JP2021128867A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2021128867A
JP2021128867A JP2020023156A JP2020023156A JP2021128867A JP 2021128867 A JP2021128867 A JP 2021128867A JP 2020023156 A JP2020023156 A JP 2020023156A JP 2020023156 A JP2020023156 A JP 2020023156A JP 2021128867 A JP2021128867 A JP 2021128867A
Authority
JP
Japan
Prior art keywords
cell
membrane
deterioration diagnosis
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020023156A
Other languages
Japanese (ja)
Inventor
亮 森田
Akira Morita
亮 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020023156A priority Critical patent/JP2021128867A/en
Publication of JP2021128867A publication Critical patent/JP2021128867A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a fuel cell system in which the amount of ions that are electrolyte membrane deterioration components can be accurately grasped, so that the life of an electrolyte membrane of a fuel cell can be more accurately predicted.SOLUTION: A fuel cell life prediction system includes a fuel cell, a membrane deterioration diagnostic cell having a membrane electrode assembly, an ion amount measurement device, and the like. In the fuel cell life prediction system, the life of an electrolyte membrane is estimated by comparing the amount of accumulated ions of the membrane deterioration diagnostic cell with a data group that shows the correlation between the amount of accumulated ions measured in advance and the life of an electrolyte membrane.SELECTED DRAWING: Figure 3

Description

本開示は、燃料電池システムに関する。 The present disclosure relates to a fuel cell system.

固体高分子型燃料電池は、複数のセルを積層した燃料電池スタックに、酸素を含有する酸化剤ガスと水素を含有する燃料ガスを供給して化学反応させることにより電気エネルギーを発生させる。基本単位となるセルは、一般に、固体高分子電解質膜の両面に電極触媒層を形成したMEA(Membrane Electrode Assembly:膜電極接合体)を備え、その外側に拡散層、さらにその外側にガス流路とガスセパレータが配置されている。
燃料極(アノード)では、流路・拡散層から供給される水素が触媒層の触媒作用によりプロトン化し、電解質膜を通過して酸化剤極(カソード)へと移動する。同時に生成した電子は、外部回路を通って仕事をし、カソードへと移動する。カソードに供給される酸素は、カソード上でプロトンおよび電子と反応し、水を生成する。
生成した水は、電解質膜に適度な湿度を与え、余剰な水は拡散層を透過して、流路を通って系外へと排出される。
In a solid polymer fuel cell, electric energy is generated by supplying an oxidant gas containing oxygen and a fuel gas containing hydrogen to a fuel cell stack in which a plurality of cells are stacked and causing a chemical reaction. The cell, which is the basic unit, is generally provided with MEA (Membrane Electrode Assembly: Membrane Electrode Assembly) in which electrode catalyst layers are formed on both sides of a solid polymer electrolyte membrane, a diffusion layer on the outside thereof, and a gas flow path on the outside thereof. And a gas separator is arranged.
At the fuel electrode (anode), hydrogen supplied from the flow path / diffusion layer is protonated by the catalytic action of the catalyst layer, passes through the electrolyte membrane, and moves to the oxidant electrode (cathode). The electrons generated at the same time work through an external circuit and move to the cathode. Oxygen supplied to the cathode reacts with protons and electrons on the cathode to produce water.
The generated water gives an appropriate humidity to the electrolyte membrane, and the excess water permeates the diffusion layer and is discharged to the outside of the system through the flow path.

固体高分子電解質型燃料電池が長時間連続して稼働されると、電解質膜は劣化し、孔が開く可能性があり、孔が開いた単セルでは水素や酸素のクロスリークが発生する。固体高分子電解質型燃料電池は各単セルのクロスリークが固体高分子電解質型燃料電池の性能、及び寿命に大きな影響を与えることから、電解質膜の劣化状態を正確に検出することは重要である。 When the polymer electrolyte fuel cell is continuously operated for a long period of time, the electrolyte membrane deteriorates and there is a possibility that pores are opened, and a cross leak of hydrogen and oxygen occurs in a single cell with pores. In the polymer electrolyte fuel cell, it is important to accurately detect the deterioration state of the electrolyte membrane because the cross leak of each single cell has a great influence on the performance and life of the polymer electrolyte fuel cell. ..

燃料電池の発電性能向上のために、種々の研究がなされている。
例えば、特許文献1には、水素が供給されるアノードと、空気が供給されるカソードを有する燃料電池のアノード、カソードの下流の水素排出路、空気排出路にイオン濃度検出器を設け、イオン濃度検出器によって検出されたイオン濃度(pH)に基づいて電解質膜の劣化状態を検出するという技術が開示されている。
Various studies have been conducted to improve the power generation performance of fuel cells.
For example, in Patent Document 1, an ion concentration detector is provided in an anode to which hydrogen is supplied, an anode of a fuel cell having a cathode to which air is supplied, a hydrogen discharge path downstream of the cathode, and an air discharge path, and ion concentration is provided. A technique for detecting the deteriorated state of the electrolyte membrane based on the ion concentration (pH) detected by the detector is disclosed.

また、特許文献2には、燃料ガスと酸素を含む酸化剤ガスとが供給され、電気化学反応により電力を発生させる燃料電池の排出物質中のフッ化物イオン量を計測する計測手段と、その計測されたフッ化物イオン量を利用して燃料電池の寿命を予測する寿命予測手段とを備えるという技術が開示されている。 Further, Patent Document 2 provides a measuring means for measuring the amount of fluoride ions in a fuel cell emission substance to which a fuel gas and an oxidant gas containing oxygen are supplied and generate electric power by an electrochemical reaction, and the measurement thereof. A technique is disclosed that includes a life prediction means for predicting the life of a fuel cell by using the obtained amount of fluoride ions.

