JP2021127655A - Method for evaluating natural ground using drilling energy - Google Patents

Method for evaluating natural ground using drilling energy Download PDF

Info

Publication number
JP2021127655A
JP2021127655A JP2020024230A JP2020024230A JP2021127655A JP 2021127655 A JP2021127655 A JP 2021127655A JP 2020024230 A JP2020024230 A JP 2020024230A JP 2020024230 A JP2020024230 A JP 2020024230A JP 2021127655 A JP2021127655 A JP 2021127655A
Authority
JP
Japan
Prior art keywords
drilling
energy
face
ground
drilling energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020024230A
Other languages
Japanese (ja)
Other versions
JP7393240B2 (en
Inventor
亮 若竹
Akira Wakatake
亮 若竹
一郎 関根
Ichiro Sekine
一郎 関根
英明 三上
Hideaki Mikami
英明 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2020024230A priority Critical patent/JP7393240B2/en
Publication of JP2021127655A publication Critical patent/JP2021127655A/en
Application granted granted Critical
Publication of JP7393240B2 publication Critical patent/JP7393240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

To accurately represent a boundary where the drilling energy changes rapidly when creating a 2-D contour map of a face or a 3-D contour map of the overall in bird's eye view using the drilling energy measured by the drill jumbo.SOLUTION: The present invention comprises a first step of arranging the drilling energy of a drilled part, extracting the part where the drilling energy suddenly changes, and determining a line as a boundary line 12 of a geological property when a sudden change part is continuous, a second step of dividing into areas for each area divided by the boundary line 12, a third step of dividing a target ground range by meshes of a predetermined shape and estimating the perforation energy estimated value of each mesh belonging to each area by the spatial data complementation processing method based only on the perforation energy measurement value in the area, a fourth step of creating a 2-D contour map of the face or a 3-D contour map of the natural ground based on the drilling energy value of each mesh.SELECTED DRAWING: Figure 7

Description

本発明は、山岳トンネルの掘削時にドリルジャンボによって計測された穿孔エネルギーを利用して切羽前方の地山を評価する方法に関する。 The present invention relates to a method of evaluating the ground in front of a face using the drilling energy measured by a drill jumbo when excavating a mountain tunnel.

従来より、山岳トンネルの掘削において、切羽の地山強度を事前に把握することは、発破の効率化やそれによる余掘の低減に繋がるだけでなく、予期せぬ地質変化による急激な内空の変状や切羽の崩壊を防ぐために重要である。そのため、従来からドリルによって1本若しくは複数本(2〜3本程度)の長尺削孔を行い、その削孔データ(穿孔エネルギー)などを用いて切羽前方の地山性状を予想することが行われてきた(以下、削孔検層という)。なお、前記長尺削孔の長さは概ね20〜40m程度とされる。 Conventionally, in the excavation of mountain tunnels, grasping the geological strength of the face in advance not only leads to the efficiency of blasting and the reduction of excess excavation due to it, but also to the sudden inland air due to unexpected geological changes. It is important to prevent deformation and collapse of the face. Therefore, conventionally, one or more long holes (about 2 to 3) are drilled with a drill, and the drilling data (drilling energy) is used to predict the ground properties in front of the face. It has been broken (hereinafter referred to as drilling logging). The length of the long hole is about 20 to 40 m.

例えば、下記特許文献1では、 油圧式パーカッションドリルで削孔し、削孔により得られた掘削深度と各深度における累積掘削時間、瞬間削孔速度、ピストン打撃エネルギ、給進力、トルク、送水圧の削孔データファイルを作成し、該ファイルをパーソナルコンピュータで一括処理して破壊エネルギを算出して単位孔長当りの平均破壊エネルギを算出し、確率・統計的手法により岩盤等級と破壊エネルギとの対応付けを行い、破壊エネルギによる岩盤評価を実施し、コンピュータによる画像処理を行い、破壊エネルギの分布状況を把握して切羽前方地質を予測することを特徴とする油圧ドリルによる削孔データを用いた岩盤評価及び切羽前方地質の予測方法が提案されている。 For example, in Patent Document 1 below, the drilling depth obtained by drilling with a hydraulic percussion drill, the cumulative drilling time at each depth, the instantaneous drilling speed, the piston striking energy, the feeding force, the torque, and the water supply pressure Create a drilling data file, process the file collectively with a personal computer to calculate the fracture energy, calculate the average fracture energy per unit hole length, and determine the rock grade and fracture energy by probabilistic and statistical methods. We used drilling data from a hydraulic drill, which is characterized by associating, performing rock mass evaluation using fracture energy, performing image processing with a computer, grasping the distribution of fracture energy, and predicting the geology in front of the face. A method for rock evaluation and prediction of geology in front of the face has been proposed.

