JP2021133312A - Novel porous crosslinked polymer, and immobilizing catalyst and device including the same - Google Patents

Novel porous crosslinked polymer, and immobilizing catalyst and device including the same Download PDF

Info

Publication number
JP2021133312A
JP2021133312A JP2020031870A JP2020031870A JP2021133312A JP 2021133312 A JP2021133312 A JP 2021133312A JP 2020031870 A JP2020031870 A JP 2020031870A JP 2020031870 A JP2020031870 A JP 2020031870A JP 2021133312 A JP2021133312 A JP 2021133312A
Authority
JP
Japan
Prior art keywords
polymer
catalyst
structural unit
porous
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020031870A
Other languages
Japanese (ja)
Other versions
JP7231574B2 (en
Inventor
光 松本
Hikari Matsumoto
光 松本
佳子 三浦
Yoshiko Miura
佳子 三浦
友 星野
Yu Hoshino
友 星野
正也 澤村
Masaya Sawamura
正也 澤村
智弘 岩井
Tomohiro Iwai
智弘 岩井
真一 石川
Shinichi Ishikawa
真一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Hokkaido University NUC
Kyushu University NUC
Original Assignee
Tosoh Finechem Corp
Hokkaido University NUC
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp, Hokkaido University NUC, Kyushu University NUC filed Critical Tosoh Finechem Corp
Priority to JP2020031870A priority Critical patent/JP7231574B2/en
Publication of JP2021133312A publication Critical patent/JP2021133312A/en
Application granted granted Critical
Publication of JP7231574B2 publication Critical patent/JP7231574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an immobilizing catalyst, and a synthesis device and a reactor which can be used in continuous flow-type synthetic reaction.SOLUTION: Provided is a crosslinked polymer which has a phosphine ligand, the polymer having a porous structure. Also provided is a porous crosslinked polymer having a constitutional unit (a1, a2, a3) having a phosphine. Also provided are an immobilizing catalyst that contains a porous crosslinked polymer and uses an immobilizing phosphine ligand, and a continuous flow-type organic synthesis device utilizing the same.SELECTED DRAWING: None

Description

本発明は、多孔性高分子による触媒、およびそれを用いた連続流通式合成装置に関する。 The present invention relates to a catalyst using a porous polymer and a continuous flow type synthesizer using the catalyst.

近年、精密化成品の連続流通式合成が関心を集めている。連続流通式合成法は、温度制御の安定性や流通プロセスを通じた攪拌効果などによって、効率的な有機合成方法として注目を集めている。連続流通合成法においては、基質を流通させることで合成を制御することができ、製造量も流通量によって簡便に制御することができる。自動化、オンデマンド生産、および安全性においてバッチシステムに対して有利であり(例えば、非特許文献1)、自動化やオンデマンド生産はコンピューターサイエンスの発展に基づいて、新しい化学生産プロセスのシステムとして注目されている(例えば、非特許文献2)。 In recent years, continuous distribution type synthesis of precision chemical products has attracted attention. The continuous flow synthesis method is attracting attention as an efficient organic synthesis method due to the stability of temperature control and the stirring effect through the flow process. In the continuous distribution synthesis method, the synthesis can be controlled by distributing the substrate, and the production amount can be easily controlled by the distribution amount. Advantages for batch systems in automation, on-demand production, and safety (eg, Non-Patent Document 1), automation and on-demand production are attracting attention as systems for new chemical production processes based on the development of computer science. (For example, Non-Patent Document 2).

連続流通合成法は注目を集める一方で、バッチシステムでの精密化成品合成に重要な役割を果たす触媒を用いることができない。有機金属触媒は炭素―炭素結合生成を含む、多くの精密有機合成反応を媒介しており、薬剤をはじめとする精密化成品の合成方法に欠かせないものである。そのため、連続流通式合成法においても使用可能な固定化触媒の開発が望まれている。これまでに固定化触媒を用いた、精密化成品の合成は、シリカゲルなどの粒子型の固定化触媒が開発されてきている(例えば、非特許文献3)。また、粒子型固定化触媒を連続させたフロー合成による精密化成品の合成が報告されている(例えば、非特許文献4)。
連続流通式合成法においては、触媒活性を有すると同時に、反応溶媒が流通可能であることが求められる。粒子型の固定化触媒は、調製しやすく、スケールなども自在に変更可能であるため、しばしば用いられている。一方で、粒子を充填したカラム管は圧力損失が大きく、液体を流通させることが困難である。また、触媒の固定化も粒子状に形成されるデッドエンド構造部分に集中しやすいので、効果的に作用しにくいことが、これまでに報告されている。粒子型に対して、貫通孔を有する多孔材料を固定化触媒とすることで、低い圧力損失で、基質溶液を流通させ、連続式流通型リアクターとできることが報告されている(例えば、非特許文献5)。
While continuous distribution synthesis methods have attracted attention, they cannot use catalysts that play an important role in the synthesis of refined products in batch systems. Organometallic catalysts mediate many precision organic synthesis reactions, including carbon-carbon bond formation, and are indispensable for synthetic methods of precision chemicals such as chemicals. Therefore, it is desired to develop an immobilization catalyst that can be used even in the continuous flow synthesis method. So far, particle-type immobilization catalysts such as silica gel have been developed for the synthesis of precision products using immobilization catalysts (for example, Non-Patent Document 3). Further, the synthesis of a refined product by flow synthesis in which a particle-type immobilization catalyst is continuously used has been reported (for example, Non-Patent Document 4).
In the continuous flow type synthesis method, it is required that the reaction solvent can be circulated at the same time as having catalytic activity. Particle-type immobilization catalysts are often used because they are easy to prepare and the scale and the like can be freely changed. On the other hand, a column tube filled with particles has a large pressure loss, and it is difficult to circulate a liquid. Further, it has been reported so far that the immobilization of the catalyst tends to be concentrated on the dead end structure portion formed in the form of particles, so that it is difficult to act effectively. It has been reported that a porous material having through holes can be used as an immobilization catalyst for a particle type to allow a substrate solution to flow with a low pressure loss to form a continuous flow type reactor (for example, non-patent literature). 5).

連続流通合成法における固定化触媒では、連続的に溶媒を流通させることが求められる。有機合成においては、しばしば塩の生成を伴うため、高い空隙率と低い流通圧力損失が求められる。固定化触媒の素材としては、シリカ粒子、ポリマー粒子が多く報告されているが、連続流通反応においては高い圧力損失につながるため、必ずしも十分とは言えず、より高い空隙率を有する素材を固定化触媒として用いることが望ましい。 In the immobilized catalyst in the continuous flow synthesis method, it is required to continuously flow the solvent. Since organic synthesis often involves the formation of salts, high porosity and low flow pressure loss are required. Many silica particles and polymer particles have been reported as materials for the immobilization catalyst, but this is not always sufficient because it leads to high pressure loss in the continuous flow reaction, and a material having a higher void ratio is immobilized. It is desirable to use it as a catalyst.

高分子やシリカゲルなどを用いた多孔性材料は流通性が高いことが知られており、溶液の流通性が高く、表面積が大きいことが知られている(例えば、非特許文献6、非特許文献7、非特許文献8)。多孔性の材料は、流通式の合成装置に用いることが可能と考えられており、これまでに酵素を固定化した多孔性材料によるバイオリアクター(例えば、非特許文献9、非特許文献10)、Pdを固定化した多孔材料によるリアクターが報告されている(例えば、非特許文献11、非特許文献12)。 It is known that a porous material using a polymer or silica gel has high flowability, a high flowability of a solution, and a large surface area (for example, Non-Patent Document 6 and Non-Patent Document). 7. Non-patent document 8). It is considered that the porous material can be used in a distribution type synthesizer, and bioreactors using the porous material on which an enzyme is immobilized (for example, Non-Patent Document 9 and Non-Patent Document 10) have been used. Reactors made of a porous material on which Pd is immobilized have been reported (for example, Non-Patent Document 11 and Non-Patent Document 12).

有機金属触媒には種々のものがあり、金属と配位子の組み合わせよりなる様々な有機金属触媒が開発され、精密化成品の製造に用いられている。中でも、有機リン配位子は多くの有機金属触媒に用いることのできるもので、有用性が高い。トリアルキルホスフィンやトリフェニルホスフィンは高い触媒活性を有することで多くの触媒に用いられている(例えば、非特許文献13)。ホスフィン配位子を用いることで、金属との錯体形成によって高い触媒活性を発現させることができる。 There are various organometallic catalysts, and various organometallic catalysts made of combinations of metals and ligands have been developed and used in the production of refined products. Among them, organophosphorus ligands can be used in many organometallic catalysts and are highly useful. Trialkylphosphine and triphenylphosphine are used in many catalysts because they have high catalytic activity (for example, Non-Patent Document 13). By using a phosphine ligand, high catalytic activity can be exhibited by forming a complex with a metal.

ホスフィン配位子としては、フェニル系のホスフィン配位子の有用性は広く知られている。トリフェニルホスフィンの固定化触媒としては、シリカ粒子に固定化した触媒が多くの研究者によって検討されてきた(例えば、非特許文献14)。高分子にホスフィン配位子を結合させた材料についても報告が行われてきた(例えば、非特許文献15)。固定化触媒として、バッチで反応を用いた有機化学反応について、有用であることが知られている。シリカ粒子に固定化したホスフィン配位子、金属錯体を用いた連続式流通合成も報告されている(例えば、非特許文献16)。 As a phosphine ligand, the usefulness of a phenyl-based phosphine ligand is widely known. As a catalyst for immobilizing triphenylphosphine, a catalyst immobilized on silica particles has been studied by many researchers (for example, Non-Patent Document 14). A material in which a phosphine ligand is bound to a polymer has also been reported (for example, Non-Patent Document 15). As an immobilization catalyst, it is known to be useful for organic chemical reactions using reactions in batches. Continuous flow synthesis using a phosphine ligand immobilized on silica particles and a metal complex has also been reported (for example, Non-Patent Document 16).