特開2006−049146号公報Japanese Unexamined Patent Publication No. 2006-049146 特開2005−174922号公報Japanese Unexamined Patent Publication No. 2005-174922

上記従来技術では、電解質膜劣化成分の硫酸イオン濃度を、燃料電池の下流に設けたイオン濃度検出手段によって検出する。しかし硫酸イオンはセルや電解質膜内に蓄積されるため、下流の排出路に全量の硫酸イオンが出てこない。また、発電量によって水量が異なるため、水量が多いときには電解質膜付近よりも燃料電池の下流の方が高いpHを検出することとなり、劣化量を過小評価してしまうため、正確な電解質膜の劣化寿命を予測できない虞があるという問題がある。 In the above-mentioned conventional technique, the sulfate ion concentration of the electrolyte membrane deterioration component is detected by an ion concentration detecting means provided downstream of the fuel cell. However, since sulfate ions are accumulated in the cell and the electrolyte membrane, the entire amount of sulfate ions does not come out to the downstream discharge path. In addition, since the amount of water varies depending on the amount of power generation, when the amount of water is large, a higher pH is detected downstream of the fuel cell than in the vicinity of the electrolyte membrane, and the amount of deterioration is underestimated. There is a problem that the life may not be predicted.

本開示は、上記実情に鑑みてなされたものであり、電解質膜劣化成分であるイオンの量を正確に把握できるため、より精度の高い燃料電池の電解質膜の寿命予測が可能となる燃料電池システムを提供することを主目的とする。 The present disclosure has been made in view of the above circumstances, and since the amount of ions, which are electrolyte membrane deterioration components, can be accurately grasped, a fuel cell system capable of more accurately predicting the life of the electrolyte membrane of the fuel cell. The main purpose is to provide.

本開示においては、酸化剤極触媒層と、燃料極触媒層と、前記酸化剤極触媒層と前記燃料極触媒層との間に配置される電解質膜とを有する膜電極接合体を少なくとも有する燃料電池と、
前記燃料電池に酸化剤ガスを供給する酸化剤ガス供給部と、
前記燃料電池に燃料ガスを供給する燃料ガス供給部と、
前記燃料電池に冷却水を供給する冷却水供給部と、
前記燃料電池から前記冷却水を排出する冷却水排出部と、
前記膜電極接合体を有する膜劣化診断セルと、
前記酸化剤ガス供給部から前記膜劣化診断セルに前記酸化剤ガスを流入する膜劣化診断セル用酸化剤ガス流路と、
前記燃料ガス供給部から前記膜劣化診断セルに前記燃料ガスを流入する膜劣化診断セル用燃料ガス流路と、
イオン量測定装置と、
制御部と、を備え、
前記膜劣化診断セルは、前記燃料電池の前記冷却水排出部の冷却水出口で前記燃料電池に当接され、
前記膜劣化診断セルは、さらに当該膜劣化診断セルの内部に前記燃料電池の前記冷却水出口から接続される膜劣化診断セル用冷却水流路を有し、
前記膜劣化診断セル用酸化剤ガス流路及び前記膜劣化診断セル用燃料ガス流路の2つのガス流路は、当該ガス流路の上流に、前記膜劣化診断セル用冷却水流路と接続される切り替え弁を有し、
前記制御部は、前記燃料電池の通常運転時には前記ガス流路にガスを流し、前記燃料電池の前記電解質膜の劣化診断時には、前記切り替え弁により弁の切り替えを行い、前記ガス流路に冷却水を流し、
前記制御部は、前記電解質膜の劣化診断開始から所定の時間毎に、前記イオン量測定装置により、前記膜劣化診断セルから排出された前記冷却水中のイオン量を測定し、蓄積イオン量を算出し、
前記制御部は、前記算出された蓄積イオン量を、予め測定された蓄積イオン量と電解質膜の寿命との相関関係を示すデータ群と照らして、電解質膜の寿命を推定することを特徴とする燃料電池システムを提供する。
In the present disclosure, a fuel having at least a membrane electrode assembly having an oxidant electrode catalyst layer, a fuel electrode catalyst layer, and an electrolyte film arranged between the oxidant electrode catalyst layer and the fuel electrode catalyst layer. With batteries
An oxidant gas supply unit that supplies the oxidant gas to the fuel cell,
A fuel gas supply unit that supplies fuel gas to the fuel cell and
A cooling water supply unit that supplies cooling water to the fuel cell,
A cooling water discharge unit that discharges the cooling water from the fuel cell,
A membrane deterioration diagnostic cell having the membrane electrode assembly and
An oxidant gas flow path for a membrane deterioration diagnosis cell in which the oxidant gas flows from the oxidant gas supply unit into the membrane deterioration diagnosis cell,
A fuel gas flow path for a membrane deterioration diagnosis cell in which the fuel gas flows from the fuel gas supply unit into the membrane deterioration diagnosis cell, and a fuel gas flow path for the membrane deterioration diagnosis cell.
Ion amount measuring device and
With a control unit
The membrane deterioration diagnosis cell is brought into contact with the fuel cell at the cooling water outlet of the cooling water discharge portion of the fuel cell.
The membrane deterioration diagnosis cell further has a cooling water flow path for the membrane deterioration diagnosis cell connected from the cooling water outlet of the fuel cell inside the membrane deterioration diagnosis cell.
The two gas flow paths of the oxidant gas flow path for the membrane deterioration diagnosis cell and the fuel gas flow path for the membrane deterioration diagnosis cell are connected to the cooling water flow path for the membrane deterioration diagnosis cell upstream of the gas flow path. Has a switching valve
The control unit flows gas through the gas flow path during normal operation of the fuel cell, switches the valve by the switching valve at the time of diagnosing deterioration of the electrolyte membrane of the fuel cell, and cools water in the gas flow path. Shed,
The control unit measures the amount of ions in the cooling water discharged from the membrane deterioration diagnosis cell by the ion amount measuring device at predetermined time intervals from the start of the deterioration diagnosis of the electrolyte membrane, and calculates the accumulated ion amount. death,
The control unit estimates the life of the electrolyte membrane by comparing the calculated amount of stored ions with a data group showing the correlation between the amount of stored ions measured in advance and the life of the electrolyte membrane. Provides a fuel cell system.

本開示は、電解質膜劣化成分であるイオンの量を正確に把握できるため、より精度の高い燃料電池の電解質膜の寿命予測が可能となる燃料電池システムを提供することができる。 The present disclosure can provide a fuel cell system capable of predicting the life of an electrolyte membrane of a fuel cell with higher accuracy because the amount of ions, which is an electrolyte membrane deterioration component, can be accurately grasped.

本開示の燃料電池システムの一例の一部を示す概略構成図である。It is a schematic block diagram which shows a part of an example of the fuel cell system of this disclosure. 硫酸イオン量と電解質膜の寿命との関係の一例を示す図である。It is a figure which shows an example of the relationship between the amount of sulfate ion and the life of an electrolyte membrane. 本開示において用いられる制御部が実行する制御の一例を示すフローチャートである。It is a flowchart which shows an example of the control executed by the control part used in this disclosure.

