JP2021128853A - Battery charge state estimation device - Google Patents

Battery charge state estimation device Download PDF

Info

Publication number
JP2021128853A
JP2021128853A JP2020022364A JP2020022364A JP2021128853A JP 2021128853 A JP2021128853 A JP 2021128853A JP 2020022364 A JP2020022364 A JP 2020022364A JP 2020022364 A JP2020022364 A JP 2020022364A JP 2021128853 A JP2021128853 A JP 2021128853A
Authority
JP
Japan
Prior art keywords
battery
soc
expansion
charge
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020022364A
Other languages
Japanese (ja)
Other versions
JP7327195B2 (en
Inventor
大 栗田
Masaru Kurita
大 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2020022364A priority Critical patent/JP7327195B2/en
Publication of JP2021128853A publication Critical patent/JP2021128853A/en
Application granted granted Critical
Publication of JP7327195B2 publication Critical patent/JP7327195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a battery charge state estimation device capable of estimating the charge state with less error.SOLUTION: The battery charge state estimation device includes a current sensor 35 for detecting a charge/discharge current in a battery in which a plurality of battery cells are stacked and arranged and the plurality of battery cells are electrically connected, a microcomputer 31, and a strain gauge 33 for detecting an expansion/contraction state in a stacking direction in the plurality of battery cells. The microcomputer 31 estimates SOC of the battery by integrating the charge/discharge current detected by the current sensor 35. The microcomputer 31 corrects the SOC of the battery based on the change in the expansion/contraction state by the strain gauge 33.SELECTED DRAWING: Figure 1

Description

本発明は、電池の充電状態推定装置に関するものである。 The present invention relates to a battery charge state estimation device.

電流センサで検出した充放電電流を積分することにより電池の充電状態を推定することが行われている(例えば特許文献1)。 The charging state of a battery is estimated by integrating the charge / discharge current detected by the current sensor (for example, Patent Document 1).

特開2019−144039号公報Japanese Unexamined Patent Publication No. 2019-144039

ところが、図7に示すごとく横軸に時間をとり、縦軸にSOC(充電率:state of charge)をとった場合に、L10で示す充放電電流を積分することにより推定したSOCは、例えば高稼働かつ満充電を待たずに充電を繰り返すと(継ぎ足し充電を繰り返し使用する場合)、L11で示す真のSOCと、L10で示す推定したSOCとの差ΔL10が大きくなっていく。つまり、電流センサの電流測定誤差がそのままSOCの誤差ΔL10となり、時間の経過に伴ったSOCの誤差ΔL10も大きくなっていく。 However, when time is taken on the horizontal axis and SOC (state of charge) is taken on the vertical axis as shown in FIG. 7, the SOC estimated by integrating the charge / discharge current shown in L10 is, for example, high. When charging is repeated without waiting for operation and full charge (when replenishment charging is repeatedly used), the difference ΔL10 between the true SOC indicated by L11 and the estimated SOC indicated by L10 becomes large. That is, the current measurement error of the current sensor becomes the SOC error ΔL10 as it is, and the SOC error ΔL10 also increases with the passage of time.

本発明の目的は、充電状態を誤差が少なく推定することができる電池の充電状態推定装置を提供することにある。 An object of the present invention is to provide a battery charge state estimation device capable of estimating a charge state with less error.

上記課題を解決するための電池の充電状態推定装置は、複数個の二次電池を積層して配置し前記複数個の二次電池を電気的に接続した電池における充放電電流を検出する電流センサと、前記電流センサで検出した充放電電流を積分することにより電池の充電状態を推定する充電状態推定手段と、前記複数個の二次電池における積層方向での膨張収縮状態を検出する膨張収縮状態検出手段と、前記膨張収縮状態検出手段による前記膨張収縮状態の変化に基づいて前記充電状態推定手段による電池の充電状態を補正する補正手段と、を備えることを要旨とする。 The battery charge state estimation device for solving the above problems is a current sensor that detects the charge / discharge current in a battery in which a plurality of secondary batteries are stacked and arranged and the plurality of secondary batteries are electrically connected. A charging state estimating means that estimates the charging state of the battery by integrating the charge / discharge current detected by the current sensor, and an expansion / contraction state that detects the expansion / contraction state of the plurality of secondary batteries in the stacking direction. The gist is that the detection means and the correction means for correcting the charge state of the battery by the charge state estimation means based on the change in the expansion / contraction state by the expansion / contraction state detection means are provided.