これまでに、岩井、澤村らはトリス(4−ビニルフェニル)ホスフィンとスチレンの共重合体によって、塩化アリールのクロスカップリング反応を可能にする、活性の高い、高分子固定化ホスフィン配位子を開発している。このパラジウムをこの固定化触媒による触媒は塩化アリールを含む、多くの化合物の炭素―炭素結合形成クロスカップリングを触媒することが報告されている(例えば、非特許文献17)。また、高分子粒子に固定化したトリフェニルホスフィンを利用したフロー反応についても報告されている(例えば、非特許文献18)。 So far, Iwai, Sawamura et al. Have produced highly active, polymer-immobilized phosphine ligands that enable cross-coupling reactions of aryl chloride with a copolymer of tris (4-vinylphenyl) phosphine and styrene. We are developing. It has been reported that the catalyst of this immobilization catalyst for this palladium catalyzes the carbon-carbon bond formation cross-coupling of many compounds including aryl chloride (for example, Non-Patent Document 17). In addition, a flow reaction using triphenylphosphine immobilized on polymer particles has also been reported (for example, Non-Patent Document 18).

高分子化合物は、重合条件と成型条件によって、多種多様な材料形態が可能となる。これまでに、高分子に固定化したホスフィン配位子が報告されているが、連続流通反応に適した空隙率と強度を有する固定化触媒が報告されていない。連続流通反応に適した、高い空隙率、触媒活性を有する多孔性の固定化触媒の開発が必要と考えられる。一部の研究グループから、多孔性高分子のトリフェニルホスフィンについて報告がなされているが、クロスカップリングを含む有機化学反応については報告されていない(例えば、非特許文献19、非特許文献20)。 Polymer compounds can be in a wide variety of material forms depending on the polymerization conditions and molding conditions. So far, a phosphine ligand immobilized on a polymer has been reported, but an immobilized catalyst having a porosity and strength suitable for a continuous flow reaction has not been reported. It is considered necessary to develop a porous immobilized catalyst having a high porosity and catalytic activity suitable for a continuous flow reaction. Some research groups have reported on the porous polymer triphenylphosphine, but not on organic chemical reactions including cross-coupling (for example, Non-Patent Document 19 and Non-Patent Document 20). ..

Jun-ichi Yoshida, The Chemical Record, 2010, 10, 332-341.Jun-ichi Yoshida, The Chemical Record, 2010, 10, 332-341. Jaroslaw M. GrandaらNature, 2018, 559, 377-381.Jaroslaw M. Granda et al. Nature, 2018, 559, 377-381. Tetsu TsubogoらAngewante Chem Int. Ed. 2013, 52, 6590-6604.Tetsu Tsubogo et al. Angelwante Chem Int. Ed. 2013, 52, 6590-6604. Tetsu Tsubogoら Nature, 2015, 520, 329-332.Tetsu Tsubogo et al. Nature, 2015, 520, 329-332. Hikaru Matsumotoら ACS omega, 2017, 2, 8796-8802Hikaru Matsumoto et al. ACS omega, 2017, 2, 8796-8802 シリカゲル多孔材料 Hiroyashi Minakuchi らAnalytical Chemistry, 1996, 68, 3498-3501.Porous Silica Gel Material Hiroyashi Minakuchi et al. Analytical Chemistry, 1996, 68, 3498-3501. 高分子多孔材料 Thomas Rohrら、Macromolecules, 2003, 36, 1677-1684.Polymer Porous Materials Thomas Rohr et al., Macromolecules, 2003, 36, 1677-1684. Keisuke Okadaら Chemical Communications2011, 47, 7422-7424.Keisuke Okada et al. Chemical Communications 2011, 47, 7422-7424. シリカ多孔材料 Koei KawakamiらInt Eng. Chem. Res. 2005, 44, 236-240Porous Silica Material Koei Kawakami et al. Int Eng. Chem. Res. 2005, 44, 236-240 高分子多孔材料、Jana KrenkovaらAnalytical Chemistry,2009, 81, 2004-2012.Polymer Porous Materials, Jana Krenkova et al. Analytical Chemistry, 2009, 81, 2004-2012. シリカ多孔材料によるクロスカップリング反応 Grant Chaplain らAustralian Journal of Chemistry, 2012, 66, 208-212.Cross-coupling reaction with porous silica material Grant Chaplain et al. Australian Journal of Chemistry, 2012, 66, 208-212. 高分子多孔材料によるクロスカップリング反応 Roderick C. Jonesら Tetrahedron, 2009, 65, 7474-7481.Cross-coupling reaction with porous polymer materials Roderick C. Jones et al. Tetrahedron, 2009, 65, 7474-7481. Doonald H. Valentine Jr ら Synthesis, 2003, 3, 0317-0334.Doonald H. Valentine Jr et al. Synthesis, 2003, 3, 0317-0334. Wei ChenらTetrahedron, 2011, 67, 318-325.Wei Chen et al. Tetrahedron, 2011, 67, 318-325. Lin-Jing Zhaoら J. Comb Chem 2004, 6, 680-683.Lin-Jing Zhao et al. J. Comb Chem 2004, 6, 680-683. シリカ粒子:Juan de M. Munozら Adv. Synth. Catal. 2012, 35, 3456-3460。Tomohiro Iwaiら Chemistry A -J, 2014, 20, 1057-1065Silica particles: Juan de M. Munoz et al. Adv. Synth. Catal. 2012, 35, 3456-3460. Tomohiro Iwai et al. Chemistry A -J, 2014, 20, 1057-1065 Tomohiro Iwaiら Angewante Chem Int. Ed. 2013, 52, 12322-12326.Tomohiro Iwai et al. Angewante Chem Int. Ed. 2013, 52, 12322-12326. Tomohiro Ichitsukaら ChemCatChem, 2019, 11, 2427-2431Tomohiro Ichitsuka et al. ChemCatChem, 2019, 11, 2427-2431 トリフェニルホスフィン固定化多孔性高分子を用いた固定化触媒 アミノカルボニル化 Yizhu Leiら Transition metal Chemistry, 2016, 41, 1-7Triphenylphosphine Immobilization Catalysis using a porous polymer Aminocarbonylation Yizhu Lei et al. Transition metal Chemistry, 2016, 41, 1-7 トリフェニルホスフィン固定化多孔性高分子を用いた二酸化炭素変換反応;Zhenzhen Yangら ACS Catalyst 2016, 6, 1268-1273Carbon dioxide conversion reaction using triphenylphosphine-immobilized porous polymer; Zhenzhen Yang et al. ACS Catalyst 2016, 6, 1268-1273

ホスフィン配位子を高分子やシリカ粒子に固定化する試みはこれまでにも行われてきた。これらの固定化触媒は、金属と配位させることで、固定化金属触媒として調製される。しかしながら、これらの固定化触媒では連続流通反応に適した高い空隙率と強度のある、固定化触媒の開発は行われていなかった。 Attempts have been made to immobilize phosphine ligands on macromolecules and silica particles. These immobilized catalysts are prepared as immobilized metal catalysts by coordinating with a metal. However, with these immobilization catalysts, an immobilization catalyst having a high porosity and strength suitable for a continuous flow reaction has not been developed.

そこで、本発明は、連続流通反応に高い有用性を持つ、多孔性高分子固定化触媒の提供を目的とする。多孔性材料の合成手法としては、貧溶媒を重合系に加えて、相分離によって、多孔性材料を得る方法(ポリアクリルアミド:Shaofeng XieらJournal of Polymer Science, Part A polymer Chemistry, 1997, 35, 1013-1021) や熱誘起相分離法(Yuanrong Xinら Polymer, 2012, 53, 2847-2853)があるが、空隙率が十分とは言えなかった。 Therefore, an object of the present invention is to provide a porous polymer immobilization catalyst which is highly useful for continuous flow reactions. As a method for synthesizing a porous material, a poor solvent is added to a polymerization system and a porous material is obtained by phase separation (polyacrylamide: Shaofeng Xie et al. Journal of Polymer Science, Part A polymer Chemistry, 1997, 35, 1013). -1021) and the heat-induced phase separation method (Yuanrong Xin et al. Polymer, 2012, 53, 2847-2853), but the void ratio was not sufficient.

一方で水相と有機相を混合させてエマルジョンの状態で連結させることで、高い空隙率を持つ高分子を得ることが可能であることが報告されている(Andrea BarbettaらChemical Communications, 2000, 221-222。Neil R. Cameron, Polymer 2005, 46, 1439-1449.)。こうした高分子の合成方法は高内水相比エマルジョンと呼ばれており、多孔性高分子を得るのに有用であるが、固定化触媒としては一部に利用されているのみである。(校内水相比エマルジョンを用いたパラジウム固定化シリカ触媒 Nicolas BrunらNew Journal of Chemistry, 2013, 37, 157-168.) On the other hand, it has been reported that a polymer having a high porosity can be obtained by mixing an aqueous phase and an organic phase and linking them in an emulsion state (Andrea Barbetta et al., Chemical Communications, 2000, 221). -222. Neil R. Cameron, Polymer 2005, 46, 1439-1449.). Such a method for synthesizing a polymer is called a high internal aqueous phase ratio emulsion and is useful for obtaining a porous polymer, but it is only partially used as an immobilization catalyst. (Palladium-immobilized silica catalyst using in-school aqueous phase ratio emulsion Nicolas Brun et al. New Journal of Chemistry, 2013, 37, 157-168.)