本開示においては、酸化剤極触媒層と、燃料極触媒層と、前記酸化剤極触媒層と前記燃料極触媒層との間に配置される電解質膜とを有する膜電極接合体を少なくとも有する燃料電池と、
前記燃料電池に酸化剤ガスを供給する酸化剤ガス供給部と、
前記燃料電池に燃料ガスを供給する燃料ガス供給部と、
前記燃料電池に冷却水を供給する冷却水供給部と、
前記燃料電池から前記冷却水を排出する冷却水排出部と、
前記膜電極接合体を有する膜劣化診断セルと、
前記酸化剤ガス供給部から前記膜劣化診断セルに前記酸化剤ガスを流入する膜劣化診断セル用酸化剤ガス流路と、
前記燃料ガス供給部から前記膜劣化診断セルに前記燃料ガスを流入する膜劣化診断セル用燃料ガス流路と、
イオン量測定装置と、
制御部と、を備え、
前記膜劣化診断セルは、前記燃料電池の前記冷却水排出部の冷却水出口で前記燃料電池に当接され、
前記膜劣化診断セルは、さらに当該膜劣化診断セルの内部に前記燃料電池の前記冷却水出口から接続される膜劣化診断セル用冷却水流路を有し、
前記膜劣化診断セル用酸化剤ガス流路及び前記膜劣化診断セル用燃料ガス流路の2つのガス流路は、当該ガス流路の上流に、前記膜劣化診断セル用冷却水流路と接続される切り替え弁を有し、
前記制御部は、前記燃料電池の通常運転時には前記ガス流路にガスを流し、前記燃料電池の前記電解質膜の劣化診断時には、前記切り替え弁により弁の切り替えを行い、前記ガス流路に冷却水を流し、
前記制御部は、前記電解質膜の劣化診断開始から所定の時間毎に、前記イオン量測定装置により、前記膜劣化診断セルから排出された前記冷却水中のイオン量を測定し、蓄積イオン量を算出し、
前記制御部は、前記算出された蓄積イオン量を、予め測定された蓄積イオン量と電解質膜の寿命との相関関係を示すデータ群と照らして、電解質膜の寿命を推定することを特徴とする燃料電池システムを提供する。
In the present disclosure, a fuel having at least a membrane electrode assembly having an oxidant electrode catalyst layer, a fuel electrode catalyst layer, and an electrolyte film arranged between the oxidant electrode catalyst layer and the fuel electrode catalyst layer. With batteries
An oxidant gas supply unit that supplies the oxidant gas to the fuel cell,
A fuel gas supply unit that supplies fuel gas to the fuel cell and
A cooling water supply unit that supplies cooling water to the fuel cell,
A cooling water discharge unit that discharges the cooling water from the fuel cell,
A membrane deterioration diagnostic cell having the membrane electrode assembly and
An oxidant gas flow path for a membrane deterioration diagnosis cell in which the oxidant gas flows from the oxidant gas supply unit into the membrane deterioration diagnosis cell,
A fuel gas flow path for a membrane deterioration diagnosis cell in which the fuel gas flows from the fuel gas supply unit into the membrane deterioration diagnosis cell, and a fuel gas flow path for the membrane deterioration diagnosis cell.
Ion amount measuring device and
With a control unit
The membrane deterioration diagnosis cell is brought into contact with the fuel cell at the cooling water outlet of the cooling water discharge portion of the fuel cell.
The membrane deterioration diagnosis cell further has a cooling water flow path for the membrane deterioration diagnosis cell connected from the cooling water outlet of the fuel cell inside the membrane deterioration diagnosis cell.
The two gas flow paths of the oxidant gas flow path for the membrane deterioration diagnosis cell and the fuel gas flow path for the membrane deterioration diagnosis cell are connected to the cooling water flow path for the membrane deterioration diagnosis cell upstream of the gas flow path. Has a switching valve
The control unit flows gas through the gas flow path during normal operation of the fuel cell, switches the valve by the switching valve at the time of diagnosing deterioration of the electrolyte membrane of the fuel cell, and cools water in the gas flow path. Shed,
The control unit measures the amount of ions in the cooling water discharged from the membrane deterioration diagnosis cell by the ion amount measuring device at predetermined time intervals from the start of the deterioration diagnosis of the electrolyte membrane, and calculates the accumulated ion amount. death,
The control unit estimates the life of the electrolyte membrane by comparing the calculated amount of stored ions with a data group showing the correlation between the amount of stored ions measured in advance and the life of the electrolyte membrane. Provides a fuel cell system.

本開示によれば、燃料電池本体内の電解質膜が実際にさらされる状態に近い状態、すなわち電解質膜の劣化モードを、燃料電池本体とは別体の「膜劣化診断セル」内で再現し、前記「膜劣化診断セル」の構造を、電解質膜劣化成分であるイオンを抽出可能なものとすることで、より精度の高い燃料電池の電解質膜の寿命予測が可能となる。 According to the present disclosure, a state close to the state in which the electrolyte membrane in the fuel cell body is actually exposed, that is, a deterioration mode of the electrolyte membrane is reproduced in a "membrane deterioration diagnosis cell" separate from the fuel cell body. By making the structure of the "membrane deterioration diagnosis cell" capable of extracting ions which are electrolyte membrane deterioration components, it is possible to predict the life of the electrolyte membrane of the fuel cell with higher accuracy.

図1は、本開示の燃料電池システムの一例の一部を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a part of an example of the fuel cell system of the present disclosure.

本開示の燃料電池システムは、少なくとも燃料電池と、酸化剤ガス供給部と、燃料ガス供給部と、冷却水供給部と、冷却水排出部と、膜劣化診断セルと、膜劣化診断セル用酸化剤ガス流路と、膜劣化診断セル用燃料ガス流路と、イオン量測定装置と、制御部と、を備え、必要に応じ、酸化剤ガス排出部と、燃料ガス排出部と、を備える。 The fuel cell system of the present disclosure includes at least a fuel cell, an oxidizing agent gas supply unit, a fuel gas supply unit, a cooling water supply unit, a cooling water discharge unit, a film deterioration diagnosis cell, and oxidation for a film deterioration diagnosis cell. The agent gas flow path, the fuel gas flow path for the membrane deterioration diagnosis cell, the ion amount measuring device, and the control unit are provided, and if necessary, an oxidizing agent gas discharge unit and a fuel gas discharge unit are provided.