しかしながら、切羽面に対して1〜3本程度の削孔データでは切羽前方の地山状況を詳細かつ正確に把握することは困難であった。そこで近年は、コンピューター制御のドリルジャンボによって、掘削時の削孔位置とともに、発破削孔やロックボルト削孔時の穿孔エネルギーを含む削孔データを自動的に取得し、これらの削孔データを処理・解析して切羽前方の地山性状を把握するシステムが開発されている。 However, it was difficult to grasp the ground condition in front of the face in detail and accurately with the drilling data of about 1 to 3 holes for the face. Therefore, in recent years, a computer-controlled drill jumbo automatically acquires drilling data including blasting drilling holes and drilling energy during rock bolt drilling as well as drilling positions during drilling, and processes these drilling data.・ A system has been developed to analyze and grasp the ground properties in front of the face.

例えば、下記特許文献2では、切羽近傍の画像データを取得する作業と、切羽周辺の地山の穿孔データを3次元的に取得する作業と、前記画像データに基づいて地質展開画像を作成する作業と、前記穿孔データに基づいて穿孔エネルギーのコンター図を作成する作業とを有し、前記地質展開画像および前記コンター図によりトンネル背面および切羽前方の地山状況を評価するトンネル周辺地山の評価方法が提案されている。 For example, in the following Patent Document 2, the work of acquiring image data in the vicinity of the face, the work of three-dimensionally acquiring the drilling data of the ground around the face, and the work of creating a geologically developed image based on the image data. And the work of creating a contour map of the drilling energy based on the drilling data, and an evaluation method of the ground around the tunnel for evaluating the ground condition on the back surface of the tunnel and the front of the face by the geological development image and the contour map. Has been proposed.

また、下記非特許文献1では、山岳トンネルの掘削に使用されるドリルジャンボの施工データ(発破孔・ロックボルト孔の穿孔エネルギー)を使用して、切羽およびその近傍の地山性状を定量的かつ詳細に3次元評価可能な地山評価システムが開示されている(図9参照)。 Further, in Non-Patent Document 1 below, the construction data of the drill jumbo used for excavation of a mountain tunnel (perforation energy of blasting hole / rock bolt hole) is used to quantitatively determine the ground properties of the face and its vicinity. A ground evaluation system capable of three-dimensional evaluation is disclosed in detail (see FIG. 9).

特公平11−174046号公報Special Fair 11-174046 Gazette 特開2017−201074号公報JP-A-2017-201074

山下雅之外2名、“ドリルジャンボの削孔データを使用した3次元地山評価システム(DRISS-3D)の開発”西松建設技報 VOL.41、インターネット<URL:https://www.nishimatsu.co.jp/solution/engineering.php>Masayuki Yamashita, 2 people, "Development of 3D ground evaluation system (DRISS-3D) using drill jumbo drilling data" Nishimatsu Construction Technical Report VOL.41, Internet <URL: https://www.nishimatsu. co.jp/solution/engineering.php >

前記特許文献2及び非特許文献1では、ドリルジャンボによって計測された穿孔エネルギーの数値が記憶装置に記憶されるとともに、これらの数値に基づき、切羽の2次元コンター図又は俯瞰した全体の3次元コンター図が作成されるようになっている。 In Patent Document 2 and Non-Patent Document 1, the numerical values of the drilling energy measured by the drill jumbo are stored in the storage device, and based on these numerical values, a two-dimensional contour diagram of the face or a bird's-eye view of the entire three-dimensional contour is obtained. Diagrams are being created.

この際、穿孔エネルギーの計測点は離散的に存在しているものであるため、前記コンター図を描くために地球統計学的手法(空間データ補完処理法)によって計測点以外の箇所の穿孔エネルギーを推測し前記コンター図を描いている。 At this time, since the measurement points of the perforation energy exist discretely, the perforation energy of the points other than the measurement points is determined by the geostatistical method (spatial data complementation processing method) in order to draw the contour diagram. I guess and draw the contour diagram.