本発明は以下の態様を含む。
[1] ランダムコポリマーが架橋した架橋性ポリマーであって、前記ランダムコポリマーはトリフェニルホスフィン配位子等のホスフィン配位子を含む構成単位(a1)、構成単位(a2)および架橋構成単位(a3)を有し、かつ多孔性である、ポリマー。殊に、構成単位(a2)は、フェニル基やアルキル基などの疎水性の側鎖官能基を含むスチレン、アクリル酸エステル、メタクリル酸エステル、アクリルアミド誘導体からなる構成単位からなるポリマーに係る。
[2] 前記構成単位が水と有機溶媒の混合条件下で重合されており、空隙率が60%以上である、上記のポリマー。すなわち、上記の構成単位(a1)、構成単位(a2)および架橋構成単位(a3)を有し、水と有機溶媒の混合によるエマルジョン条件下によって重合されており、空隙率が60%以上、かつ多孔性である架橋ポリマーに係る。本発明の架橋ポリマーは水と有機溶媒の混合によるエマルジョン条件下によって重合されている状態であって、空隙率が60%以上、かつ多孔性である特性を有するが、精緻な物性値で記載することよりも重合の条件により記載することが実際的である。
[3] 前記構成単位(a1)に金属を配位した、上記のポリマー。
[4] [3]に記載のホスフィン配位子を含む構成単位(a1)を有するポリマーに金属を配位した、固定化触媒。
[5] [4]に記載の固定化触媒を含む反応器を備える、連続流通式装置。
[6] [4]に記載の固定化触媒を含む反応器を備える、有機合成装置。
The present invention includes the following aspects.
[1] A crosslinkable polymer in which a random copolymer is crosslinked, wherein the random copolymer contains a phosphine ligand such as a triphenylphosphine ligand (a1), a structural unit (a2) and a crosslinked structural unit (a3). ) And is porous. In particular, the structural unit (a2) relates to a polymer composed of a structural unit composed of styrene, acrylic acid ester, methacrylic acid ester, and acrylamide derivative containing a hydrophobic side chain functional group such as a phenyl group or an alkyl group.
[2] The above-mentioned polymer in which the structural unit is polymerized under mixed conditions of water and an organic solvent and the porosity is 60% or more. That is, it has the above-mentioned structural unit (a1), structural unit (a2) and crosslinked structural unit (a3), is polymerized under emulsion conditions by mixing water and an organic solvent, has a porosity of 60% or more, and has a porosity of 60% or more. It relates to a crosslinked polymer which is porous. The crosslinked polymer of the present invention is in a state of being polymerized under emulsion conditions by mixing water and an organic solvent, has a porosity of 60% or more, and has a porosity property, but is described by a precise physical property value. It is more practical to describe according to the conditions of polymerization.
[3] The above-mentioned polymer in which a metal is coordinated to the structural unit (a1).
[4] An immobilized catalyst in which a metal is coordinated to a polymer having a structural unit (a1) containing the phosphine ligand according to [3].
[5] A continuous flow apparatus comprising a reactor comprising the immobilization catalyst according to [4].
[6] An organic synthesizer comprising a reactor comprising the immobilization catalyst according to [4].

本発明によれば、水、有機溶媒およびその混合溶媒を用いた連続流通式装置あるいは有機合成装置に適用可能なホスフィン配位子を有する高分子固定化触媒が提供される。
本発明のポリマーは高い空隙率を有することから、これを有する固定化触媒は連続流通反応あるいは有機合成反応に有用である。
本発明の固定化触媒を含む反応器を備える装置は各種有機合成反応への適用が可能で、産業上有用である。
According to the present invention, there is provided a polymer immobilization catalyst having a phosphine ligand applicable to a continuous flow apparatus or an organic synthesis apparatus using water, an organic solvent and a mixed solvent thereof.
Since the polymer of the present invention has a high porosity, an immobilization catalyst having this is useful for a continuous flow reaction or an organic synthesis reaction.
The apparatus including the reactor including the immobilization catalyst of the present invention can be applied to various organic synthesis reactions and is industrially useful.

トリフェニルホスフィン構造を含む多孔性高分子の走査型電子顕微鏡の写真であり、図中のバー(黒色)は10μmの長さを示す。It is a photograph of a scanning electron microscope of a porous polymer containing a triphenylphosphine structure, and a bar (black) in the figure indicates a length of 10 μm. トリフェニルホスフィン構造を含む多孔性高分子の水銀圧入試験の結果であり、横軸(X軸)は細孔径(単位はm)、縦軸(Y軸)は対数微分細孔容積(logarithmic differential pore volume)(単位はcm/g)を示す。This is the result of a mercury intrusion test of a porous polymer containing a triphenylphosphine structure. The horizontal axis (X axis) is the pore diameter (unit is m), and the vertical axis (Y axis) is the logarithmic differential pore. volume) (unit is cm 3 / g). トリフェニルホスフィン構造を含む多孔性高分子の31P−NMRの結果であり、横軸(X軸)は化学シフト(単位はppm)を示す。 It is the result of 31 P-NMR of a porous polymer containing a triphenylphosphine structure, and the horizontal axis (X axis) indicates a chemical shift (unit: ppm). トリフェニルホスフィン構造を含む多孔性高分子のTHFの透過試験の結果であり、横軸(X軸)はQ(単位はmL/h)、縦軸(Y軸)は対数微分細孔容積(logarithmic differential pore volume)(単位はkPa)を示す。It is the result of the permeation test of THF of a porous polymer containing a triphenylphosphine structure. The horizontal axis (X axis) is Q (unit is mL / h), and the vertical axis (Y axis) is logarithmic volume (logarithmic). differential pore volume) (unit is kPa) is shown. パラジウムを固定化した多孔性高分子触媒の透過型電子顕微鏡像であり、図中のバー(白色)は10μmの長さを示す。It is a transmission electron microscope image of a porous polymer catalyst on which palladium is immobilized, and the bar (white) in the figure indicates a length of 10 μm. パラジウムを固定化した多孔性高分子触媒の31P−NMRの結果であり、横軸(X軸)は化学シフト(単位はppm)を示す。 It is the result of 31 P-NMR of a porous polymer catalyst on which palladium is immobilized, and the horizontal axis (X axis) indicates a chemical shift (unit: ppm). パラジウムを固定化した多孔性高分子触媒を用いたクロスカップリングの連続流通合成の結果であり、Lは管の長さを表す。図中、横軸(X軸)はτ(単位はh)、縦軸(Y軸)は、上図は反応器中のu(u in reactor)(単位はcm/h)、下図は収率(Yield)(単位は%)を示す。It is the result of continuous flow synthesis of cross-coupling using a porous polymer catalyst on which palladium is immobilized, and L represents the length of the tube. In the figure, the horizontal axis (X axis) is τ (unit is h), the vertical axis (Y axis) is u (u in reactor) in the reactor (unit is cm / h), and the lower figure is the yield. (Yield) (unit is%) is shown. パラジウムを固定化した多孔性高分子触媒を用いたクロスカップリングの連続流通合成終了後の透過型顕微鏡像であり、図中のバー(白色)は10μmの長さを示し、黒点はパラジウムを表す。It is a transmission type microscope image after the completion of continuous flow synthesis of cross-coupling using a porous polymer catalyst on which palladium is immobilized. The bar (white) in the figure indicates a length of 10 μm, and the black dot indicates palladium. .. 本発明の固定化触媒を含む反応器を備える連続流通式装置もしくは有機合成装置の一例である。This is an example of a continuous flow device or an organic synthesis device including a reactor including the immobilized catalyst of the present invention.

「構成単位」とは、ポリマーを構成するモノマー単位(単量体単位)を意味する。
「置換基を有してもよい」と記載する場合、水素原子(−H)を1価の基で置換する場合と、メチレン基(−CH−)を2価の基で置換する場合との両方を含む。
「芳香族炭化水素基」は、芳香環を少なくとも1つ有する炭化水素基を意味する。芳香環は、4n+2個のπ電子をもつ環状共役系であれば特に限定されず、単環式でもよいし、多環式でもよい。芳香環は、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;及び前記芳香族炭化水素環を構成する炭素原子の一部がヘテロ原子(酸素原子、硫黄原子、窒素原子等)で置換された芳香族複素環を包含する。
「アルキル基」は、特に断りがない限り、直鎖状、分岐鎖状及び環状の1価の飽和炭化水素基を包含する。アルコキシ基中のアルキル基も同様である。
"Constituent unit" means a monomer unit (monomer unit) constituting a polymer.
When "may have a substituent" is described, a hydrogen atom (-H) is replaced with a monovalent group, and a methylene group (-CH 2- ) is replaced with a divalent group. Including both.
"Aromatic hydrocarbon group" means a hydrocarbon group having at least one aromatic ring. The aromatic ring is not particularly limited as long as it is a cyclic conjugated system having 4n + 2 π electrons, and may be a monocyclic type or a polycyclic type. The aromatic ring is an aromatic hydrocarbon ring such as benzene, naphthalene, anthracene, phenanthrene; and a part of carbon atoms constituting the aromatic hydrocarbon ring is replaced with a hetero atom (oxygen atom, sulfur atom, nitrogen atom, etc.). Includes the aromatic heterocycles that have been used.
The "alkyl group" includes linear, branched and cyclic monovalent saturated hydrocarbon groups unless otherwise specified. The same applies to the alkyl group in the alkoxy group.

「スチレン誘導体からなる構成単位」とは、スチレン誘導体の二重結合が開裂して構成される構成単位を意味し、スチレンの芳香族環の水素原子を置換し他化合物からなる構成単位も含む。 The “constituent unit composed of a styrene derivative” means a structural unit formed by cleaving a double bond of a styrene derivative, and also includes a structural unit composed of another compound by substituting a hydrogen atom in the aromatic ring of styrene.

「アクリル酸エステルから誘導される構成単位」とは、アクリル酸エステルのエチレン性二重結合が開裂して構成される構成単位を意味する。「アクリル酸エステル」は、アクリル酸(CH=CH−COOH)のカルボキシ基末端の水素原子が有機基で置換された化合物である。 The “constituent unit derived from the acrylic acid ester” means a structural unit formed by cleaving the ethylenic double bond of the acrylic acid ester. The "acrylic acid ester" is a compound in which the hydrogen atom at the terminal of the carboxy group of acrylic acid (CH 2 = CH-COOH) is replaced with an organic group.