これによれば、複数個の二次電池が積層して配置され、複数個の二次電池を電気的に接続した電池における充放電電流が電流センサにより算出され、充電状態推定手段により、電流センサで検出した充放電電流を積分することにより電池の充電状態が推定される。膨張収縮状態検出手段により、複数個の二次電池における積層方向での膨張収縮状態が検出されて、補正手段により、膨張収縮状態の変化に基づいて充電状態推定手段による電池の充電状態が補正される。よって、充電状態を誤差が少なく推定することができる。 According to this, a plurality of secondary batteries are stacked and arranged, and the charge / discharge current in the battery in which the plurality of secondary batteries are electrically connected is calculated by the current sensor, and the current sensor is calculated by the charging state estimation means. The charge state of the battery is estimated by integrating the charge / discharge current detected in. The expansion / contraction state detecting means detects the expansion / contraction state of a plurality of secondary batteries in the stacking direction, and the correction means corrects the charging state of the batteries by the charging state estimating means based on the change in the expansion / contraction state. NS. Therefore, the charging state can be estimated with less error.

また、電池の充電状態推定装置において、前記複数個の二次電池は、一対の端板間に挟持されており、前記膨張収縮状態検出手段は、前記一対の端板を繋ぐ連結部材に加わる歪みを検出する歪みゲージであるとよい。 Further, in the battery charge state estimation device, the plurality of secondary batteries are sandwiched between a pair of end plates, and the expansion / contraction state detecting means applies strain to a connecting member connecting the pair of end plates. It should be a strain gauge that detects.

本発明によれば、充電状態を誤差が少なく推定することができる。 According to the present invention, the charging state can be estimated with less error.

実施形態における電池システムの電気的構成図。The electrical block diagram of the battery system in embodiment. (a)は電池パックの平面図、(b)は電池パックの正面図、(c)は電池パックの右側面図。(A) is a plan view of the battery pack, (b) is a front view of the battery pack, and (c) is a right side view of the battery pack. 電池セルの斜視図。Perspective view of the battery cell. SOCと電池体積との関係を示す特性図。A characteristic diagram showing the relationship between SOC and battery volume. 作用を説明するためのフローチャート。A flowchart for explaining the action. 実施形態におけるSOCの推移を示すタイムチャート。A time chart showing the transition of SOC in the embodiment. 課題を説明するためのSOCの推移を示すタイムチャート。A time chart showing the transition of SOC for explaining the problem.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1に示す電池システム9においては、電池パック10と、複数の負荷20,21と、マイコン31とを備える。本電池システム9は電動式フォークリフトに設けられ、電池パック10により走行モータ等を駆動することができる。
Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings.
The battery system 9 shown in FIG. 1 includes a battery pack 10, a plurality of loads 20, 21 and a microcomputer 31. The battery system 9 is provided in an electric forklift, and a traveling motor or the like can be driven by the battery pack 10.

電池パック10は、図2(a),(b),(c)に示すように、複数個の電池セル11を積層して配置し、複数個の電池セル11を電気的に接続して構成されている。電池パック10(電池セル11)としてリチウムイオン二次電池を用いることができる。 As shown in FIGS. 2A, 2B, and 2C, the battery pack 10 is configured by stacking and arranging a plurality of battery cells 11 and electrically connecting the plurality of battery cells 11. Has been done. A lithium ion secondary battery can be used as the battery pack 10 (battery cell 11).

詳しくは、二次電池である電池セル11は、図3に示すように、本体部12と、正負の電極13を有する。
本体部12は、箱形をなし、図2(a)に示す平面視において長方形の上面及び下面を有し、図2(b)に示す正面視において長方形の正面及び背面を有し、図2(c)に示す側面視において長方形の左右の側面を有する。本体部12の上面において、正負の電極13が離間して配置されている。各電池セル11の本体部12は電池の充放電に伴い膨張収縮する。
Specifically, the battery cell 11, which is a secondary battery, has a main body portion 12 and positive and negative electrodes 13 as shown in FIG.
The main body 12 has a box shape and has a rectangular upper surface and a lower surface in the plan view shown in FIG. 2 (a), and has a rectangular front surface and a back surface in the front view shown in FIG. 2 (b). It has left and right rectangular sides in the side view shown in (c). Positive and negative electrodes 13 are arranged apart from each other on the upper surface of the main body 12. The main body 12 of each battery cell 11 expands and contracts as the battery is charged and discharged.

電池セル11は複数重ね合わせて配置され、複数の電池セル11は、隣接する電池セル11同士の電極13が導電体により電気的な結線状態として直列接続されている。
積層して配置される複数個の電池セル11は、積層方向において端板14,15に挟み込まれている。端板14,15は、図2(b)に示すように、正面視において長方形状をなし、電池セル11の本体部12よりも大きな寸法を有する。長方形状の端板14,15における四隅にはそれぞれ通しボルト16が設けられている。通しボルト16は、ナット17とともに用いられる。通しボルト16が端板14,15を貫通している。通しボルト16の頭部16aが端板15の外側面に位置し、ナット17が端板14の外側面において通しボルト16のねじ部16bに螺入されている。
A plurality of battery cells 11 are arranged so as to be superposed, and the plurality of battery cells 11 are connected in series with electrodes 13 of adjacent battery cells 11 in an electrically connected state by a conductor.
A plurality of battery cells 11 arranged in a stacked manner are sandwiched between the end plates 14 and 15 in the stacking direction. As shown in FIG. 2B, the end plates 14 and 15 have a rectangular shape when viewed from the front, and have a larger dimension than the main body 12 of the battery cell 11. Through bolts 16 are provided at the four corners of the rectangular end plates 14 and 15, respectively. The through bolt 16 is used together with the nut 17. The through bolt 16 penetrates the end plates 14 and 15. The head portion 16a of the through bolt 16 is located on the outer surface of the end plate 15, and the nut 17 is screwed into the threaded portion 16b of the through bolt 16 on the outer surface of the end plate 14.