燃料電池は、酸化剤極触媒層と、燃料極触媒層と、前記酸化剤極触媒層と前記燃料極触媒層との間に配置される電解質膜とを有する膜電極接合体を少なくとも有し、通常、膜電極接合体の両側にガス拡散層を有し、さらに必要に応じ、その両側にガス流路、及び、ガスセパレータ等を有していてもよい。
酸化剤極触媒層、燃料極触媒層、電解質膜、ガス拡散層、ガス流路、及び、ガスセパレータは、特に限定されず、従来公知のものを用いることができる。
The fuel cell has at least a membrane electrode assembly having an oxidizing agent electrode catalyst layer, a fuel electrode catalyst layer, and an electrolyte film arranged between the oxidizing agent electrode catalyst layer and the fuel electrode catalyst layer. Usually, gas diffusion layers may be provided on both sides of the membrane electrode assembly, and gas flow paths, gas separators, and the like may be provided on both sides thereof, if necessary.
The oxidant electrode catalyst layer, fuel electrode catalyst layer, electrolyte membrane, gas diffusion layer, gas flow path, and gas separator are not particularly limited, and conventionally known ones can be used.

燃料ガス供給部は、燃料電池に燃料ガスを供給するための燃料ガス供給装置及び燃料ガス供給流路と、を有する。燃料ガス供給装置としては、例えば、液体水素タンク、圧縮水素タンク等を用いることができる。
燃料ガス排出部は、少なくとも燃料電池から排出される燃料ガスの排出流量を調整する燃料ガス排出弁を有し、必要に応じ、燃料ガス排出流路を有する。
燃料電池システムは、燃料ガス排出流路及び燃料ガス供給流路を連結し、燃料ガスを循環させる燃料ガス循環流路及び燃料ガス循環流路上に配置された燃料ガス循環装置を有する燃料ガス循環部が設けられていてもよい。燃料ガス循環装置としては、循環用ポンプ等が挙げられる。
The fuel gas supply unit includes a fuel gas supply device for supplying fuel gas to the fuel cell and a fuel gas supply flow path. As the fuel gas supply device, for example, a liquid hydrogen tank, a compressed hydrogen tank, or the like can be used.
The fuel gas discharge unit has at least a fuel gas discharge valve for adjusting the discharge flow rate of the fuel gas discharged from the fuel cell, and has a fuel gas discharge flow path as required.
The fuel cell system is a fuel gas circulation unit having a fuel gas circulation flow path that connects a fuel gas discharge flow path and a fuel gas supply flow path and circulates the fuel gas and a fuel gas circulation device arranged on the fuel gas circulation flow path. May be provided. Examples of the fuel gas circulation device include a circulation pump and the like.

酸化剤ガス供給部は、少なくとも燃料電池に酸化剤ガスを供給するための酸化剤ガス供給流路を有し、必要に応じ、酸化剤ガス供給装置を有する。酸化剤ガス供給装置としては、例えば、エアコンプレッサー等を用いることができる。
酸化剤ガス排出部は、燃料電池から酸化剤ガスを排出するための酸化剤ガス排出流路を有する。
The oxidant gas supply unit has at least an oxidant gas supply flow path for supplying the oxidant gas to the fuel cell, and, if necessary, an oxidant gas supply device. As the oxidant gas supply device, for example, an air compressor or the like can be used.
The oxidant gas discharge unit has an oxidant gas discharge flow path for discharging the oxidant gas from the fuel cell.

冷却水供給部は、少なくとも燃料電池に冷却水を供給するための冷却水供給装置及び冷却水供給流路を有する。冷却水供給装置としては、例えば、冷却水タンク及びポンプ等を用いることができる。
冷却水排出部は、燃料電池から冷却水を排出するための冷却水排出流路を有する。
The cooling water supply unit has at least a cooling water supply device for supplying cooling water to the fuel cell and a cooling water supply flow path. As the cooling water supply device, for example, a cooling water tank, a pump, or the like can be used.
The cooling water discharge unit has a cooling water discharge flow path for discharging the cooling water from the fuel cell.

膜劣化診断セルは、前記膜電極接合体を有する。すなわち、膜電極接合体は燃料電池に用いられるものと同様のものを用いる。
膜劣化診断セルは、前記燃料電池の前記冷却水排出部の冷却水出口で前記燃料電池に当接されている。
膜劣化診断セルは、さらに当該膜劣化診断セルの内部に前記燃料電池の前記冷却水出口から接続される膜劣化診断セル用冷却水流路を有する。
電解質膜は高温ほど、あるいは低湿度ほど劣化が加速する。このため、電解質膜劣化は、酸化剤ガス(Air等)入口部(=低湿度部)及び/又は燃料電池の冷却水出口(=高温部)で起こりやすい。
したがって、膜劣化診断セルを燃料電池の冷却水出口に隣接させて燃料電池内の高温部と同じ温度にし、膜劣化診断セルに酸化剤ガス(Air等)、燃料ガス(Hガス)等を分流して流すことで酸化剤ガス入口部と同じ湿度とすることで、燃料電池内で膜劣化が起こる環境に近づけることができる。
一方、膜劣化診断セルは、ガス拡散層(GDL)のない構成であってもよい。
電解質膜が劣化すると分解物としてフッ素イオン、及び硫酸イオン等が生成する。これらのイオンを電解質膜から抽出するには液水に溶解させる必要がある。しかし、通常の燃料電池の構成(GDL/触媒層/電解質膜/触媒層/GDL)で発電して発生した水に溶解したイオンを抽出しようとすると、GDLのマイクロポーラス層(MPL)で上記分解物がトラップされてしまう。このため、膜劣化診断の精度を向上させる観点から、膜劣化診断セルの構成は、GDLのないMEA(触媒層/電解質膜/触媒層)にしてもよい。なお、GDLがないと膜劣化診断セルの発電が困難なため、冷却水を膜劣化診断セルのMEAに直接流せる構成とすることで、分解物を抽出することができる。
The membrane deterioration diagnosis cell has the membrane electrode assembly. That is, the membrane electrode assembly used is the same as that used for the fuel cell.
The membrane deterioration diagnosis cell is in contact with the fuel cell at the cooling water outlet of the cooling water discharge portion of the fuel cell.
The membrane deterioration diagnosis cell further has a cooling water flow path for the membrane deterioration diagnosis cell connected from the cooling water outlet of the fuel cell inside the membrane deterioration diagnosis cell.
Deterioration of the electrolyte membrane accelerates as the temperature rises or the humidity decreases. Therefore, the deterioration of the electrolyte membrane is likely to occur at the inlet portion (= low humidity portion) of the oxidant gas (Air or the like) and / or the cooling water outlet (= high temperature portion) of the fuel cell.
Therefore, the film degradation diagnosis cells adjacent to the coolant outlet of the fuel cell to the same temperature as the high temperature portion in the fuel cell, an oxidant gas to the membrane deterioration diagnostic cell (Air, etc.), the fuel gas (H 2 gas) or the like By splitting and flowing the fuel to the same humidity as the oxidant gas inlet, it is possible to approach an environment in which film deterioration occurs in the fuel cell.
On the other hand, the membrane deterioration diagnosis cell may have a configuration without a gas diffusion layer (GDL).
When the electrolyte membrane deteriorates, fluorine ions, sulfate ions and the like are generated as decomposition products. In order to extract these ions from the electrolyte membrane, it is necessary to dissolve them in liquid water. However, when an attempt is made to extract ions dissolved in water generated by power generation in a normal fuel cell configuration (GDL / catalyst layer / electrolyte membrane / catalyst layer / GDL), the above decomposition occurs in the microporous layer (MPL) of GDL. Things get trapped. Therefore, from the viewpoint of improving the accuracy of the membrane deterioration diagnosis, the structure of the membrane deterioration diagnosis cell may be MEA (catalyst layer / electrolyte membrane / catalyst layer) without GDL. Since it is difficult to generate electricity in the membrane deterioration diagnosis cell without GDL, the decomposition product can be extracted by configuring the cooling water to flow directly into the MEA of the membrane deterioration diagnosis cell.