「メタクリル酸エステルから誘導される構成単位」とは、メタクリル酸エステルのエチレン性二重結合が開裂して構成される構成単位を意味する。「メタクリル酸エステル」はメタクリル酸(CH=C(CH3)−COOH)のカルボキシ基末端の水素原子が有機基で置換された化合物である。 The “constituent unit derived from the methacrylic acid ester” means a structural unit formed by cleaving the ethylenic double bond of the methacrylic acid ester. The "methacrylic acid ester" is a compound in which the hydrogen atom at the terminal of the carboxy group of methacrylic acid (CH 2 = C (CH 3) -COOH) is replaced with an organic group.

「アクリルアミド誘導体から誘導される構成単位」とは、アクリルアミド誘導体のエチレン性二重結合が開裂して構成される構成単位を意味する。「アクリルアミド誘導体」は、アクリルアミド(CH=CH−NH)のアミノ基の水素原子の一方又は両方が有機基で置換された化合物である。 The “constituent unit derived from an acrylamide derivative” means a structural unit formed by cleaving the ethylenic double bond of the acrylamide derivative. An "acrylamide derivative" is a compound in which one or both hydrogen atoms of the amino group of acrylamide (CH 2 = CH-NH 2) are substituted with an organic group.

「連続流通式リアクター」とは、液体を送液する環状管を反応装置とした、有機合成デバイスのことである。 A "continuous flow reactor" is an organic synthesis device using an annular tube for sending a liquid as a reaction device.

「架橋性ポリマー」とは、少なくとも2つ以上の置換基、官能基等が結合可能な部位を有した構成単位を用いた事に得られるポリマーのことである。 The "crosslinkable polymer" is a polymer obtained by using a structural unit having a site to which at least two or more substituents, functional groups and the like can be bonded.

「ランダムコポリマー」とは、本発明の構成単位(a1、a2及びa3)が各々不規則に配列されたポリマーのことである。ランダムコポリマーは、ブロックコポリマーとは異なり、ブロック毎に重合反応を行う必要がないため、製造時間及び製造コストを抑制することができる。 A "random copolymer" is a polymer in which the structural units (a1, a2, and a3) of the present invention are arranged irregularly. Unlike block copolymers, random copolymers do not need to carry out a polymerization reaction for each block, so that production time and production cost can be suppressed.

「エマルジョン条件下の重合」
本実施形態の架橋ポリマーは水と有機溶媒を混合した系で、それらが油層と水層に分かれた上で細かく分散したエマルジョンの条件下で重合する(Andrea BarbettaらChemical Communications, 2000, 221-222)。ポリマーの構成単位は有機溶媒層に溶解して重合するため、水が存在した部分が空隙となり、60%以上の空隙率を有するポリマーになる。
"Polymerization under emulsion conditions"
The crosslinked polymer of the present embodiment is a system in which water and an organic solvent are mixed, and they are polymerized under the condition of an emulsion in which they are separated into an oil layer and an aqueous layer and then finely dispersed (Andrea Barbetta et al., Chemical Communications, 2000, 221-222). ). Since the constituent unit of the polymer is dissolved in the organic solvent layer and polymerized, the portion where water exists becomes a void, and the polymer has a porosity of 60% or more.

まず、本発明の構成要件a1、a2またはa3について詳細に説明する。
(構成単位(a1))
本発明の構成要件a1は、アルキルもしくはアリールホスフィン骨格、さらに少なくとも1つ以上の置換基、官能基等が結合可能な部位を有した構造式のことであり、具体的には下記一般式で表される構造式である。
First, the constituent requirements a1, a2, or a3 of the present invention will be described in detail.
(Structural unit (a1))
The constituent requirement a1 of the present invention is a structural formula having an alkyl or arylphosphine skeleton, and a site to which at least one or more substituents, functional groups, etc. can be bonded. It is a structural formula to be used.

Figure 2021133312
(式中、R,RおよびRはそれぞれ同一または異なってよく、置換基を有してもよい炭素数5以上の環状アルキル基、もしくは置換基を有してもよい炭素数6以上のアリール基を表す。lおよびmは、0もしくは1の整数を表す。*は置換基、官能基等が結合可能な部位を示す。)
Figure 2021133312
(In the formula, R 1 , R 2 and R 3 may be the same or different from each other, and may have a substituent and may have a cyclic alkyl group having 5 or more carbon atoms, or may have a substituent and may have 6 or more carbon atoms. L and m represent an integer of 0 or 1. * Indicates a site to which a substituent, a functional group, etc. can be bonded.)

炭素数5以上のアルキル基の具体例としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプペンチル基、シクロオクチル基を挙げることができる。炭素数6以上のアリール基の具体例としては、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環を表し、炭素原子の一部がヘテロ原子(酸素原子、硫黄原子、窒素原子等)で置換してもよい。尚、これらの炭素数5以上の環状アルキル基、もしくは炭素数6以上のアリール基の水素原子を、任意の置換基に置き換えてもよい。 Specific examples of the alkyl group having 5 or more carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheppentyl group, and a cyclooctyl group. Specific examples of aryl groups having 6 or more carbon atoms represent aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, and phenanthrene, and some of the carbon atoms are heteroatoms (oxygen atom, sulfur atom, nitrogen atom, etc.). It may be replaced. The hydrogen atom of the cyclic alkyl group having 5 or more carbon atoms or the aryl group having 6 or more carbon atoms may be replaced with an arbitrary substituent.

また、一般式a1における置換基、官能基等が結合可能な部位として特段の限定は無いが、任意の他の構成単位との結合のため、例えば当該部位に予めビニル基等で置換された原料を用いることができる。その際の原料の具体的な例としては、例えば、下記一般式a1−1、a1−2およびa1−3を挙げることができる。

Figure 2021133312
Figure 2021133312
Figure 2021133312
Further, the site to which the substituent, functional group, etc. in the general formula a1 can be bonded is not particularly limited, but for bonding with any other structural unit, for example, a raw material in which the site is previously substituted with a vinyl group or the like. Can be used. Specific examples of the raw materials at that time include, for example, the following general formulas a1-1, a1-2 and a1-3.
Figure 2021133312
Figure 2021133312
Figure 2021133312

本発明における構成単位(a1)は、上記した中の1種でもよく、2種以上でもよい。本実施形態における構成単位(a1)の割合は、全ポリマーを構成する合計(100モル%)に対して、1モル%以上が好ましく、1.5モル%以上が特に好ましい。 The structural unit (a1) in the present invention may be one type or two or more types among the above. The ratio of the structural unit (a1) in the present embodiment is preferably 1 mol% or more, particularly preferably 1.5 mol% or more, based on the total (100 mol%) constituting all the polymers.

(他の構成単位 a2)
ランダムコポリマーは、上記構成単位(a1)に加えて少なくとも1種の他の構成単位を有し、少なくとも2種の構成単位を有する。他の構成単位としては、スチレン、アルキル化スチレン、炭素数1−10のアルキル側鎖を含むアクリル酸エステル、メタクリル酸エステル、アクリルアミド誘導体などが挙げられる。
(Other structural units a2)
The random copolymer has at least one other structural unit in addition to the above-mentioned structural unit (a1), and has at least two structural units. Examples of other constituent units include styrene, alkylated styrene, acrylic acid ester containing an alkyl side chain having 1-10 carbon atoms, methacrylic acid ester, and an acrylamide derivative.

構成単位(a2)の好ましい例としては、以下に示す、(a2−1)、(a2−2)、(a2−3)で表される構成単位が挙げられる。これらの内でも有機溶媒に可溶で水への溶解性が低いことが望ましいことから、特に(a2−1)が好ましい。 Preferred examples of the structural unit (a2) include the structural units represented by (a2-1), (a2-2), and (a2-3) shown below. Of these, (a2-1) is particularly preferable because it is desirable that it is soluble in an organic solvent and has low solubility in water.

Figure 2021133312
Figure 2021133312

Figure 2021133312
Figure 2021133312

Figure 2021133312
(上記式a2−3中、R1は水素または炭素鎖1から5のアルキル基、R2は炭素鎖1から10のアルキル基を示す。)
Figure 2021133312
(In the above formula a2-3, R1 represents hydrogen or an alkyl group of carbon chains 1 to 5, and R2 represents an alkyl group of carbon chains 1 to 10.)

構成単位(a2)は、1種でもよく、2種以上でもよい。本実施形態における構成単位(a2)の高分子に対する割合は全ランダムコポリマーを構成する全構成単位の合計(100モル%)に対して、20モル%以上が好ましく、30モル%以上が特に好ましい。 The structural unit (a2) may be one type or two or more types. The ratio of the structural unit (a2) to the polymer in the present embodiment is preferably 20 mol% or more, particularly preferably 30 mol% or more, based on the total (100 mol%) of all the structural units constituting the total random copolymer.

(他の構成単位 a3)
ランダム コポリマーは(a1)および(a2)に加えて、高分子を架橋する構成単位(以下、架橋構成単位(a3)とする)として、以下に示す(a3−1)、(a3−2)、(a3−3)が挙げられる。これらの内でも有機溶媒に可溶で水への溶解性が低いことが望ましいことから、特に以下に示す(a3−1)が好ましい。
(Other structural units a3)
In addition to (a1) and (a2), the random copolymer has the following (a3-1), (a3-2), as a structural unit for cross-linking a polymer (hereinafter referred to as a cross-linking structural unit (a3)). (A3-3) can be mentioned. Among these, it is desirable that the substance is soluble in an organic solvent and has low solubility in water, and therefore (a3-1) shown below is particularly preferable.

Figure 2021133312
Figure 2021133312

Figure 2021133312
Figure 2021133312

Figure 2021133312
Figure 2021133312

架橋ポリマーを含むランダムコポリマーは、(a1)、(a2)および(a3)の構成単位をそれぞれ含み、(a1)、(a2)および(a3)はいくつかの構成単位を含んでもよい。 The random copolymer containing the crosslinked polymer contains the structural units of (a1), (a2) and (a3), respectively, and (a1), (a2) and (a3) may contain several structural units.

