSにより目的物が存在するフラクションを選択し、ロータリーエバポレーターにより溶媒を除去して目的物である白色固体(収量:320mg,収率:43%)を得た。 In the air, a reflux condenser was attached to a 100 mL two-necked eggplant flask, and CB [6] (0.5 g, 0.5 mmol), 3,3'-(octane-1,8-diyl) bis (1-ethyl-). Imidazolinium) bromide (232 mg, 0.5 mmol) and water (50 mL) were added, the temperature was raised to 85 ° C., and the mixture was stirred for 1 hour. After confirming that it had dissolved to some extent, (NH 4 ) 2 S 2 O 8 (114 mg, 0.5 mmoL) was added thereto. After stirring for 12 hours, the temperature was returned to room temperature, and water was distilled off by a rotary evaporator. The obtained solid was separated using reverse phase column chromatography (resin: manufactured by Mitsubishi Chemical Corporation, CHP 20P) using water as a developing solvent. Fractions of 10 mL each were performed, the fraction in which the target product was present was selected by LC / MS, and the solvent was removed by a rotary evaporator to obtain the target white solid (yield: 320 mg, yield: 43%).

(第2工程)6,6’−ジスルファンジイルビス(ヘキサン−1−オル)の合成 (Second step) Synthesis of 6,6'-disulfandylbis (hexane-1-ol)

Figure 2021134155
Figure 2021134155

100mLの三口ナスフラスコに還流冷却器と滴下漏斗を取り付け、乾燥エタノール(25mL)、チオ尿素(1.25g,16.5mmol)、6−ブロモヘキサン−1−オル(2.71g,16.5mmol)を加え、70℃に昇温、30時間攪拌した。その後、50℃に降温し、水酸化ナトリウム(6g,150mmol)水溶液(18mL)を滴下し、大気解放して更に1日攪拌した。室温に戻した後、得られた褐色溶液をクロロホルム(45mL)、水(45mL)で分液操作を行い、水層をクロロホルムで抽出した。合わせた有機層を水(45mL)で3回洗浄し、硫酸ナトリウムで乾燥させて濾過し、濾液の有機溶媒をロータリーエバポレーターで除いて目的物として褐色オイル(収量:1.11g,収率28%)で得た。
H NMR (400 MHz, CDCl): δ 1.24-1.71 (m, 16H, (CH) 2.68 (t, J = 5.0 Hz, 4H, CH), 3.65 (t, J = 9.3 Hz, 4H, CH).
A reflux condenser and a dropping funnel were attached to a 100 mL three-necked eggplant flask, and dry ethanol (25 mL), thiourea (1.25 g, 16.5 mmol), 6-bromohexane-1-ol (2.71 g, 16.5 mmol) were attached. Was added, the temperature was raised to 70 ° C., and the mixture was stirred for 30 hours. Then, the temperature was lowered to 50 ° C., an aqueous solution of sodium hydroxide (6 g, 150 mmol) (18 mL) was added dropwise, and the mixture was released to the atmosphere and stirred for another day. After returning to room temperature, the obtained brown solution was subjected to a liquid separation operation with chloroform (45 mL) and water (45 mL), and the aqueous layer was extracted with chloroform. The combined organic layer was washed 3 times with water (45 mL), dried over sodium sulfate and filtered, and the organic solvent of the filtrate was removed by a rotary evaporator to obtain brown oil (yield: 1.11 g, yield 28%). ).
1 1 H NMR (400 MHz, CDCl 3 ): δ 1.24-1.71 (m, 16H, (CH 2 ) 4 ) 2.68 (t, J = 5.0 Hz, 4H, CH 2 ), 3 .65 (t, J = 9.3 Hz, 4H, CH 2 ).

(第3工程)1,2’−ビス(6−ブロモへキシル)ジスルファンの合成

Figure 2021134155
(Third step) Synthesis of 1,2'-bis (6-bromohexyl) disulfan
Figure 2021134155