膜劣化診断セル用酸化剤ガス流路は、前記酸化剤ガス供給部から前記膜劣化診断セルに前記酸化剤ガスを流入することができるものであれば特に限定されず、酸化剤ガス供給部の酸化剤ガス供給流路が分岐して分流できるものであってもよい。
膜劣化診断セル用燃料ガス流路は、前記燃料ガス供給部から前記膜劣化診断セルに前記燃料ガスを流入することができるものであれば特に限定されず、燃料ガス供給部の燃料ガス供給流路が分岐して分流できるものであってもよい。
前記膜劣化診断セル用酸化剤ガス流路及び前記膜劣化診断セル用燃料ガス流路の2つのガス流路は、当該ガス流路の上流に、前記膜劣化診断セル用冷却水流路と接続される切り替え弁を有する。
膜劣化診断セル用酸化剤ガス流路、膜劣化診断セル用燃料ガス流路により、膜劣化診断セルには酸化剤ガス(Air等)、燃料ガス(Hガス等)が分流して流れ、且つ、切り替え弁により、膜劣化診断セルには膜劣化診断セル用酸化剤ガス流路、膜劣化診断セル用燃料ガス流路から、燃料電池の冷却水出口から排出される冷却水も流せる構成であり、膜劣化診断時に膜劣化診断セルのMEA内に蓄積された劣化成分を煮出す(抽出する)ことができる。
The oxidant gas flow path for the film deterioration diagnosis cell is not particularly limited as long as the oxidant gas can flow from the oxidant gas supply unit into the film deterioration diagnosis cell, and the oxidant gas supply unit of the film deterioration diagnosis cell. The oxidant gas supply flow path may be branched and can be separated.
The fuel gas flow path for the membrane deterioration diagnosis cell is not particularly limited as long as the fuel gas can flow from the fuel gas supply unit into the membrane deterioration diagnosis cell, and the fuel gas supply flow of the fuel gas supply unit is not particularly limited. The road may be branched and can be divided.
The two gas flow paths of the oxidant gas flow path for the membrane deterioration diagnosis cell and the fuel gas flow path for the membrane deterioration diagnosis cell are connected to the cooling water flow path for the membrane deterioration diagnosis cell upstream of the gas flow path. Has a switching valve.
Membrane degradation diagnostic cell oxidizing gas channel, the fuel gas flow path for film degradation diagnostic cell, the oxidant gas to the membrane deterioration diagnostic cell (Air, etc.), a fuel gas (H 2 gas) flows diverted, In addition, the switching valve allows the cooling water discharged from the cooling water outlet of the fuel cell to flow from the oxidizing agent gas flow path for the film deterioration diagnosis cell and the fuel gas flow path for the film deterioration diagnosis cell to the film deterioration diagnosis cell. Yes, it is possible to boil (extract) the deteriorated components accumulated in the MEA of the membrane deterioration diagnosis cell at the time of membrane deterioration diagnosis.

イオン量測定装置は、膜劣化診断セルから排出された冷却水中のイオン量を測定することができるものであれば、特に限定されず、イオンクロマトグラフィー、伝導度計、及びpH計等が挙げられる。 The ion amount measuring device is not particularly limited as long as it can measure the amount of ions in the cooling water discharged from the membrane deterioration diagnosis cell, and examples thereof include ion chromatography, a conductivity meter, and a pH meter. ..

制御部は、燃料電池システムの制御を行う。
制御部は、燃料電池、酸化剤ガス供給装置、燃料ガス供給装置、冷却水供給装置、イオン量測定装置、切り替え弁及び燃料ガス排出弁等と入出力インターフェースを介して接続されていてもよい。
制御部は、切り替え弁の切り替え、蓄積イオン量の算出、電解質膜の寿命の推定、当該蓄積イオン量が閾値を超えるか否かの判断、酸化剤ガス供給流量の調整、燃料ガス供給流量の調整、及び、冷却水供給流量の調整等を行う。
The control unit controls the fuel cell system.
The control unit may be connected to a fuel cell, an oxidant gas supply device, a fuel gas supply device, a cooling water supply device, an ion amount measuring device, a switching valve, a fuel gas discharge valve, and the like via an input / output interface.
The control unit switches the switching valve, calculates the amount of stored ions, estimates the life of the electrolyte membrane, determines whether the amount of stored ions exceeds the threshold, adjusts the oxidant gas supply flow rate, and adjusts the fuel gas supply flow rate. , And adjust the cooling water supply flow rate.