通しボルト16により端板14と端板15との間の距離が一定に保持された状態で端板14と端板15との間に、積層された複数の電池セル11が圧縮固定された状態で挟持されている。 A state in which a plurality of stacked battery cells 11 are compressed and fixed between the end plate 14 and the end plate 15 while the distance between the end plate 14 and the end plate 15 is kept constant by the through bolt 16. It is sandwiched between.

図1に示すように、電池パック10の負極は接地され、正極に負荷20、負荷21等が並列接続されている。そして、電池パック10から負荷20、負荷21等に電力が供給される。 As shown in FIG. 1, the negative electrode of the battery pack 10 is grounded, and the load 20, the load 21, and the like are connected in parallel to the positive electrode. Then, electric power is supplied from the battery pack 10 to the load 20, the load 21, and the like.

図1に示すように、充電ステーションにおいて電池パック10の正極に対し充電器25を接続することができる。そして、フォークリフトを充電ステーションまで走行し、フォークリフトに搭載した電池パック10を充電器25を用いて充電することができる。 As shown in FIG. 1, the charger 25 can be connected to the positive electrode of the battery pack 10 at the charging station. Then, the forklift can travel to the charging station, and the battery pack 10 mounted on the forklift can be charged using the charger 25.

図1に示すように、フォークリフトにはマイコン31、メモリ32、歪みゲージ33、SOC表示器34、電流センサ35が搭載されている。マイコン31にメモリ32、歪みゲージ33、SOC表示器34、電流センサ35が接続されている。 As shown in FIG. 1, the forklift is equipped with a microcomputer 31, a memory 32, a strain gauge 33, an SOC display 34, and a current sensor 35. A memory 32, a strain gauge 33, an SOC display 34, and a current sensor 35 are connected to the microcomputer 31.

本実施形態では、マイコン31と歪みゲージ33と電流センサ35により電池の充電状態推定装置30が構成されており、電流センサ35及び歪みゲージ33を用いてマイコン31で電池の充電状態としてのSOCを推定してメモリ32に保存するとともにSOC表示器34に表示するようになっている。 In the present embodiment, the battery charge state estimation device 30 is configured by the microcomputer 31, the strain gauge 33, and the current sensor 35, and the microcomputer 31 uses the current sensor 35 and the strain gauge 33 to determine the SOC as the battery charge state. It is estimated and stored in the memory 32 and displayed on the SOC display 34.

電流センサ35により、複数個の電池セル11を積層して配置し複数個の電池セル11を電気的に接続した電池における充放電電流を検出することができる。
マイコン31により、電流センサ35で検出した充放電電流を積分することにより電池の充電状態であるSOCを推定することができる。
The current sensor 35 can detect the charge / discharge current in a battery in which a plurality of battery cells 11 are stacked and arranged and the plurality of battery cells 11 are electrically connected.
The SOC of the battery can be estimated by integrating the charge / discharge current detected by the current sensor 35 with the microcomputer 31.

歪みゲージ33は、図2(a),(c)に示すように、通しボルト16に貼り付けられており、一対の端板14,15間において一定の距離を保持する通しボルト16に加わる歪みを検出する。これにより、複数個の電池セル11における積層方向での膨張収縮状態、即ち、膨張収縮量を検出するが可能となる。具体的には、マイコン31は、歪みゲージ33から、電池セルの体積膨張に伴う通しボルト16の伸縮量を検出する。詳しくは、歪みゲージ33で検出した通しボルト16に加わる歪み量に対応する応力を取り込むことができる。 As shown in FIGS. 2 (a) and 2 (c), the strain gauge 33 is attached to the through bolt 16, and the strain applied to the through bolt 16 that holds a constant distance between the pair of end plates 14 and 15. Is detected. This makes it possible to detect the expansion / contraction state of the plurality of battery cells 11 in the stacking direction, that is, the expansion / contraction amount. Specifically, the microcomputer 31 detects the amount of expansion and contraction of the through bolt 16 due to the volume expansion of the battery cell from the strain gauge 33. Specifically, the stress corresponding to the amount of strain applied to the through bolt 16 detected by the strain gauge 33 can be taken in.