50mLの三口フラスコに還流冷却器と滴下漏斗を取り付け、四臭化炭素(3.01g,9.08mmol)のテトラヒドロフラン溶液(6mL)に6,6’−ジスルファンジイルビス(ヘキサン−1−オル)(1.10g,4.13mmol)のテトラヒドロフラン溶液(6mL)を加えた。10分間攪拌した後、トリフェニルホスフィン(2.81g,10.73mmol)のテトラヒドロフラン溶液(10mL)を滴下して加え、40℃へ昇温した。この際、溶液の色が橙色から暗緑色へ変色するのが確認され、最後に懸濁液となった。2日間攪拌した後、懸濁液をクロロホルム(30mL)と水(30mL)を加えて分液操作を行い、水層をクロロホルム(20mL)で2回抽出して、有機層を水(20mL)で2回洗浄して硫酸ナトリウムで乾燥させた。乾燥剤を濾別した後に、有機溶媒をロータリーエバポレーターにより除去して得られた粗生成物(5.21g)をクロロホルム:ヘキサン=1:4を展開溶媒としてシリカゲルカラムクロマトグラフィーにより精製した。用いたシリカゲルは40gであった。溶媒を除去して目的化合物である淡黄色オイル(収量:862mg,収率:53%)を得た。
= 0.39. H NMR (400 MHz, CDCl): δ 1.25-1.44 (m, 8H, (CH) 1.69 (quint, J = 8.0 Hz, 4H, CH) 1.88 (quint, J = 5.8 Hz, 4H, CH), 2.69 (t, J = 5.8 Hz, 4H, CH), 3.41 (t, J = 5.8 Hz, 4H, CH).
A reflux condenser and a dropping funnel were attached to a 50 mL three-necked flask, and 6,6'-disulfandylbis (hexane-1-ol) was added to a tetrahydrofuran solution (6 mL) of carbon tetrabromide (3.01 g, 9.08 mmol). ) (1.10 g, 4.13 mmol) in tetrahydrofuran (6 mL) was added. After stirring for 10 minutes, a tetrahydrofuran solution (10 mL) of triphenylphosphine (2.81 g, 10.73 mmol) was added dropwise, and the temperature was raised to 40 ° C. At this time, it was confirmed that the color of the solution changed from orange to dark green, and finally it became a suspension. After stirring for 2 days, the suspension is subjected to a liquid separation operation by adding chloroform (30 mL) and water (30 mL), the aqueous layer is extracted twice with chloroform (20 mL), and the organic layer is extracted with water (20 mL). It was washed twice and dried over sodium sulfate. After the desiccant was filtered off, the crude product (5.21 g) obtained by removing the organic solvent with a rotary evaporator was purified by silica gel column chromatography using chloroform: hexane = 1: 4 as a developing solvent. The silica gel used was 40 g. The solvent was removed to obtain a pale yellow oil (yield: 862 mg, yield: 53%) as the target compound.
R f = 0.39. 1 1 H NMR (400 MHz, CDCl 3 ): δ 1.25-1.44 (m, 8H, (CH 2 ) 4 ) 1.69 (quint, J = 8.0 Hz, 4H, CH 2 ) 1. 88 (quint, J = 5.8 Hz, 4H, CH 2 ), 2.69 (t, J = 5.8 Hz, 4H, CH 2 ), 3.41 (t, J = 5.8 Hz, 4H) , CH 2 ).

(第4工程)CB[6]二量体の合成

Figure 2021134155
(4th step) Synthesis of CB [6] dimer
Figure 2021134155

30mLの二口フラスコに窒素雰囲気下で、第1工程で得られたビスイミダゾリニウム塩内包CB[6]−モノヒドロキシ体(100mg,0.07mmol)を、ジメチルスルホキシド(7mL)に溶解させ、10分間攪拌した後、水素化ナトリウム(5.42mg,0.14mmol,オイル中含量60%)を加え、0℃へ冷却した。15分間攪拌した後、1,2’−ビス(6−ブロモへキシル)ジスルファン(53.11mg,0.14mmol)を加え、室温に戻した。1日攪拌した後、得られた白橙色懸濁液を1日静置すると沈殿が析出してきたのでこれを濾過して白色固体の目的物(収量:39mg,収率:25%)を得た。 The bisimidazolinium salt-encapsulating CB [6] -monohydroxy compound (100 mg, 0.07 mmol) obtained in the first step was dissolved in dimethyl sulfoxide (7 mL) in a 30 mL two-necked flask under a nitrogen atmosphere. After stirring for 10 minutes, sodium hydride (5.42 mg, 0.14 mmol, content in oil 60%) was added, and the mixture was cooled to 0 ° C. After stirring for 15 minutes, 1,2'-bis (6-bromohexyl) disulfan (53.11 mg, 0.14 mmol) was added, and the temperature was returned to room temperature. After stirring for 1 day, the obtained white-orange suspension was allowed to stand for 1 day to precipitate a precipitate, which was filtered to obtain a white solid target product (yield: 39 mg, yield: 25%). ..