電解質膜の寿命の推定は、所定の時間毎に測定したイオン量から算出された累積イオン量を、予め実験等で測定された蓄積イオン量と電解質膜の寿命との相関関係を示すデータ群と照らすことにより、電解質膜の寿命を推定してもよい。電解質膜の寿命を推定することにより、燃料電池の交換の要否等を判断することができる。 The life of the electrolyte membrane is estimated by using the cumulative ion amount calculated from the ion amount measured at predetermined time intervals as a data group showing the correlation between the accumulated ion amount measured in advance by experiments and the like and the life of the electrolyte membrane. The life of the electrolyte membrane may be estimated by illuminating. By estimating the life of the electrolyte membrane, it is possible to determine whether or not the fuel cell needs to be replaced.

図2は、硫酸イオン量と電解質膜の寿命との関係の一例を示す図である。例えば、図2に示すようなデータ群を予め制御部に備えていてもよい。 FIG. 2 is a diagram showing an example of the relationship between the amount of sulfate ions and the life of the electrolyte membrane. For example, the control unit may be provided with a data group as shown in FIG. 2 in advance.

制御部は、物理的には、例えば、CPU(中央演算処理装置)等の演算処理装置と、CPUで処理される制御プログラム及び制御データ等を記憶するROM(リードオンリーメモリー)、並びに、主として制御処理のための各種作業領域として使用されるRAM(ランダムアクセスメモリー)等の記憶装置と、入出力インターフェースとを有するものである。 The control unit physically includes, for example, an arithmetic processing unit such as a CPU (central processing unit), a ROM (read-only memory) that stores a control program processed by the CPU, control data, and the like, and mainly controls. It has a storage device such as a RAM (random access memory) used as various work areas for processing, and an input / output interface.

図3は、本開示において用いられる制御部が実行する制御の一例を示すフローチャートである。なお、本開示は、必ずしも本典型例のみに限定されるものではない。 FIG. 3 is a flowchart showing an example of control executed by the control unit used in the present disclosure. The present disclosure is not necessarily limited to this typical example.

(1)燃料電池の通常運転モードから膜劣化診断モードへの切り替え
制御部は、前記燃料電池の通常運転時には前記ガス流路にガスを流す(通常運転モード)。
通常運転時は、膜劣化診断セルには分流した酸化剤ガス及び燃料ガスを流し、温度は燃料電池の冷却水出口温度にしておいてもよい。
また、制御部は、前記燃料電池の前記電解質膜の劣化診断時には、前記切り替え弁により弁の切り替えを行い、前記ガス流路に冷却水を流す(膜劣化診断モード)。
膜劣化診断時には、ガス流路の弁を切り替え、膜劣化診断セルに燃料電池の冷却水出口からの冷却水を流し、冷却水中のイオン量の測定精度を向上させる観点から、例えば、80℃以上、好ましくは90℃以上の高温で燃料電池を運転してもよい。
通常運転モードから膜劣化診断モードへの切り替えのタイミングは特に限定されず、燃料電池の始動時から所定の時間経過後に行ってもよいし、燃料電池の始動時に行ってもよく適宜設定することができる。
(1) Switching from the normal operation mode of the fuel cell to the membrane deterioration diagnosis mode The control unit flows gas through the gas flow path during the normal operation of the fuel cell (normal operation mode).
During normal operation, the divided oxidant gas and fuel gas may flow through the membrane deterioration diagnosis cell, and the temperature may be set to the cooling water outlet temperature of the fuel cell.
Further, at the time of diagnosing the deterioration of the electrolyte membrane of the fuel cell, the control unit switches the valve by the switching valve and flows the cooling water through the gas flow path (membrane deterioration diagnosis mode).
At the time of film deterioration diagnosis, from the viewpoint of switching the valve of the gas flow path and flowing the cooling water from the cooling water outlet of the fuel cell to the film deterioration diagnosis cell to improve the measurement accuracy of the ion amount in the cooling water, for example, 80 ° C. or higher. The fuel cell may be operated at a high temperature of 90 ° C. or higher, preferably 90 ° C. or higher.
The timing of switching from the normal operation mode to the membrane deterioration diagnosis mode is not particularly limited, and may be performed after a predetermined time has elapsed from the start of the fuel cell, or may be performed at the start of the fuel cell. can.

(2)蓄積イオン量の算出
制御部は、前記電解質膜の劣化診断開始から所定の時間毎に、前記イオン量測定装置により、前記膜劣化診断セルから排出された前記冷却水中のイオン量を測定し、蓄積イオン量を算出する。
冷却水中のイオン量の測定方法は特に限定されず、例えば、従来公知のイオンクロマトグラフィー、伝導度計、及びpH計等のイオン量測定装置を燃料電池システム内に設置し、オン量測定装置を用いて当該イオン量を測定してもよい。
冷却水中のイオン量の測定は、具体的には、測定精度を向上させる観点から、燃料電池の冷却水出口の温度が、例えば、80℃以上、好ましくは90℃以上となるように燃料電池を発電させ、燃料電池の冷却水出口から排出された冷却水を膜劣化診断セルに、例えば、10分以上、好ましくは60分以上流し、膜劣化診断セルから排出された煮だし水を回収して、当該煮だし水中のイオン量を測定してもよい。
劣化診断モードの開始からの初回のイオン量の測定のタイミングは特に限定されず、劣化診断モードの開始時から所定の時間経過後(例えば10分後、好ましくは60分後)に行ってもよいし、劣化診断モードの開始時に行ってもよく適宜設定することができる。
また、イオン量を測定した後、次のイオン量を測定するまでの時間間隔は特に限定されず、適宜設定することができ、例えば10分後であってもよく、60分後であってもよい。
蓄積イオン量は、劣化診断開始から所定の時間毎に測定された冷却水中のイオン量の累積値である。
(2) Calculation of Accumulated Ion Amount The control unit measures the amount of ions in the cooling water discharged from the membrane deterioration diagnosis cell by the ion amount measuring device at predetermined time intervals from the start of the deterioration diagnosis of the electrolyte membrane. Then, the amount of accumulated ions is calculated.
The method for measuring the amount of ions in the cooling water is not particularly limited. For example, an ion amount measuring device such as a conventionally known ion chromatography, conductivity meter, and pH meter is installed in the fuel cell system, and the on amount measuring device is installed. You may use it to measure the amount of the ion.
Specifically, the measurement of the amount of ions in the cooling water is carried out so that the temperature of the cooling water outlet of the fuel cell is, for example, 80 ° C. or higher, preferably 90 ° C. or higher, from the viewpoint of improving the measurement accuracy. The cooling water discharged from the cooling water outlet of the fuel cell to generate power is allowed to flow into the membrane deterioration diagnosis cell for, for example, 10 minutes or more, preferably 60 minutes or more, and the boiled water discharged from the membrane deterioration diagnosis cell is collected. , The amount of ions in the boiled water may be measured.
The timing of the first measurement of the amount of ions from the start of the deterioration diagnosis mode is not particularly limited, and may be performed after a predetermined time has elapsed from the start of the deterioration diagnosis mode (for example, 10 minutes later, preferably 60 minutes later). However, it may be performed at the start of the deterioration diagnosis mode and can be set as appropriate.
Further, the time interval from the measurement of the ion amount to the measurement of the next ion amount is not particularly limited and can be appropriately set. For example, it may be 10 minutes later or 60 minutes later. good.
The accumulated ion amount is a cumulative value of the ion amount in the cooling water measured at predetermined time intervals from the start of the deterioration diagnosis.