マイコン31により、膨張収縮状態の変化に基づいて電池の充電状態であるSOCを補正することができるようになっている。
図4は、電池セルの電池体積に関する特性を示しており、横軸にSOCをとり、縦軸に電池体積をとっている。この図4において、特性線L20として、SOCが55%よりも小さいと電池体積が一定であり、SOCが55%よりも大きいと電池体積が徐々に大きくなる。つまり、電池セル11の充放電に伴い膨張収縮し、その度合いである電池体積はSOCに対応しており、SOCが55%付近において電池体積の傾きが急変する。
The microcomputer 31 can correct the SOC, which is the charged state of the battery, based on the change in the expansion / contraction state.
FIG. 4 shows the characteristics of the battery cell with respect to the battery volume, with SOC on the horizontal axis and battery volume on the vertical axis. In FIG. 4, as the characteristic line L20, when the SOC is smaller than 55%, the battery volume is constant, and when the SOC is larger than 55%, the battery volume gradually increases. That is, the battery cell expands and contracts as the battery cell 11 is charged and discharged, and the battery volume, which is the degree of expansion and contraction, corresponds to the SOC, and the inclination of the battery volume suddenly changes when the SOC is around 55%.

次に、作用について説明する。
マイコン31は、電流センサ35で検出した充放電電流を積分することにより電池の充電状態を推定する。具体的には、次の式(1)にてSOCを推定する。Xは電池システム9のキーオンによる起動時のSOC(残量SOC)であり、Yは電池の全容量であり、Iは検出した充放電電流であり、tは時間である。
Next, the action will be described.
The microcomputer 31 estimates the state of charge of the battery by integrating the charge / discharge current detected by the current sensor 35. Specifically, the SOC is estimated by the following equation (1). X is the SOC (remaining amount SOC) at startup by key-on of the battery system 9, Y is the total capacity of the battery, I is the detected charge / discharge current, and t is the time.

Figure 2021128853
・・・(1)
マイコン31は、図5に示すSOCリセット処理ルーチンを実行する。この処理ルーチンは一定時間ごとに起動される。
Figure 2021128853
... (1)
The microcomputer 31 executes the SOC reset processing routine shown in FIG. This processing routine is started at regular intervals.

図6は、SOCの推移を示す。図6において横軸に時間をとり、縦軸にSOCをとっている。図6において、L1で本実施形態における推定したSOCを示す。また、図6において、L11で真のSOCを示す。さらに、図6において、L10で従来方式における推定したSOC(図7のL10と同じもの)を示す。 FIG. 6 shows the transition of SOC. In FIG. 6, the horizontal axis represents time and the vertical axis represents SOC. In FIG. 6, L1 shows the estimated SOC in this embodiment. Also, in FIG. 6, L11 shows the true SOC. Further, in FIG. 6, the SOC estimated in the conventional method (same as L10 in FIG. 7) is shown in L10.

図6においてL1,L10で示すように高稼働かつ満充電(SOC=100%)を待たずに充電が繰り返される。即ち、継ぎ足し充電が繰り返し使用される。その結果、SOCが100%未満かつ例えば10%以上の範囲で、充放電が繰り返されることになる。その結果、電流センサ35の電流測定誤差がそのままSOCの誤差ΔL10(図7参照)に反映される。つまり、図7において、L11で示す真のSOCとL10で示す従来のSOCとの差ΔL10が時間の経過とともに大きくなっていく。 As shown by L1 and L10 in FIG. 6, charging is repeated without waiting for high operation and full charge (SOC = 100%). That is, replenishment charging is repeatedly used. As a result, charging and discharging are repeated in the range where the SOC is less than 100% and, for example, 10% or more. As a result, the current measurement error of the current sensor 35 is directly reflected in the SOC error ΔL10 (see FIG. 7). That is, in FIG. 7, the difference ΔL10 between the true SOC shown by L11 and the conventional SOC shown by L10 increases with the passage of time.

マイコン31は、図5のステップS100において歪みゲージ33から、通しボルト16に加わる歪み量に対応する応力を取り込む。そして、マイコン31は、ステップS101において、通しボルト16に加わる歪み量に対応する応力の傾きが急変したか否か判定する。 The microcomputer 31 takes in the stress corresponding to the amount of strain applied to the through bolt 16 from the strain gauge 33 in step S100 of FIG. Then, in step S101, the microcomputer 31 determines whether or not the inclination of the stress corresponding to the amount of strain applied to the through bolt 16 has suddenly changed.