実施例2
自己組織化単分子膜電極(SAM処理済電極)の作製
ポリエチレンナフタレート基板をマスクで覆って金を100nm蒸着し、適当なサイズに切断、UV−オゾン処理を10分間行った。これを実施例1で合成したCB[6]二量体のメタノール溶液(0.3mM)に終夜浸漬して、自己組織化単分子膜電極(SAM処理済電極)を得た。CB[6]二量体のメタノール溶液で処理していないものを未処理電極とした。
Example 2
Preparation of self-assembled monolayer electrode (SAM-treated electrode) A polyethylene naphthalate substrate was covered with a mask, gold was vapor-deposited at 100 nm, cut into an appropriate size, and UV-ozone treated for 10 minutes. This was immersed in a methanol solution (0.3 mM) of the CB [6] dimer synthesized in Example 1 overnight to obtain a self-assembled monolayer electrode (SAM-treated electrode). Those not treated with the CB [6] dimer methanol solution were used as untreated electrodes.

[FT−IRの測定]
実施例2で得たSAM処理済電極のFT−IR測定を実施した。なお、未処理電極(金電極)及びCB[6]粉末についても測定した。SAM処理済電極及び未処理電極は、吸光度で評価し、CB[6]粉末は、透過率で評価した。結果を図1に示す。これらの結果から電極上にCB[6]誘導体が固定されていることがわかる。
[Measurement of FT-IR]
The FT-IR measurement of the SAM-treated electrode obtained in Example 2 was carried out. The untreated electrode (gold electrode) and CB [6] powder were also measured. The SAM-treated electrode and the untreated electrode were evaluated by absorbance, and the CB [6] powder was evaluated by transmittance. The results are shown in FIG. From these results, it can be seen that the CB [6] derivative is immobilized on the electrode.

[SAM処理済電極の表面のイオン化ポテンシャルの評価(光電子収量分光法)]
実施例2で得られたSAM処理済電極のイオン化ポテンシャルを光電子収量分光法(PYS:住友重機械工業製)によって測定した。サンプルは以下のように作製した。
(1)UV−O洗浄を10分間施したインジウム−錫酸化物(ITO)基板上に金を100nm蒸着した。
(2)CB[6]誘導体のメタノール溶液(濃度:0.07質量%)に終夜浸漬した。
(3)比較対象として未修飾の金薄膜100nmについても評価した。
結果を図2に表す。イオン化ポテンシャルが異なるため、電極上にCB[6]誘導体が固定されていることが予想される。
[Evaluation of ionization potential on the surface of SAM-treated electrode (photoelectron yield spectroscopy)]
The ionization potential of the SAM-treated electrode obtained in Example 2 was measured by photoelectron yield spectroscopy (PYS: manufactured by Sumitomo Heavy Industries, Ltd.). The sample was prepared as follows.
(1) 100 nm of gold was vapor-deposited on an indium-tin oxide (ITO) substrate that had been washed with UV-O 3 for 10 minutes.
(2) The CB [6] derivative was immersed in a methanol solution (concentration: 0.07% by mass) overnight.
(3) An unmodified gold thin film of 100 nm was also evaluated for comparison.
The results are shown in FIG. Since the ionization potentials are different, it is expected that the CB [6] derivative is immobilized on the electrode.

[接触角測定]
実施例2で得られたSAM処理済電極及び未処理電極の接触角を測定した。SAM処理済電極をメタノールで洗浄し、窒素下で乾燥させた。超純水をSAM処理済電極に滴下し、接触角を4回測定した。未処理電極についても、UV/O処理をした上で、メタノールで洗浄し、窒素下で乾燥させ、超純水を未処理電極に滴下し、接触角を4回測定した。結果は、SAM処理済電極の接触角の平均は、30.1°(最大値と最小値との差は1.6°)であり、未処理電極の接触角は、38.0°(最大値と最小値との差は1.9°)であった。このことから、SAM処理済電極と未処理電極とでは、表面状態が明らかに異なることがわかった。
[産業上利用可能性]
[Contact angle measurement]
The contact angles of the SAM-treated electrode and the untreated electrode obtained in Example 2 were measured. The SAM-treated electrodes were washed with methanol and dried under nitrogen. Ultrapure water was dropped onto the SAM-treated electrode, and the contact angle was measured four times. For the untreated electrodes also, after the UV / O 3, washed with methanol, dried under nitrogen, was added dropwise ultrapure water untreated electrodes was measured four times and the contact angle. The result is that the average contact angle of the SAM-treated electrodes is 30.1 ° (the difference between the maximum and minimum values is 1.6 °), and the contact angle of the untreated electrodes is 38.0 ° (maximum). The difference between the value and the minimum value was 1.9 °). From this, it was found that the surface states of the SAM-treated electrode and the untreated electrode were clearly different.
[Industrial applicability]