(3)電解質膜の寿命の推定
制御部は、前記算出された蓄積イオン量を、予め測定された蓄積イオン量と電解質膜の寿命との相関関係を示すデータ群と照らして、電解質膜の寿命を推定する。
(3) Estimating the life of the electrolyte membrane The control unit compares the calculated amount of stored ions with the data group showing the correlation between the amount of stored ions measured in advance and the life of the electrolyte membrane, and the life of the electrolyte membrane. To estimate.

(4)推定された電解質膜の寿命が次回の膜劣化診断までの期間以上であるか否かの判断
制御部は、推定された電解質膜の寿命が次回の膜劣化診断までの期間以上であるか否か判断してもよい。そして、制御部は、推定された電解質膜の寿命が次回の膜劣化診断までの期間未満であると判断した場合は、燃料電池の交換が必要と判断する。
算出された蓄積イオン量の閾値は、予め実験等で蓄積イオン量と電解質膜の寿命との相関関係を示すデータ群を用意しそのデータ群から燃料電池の性能等により適宜設定することができる。
(4) Judgment of whether or not the estimated life of the electrolyte membrane is longer than the period until the next membrane deterioration diagnosis The control unit determines whether the estimated life of the electrolyte membrane is longer than the period until the next membrane deterioration diagnosis. You may judge whether or not. Then, when the control unit determines that the estimated life of the electrolyte membrane is less than the period until the next membrane deterioration diagnosis, it determines that the fuel cell needs to be replaced.
The calculated threshold value of the stored ion amount can be appropriately set from the data group by preparing a data group showing the correlation between the stored ion amount and the life of the electrolyte membrane in advance in an experiment or the like, depending on the performance of the fuel cell or the like.

(5)推定した電解質膜の寿命が次回の膜劣化診断までの期間の2倍以上であるか否かの判断
一方、制御部は、推定された電解質膜の寿命が次回の膜劣化診断までの期間以上であると判断した場合は、制御を終了するか、又は、推定した電解質膜の寿命が次回の膜劣化診断までの期間の2倍以上であるか否か判断してもよい。
制御部は、推定した電解質膜の寿命が次回の膜劣化診断までの期間の2倍以上であると判断した場合は、算出された蓄積イオン量を記憶して制御を終了し、当該蓄積イオン量を次回の膜劣化診断時に算出する蓄積イオン量に積算してもよい。
一方、制御部は、推定した電解質膜の寿命が次回の膜劣化診断までの期間の2倍未満であると判断した場合は、燃料電池の運転温度を下げるように出力制限等の制御変更をし、且つ、算出された蓄積イオン量を記憶して制御を終了し、当該蓄積イオン量を次回の膜劣化診断時に算出する蓄積イオン量に積算してもよい。
出力制限の方法は、特に限定されず、制御部が燃料ガス供給部及び酸化剤ガス供給部等に信号を送ることでこれらのガスの供給流量を調整すること等により燃料電池の出力を制限してもよい。
(5) Judgment whether the estimated life of the electrolyte membrane is more than twice the period until the next membrane deterioration diagnosis On the other hand, the control unit determines whether the estimated life of the electrolyte membrane is until the next membrane deterioration diagnosis. If it is determined that the period is longer than that, the control may be terminated, or it may be determined whether or not the estimated lifetime of the electrolyte membrane is twice or more the period until the next membrane deterioration diagnosis.
When the control unit determines that the estimated lifetime of the electrolyte membrane is more than twice the period until the next membrane deterioration diagnosis, it stores the calculated accumulated ion amount, ends the control, and terminates the control, and the accumulated ion amount. May be integrated into the amount of accumulated ions calculated at the next membrane deterioration diagnosis.
On the other hand, if the control unit determines that the estimated life of the electrolyte membrane is less than twice the period until the next membrane deterioration diagnosis, it changes the control such as output limitation so as to lower the operating temperature of the fuel cell. Moreover, the calculated accumulated ion amount may be stored and the control may be terminated, and the accumulated ion amount may be integrated into the accumulated ion amount calculated at the next membrane deterioration diagnosis.
The method of limiting the output is not particularly limited, and the output of the fuel cell is limited by adjusting the supply flow rate of these gases by sending a signal from the control unit to the fuel gas supply unit, the oxidant gas supply unit, and the like. You may.

なお、制御部の一回目の膜劣化診断の終了後、2回目以降の膜劣化診断を行う場合の開始時期は、特に限定されず、一回目の膜劣化診断の終了後間断なく連続して行ってもよいし、一定の時間、間隔をあけて行ってもよい。 The start time of the second and subsequent membrane deterioration diagnoses after the completion of the first membrane deterioration diagnosis of the control unit is not particularly limited, and is continuously performed after the completion of the first membrane deterioration diagnosis. It may be performed at regular intervals for a certain period of time.