「架橋性ポリマーの製造方法」
架橋性ポリマーは水と有機溶媒と界面活性剤を混合したエマルジョン状態によって重合する。ランダムコポリマーの各構成単位を誘導する重合性のホスフィン、モノマー、架橋剤を含む、重合性モノマー混合体を、重合開始剤の存在下で、ラジカル重合することにより製造することができる。
"Method for producing crosslinkable polymer"
The crosslinkable polymer is polymerized in an emulsion state in which water, an organic solvent and a surfactant are mixed. A polymerizable monomer mixture containing a polymerizable phosphine, a monomer, and a cross-linking agent for inducing each structural unit of the random copolymer can be produced by radical polymerization in the presence of a polymerization initiator.

本実施形態の架橋ポリマーは60%以上の空隙率と大きな孔径(1μm−100μm)を有する高分子であり、自立した構造体を形成する。さらに空隙率については74%以上、特に74%−99%の空隙率を持つことが望ましい。
ここで、架橋ポリマーの空隙率は、アルキメデス法、ピクノメーター、吸水率測定、通気率測定など公知の任意の方法で測定することができる。また架橋ポリマーの孔径は、ガス吸着法、ガス透過法、ガス拡散法、水銀圧入法、X線小角散乱法など公知の任意の方法で測定することができる。
The crosslinked polymer of the present embodiment is a polymer having a porosity of 60% or more and a large pore size (1 μm-100 μm), and forms a self-supporting structure. Further, it is desirable that the porosity is 74% or more, particularly 74% -99%.
Here, the porosity of the crosslinked polymer can be measured by any known method such as Archimedes method, pycnometer, water absorption rate measurement, and air permeability measurement. The pore size of the crosslinked polymer can be measured by any known method such as a gas adsorption method, a gas permeation method, a gas diffusion method, a mercury intrusion method, and a small-angle X-ray scattering method.

重合開始剤は、ラジカル共重合に一般的に用いられるものを用いればよく、ペルオキソ二硫酸カリウム(K(Potassium persulfate))、AIBN(2, 2’-Azobis(isobutyronitrile))、V−501(4,4’−Azobis(4−cyanovaleric acid))AAPD(2,2’−Azobis(2−methylpropionamidine)Dihydrochloride)等が挙げられる。 The polymerization initiator may be used those commonly used in the radical copolymerization, potassium peroxodisulfate (K 2 S 2 O 8 ( Potassium persulfate)), AIBN (2, 2'-Azobis (isobutyronitrile)), Examples thereof include V-501 (4,4'-Azobis (4-cyanovalic acid)) and AAPD (2,2'-Azobis (2-methyl-propionamide) Dihydrochlide).

ラジカル重合の反応溶媒としては、クロロベンゼンやベンゼンといった水と混和しない有機溶媒と界面活性剤を含有する水性媒体を用いることができる。 As the reaction solvent for radical polymerization, an aqueous medium containing an organic solvent immiscible with water such as chlorobenzene or benzene and a surfactant can be used.

界面活性剤としては、例えば、Span80、ドデシル硫酸ナトリウム(SDS)、又はヘキサデシルトリメチルアンモニウムブロミド(CTAB)等が利用可能である。 As the surfactant, for example, Span80, sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide (CTAB) and the like can be used.

「金属触媒の調製方法」
ホスフィン配位子固定化高分子に対して、金属を加えて錯体を調製する。加える金属としては、パラジウム、ロジウム、イリジウム、ニッケルなどが挙げられる。特に、パラジウムのPdCl(PhCN)を加えて調製した固定化触媒が好ましい。
"Method of preparing metal catalyst"
A metal is added to the phosphine ligand-immobilized polymer to prepare a complex. Examples of the metal to be added include palladium, rhodium, iridium, nickel and the like. In particular, an immobilization catalyst prepared by adding PdCl 2 (PhCN) 2 of palladium is preferable.

「連続流通式合成装置」
1実施形態において、本発明は、金属触媒を固定化した多孔性ポリマーによる固定化触媒と連続流通式リアクターを提供する。
"Continuous distribution type synthesizer"
In one embodiment, the present invention provides an immobilized catalyst made of a porous polymer on which a metal catalyst is immobilized and a continuous flow reactor.

連続流通式リアクターは基質と溶媒を流通させる管を使って化学合成を行う装置である。本実施形態においては、前記の多孔性架橋ポリマーを用いた金属固定化触媒を用いた化学反応を行う装置として利用可能である。特にパラジウムを固定化した金属触媒が好ましいが他の金属による触媒でも可能である。 A continuous flow reactor is a device that performs chemical synthesis using a tube that circulates a substrate and a solvent. In the present embodiment, it can be used as an apparatus for performing a chemical reaction using a metal immobilization catalyst using the above-mentioned porous crosslinked polymer. In particular, a metal catalyst on which palladium is immobilized is preferable, but catalysts made of other metals are also possible.

固定化ホスフィンによる金属触媒を用いた化学反応は、鈴木カップリング反応やヘック反応などの多くの化学反応への適用が可能である。特に鈴木カップリングによる炭素ー炭素結合生成反応が適している。例えば、1−chloro−4−methylbenzeneとphenyl boronicacidによる鈴木カップリング反応に適用することができる。 The metal-catalyzed chemical reaction with immobilized phosphine can be applied to many chemical reactions such as Suzuki coupling reaction and Heck reaction. In particular, the carbon-carbon bond formation reaction by Suzuki coupling is suitable. For example, it can be applied to the Suzuki coupling reaction by 1-chloro-4-methylbene and phenylboronic acid.

溶媒には、THF、トルエンなどの有機溶媒と水、およびその混合溶媒を使用することができる。これらの溶媒にはKOH、KF、KCO,KPOなどの塩基性塩を含んでいることが好ましい。 As the solvent, an organic solvent such as THF or toluene, water, or a mixed solvent thereof can be used. These solvents preferably contain basic salts such as KOH, KF, K 2 CO 3 , and K 3 PO 4.

連続式流通リアクターに対して基質の溶液を注入して、多孔性固体触媒の層を通過させることで、生成物を得る。固体触媒の層のパラジウムは漏出しないことが望ましい。リアクター層に注入する、基質の量によって生成物の量が決定される。 The product is obtained by injecting a solution of the substrate into a continuous flow reactor and passing it through a layer of a porous solid catalyst. It is desirable that the palladium in the solid catalyst layer does not leak. The amount of substrate injected into the reactor layer determines the amount of product.

本実施形態では、多孔性高分子固定化触媒を管内に固定化させて、基質、塩基性化合物、溶媒を注入して行う。例えば1モルのパラジウムに対して、基質である1−メチル−4−クロロトルエンが100モル〜3000モルの量、すなわち触媒回転数として100回〜3000回を流通させることが挙げられる。 In the present embodiment, the porous polymer immobilization catalyst is immobilized in a tube, and a substrate, a basic compound, and a solvent are injected. For example, the substrate 1-methyl-4-chlorotoluene may be circulated in an amount of 100 mol to 3000 mol, that is, 100 to 3000 times as the catalyst rotation speed with respect to 1 mol of palladium.

本発明の固定化触媒を含む反応器を備える、連続流通式装置もしくは有機合成装置の一例として、図9に示す。
図9に示すように、本発明の一実施形態である連続流通式装置もしくは有機合成装置1は、注入用シリンジ2,3より、ホスフィン配位子、反応基質、溶媒等を送液し、T字流路6において合流させる。その後、反応器(カラム)4に入った後、反応器4に備える固定化触媒層(カラム内)5と接触し、反応が進行する。
例えば、注入用シリンジ2,3より送液するのは、一方のシリンジに例えば[PdCl(PhCN)]、基質(THFなどに溶解)などを送液する有機層側と、KPO(水に溶解)などを送液する水層側とを、T字流路6において合流させ、その後、固定化触媒層5を備えた反応器4に送液され、反応器(カラム)4内において有機反応が進行する。その後、図7では反応器4の下方より反応生成物が送液されて出てくることになる。なお、図7では反応器4の下方より反応生成物が送液されるが、反応器4下方より基質等を送液し、反応器4の上方より反応生成物が送液される形態をとることもできる。
FIG. 9 shows an example of a continuous flow apparatus or an organic synthesis apparatus including a reactor containing the immobilized catalyst of the present invention.
As shown in FIG. 9, in the continuous flow device or the organic synthesis device 1 according to the embodiment of the present invention, the phosphine ligand, the reaction substrate, the solvent, etc. are sent from the injection syringes 2 and 3, and T. It merges in the character flow path 6. Then, after entering the reactor (column) 4, it comes into contact with the immobilized catalyst layer (inside the column) 5 provided in the reactor 4, and the reaction proceeds.
For example, liquids are sent from the injection syringes 2 and 3 to the organic layer side to which, for example, [PdCl 2 (PhCN) 2 ], a substrate (dissolved in THF, etc.), etc. are sent to one of the syringes, and K 3 PO 4. The aqueous layer side to which the liquid (dissolved in water) is sent is merged in the T-shaped flow path 6, and then the liquid is sent to the reactor 4 provided with the immobilized catalyst layer 5 and inside the reactor (column) 4. The organic reaction proceeds in. After that, in FIG. 7, the reaction product is sent out from below the reactor 4. In FIG. 7, the reaction product is fed from below the reactor 4, but the substrate or the like is fed from below the reactor 4, and the reaction product is fed from above the reactor 4. You can also do it.

[他の態様]
一実施形態において、本発明は、前記実施形態の多孔性固体触媒をクロスカップリングに用いることを含む連続流通式リアクターに適用する触媒を提供する。
一実施形態において、本発明は、多孔性固定化触媒を、ホスフィン配位子を用いた金属触媒を用いる連続式流通リアクターに適用する触媒を提供する。
[Other aspects]
In one embodiment, the present invention provides a catalyst that is applied to a continuous flow reactor that comprises using the porous solid catalyst of the embodiment for cross-coupling.
In one embodiment, the present invention provides a catalyst that applies a porous immobilization catalyst to a continuous flow reactor that uses a metal catalyst with a phosphine ligand.