本発明の新規な化合物は、無機物に固定化させることにより、特定の化合物を検出するセンサーチップを得ることができることが期待され、産業上利用可能性を有するものである。
The novel compound of the present invention is expected to be able to obtain a sensor chip that detects a specific compound by immobilizing it on an inorganic substance, and has industrial applicability.

Claims (8)

式(1)で表される化合物:
Figure 2021134155
(式中、nは5から20の整数であり、mは1から10の整数である。X及びYは独立に酸素、硫黄及びセレンからなる群から選ばれるカルコゲン原子を表し、Rは、SH、COOH、Si(OR、PO(OH)、SS−Rからなる群から選ばれる置換基を表し、Rは炭素数1〜5のアルキル基を表し、Rは有機基を表す。)。
Compound represented by formula (1):
Figure 2021134155
(In the formula, n is an integer from 5 to 20, m is an integer from 1 to 10. X and Y represent chalcogen atoms independently selected from the group consisting of oxygen, sulfur and selenium, and R is SH. , COOH, Si (OR 1 ) 3 , PO (OH) 2 , SS-R 2 represents a substituent selected from the group, R 1 represents an alkyl group having 1 to 5 carbon atoms, and R 2 represents an organic group. Represents.).
前記化合物は無機材料と相互作用し、自己組織化単分子膜を形成することができる、請求項1に記載の化合物。 The compound according to claim 1, wherein the compound can interact with an inorganic material to form a self-assembled monolayer. 式(2)で表される、請求項1に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。)。
The compound according to claim 1, which is represented by the formula (2):
Figure 2021134155
(In the equation, n is an independent integer from 5 to 20, and m is an independent integer from 1 to 10.).
式(3)で表される、請求項1に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。)。
The compound according to claim 1, which is represented by the formula (3):
Figure 2021134155
(In the equation, n is an independent integer from 5 to 20, and m is an independent integer from 1 to 10.).
式(4)で表される、請求項1に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。)。
The compound according to claim 1, which is represented by the formula (4):
Figure 2021134155
(In the equation, n is an independent integer from 5 to 20, and m is an independent integer from 1 to 10.).
式(5)で表される、請求項1に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。)。
The compound according to claim 1, which is represented by the formula (5):
Figure 2021134155
(In the equation, n is an independent integer from 5 to 20, and m is an independent integer from 1 to 10.).
式(6)表される、請求項1に記載の化合物:
Figure 2021134155
(式中、nは独立に5から20の整数であり、mは独立に1から10の整数である。Rは炭素数1〜5のアルキル基を表す。)。
The compound according to claim 1, which is represented by the formula (6):
Figure 2021134155
(In the formula, n is an independently integer of 5 to 20, m is an independent integer of 1 to 10. R 1 represents an alkyl group having 1 to 5 carbon atoms.)
無機物と、
前記無機物に固定化させた請求項1に記載の化合物と、
を含む、センサーチップ。
Inorganic and
The compound according to claim 1 immobilized on the inorganic substance, and
Including the sensor chip.
JP2020030080A 2020-02-26 2020-02-26 New compound and sensor chip using it Active JP7312403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030080A JP7312403B2 (en) 2020-02-26 2020-02-26 New compound and sensor chip using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030080A JP7312403B2 (en) 2020-02-26 2020-02-26 New compound and sensor chip using it

Publications (2)

Publication Number Publication Date
JP2021134155A true JP2021134155A (en) 2021-09-13
JP7312403B2 JP7312403B2 (en) 2023-07-21

Family

ID=77660181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030080A Active JP7312403B2 (en) 2020-02-26 2020-02-26 New compound and sensor chip using it

Country Status (1)