Claims (1)

酸化剤極触媒層と、燃料極触媒層と、前記酸化剤極触媒層と前記燃料極触媒層との間に配置される電解質膜とを有する膜電極接合体を少なくとも有する燃料電池と、
前記燃料電池に酸化剤ガスを供給する酸化剤ガス供給部と、
前記燃料電池に燃料ガスを供給する燃料ガス供給部と、
前記燃料電池に冷却水を供給する冷却水供給部と、
前記燃料電池から前記冷却水を排出する冷却水排出部と、
前記膜電極接合体を有する膜劣化診断セルと、
前記酸化剤ガス供給部から前記膜劣化診断セルに前記酸化剤ガスを流入する膜劣化診断セル用酸化剤ガス流路と、
前記燃料ガス供給部から前記膜劣化診断セルに前記燃料ガスを流入する膜劣化診断セル用燃料ガス流路と、
イオン量測定装置と、
制御部と、を備え、
前記膜劣化診断セルは、前記燃料電池の前記冷却水排出部の冷却水出口で前記燃料電池に当接され、
前記膜劣化診断セルは、さらに当該膜劣化診断セルの内部に前記燃料電池の前記冷却水出口から接続される膜劣化診断セル用冷却水流路を有し、
前記膜劣化診断セル用酸化剤ガス流路及び前記膜劣化診断セル用燃料ガス流路の2つのガス流路は、当該ガス流路の上流に、前記膜劣化診断セル用冷却水流路と接続される切り替え弁を有し、
前記制御部は、前記燃料電池の通常運転時には前記ガス流路にガスを流し、前記燃料電池の前記電解質膜の劣化診断時には、前記切り替え弁により弁の切り替えを行い、前記ガス流路に冷却水を流し、
前記制御部は、前記電解質膜の劣化診断開始から所定の時間毎に、前記イオン量測定装置により、前記膜劣化診断セルから排出された前記冷却水中のイオン量を測定し、蓄積イオン量を算出し、
前記制御部は、前記算出された蓄積イオン量を、予め測定された蓄積イオン量と電解質膜の寿命との相関関係を示すデータ群と照らして、電解質膜の寿命を推定することを特徴とする燃料電池システム。
A fuel cell having at least a membrane electrode assembly having an oxidant electrode catalyst layer, a fuel electrode catalyst layer, and an electrolyte membrane arranged between the oxidant electrode catalyst layer and the fuel electrode catalyst layer.
An oxidant gas supply unit that supplies the oxidant gas to the fuel cell,
A fuel gas supply unit that supplies fuel gas to the fuel cell and
A cooling water supply unit that supplies cooling water to the fuel cell,
A cooling water discharge unit that discharges the cooling water from the fuel cell,
A membrane deterioration diagnostic cell having the membrane electrode assembly and
An oxidant gas flow path for a membrane deterioration diagnosis cell in which the oxidant gas flows from the oxidant gas supply unit into the membrane deterioration diagnosis cell,
A fuel gas flow path for a membrane deterioration diagnosis cell in which the fuel gas flows from the fuel gas supply unit into the membrane deterioration diagnosis cell, and a fuel gas flow path for the membrane deterioration diagnosis cell.
Ion amount measuring device and
With a control unit
The membrane deterioration diagnosis cell is brought into contact with the fuel cell at the cooling water outlet of the cooling water discharge portion of the fuel cell.
The membrane deterioration diagnosis cell further has a cooling water flow path for the membrane deterioration diagnosis cell connected from the cooling water outlet of the fuel cell inside the membrane deterioration diagnosis cell.
The two gas flow paths of the oxidant gas flow path for the membrane deterioration diagnosis cell and the fuel gas flow path for the membrane deterioration diagnosis cell are connected to the cooling water flow path for the membrane deterioration diagnosis cell upstream of the gas flow path. Has a switching valve
The control unit flows gas through the gas flow path during normal operation of the fuel cell, switches the valve by the switching valve at the time of diagnosing deterioration of the electrolyte membrane of the fuel cell, and cools water in the gas flow path. Shed,
The control unit measures the amount of ions in the cooling water discharged from the membrane deterioration diagnosis cell by the ion amount measuring device at predetermined time intervals from the start of the deterioration diagnosis of the electrolyte membrane, and calculates the accumulated ion amount. death,
The control unit estimates the life of the electrolyte membrane by comparing the calculated amount of stored ions with a data group showing the correlation between the amount of stored ions measured in advance and the life of the electrolyte membrane. Fuel cell system.
JP2020023156A 2020-02-14 2020-02-14 Fuel cell system Pending JP2021128867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020023156A JP2021128867A (en) 2020-02-14 2020-02-14 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023156A JP2021128867A (en) 2020-02-14 2020-02-14 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2021128867A true JP2021128867A (en) 2021-09-02

Family

ID=77488864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020023156A Pending JP2021128867A (en) 2020-02-14 2020-02-14 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2021128867A (en)

Similar Documents

Publication Publication Date Title
CN102347499B (en) Diagnosis and remediation of low anode hydrogen partial pressure in pem fuel cell system
JP4633354B2 (en) How to stop the fuel cell
CN101262068B (en) Online detection of stack crossover rate for adaptive hydrogen bleed strategy
CN101609899B (en) Startup reliability using HFR measurement
CN109565064B (en) Fuel cell system and control method of fuel cell system
US10020525B2 (en) Method and system for diagnosing state of fuel cell stack
US20100151287A1 (en) Adaptive anode bleed strategy
JPH0927336A (en) Fuel cell stack diagnostic method
CN101957434A (en) When low-power operation, use low performance cells to detect the method for improving reliability
JP2006351396A (en) Fuel cell system
JP2009170229A (en) Manufacturing method of fuel cell, fuel cell system, and the fuel cell
JP2021128867A (en) Fuel cell system
JP7211400B2 (en) fuel cell system
KR20220124104A (en) Fuel cell system
JP2021174671A (en) Fuel cell system
JP4143375B2 (en) How to start a fuel cell
JP5923956B2 (en) Fuel cell system
JP7435507B2 (en) fuel cell system
CN101820069A (en) Used bleed trigger monitor in the fuel cell system
KR20150117728A (en) Method for controlling fuel cell stack
JP2011204559A (en) Fuel cell system
JP5172488B2 (en) Fuel cell system
JP5508633B2 (en) Fuel cell abnormality detection device, fuel cell device, and fuel cell abnormality detection method
JP2021170483A (en) Fuel cell system
JP2022170069A (en) fuel cell system