前記空間データ補完処理法は、具体的には逆距離荷重平均法(IDW法)又はクリギング法が専ら用いられている。前者の逆距離荷重平均法は推定するポイントに近いほど平均化処理への影響が大きくなるというルールの下、距離の逆数を重みとした加重平均で推定値を求めるものであり、後者のクリギング法は距離が近いほど類似性が高いというルールの下、最尤法,最小二乗法等により推定誤差が最小となるように解析領域内の任意の地点における線形、不偏の空間補間値を推定するものである。 Specifically, the inverse distance load averaging method (IDW method) or the kriging method is exclusively used as the spatial data complementing processing method. The former inverse distance load averaging method obtains the estimated value by a weighted average weighted by the inverse of the distance under the rule that the closer to the estimation point, the greater the influence on the averaging process, and the latter crigging method. Under the rule that the closer the distance, the higher the similarity, the linear and unbiased spatial interpolation values are estimated at any point in the analysis area so that the estimation error is minimized by the maximum likelihood method, least squares method, etc. Is.

しかしながら、前記逆距離荷重平均法及びクリギング法は、対象の切羽全体のデータを用いて空間補完を行うため、地山性状の変化箇所の再現が困難であるという問題があった。すなわち、推定箇所の数値は全周方向の計測穿孔エネルギー値を用いることになるが、破砕帯や弱層が存在している場合、この境界線の内外では地質が全く異なることになるにも拘わらず、この境界線近傍の推定値を予測する際に境界線を越えた地層のデータを加味することになるため地質の急激に変化する境界線が曖昧となり表現され難いという問題があった。 However, since the reverse distance load averaging method and the kriging method perform spatial complementation using the data of the entire face of the target, there is a problem that it is difficult to reproduce the changed part of the ground property. In other words, the numerical value of the estimated location will use the measured drilling energy value in the entire circumference direction, but if there is a crush zone or a weak layer, the geology will be completely different inside and outside this boundary line. However, when predicting the estimated value near this boundary line, the data of the stratum beyond the boundary line is taken into consideration, so there is a problem that the boundary line where the geology changes rapidly becomes ambiguous and difficult to express.

そこで本発明の主たる課題は、ドリルジャンボによって計測された穿孔エネルギーを用いて切羽の2次元コンター図又は俯瞰した全体の3次元コンター図を作成するに当たって、穿孔エネルギーが急激に変化する境界をきっちりと表現できるようにした穿孔エネルギーによる地山評価方法を提案することにある。 Therefore, the main subject of the present invention is to accurately create a two-dimensional contour diagram of the face or a bird's-eye view of the entire three-dimensional contour diagram using the drilling energy measured by the drill jumbo. The purpose is to propose a ground evaluation method using drilling energy that can be expressed.

上記課題を解決するために請求項1に係る本発明として、ドリルジャンボによって切羽に対する装薬孔の穿孔時に、穿孔箇所とともに、穿孔エネルギーを自動的に計測し、これに基づいて切羽の2次元コンター図又は地山の3次元コンター図を作成して切羽前方の地山を評価するに当たって、
穿孔箇所の穿孔エネルギーを整理し、穿孔エネルギーが急変する箇所を抽出し、急変箇所が連続している場合にそのラインを地質性状の境界線と判断する第1手順と、
前記境界線によって分断された領域毎にエリア分けする第2手順と、
対象とする地山範囲を所定形状のメッシュで分割し、各エリアに属するメッシュの穿孔エネルギー推定値をそのエリア内の穿孔エネルギー測定値のみに基づいて空間データ補完処理法によって推定する第3手順と、
前記各メッシュの穿孔エネルギー値に基づいて切羽の2次元コンター図又は地山の3次元コンター図を作成する第4手順とからなることを特徴とする穿孔エネルギーによる地山評価方法が提供される。
In order to solve the above problem, as the present invention according to claim 1, when a charge hole is drilled in the face by a drill jumbo, the drilling energy is automatically measured together with the drilled portion, and the two-dimensional contour of the face is based on this. In creating a figure or a three-dimensional contour map of the ground and evaluating the ground in front of the face,
The first step of organizing the drilling energy of the drilled part, extracting the part where the drilling energy changes suddenly, and judging that line as the boundary line of geological properties when the sudden change part is continuous,
The second step of dividing the area into areas divided by the boundary line, and
The third procedure is to divide the target ground area by a mesh of a predetermined shape and estimate the perforation energy estimated value of the mesh belonging to each area by the spatial data complementation processing method based only on the perforation energy measurement value in the area. ,
Provided is a ground evaluation method using drilling energy, which comprises a fourth procedure of creating a two-dimensional contour diagram of a face or a three-dimensional contour diagram of a ground based on the drilling energy value of each mesh.