Country Link
JP (1) JP7312403B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526708A (en) * 2002-01-03 2005-09-08 ポステック ファンデーション Hydroxycucurbituril derivative, its production method and use
JP2007505046A (en) * 2003-09-12 2007-03-08 ニューサウス イノヴェイションズ プロプライエタリィ リミティッド Method for producing cucurbituril
JP2007532694A (en) * 2004-04-26 2007-11-15 ポステック・アカデミー‐インダストリー・ファウンデーション Method for producing glycoluril and cucurbituril using microwaves
JP2011518151A (en) * 2008-04-16 2011-06-23 ポステック アカデミー−インダストリー ファンデーション Cell component separation and purification method using non-covalent bond between cucurbituril derivative and guest compound, and apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526708A (en) * 2002-01-03 2005-09-08 ポステック ファンデーション Hydroxycucurbituril derivative, its production method and use
JP2007505046A (en) * 2003-09-12 2007-03-08 ニューサウス イノヴェイションズ プロプライエタリィ リミティッド Method for producing cucurbituril
JP2007532694A (en) * 2004-04-26 2007-11-15 ポステック・アカデミー‐インダストリー・ファウンデーション Method for producing glycoluril and cucurbituril using microwaves
JP2011518151A (en) * 2008-04-16 2011-06-23 ポステック アカデミー−インダストリー ファンデーション Cell component separation and purification method using non-covalent bond between cucurbituril derivative and guest compound, and apparatus using the same

Also Published As

Publication number Publication date
JP7312403B2 (en) 2023-07-21

Similar Documents

Publication Publication Date Title
US11867596B2 (en) Chemical sensors with non-covalent, electrostatic surface modification of graphene
Li et al. Self-assembling calix [4] arene [2] catenanes. Preorganization, conformation, selectivity, and efficiency
Dey et al. Oxyanion-encapsulated caged supramolecular frameworks of a tris (urea) receptor: evidence of hydroxide-and fluoride-ion-induced fixation of atmospheric CO2 as a trapped CO32–anion
Gryko et al. Synthesis of “Porphyrin-linker-Thiol” molecules with diverse linkers for studies of molecular-based information storage
Yang et al. Postclustering dynamic covalent modification for chirality control and chiral sensing
KR100400085B1 (en) Water- and organic-soluble cucurbituril derivatives, their preparation methods, their separation methods and uses
Yoshizawa et al. Cavity-directed synthesis of labile silanol oligomers within self-assembled coordination cages
US10654780B2 (en) Halogenated nanohoop compounds and methods of making and using the same
EP1423685A2 (en) Method and device for the detection of trace amounts of a substance, using a piezoelectric crystal element
Singh et al. Designing the recognition of Sn 2+ ions and antioxidants: N-heterocyclic organosilatranes and their magnetic nanocomposites
Moore et al. New crown annelated tetrathiafulvalenes: synthesis, electrochemistry, self-assembly of thiol derivatives, and metal cation recognition
Rucareanu et al. One-step template-directed synthesis of a macrocyclic tetraarylporphyrin hexamer based on supramolecular interactions with a C 3-symmetric tetraarylporphyrin trimer
Erbahar et al. Self-assembly of phthalocyanines on quartz crystal microbalances for QCM liquid sensing applications
Doll et al. Are the Physical Properties of Xe@ Cryptophane Complexes Easily Predictable? The Case of syn-and anti-Tris-aza-Cryptophanes
EP1798250A2 (en) Molecules suitable for binding to a metal layer for covalently immobilizing biomolecules
Wong et al. Ditopic redox-active polyferrocenyl zinc (II) dithiocarbamate macrocyclic receptors: synthesis, coordination and electrochemical recognition properties
Sliwa et al. Calixarene complexes with soft metal ions
CN110015982B (en) Electrondeficient-group-based benzothiadiazole Schiff base and design synthesis method thereof
JP2021134155A (en) Novel compound and sensor chip including the same
Mobian et al. A [2] catenane constructed around a rhodium (III) center used as a template
Yang et al. Rapid and specific enhanced luminescent switch of aniline gas by MOFs assembled from a planar binuclear cadmium (II) metalloligand
Hofmeier et al. Combined biotin-terpyridine systems: a new versatile bridge between biology, polymer science and metallo-supramolecular chemistry
KR19990022295A (en) Compound complex
US20200087315A1 (en) Tetraphenylporphyrin derivative
EP0396435B1 (en) Polyaza derivatives and their metal complexes for use in the fixation of oxygen

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230630

R150 Certificate of patent or registration of utility model

Ref document number: 7312403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150