図4において充電時のSOCが上昇する方向においてSOCが0〜55%付近までは電池体積(歪み)に変化がない。つまり、傾きがほぼゼロであり、傾きは急変していない。同様に、図4において放電時のSOCが下降する方向においてSOCが100〜55%付近までは電池体積(歪み)の変化量はほぼ一定である。つまり、SOC55%以上では単調増加であって、傾きはほぼ同じままであり、傾きは急変していない。図4において電池体積(歪み)の変化である傾きが急変するのはSOCが55%付近のときである。したがって、図5のステップS101では歪み量に対応する応力の傾きが急変したか否かを判定している。 In FIG. 4, there is no change in the battery volume (distortion) from 0 to 55% in the direction in which the SOC increases during charging. That is, the inclination is almost zero, and the inclination does not change suddenly. Similarly, in FIG. 4, the amount of change in the battery volume (strain) is almost constant until the SOC is around 100 to 55% in the direction in which the SOC decreases during discharge. That is, when the SOC is 55% or more, the increase is monotonous, the slope remains almost the same, and the slope does not change suddenly. In FIG. 4, the inclination, which is a change in the battery volume (strain), suddenly changes when the SOC is around 55%. Therefore, in step S101 of FIG. 5, it is determined whether or not the slope of the stress corresponding to the amount of strain suddenly changes.

図5においてマイコン31は、歪み量に対応する応力の傾きの急変を検出すると、ステップS102においてSOCを55%に上書きすることにより補正する。
図6で説明すると、放電時にSOCが下降する方向で変化する場合には、図6のt1のタイミングでSOCを55%に強制的に上書きする。同様に、図6のt3のタイミングでSOCを55%に強制的に上書きする。
In FIG. 5, when the microcomputer 31 detects a sudden change in the slope of the stress corresponding to the amount of strain, it corrects it by overwriting the SOC to 55% in step S102.
Explaining with reference to FIG. 6, when the SOC changes in the downward direction during discharging, the SOC is forcibly overwritten to 55% at the timing of t1 in FIG. Similarly, the SOC is forcibly overwritten to 55% at the timing of t3 in FIG.

また、充電時にSOCが上昇する方向で変化する場合には、図6のt2のタイミングでSOCを55%に強制的に上書きする。同様に、図6のt4のタイミングでSOCを55%に強制的に上書きする。 If the SOC changes in the increasing direction during charging, the SOC is forcibly overwritten to 55% at the timing of t2 in FIG. Similarly, the SOC is forcibly overwritten to 55% at the timing of t4 in FIG.

なお、図5においてステップS101からステップS102に移行する際に、ステップS101において歪み量に対応する応力の傾きが急変したことが複数回連続するとステップS102に移行してSOCを55%に上書きするようにしてもよい。 In addition, when shifting from step S101 to step S102 in FIG. 5, if the sudden change in the stress gradient corresponding to the strain amount occurs a plurality of times in step S101, the process shifts to step S102 and the SOC is overwritten with 55%. It may be.

このように、電池パックは本実施形態では、充放電に伴い膨張・収縮する電池である。加えて、図4に示すように、横軸にSOC、縦軸に電池体積としてグラフ化したときに体積膨張・収縮の傾きが急変する箇所が一点以上ある電池である。 As described above, in the present embodiment, the battery pack is a battery that expands and contracts with charging and discharging. In addition, as shown in FIG. 4, the battery has one or more points where the slope of volume expansion / contraction suddenly changes when graphed with SOC on the horizontal axis and battery volume on the vertical axis.

そして、制御の際に、電池の体積が急変するSOCを予め求めておき、体積急変を検出したらSOCリセットを実行する。具体的には、図4の特性を持つ電池では、体積急変を検出したらSOCを55%に上書きする。 Then, at the time of control, the SOC in which the volume of the battery suddenly changes is obtained in advance, and when the sudden change in volume is detected, the SOC reset is executed. Specifically, in the battery having the characteristics of FIG. 4, the SOC is overwritten with 55% when a sudden change in volume is detected.

上述したように、電池セル11を複数枚重ね合わせ、端板14,15で挟み込み、通しボルト16で圧縮固定する。通しボルト16には歪みゲージ33が取り付けられ、電池セル11の体積膨張に伴う通しボルト16の伸縮量を検出する。電池体積とSOCとの関係から歪みゲージ33で検出した通しボルト16にかかる応力とSOCとの関係性を予め求めておく。 As described above, a plurality of battery cells 11 are superposed, sandwiched between the end plates 14 and 15, and compressed and fixed by the through bolts 16. A strain gauge 33 is attached to the through bolt 16 to detect the amount of expansion and contraction of the through bolt 16 due to the volume expansion of the battery cell 11. From the relationship between the battery volume and the SOC, the relationship between the stress applied to the through bolt 16 detected by the strain gauge 33 and the SOC is obtained in advance.