以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
なお以下の実施例で得られた架橋ポリマーの空隙率及び孔径は、水銀圧入法により測定した。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to the following Examples.
The porosity and pore size of the crosslinked polymer obtained in the following examples were measured by the mercury intrusion method.

実施例1
<Tris(4−vinylphenyl)phosphineの合成>

Figure 2021133312
Mg片(99.5%以上、和光純薬社製、2.40g, 100mmol, 4eq)およびマグネチックスターラを300-mL丸底フラスコに入れた。窒素雰囲気下で脱水テトラヒドロフラン(THF)(純度99.5%以上、関東化学社製)(80 mL)を添加したのち、室温および撹拌下で4-Bromostyrene(純度95%、東京化成社製)(14.64 g, 80 mmol, 3.2eq)を1 hかけ滴下した。 次に、氷-水浴中および撹拌下でPCl(東京化成社製、使用前に蒸留精製したもの)(3.43g, 25mmol, 1eq)を30 minかけ滴下し、さらに室温下で4h反応させた。aq. NHCl(純度99.5%以上 東京化成社製)を用いて停止後、混合物をEtO(で抽出した。有機相をMgSO4で乾燥後、ろ別し、残留溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィ(EtOAc/hexane 97:3)で精製し、白色粉末を得た(収量4.82g, 57%収率)。 Example 1
<Synthesis of Tris (4-vinylphenyl) phosphine>
Figure 2021133312
Mg pieces (99.5% or more, manufactured by Wako Pure Chemical Industries, Ltd., 2.40 g, 100 mmol, 4eq) and magnetic stirrer were placed in a 300-mL round bottom flask. After adding dehydrated tetrahydrofuran (THF) (purity 99.5% or more, manufactured by Kanto Chemical Co., Inc.) (80 mL) in a nitrogen atmosphere, 4-Bromostyrene (purity 95%, manufactured by Tokyo Kasei Co., Ltd.) (14.64 g) at room temperature and under stirring. , 80 mmol, 3.2 eq) was added dropwise over 1 h. Next, PCl 3 (manufactured by Tokyo Kasei Co., Ltd., distilled and purified before use) (3.43 g, 25 mmol, 1eq) was added dropwise over 30 min in an ice-water bath and under stirring, and further reacted at room temperature for 4 hours. .. aq. After stopping with NH 4 Cl (purity 99.5% or more manufactured by Tokyo Kasei Co., Ltd.), the mixture was extracted with Et 2 O (. The organic phase was dried with DDL 4 , filtered off, and the residual solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (EtOAc / n hexane 97: 3) to give a white powder (yield 4.82 g, 57% yield).

これを分析し、以下の結果を得た。
1H NMR (CDCl3): δ 5.27 (d, J = 11.0 Hz, 3H), 5.77 (d, J = 17.4 Hz, 3H), 6.70 (dd, J = 17.4, 11.0 Hz, 3H), 7.23-7.38 (m, 12H).
13C NMR (CDCl3): δ 114.85 (3C), 126.44 (d, JC-P= 7.1 HZ, 6C), 134.00 (d, JC-P= 19.2 Hz, 6C), 136.45 (3C), 136.72 (d, JC-P= 10.1 Hz, 3C), 138.07 (3C).
31P NMR (CDCl3): δ−6.21.
This was analyzed and the following results were obtained.
1 1 H NMR (CDCl 3 ): δ 5.27 (d, J = 11.0 Hz, 3H), 5.77 (d, J = 17.4 Hz, 3H), 6.70 (dd, J = 17.4, 11.0 Hz, 3H), 7.23-7.38 (m, 12H).
13 C NMR (CDCl 3 ): δ 114.85 (3C), 126.44 (d, J CP = 7.1 HZ, 6C), 134.00 (d, J CP = 19.2 Hz, 6C), 136.45 (3C), 136.72 (d, J) CP = 10.1 Hz, 3C), 138.07 (3C).
31 P NMR (CDCl 3 ): δ-6.21.

実施例2
<エマルジョン条件下の重合>
Tris(p−vinylphenyl)phosphine(1 当量)(上記および、Iwaiら、Angewante Chem Int. Ed. 2013, 52, 12322-12326)、ジビニルベンゼン(純度80%以上、シグマアルドリッチ社製20 当量.)、および4-tertブチルスチレン(純度90%以上、東京化成社製、41当量)の重合によるコポリマーで、多孔性高分子を調製した。撹拌子(20 mm × 4 mm、ロッド状)を入れたガラスバイアル(およそ20 mm i.d.)内にて、モノマー(Tris(4−vinylphenyl)phosphine、ジビニルベンゼン、および4-tertブチルスチレン)(全量で1.0 mmol)、クロロベンゼン(純度99%以上、和光純薬社製、0.19 mL)、およびSpan 80(東京化成社製、0.06 mL)を混合し、均一な有機相を得た。その有機相を3回の凍結融解サイクルにより脱気した。別に、塩化カルシウム(純度95%以上、和光純薬社製)水溶液(0.10 mol Lー1)にペルオキソ二硫酸カリウム(純度99%以上、和光純薬社製、1.9 mol%)を溶解し水相を得た。窒素を溶液に供給して、水相を脱気した。ここで有機溶媒と水溶媒の体積比率を 1:9 v/vとした。シリンジを用いて、撹拌下(500 rpm)で水相を有機相へと滴下した。すべて添加した後、さらに5分間撹拌することで溶液が白く懸濁したエマルジョンを得た。得られたエマルジョンを70°Cで6時間インキュベートした。得られた多孔性高分子をテトラヒドロフラン(THF)(純度99.5%安定剤入り 和光純薬社製)と水(水はMilliQ水)の1:1混合溶媒(1:1 v/v)とTHFにそれぞれ一浸漬して洗浄した。洗浄後、室温で終夜、真空乾燥して白色固体を得た(収量142mg、収率92%)。
Example 2
<Polymerization under emulsion conditions>
Tris (p-vinylphenyl) phosphine (1 equivalent) (above and Iwai et al., Angelwante Chem Int. Ed. 2013, 52, 12322-12326), divinylbenzene (purity 80% or more, 20 equivalents manufactured by Sigma Aldrich), And 4-tertbutylstyrene (purity 90% or more, manufactured by Tokyo Kasei Co., Ltd., 41 equivalents) was polymerized to prepare a porous polymer. Monomers (Tris (4-vinylphenyl) phosphorine, divinylbenzene, and 4-tertbutylstyrene) (in total) in glass vials (approximately 20 mm id) containing a stirrer (20 mm x 4 mm, rod-shaped). 1.0 mmol), chlorobenzene (purity 99% or more, manufactured by Wako Pure Chemical Industries, Ltd., 0.19 mL), and Span 80 (manufactured by Tokyo Kasei Co., Ltd., 0.06 mL) were mixed to obtain a uniform organic phase. The organic phase was degassed by three freeze-thaw cycles. Separately, potassium peroxodisulfate (purity 99% or more, manufactured by Wako Pure Chemical Industries, Ltd., 1.9 mol%) is dissolved in an aqueous solution of calcium chloride (purity 95% or more, manufactured by Wako Pure Chemical Industries, Ltd.) (0.10 mol L -1). Got Nitrogen was supplied to the solution to degas the aqueous phase. Here, the volume ratio of the organic solvent and the water solvent was set to 1: 9 v / v. Using a syringe, the aqueous phase was added dropwise to the organic phase under stirring (500 rpm). After all the additions were made, the mixture was further stirred for 5 minutes to obtain an emulsion in which the solution was suspended in white. The resulting emulsion was incubated at 70 ° C for 6 hours. The obtained porous polymer was mixed with tetrahydrofuran (THF) (manufactured by Wako Pure Chemical Industries, Ltd. containing a 99.5% pure stabilizer), water (water is MilliQ water) in a 1: 1 mixed solvent (1: 1 v / v) and THF. Each was immersed and washed. After washing, it was vacuum dried overnight at room temperature to obtain a white solid (yield 142 mg, yield 92%).

実施例3
<多孔性高分子の評価>
多孔性高分子は、走査型電子顕微鏡(SU8000、日立ハイテクノロジー社製)と水銀圧入法(オートポア、島津製作所社製)によって分析した。図1、図2に示すように、1−100μmの孔径を有する多孔性高分子であることが明らかになった。
図3に示すように31P−NMRによる分析で目的化合物が得られていることを確認した。
図4に示すようにTHFの透過試験を行い、THFが透過可能な多孔構造を有しており、高い透過率を有していることを確認した。
Example 3
<Evaluation of porous polymer>
The porous polymer was analyzed by a scanning electron microscope (SU8000, manufactured by Hitachi, Ltd.) and a mercury press-fitting method (autopore, manufactured by Shimadzu Corporation). As shown in FIGS. 1 and 2, it was revealed that the polymer was a porous polymer having a pore size of 1-100 μm.
As shown in FIG. 3, it was confirmed that the target compound was obtained by analysis by 31 P-NMR.
As shown in FIG. 4, a permeation test of THF was carried out, and it was confirmed that it had a porous structure in which THF could permeate and had a high transmittance.

実施例4
<パラジウム配位触媒の調製>
乾燥した前記の多孔性高分子(200 mg, 0.02 mmol)をガラスバイアルに入れ、[PdCl2(PhCN)2]( Bis(benzonitrile)palladium(II) Dichloride、東京化成社製)(3.8 mg, 0.01 mmol, P/Pd 2:1)の THF溶液(10 mL)を添加した。密栓し、室温で2 h浸漬した。脱脂綿の栓を用いてろ過し、THFで洗浄後、真空下で残留溶媒を除去し黄色固体を得た。
Example 4
<Preparation of palladium coordination catalyst>
The dried porous polymer (200 mg, 0.02 mmol) was placed in a glass vial, and [PdCl 2 (PhCN) 2 ] (Bis (benzonitrile) palladium (II) Dichloride, manufactured by Tokyo Kasei Co., Ltd.) (3.8 mg, 0.01). A THF solution (10 mL) of mmol, P / Pd 2: 1) was added. It was sealed and immersed for 2 h at room temperature. The mixture was filtered using a cotton wool stopper, washed with THF, and the residual solvent was removed under vacuum to obtain a yellow solid.