従来、電流センサで検出した電流値を時間で積分(積算)しSOCの変動を算出するが、この方法のみでSOCを算出すると電流センサの検出誤差がそのままSOC誤差となる。また、時間が経過するほどSOC誤差が広がっていく。そこで、所定の充電シーケンスが完了したときにSOCを100%に上書きする方法やしばらく充放電せずに分極が落ち着いたタイミングでSOC−OCV曲線からSOCを上書きする方法を用いて電流センサ誤差によるSOC誤差をリセットする方法が取られる。 Conventionally, the current value detected by the current sensor is integrated (integrated) with time to calculate the SOC fluctuation, but if the SOC is calculated only by this method, the detection error of the current sensor becomes the SOC error as it is. In addition, the SOC error increases as time passes. Therefore, the SOC due to the current sensor error is used by using a method of overwriting the SOC to 100% when a predetermined charging sequence is completed or a method of overwriting the SOC from the SOC-OCV curve at the timing when the polarization is settled without charging / discharging for a while. The method of resetting the error is taken.

本実施形態では、所定の条件を満たしたときにSOCを上書きするSOCリセットを行う。
利用者(例えばフォークリフトの乗員)が高稼働かつ満充電を待たずに継ぎ足し充電を繰り返し使用するような場合、SOCリセットされず、電流センサ誤差が蓄積されSOC誤差が大きくなり続ける。また、SOC−OCV曲線からSOCを上書きする方法の場合、例えば常時車両走行する場合、電池を連続使用することとなり、電池を分極するタイミングがなくSOCの上書きができずに、電流センサ誤差が蓄積されSOC誤差が大きくなり続ける。
In the present embodiment, the SOC is reset to overwrite the SOC when a predetermined condition is satisfied.
When a user (for example, a forklift occupant) operates at high speed and repeatedly uses recharge without waiting for full charge, the SOC is not reset, current sensor error is accumulated, and the SOC error continues to increase. Further, in the case of the method of overwriting the SOC from the SOC-OCV curve, for example, when the vehicle is always running, the battery is continuously used, the battery cannot be polarized, the SOC cannot be overwritten, and the current sensor error is accumulated. And the SOC error continues to increase.

本実施形態では、SOCをリセットする機会を増やすことで、高稼働かつ継ぎ足し充電のような使い方でもSOCのリセットがされやすいようにし、電流センサ誤差が蓄積し続けることを抑制することができる。 In the present embodiment, by increasing the chances of resetting the SOC, it is possible to facilitate the reset of the SOC even in a usage such as high operation and recharge, and it is possible to suppress the continuous accumulation of the current sensor error.

つまり、従来のSOCリセット(完全充電時、分極落着き時)ができない状況でも、複雑な制御なしにSOCリセットが可能となる。また、電池パック1つにつき1つの歪みゲージ33を追加するだけの構成で電池の充電状態を真のSOCに近づけて推定することができる。 That is, even in a situation where the conventional SOC reset (when fully charged, when the polarization is settled) is not possible, the SOC can be reset without complicated control. In addition, the charge state of the battery can be estimated closer to the true SOC by adding only one strain gauge 33 for each battery pack.

上記実施形態によれば、以下のような効果を得ることができる。
(1)電池の充電状態推定装置30の構成として、複数個の二次電池としての電池セル11を積層して配置し複数個の電池セル11を電気的に接続した電池における充放電電流を検出する電流センサ35と、マイコン31と、複数個の電池セル11における積層方向での膨張収縮状態を検出する膨張収縮状態検出手段としての歪みゲージ33と、を備える。充電状態推定手段としてのマイコン31は、電流センサ35で検出した充放電電流を積分することにより電池の充電状態としてのSOCを推定する。補正手段としてのマイコン31は、歪みゲージ33による膨張収縮状態の変化に基づいて電池のSOCを補正する。よって、膨張収縮状態の変化に基づいて電池のSOCが補正され、SOCを誤差が少なく推定することができる。
According to the above embodiment, the following effects can be obtained.
(1) As a configuration of the battery charge state estimation device 30, the charge / discharge current in a battery in which a plurality of battery cells 11 as secondary batteries are stacked and arranged and the plurality of battery cells 11 are electrically connected is detected. The current sensor 35, the microcomputer 31, and the strain gauge 33 as the expansion / contraction state detecting means for detecting the expansion / contraction state in the stacking direction of the plurality of battery cells 11 are provided. The microcomputer 31 as the charging state estimating means estimates the SOC as the charging state of the battery by integrating the charge / discharge current detected by the current sensor 35. The microcomputer 31 as the correction means corrects the SOC of the battery based on the change in the expansion / contraction state by the strain gauge 33. Therefore, the SOC of the battery is corrected based on the change in the expansion / contraction state, and the SOC can be estimated with less error.