得られた固体は、透過型電子顕微鏡(FEI TECNAI-20 、サーモ社製)で測定し、2nm以下の黒点として、パラジウムの固定化を観測した(図5)。
また、203MHzの共鳴周波数の下、Bruker AVANCE III 500分光器(ブルカー社製)を用いて31P 交差分極/マジック角回転核磁気共鳴分光(CP/MAS NMR)によって分析し、パラジウムの配位によるPのピークの変化を観測した(図6)。
The obtained solid was measured with a transmission electron microscope (FEI TECNAI-20, manufactured by Thermo Corporation), and immobilization of palladium was observed as black spots of 2 nm or less (Fig. 5).
In addition, under a resonance frequency of 203 MHz, analysis was performed by 31 P cross-polarization / magic angle spinning nuclear magnetic resonance spectroscopy (CP / MAS NMR) using a Bruker AVANCE III 500 spectrometer (manufactured by Bruker), and it was based on the coordination of palladium. The change in the peak of P was observed (Fig. 6).

<パラジウム固定化触媒を用いた、クロスカップリングの連続流通合成>
パラジウム固定化触媒を用いた、クロスカップリングの連続流通合成を行うにあたり、参考例として、液液二相系において、バッチ式反応系により下記のクロスカップリング反応を行なった。

Figure 2021133312
その結果、有機層/水層からなる二相系反応において、PS−TPP−Pdにより反応は進行した。反応は反応時間2時間の間では、撹拌速度に概ね比例して進行し、収率も撹拌速度が大きく寄与することが分かった。しかしながら、カラム系における反応ではどのような要因で反応速度が制御されるか不明であり、以下の実施例により確認した。 <Continuous distribution synthesis of cross-coupling using a palladium-immobilized catalyst>
In performing continuous flow synthesis of cross-coupling using a palladium-immobilized catalyst, as a reference example, the following cross-coupling reaction was carried out by a batch reaction system in a liquid-liquid two-phase system.
Figure 2021133312
As a result, in the two-phase reaction consisting of the organic layer / aqueous layer, the reaction proceeded by PS-TPP-Pd. It was found that the reaction proceeded substantially in proportion to the stirring speed during the reaction time of 2 hours, and the stirring speed also greatly contributed to the yield. However, it is unclear by what factor the reaction rate is controlled in the reaction in the column system, and it was confirmed by the following examples.

実施例5
ステンレスカラム中での前記多孔性高分子の重合および続くパラジウムの担持を行い、THFで洗浄した(2.5 時間, 滞留時間 = 0.5 時間)。4−クロロトルエン(純度98%以上、東京化成工業、0.5 mol/L, 1eq.)、フェニルボロン酸(純度97%以上、東京化成工業、0.75 mol/L, 1.5eq.)、およびテトラブチルアンモニウムブロマイド(純度98%以上、東京化成工業、TBAB, 0.05 mol%)のTHF(純度99.5%以上、和光純薬社製)溶液を調製しガスタイトシリンジに充填した。別に、K3PO4(純度97%以上、和光純薬社製、3 mol/L, 3eq.)の水溶液を調製しガスタイトシリンジに充填した。T字流路を介して、二つのシリンジポンプを用いて二相反応溶液を同時に供給した(THF 相/水相、2:1 v/v)。カラムから流出するTHF相および水相を連続的に採取した。DG−980−50デガッサ、PU−980ポンプ(日本分光社製)、Mightysil RP−18 GP 250−4.6カラム(関東化学社製)、UV−2077Plus UV検出器(日本分光社製)、およびCO−2065Plusカラムオーブン(日本分光社製)を搭載した、LC−2000Plusシステム(日本分光社製)を用いた高速液体クロマトグラフィーにより、THF相中の収率を算出した。そのときの生成物(4-methyl-1,1'-biphenyl)の収率を次の図7に示す。
反応後、THF/water(2:1 v/v)、次いでTHFを供給することでカラムを洗浄した(2.5 時間, 滞留時間 = 0.5 時間)。真空下、カラム中の多孔性高分子を乾燥した。
Example 5
The porous polymer was polymerized in a stainless steel column and subsequently supported on palladium, and washed with THF (2.5 hours, residence time = 0.5 hours). 4-Chlorotoluene (purity 98% or higher, Tokyo Chemical Industry, 0.5 mol / L, 1eq.), Phenylboronic acid (purity 97% or higher, Tokyo Chemical Industry, 0.75 mol / L, 1.5eq.), And tetrabutylammonium A THF (purity 99.5% or higher, manufactured by Wako Pure Chemical Industries, Ltd.) solution of bromide (purity 98% or higher, Tokyo Chemical Industry, TBAB, 0.05 mol%) was prepared and filled in a gas tight syringe. Separately, an aqueous solution of K 3 PO 4 (purity 97% or more, manufactured by Wako Pure Chemical Industries, Ltd., 3 mol / L, 3eq.) Was prepared and filled in a gas tight syringe. The two-phase reaction solution was simultaneously supplied using two syringe pumps via a T-channel (THF phase / aqueous phase, 2: 1 v / v). The THF phase and aqueous phase flowing out of the column were continuously collected. DG-980-50 Degassa, PU-980 Pump (manufactured by JASCO Corporation), Mightysil RP-18 GP 250-4.6 column (manufactured by Kanto Chemical Co., Ltd.), UV-2077Plus UV Detector (manufactured by JASCO Corporation), and The yield in the THF phase was calculated by high performance liquid chromatography using an LC-2000Plus system (manufactured by JASCO Corporation) equipped with a CO-2065 Plus column oven (manufactured by JASCO Corporation). The yield of the product (4-methyl-1,1'-biphenyl) at that time is shown in FIG. 7 below.
After the reaction, the column was washed by supplying THF / water (2: 1 v / v) and then THF (2.5 hours, residence time = 0.5 hours). The porous polymer in the column was dried under vacuum.

図7中、横軸(X軸)に示す滞留時間(residence time)τは、τ=カラム長さ(cm)/線速度(linear velocity (u)(cm/h))により得られる。また図7上部図の縦軸(Y軸)に示す線速度u(linear velocity)は、u=カラム長さ(cm)/滞留時間(h)により得られる。
図7より、上部図に示す線速度uが小さいほど収率が高くなり、図7ではτ=1.5hで収率が極大となる。τが増加することで、触媒-基質の接触が増加し、また線速度uの減少(撹拌の緩和)が生じることになる。従って、カラム長さを長くすることでより大きくuを保持でき、反応の効率化が図れることが推測できる。
In FIG. 7, the residence time τ shown on the horizontal axis (X axis) is obtained by τ = column length (cm) / linear velocity (linear velocity (u) (cm / h)). The linear velocity u (linear velocity) shown on the vertical axis (Y axis) in the upper part of FIG. 7 is obtained by u = column length (cm) / residence time (h).
From FIG. 7, the smaller the linear velocity u shown in the upper figure, the higher the yield, and in FIG. 7, the yield becomes maximum at τ = 1.5h. An increase in τ results in an increase in catalyst-substrate contact and a decrease in linear velocity u (relaxation of agitation). Therefore, it can be inferred that by increasing the column length, u can be held larger and the reaction efficiency can be improved.

実施例6
<パラジウムの漏出の調査>
誘導結合プラズマ-原子吸光分析を用いて、パラジウムの担持、触媒反応、および反応後の洗浄において流出したパラジウムを定量した。カラムからの流出液(THFあるいは水相)をHCl(1 mol/L)で10倍希釈し、Seiko Instruments SPS-1700 HVR分光器(セイコーインスツル社製)を用いてパラジウム濃度を測定した。また、使用後のカラムのパラジウムの様子を透過型電子顕微鏡によって観測した(図8)。
誘導結合プラズマ-原子吸光分析では、パラジウムは検出限界以下で、漏出はないことがわかった。透過型電子顕微鏡では図8のようになり、パラジウムの粒子が観測された。
Example 6
<Investigation of Palladium Leakage>
Inductively coupled plasma-atomic absorption spectrometry was used to quantify palladium spillage during palladium support, catalytic reactions, and post-reaction washing. The effluent from the column (THF or aqueous phase) was diluted 10-fold with HCl (1 mol / L), and the palladium concentration was measured using a Seiko Instruments SPS-1700 HVR spectrometer (manufactured by Seiko Instruments Inc.). In addition, the state of palladium on the column after use was observed with a transmission electron microscope (FIG. 8).
Inductively coupled plasma-atomic absorption spectrometry revealed that palladium was below the detection limit and there was no leakage. As shown in FIG. 8 with a transmission electron microscope, palladium particles were observed.