(2)複数個の電池セル11は、一対の端板14,15間に挟持されており、膨張収縮状態検出手段は、一対の端板14,15を繋ぐ連結部材としての通しボルト16に加わる歪みを検出する歪みゲージ33である。よって、容易に、積層して配置した複数個の電池セル11における積層方向での膨張収縮状態を検出することができる。 (2) A plurality of battery cells 11 are sandwiched between a pair of end plates 14 and 15, and an expansion / contraction state detecting means is added to a through bolt 16 as a connecting member connecting the pair of end plates 14 and 15. The strain gauge 33 for detecting distortion. Therefore, it is possible to easily detect the expansion / contraction state of the plurality of battery cells 11 arranged in a stacked manner in the stacking direction.

特に、電池体積の傾きが急変するところでSOCを上書きする方式を採用することにより、図4の特性線が電池の劣化によりシフトする場合にも正確にSOCを上書き(補正)することができる。よって、電池の劣化の影響を受けにくくすることができる。 In particular, by adopting a method of overwriting the SOC when the inclination of the battery volume suddenly changes, the SOC can be accurately overwritten (corrected) even when the characteristic line of FIG. 4 shifts due to deterioration of the battery. Therefore, it is possible to make it less susceptible to the deterioration of the battery.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
〇 図4ではSOCの変化に対し電池体積が急変する箇所は1箇所だけであったが、これに限らず電池体積が急変する箇所が複数あってもよく、傾きが急変する各箇所でSOCをリセットするようにしてもよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
〇 In Fig. 4, there was only one place where the battery volume suddenly changed in response to the change in SOC, but not limited to this, there may be multiple places where the battery volume suddenly changes, and the SOC is changed at each place where the inclination changes suddenly. You may want to reset it.

○ 電池システムは電動式フォークリフトに設けられ、電池パック10により走行モータ等を駆動する場合に適用したが、他にも、例えば電動乗用車に設けられ、電池パックにより走行モータ等を駆動する場合に適用してもよい。特に、ハイブリッド車における電池はSOCが100%未満かつ所定SOC以上の範囲で充放電を繰り返しており、上述した高稼働かつ満充電を待たずに継ぎ足し充電を繰り返し使用する場合と同様な課題があるが、この場合において、電池の膨張収縮状態の変化に基づいて電池の充電状態を補正することにより、充電状態を誤差が少なく推定することができる。 ○ The battery system is provided in an electric forklift and is applied when the traveling motor or the like is driven by the battery pack 10, but it is also applied when it is provided in an electric passenger car and the traveling motor or the like is driven by the battery pack. You may. In particular, a battery in a hybrid vehicle is repeatedly charged and discharged in a range where the SOC is less than 100% and a predetermined SOC or more, and has the same problem as the above-mentioned high operation and repeated recharging without waiting for full charge. However, in this case, by correcting the charging state of the battery based on the change in the expansion / contraction state of the battery, the charging state can be estimated with less error.

〇 電池システムは電動式車両に限るものではない。
○ 二次電池はリチウムイオン二次電池以外でもよく、二次電池の種類は問わない。
〇 SOCの上書きは、図5に示した処理以外のやり方でもよく、図4の関係が予め分かっている場合に電池体積の傾きが急変する点でSOCを上書き(補正)すればよい。
〇 Battery systems are not limited to electric vehicles.
○ The secondary battery may be other than a lithium ion secondary battery, and the type of secondary battery does not matter.
〇 The SOC may be overwritten by a method other than the processing shown in FIG. 5, and the SOC may be overwritten (corrected) at the point where the inclination of the battery volume suddenly changes when the relationship shown in FIG. 4 is known in advance.

〇 電池の充電状態として、上述した実施形態では満充電状態を基準に電池の残量の比率を表した状態変数であるSOC(充電率:state of charge)を用いたが、これに代わり、例えば、電池の充電状態として、放電深度DOD(depth of discharge:1−SOC)を用いてもよい。 〇 As the state of charge of the battery, in the above-described embodiment, SOC (state of charge), which is a state variable representing the ratio of the remaining amount of the battery based on the fully charged state, is used. , The depth of discharge (1-SOC) may be used as the charging state of the battery.

10…電池パック、11…電池セル(二次電池)、14…端板、15…端板、16…通しボルト(連結部材)、30…電池の充電状態推定装置、31…マイコン(充電状態推定手段、補正手段)、33…歪みゲージ(膨張収縮状態検出手段)、35…電流センサ。 10 ... Battery pack, 11 ... Battery cell (secondary battery), 14 ... End plate, 15 ... End plate, 16 ... Through bolt (connecting member), 30 ... Battery charge state estimation device, 31 ... Microcomputer (charge state estimation) Means, correction means), 33 ... strain gauge (expansion / contraction state detecting means), 35 ... current sensor.