1 連続流通式装置もしくは有機合成装置
2,3 注入用シリンジ
4 反応器(カラム)
5 固定化触媒層(カラム内)
6 T字流路
1 Continuous flow device or organic synthesizer 2, 3 Syringe for injection 4 Reactor (column)
5 Immobilization catalyst layer (inside the column)
6 T-shaped flow path

Claims (7)

ランダムコポリマーが架橋した架橋性ポリマーであって、前記ランダムコポリマーはホスフィン配位子を含む構成単位(a1)、構成単位(a2)および架橋構成単位(a3)を有し、かつ多孔性である、ポリマー。 A crosslinkable polymer in which a random copolymer is crosslinked, wherein the random copolymer has a structural unit (a1), a structural unit (a2) and a crosslinked structural unit (a3) containing a phosphine ligand, and is porous. polymer. ホスフィン配位子が、トリフェニルホスフィン配位子であることを特徴とする、請求項1に記載のポリマー。 The polymer according to claim 1, wherein the phosphine ligand is a triphenylphosphine ligand. 前記構成単位が水と有機溶媒の混合条件下で重合されており、空隙率が60%以上である、請求項1又は請求項2に記載のポリマー。 The polymer according to claim 1 or 2, wherein the structural unit is polymerized under mixed conditions of water and an organic solvent, and the porosity is 60% or more. 前記構成単位(a1)に金属を配位した、請求項1〜3のいずれか一項に記載のポリマー。 The polymer according to any one of claims 1 to 3, wherein a metal is coordinated to the structural unit (a1). 請求項1〜4のいずれか一項に記載のポリマーを含有する、固定化触媒。 An immobilized catalyst containing the polymer according to any one of claims 1 to 4. 請求項5に記載の固定化触媒を含む反応器を備える、連続流通式装置。 A continuous flow apparatus comprising a reactor comprising the immobilized catalyst according to claim 5. 請求項5に記載の固定化触媒を含む反応器を備える、有機合成装置。
An organic synthesizer comprising a reactor comprising the immobilized catalyst according to claim 5.
JP2020031870A 2020-02-27 2020-02-27 Novel porous crosslinked polymer, immobilized catalyst and device using the same Active JP7231574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020031870A JP7231574B2 (en) 2020-02-27 2020-02-27 Novel porous crosslinked polymer, immobilized catalyst and device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031870A JP7231574B2 (en) 2020-02-27 2020-02-27 Novel porous crosslinked polymer, immobilized catalyst and device using the same

Publications (2)

Publication Number Publication Date
JP2021133312A true JP2021133312A (en) 2021-09-13
JP7231574B2 JP7231574B2 (en) 2023-03-01

Family

ID=77659608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031870A Active JP7231574B2 (en) 2020-02-27 2020-02-27 Novel porous crosslinked polymer, immobilized catalyst and device using the same

Country Status (1)

Country Link
JP (1) JP7231574B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724644A (en) * 1980-05-28 1982-02-09 Stamicarbon Method of executing hydroformylation and catalyst used for said method
US4522953A (en) * 1981-03-11 1985-06-11 Lever Brothers Company Low density porous cross-linked polymeric materials and their preparation and use as carriers for included liquids
JPH1066868A (en) * 1996-08-28 1998-03-10 Nippon Shokubai Co Ltd Solid catalyst for etherification reaction and preparation of ether compound using the same
JP2000507604A (en) * 1996-09-20 2000-06-20 オックスフォード・アシメトリ・インターナショナル・ピーエルシー Phosphine ligand
JP2004504940A (en) * 2000-07-29 2004-02-19 ユニバーシテイ・オブ・ニユーキヤツスル Improved method for separating oil and water
JP2007302859A (en) * 2006-04-12 2007-11-22 Hokko Chem Ind Co Ltd NEW TRANSITION METAL COMPLEX CARRIED BY POLYMER USING p-PHOSPHINE GROUP-CONTAINING STYRENE-STYRENE-BASED COPOLYMER AS LIGAND, AND CATALYST COMPRISING THE COMPLEX
JP2008538746A (en) * 2005-03-28 2008-11-06 マリンクロッド・インコーポレイテッド Catalytic production of hydrocodone, hydromorphone and derivatives thereof
JP2009062512A (en) * 2007-08-10 2009-03-26 Japan Organo Co Ltd Monolith organic porous body, monolith organic porous ion exchanger, method for producing those and chemical filter
US20100065500A1 (en) * 2006-12-01 2010-03-18 Institute of Process Engineering, Chinese Academy of Science Super-macroporous polymeric microspheres and preparation method thereof
JP2014030820A (en) * 2012-07-10 2014-02-20 Japan Organo Co Ltd Platinum group metal supported catalyst and reactor
WO2014136909A1 (en) * 2013-03-07 2014-09-12 国立大学法人北海道大学 Phosphine triply cross-linked by organic polymer, transition metal complex using said phosphine as a ligand, and catalyst
JP2018518970A (en) * 2015-06-22 2018-07-19 ナショナル ユニヴァーシティ オブ シンガポール Angiogenic tissue, skin, or mucosal equivalent

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724644A (en) * 1980-05-28 1982-02-09 Stamicarbon Method of executing hydroformylation and catalyst used for said method
US4522953A (en) * 1981-03-11 1985-06-11 Lever Brothers Company Low density porous cross-linked polymeric materials and their preparation and use as carriers for included liquids
JPH1066868A (en) * 1996-08-28 1998-03-10 Nippon Shokubai Co Ltd Solid catalyst for etherification reaction and preparation of ether compound using the same
JP2000507604A (en) * 1996-09-20 2000-06-20 オックスフォード・アシメトリ・インターナショナル・ピーエルシー Phosphine ligand
JP2004504940A (en) * 2000-07-29 2004-02-19 ユニバーシテイ・オブ・ニユーキヤツスル Improved method for separating oil and water
JP2008538746A (en) * 2005-03-28 2008-11-06 マリンクロッド・インコーポレイテッド Catalytic production of hydrocodone, hydromorphone and derivatives thereof
JP2007302859A (en) * 2006-04-12 2007-11-22 Hokko Chem Ind Co Ltd NEW TRANSITION METAL COMPLEX CARRIED BY POLYMER USING p-PHOSPHINE GROUP-CONTAINING STYRENE-STYRENE-BASED COPOLYMER AS LIGAND, AND CATALYST COMPRISING THE COMPLEX
US20100065500A1 (en) * 2006-12-01 2010-03-18 Institute of Process Engineering, Chinese Academy of Science Super-macroporous polymeric microspheres and preparation method thereof
JP2009062512A (en) * 2007-08-10 2009-03-26 Japan Organo Co Ltd Monolith organic porous body, monolith organic porous ion exchanger, method for producing those and chemical filter
JP2014030820A (en) * 2012-07-10 2014-02-20 Japan Organo Co Ltd Platinum group metal supported catalyst and reactor
WO2014136909A1 (en) * 2013-03-07 2014-09-12 国立大学法人北海道大学 Phosphine triply cross-linked by organic polymer, transition metal complex using said phosphine as a ligand, and catalyst
JP2018518970A (en) * 2015-06-22 2018-07-19 ナショナル ユニヴァーシティ オブ シンガポール Angiogenic tissue, skin, or mucosal equivalent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUMOTO, H. ET AL.: "Application of Macroporous Polystyrene-Triphenylphosphine Monolith to Palladium-Catalyzed Cross-Coup", ABSTRACTS OF ISPC2019 THE 4TH INTERNATIONAL SYMPOSIUM ON PROCESS CHEMISTRY, JPN6022000720, 4 July 2019 (2019-07-04), pages 128 - 1, ISSN: 0004894922 *

Also Published As

Publication number Publication date
JP7231574B2 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
Kim et al. N-Heterocyclic carbene–palladium complex on polystyrene resin surface as polymer-supported catalyst and its application in Suzuki cross-coupling reaction
Wang et al. A magnetically separable palladium catalyst containing a bulky N-heterocyclic carbene ligand for the Suzuki–Miyaura reaction
Zhi et al. Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors: Efficient heterogeneous catalysts for Suzuki–Miyaura cross coupling reaction in aqueous media
Zu et al. Preparation of molecularly imprinted polymer microspheres via atom transfer radical precipitation polymerization
KR19980018166A (en) (Meth) acrylic and vinyl monomers, and the resulting (co) polymers
Slováková et al. Chain-growth insertion polymerization of 1, 3-diethynylbenzene high internal phase emulsions into reactive π-conjugated foams
Patterson et al. Catalytic Y-tailed amphiphilic homopolymers–aqueous nanoreactors for high activity, low loading SCS pincer catalysts
KR19980018167A (en) (Co) polymerization of (meth) acrylic and vinyl monomers in the presence of Fe, Ru or Os complexes,
CN106179505B (en) The organic nanotube skeleton adulteration palladium catalyst of micropore containing phosphine and its synthesis and application
Jumde et al. Ultrafine palladium nanoparticles immobilized into poly (4-vinylpyridine)-based porous monolith for continuous-flow Mizoroki–Heck reaction
Zhang et al. A novel thermo and pH-double sensitive hydrogel immobilized Pd catalyst for Heck and Suzuki reactions in aqueous media
Wang et al. Synthesis of molecularly imprinted polymers via ring-opening metathesis polymerization for solid-phase extraction of bisphenol A
Nagaki et al. Polymerization of vinyl ethers initiated by dendritic cations using flow microreactors
JP7231574B2 (en) Novel porous crosslinked polymer, immobilized catalyst and device using the same
Martínez-Arranz et al. p-Bromoaryl-and ω-bromoalkyl-VA-PNBs: suitable starting materials for the functionalization of vinylic addition polynorbornenes via palladium-catalyzed cross-coupling reactions
Hershberger et al. Polymer-supported palladacycles: Efficient reagents for synthesis of Benzopyrans with palladium recovery. Relationship among resin loading, Pd: P ratio, and reactivity of immobilized palladacycles
Chen et al. Triphenylphosphine-containing thermo-responsive copolymers: synthesis, characterization and catalysis application
Trzeciak et al. Polymerization of phenylacetylene catalysed by RhTp (cod) and RhBp (cod) in ionic liquids: effect of alcohols and of tetraammonium halides
JP2014091092A (en) Microreactor and manufacturing method thereof, and synthesis system and synthesis and separation analysis system
US6458985B1 (en) Use of compressed CO2 in chemical reactions
CN112756012B (en) Hydrophilic organic porous polymer supported palladium catalyst, and preparation method and application thereof
KR101382530B1 (en) Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst
Suzuki et al. Asymmetric aldol and michael reactions in water using organocatalysts immobilized on a thermoresponsive “Linear” block copolymer
JP2003064054A (en) Optically active maleimide derivative, optically active polymaleimide derivative, method for producing the same, separating agent comprising the same optically active polymaleimide derivative and method for separating optically active compound using the same
KR101429584B1 (en) Pd nanoparticles on thermoresponsive hydrogels and method for preparing biaryl compounds using the nanoparticles

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7231574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150