Claims (2)

複数個の二次電池を積層して配置し前記複数個の二次電池を電気的に接続した電池における充放電電流を検出する電流センサと、
前記電流センサで検出した充放電電流を積分することにより電池の充電状態を推定する充電状態推定手段と、
前記複数個の二次電池における積層方向での膨張収縮状態を検出する膨張収縮状態検出手段と、
前記膨張収縮状態検出手段による前記膨張収縮状態の変化に基づいて前記充電状態推定手段による電池の充電状態を補正する補正手段と、
を備えることを特徴とする電池の充電状態推定装置。
A current sensor that detects the charge / discharge current in a battery in which a plurality of secondary batteries are stacked and arranged and the plurality of secondary batteries are electrically connected.
A charging state estimating means for estimating the charging state of the battery by integrating the charge / discharge current detected by the current sensor, and
An expansion / contraction state detecting means for detecting an expansion / contraction state in the stacking direction of the plurality of secondary batteries, and an expansion / contraction state detecting means.
A correction means for correcting the charging state of the battery by the charging state estimating means based on the change in the expansion / contraction state by the expansion / contraction state detecting means.
A battery charge state estimation device.
前記複数個の二次電池は、一対の端板間に挟持されており、
前記膨張収縮状態検出手段は、前記一対の端板を繋ぐ連結部材に加わる歪みを検出する歪みゲージである
ことを特徴とする請求項1に記載の電池の充電状態推定装置。
The plurality of secondary batteries are sandwiched between a pair of end plates, and the plurality of secondary batteries are sandwiched between a pair of end plates.
The battery charge state estimation device according to claim 1, wherein the expansion / contraction state detecting means is a strain gauge that detects a strain applied to a connecting member connecting the pair of end plates.
JP2020022364A 2020-02-13 2020-02-13 Battery state-of-charge estimator Active JP7327195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020022364A JP7327195B2 (en) 2020-02-13 2020-02-13 Battery state-of-charge estimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022364A JP7327195B2 (en) 2020-02-13 2020-02-13 Battery state-of-charge estimator

Publications (2)

Publication Number Publication Date
JP2021128853A true JP2021128853A (en) 2021-09-02
JP7327195B2 JP7327195B2 (en) 2023-08-16

Family

ID=77488874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022364A Active JP7327195B2 (en) 2020-02-13 2020-02-13 Battery state-of-charge estimator

Country Status (1)

Country Link
JP (1) JP7327195B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072677A (en) * 2011-09-27 2013-04-22 Primearth Ev Energy Co Ltd Charge condition estimation device of secondary battery
JP2015153696A (en) * 2014-02-18 2015-08-24 株式会社日本自動車部品総合研究所 Battery monitoring device and battery pack including battery monitoring device
JP2019144039A (en) * 2018-02-19 2019-08-29 旭化成株式会社 Method, device and system for estimating soc of nonaqueous lithium type power storage element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072677A (en) * 2011-09-27 2013-04-22 Primearth Ev Energy Co Ltd Charge condition estimation device of secondary battery
JP2015153696A (en) * 2014-02-18 2015-08-24 株式会社日本自動車部品総合研究所 Battery monitoring device and battery pack including battery monitoring device
JP2019144039A (en) * 2018-02-19 2019-08-29 旭化成株式会社 Method, device and system for estimating soc of nonaqueous lithium type power storage element

Also Published As

Publication number Publication date
JP7327195B2 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
US11285813B2 (en) Estimation device for estimating an SOC of an energy storage device, energy storage apparatus including estimation device for estimating an SOC of an energy storage device, and estimation method for estimating an SOC of an energy storage device
CN105958132B (en) Controller for secondary cell
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
US20210055355A1 (en) Method for monitoring the status of a plurality of battery cells in a battery pack
JP3964635B2 (en) Memory effect detection method and solution
JP4649101B2 (en) Secondary battery status detection device and status detection method
US8957636B2 (en) Vehicle battery-pack equalization system and vehicle battery-pack equalization method
US10950903B2 (en) Battery state estimation using electrode transient model
US8947051B2 (en) Storage capacity management system
US10935607B2 (en) Control device for secondary battery, control method of secondary battery, battery system, and motor-driven vehicle
US10381855B2 (en) Secondary battery system using temperature threshold in response to lithium ion concentrations
US20140336964A1 (en) Method for determining remaining lifetime
US10557891B2 (en) Battery system and control method thereof
US20090319108A1 (en) Electricity storage control apparatus and method of controlling eletricity storage
JP4866156B2 (en) Secondary battery charge state estimation device, charge state estimation method, and program
US6465988B2 (en) Charging/discharging control device and method for canceling memory effect in secondary battery
EP1164680A2 (en) Method for charging a battery pack including a plurality of battery units
JP6356633B2 (en) Secondary battery system
JP6648561B2 (en) Power system
JP7327195B2 (en) Battery state-of-charge estimator
JP3225812B2 (en) Battery status management device
JP6323311B2 (en) In-vehicle secondary battery capacity estimation device
JP2018085278A (en) Control system
JP2000261905A (en) Battery control method for generator type electric automobile
US20230097547A1 (en) Control device and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R151 Written notification of patent or utility model registration

Ref document number: 7327195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151