上記請求項1記載の発明では、先ず最初に穿孔箇所の穿孔エネルギーを整理し、穿孔エネルギーが急変する箇所を抽出し、急変箇所が連続している場合にそのラインを地質性状の境界線と判断する(第1手順)。地質性状の境界線が確認された場合は、次に前記境界線によって分断された領域毎にエリア分けし(第2手順)、次に対象とする地山範囲を所定形状のメッシュで分割し、各エリアに属する各メッシュの穿孔エネルギー推定値をそのエリア内の穿孔エネルギー測定値のみに基づいて空間データ補完処理法によって推定する(第3手順)。そして、前記各メッシュの穿孔エネルギー値に基づいて切羽の2次元コンター図又は地山の3次元コンター図を作成する(第4手順)。 In the invention according to claim 1, first, the drilling energy of the drilling portion is arranged, the portion where the drilling energy suddenly changes is extracted, and when the sudden change portion is continuous, the line is determined to be the boundary line of the geological property. (1st step). When the boundary line of geological properties is confirmed, then the area is divided into areas divided by the boundary line (second step), and then the target ground range is divided by a mesh of a predetermined shape. The perforation energy estimated value of each mesh belonging to each area is estimated by the spatial data complementation processing method based only on the perforation energy measurement value in the area (third step). Then, a two-dimensional contour diagram of the face or a three-dimensional contour diagram of the ground is created based on the drilling energy value of each mesh (fourth step).

従来は、切羽全体の穿孔エネルギー測定値を用いて任意箇所の穿孔エネルギーを空間データ補完処理法によって推定していたが、本発明ではまず最初に地質性状が急変する断層(境界線)が存在する場合は、この境界線によって分断された領域毎にエリア分けを行い、そして各エリアに属する各メッシュの穿孔エネルギー推定値をそのエリア内の穿孔エネルギー測定値のみに基づいて空間データ補完処理法によって推定することにより、当該メッシュを含むエリア以外の穿孔エネルギー測定値は空間データ補完処理法による参考データとはしないようにしている。すなわち、境界線によって分断された各領域は地質性状が大きく異なっているのであるが、従来はこの境界線を越えた領域の穿孔エネルギー測定値をも参考にして推定を行っていた。このような手法の場合は地質急変箇所の数値が緩和され地質の急激に変化する境界線が表現され難かったが、本方法の場合は基本的に同一ないし類似する地層が一つのエリアとして設定され、このエリア内の穿孔エネルギー測定値のみに基づいて空間データ補完処理法によって推定する。従って、境界線の内外近傍領域で大きく穿孔エネルギーの数値が異なるようになり、地質性状が急激に変化する境界をきっちりと表現できるようになる。 Conventionally, the perforation energy at an arbitrary location was estimated by the spatial data complementation processing method using the perforation energy measurement value of the entire face, but in the present invention, there is a fault (boundary line) in which the geological properties change suddenly. In that case, the area is divided into areas divided by this boundary line, and the perforation energy estimated value of each mesh belonging to each area is estimated by the spatial data complementation processing method based only on the perforation energy measurement value in the area. By doing so, the perforation energy measurement values other than the area including the mesh are not used as reference data by the spatial data complementation processing method. That is, the geological properties of each region divided by the boundary line are significantly different, but in the past, estimation was performed with reference to the perforation energy measurement values of the region beyond this boundary line. In the case of such a method, the numerical value of the sudden change in geology is relaxed and it is difficult to express the boundary line where the geology changes suddenly, but in the case of this method, basically the same or similar strata are set as one area. , Estimated by the spatial data complementation process based only on the perforation energy measurements in this area. Therefore, the numerical value of the drilling energy becomes significantly different in the region near the inside and outside of the boundary line, and the boundary where the geological properties change rapidly can be accurately expressed.

請求項2に係る本発明として、事前に、切羽から前方地山に対して複数本の削孔検層を行い、穿孔エネルギーの概略的3次元分布を得ておき、請求項1記載の方法によって切羽の2次元コンター図又は地山の3次元コンター図を得たならば、それに合わせて前記穿孔エネルギーの概略的3次元分布を上書し更新していくことを特徴とする穿孔エネルギーによる地山評価方法が提供される。 According to the second aspect of the present invention, a plurality of drilling layers are performed in advance from the face to the anterior ground to obtain a schematic three-dimensional distribution of drilling energy, and the method according to claim 1 is used. Once a two-dimensional contour diagram of the face or a three-dimensional contour diagram of the ground is obtained, the ground by the drilling energy is characterized by overwriting and updating the schematic three-dimensional distribution of the drilling energy accordingly. An evaluation method is provided.

上記請求項2記載の発明は、通常、山岳トンネルの掘削に当たっては、事前に、切羽から前方地山に対して複数本の削孔検層を行い、穿孔エネルギーの概略的3次元分布を得ておく。しかし、この穿孔エネルギーの概略的3次元分布はおおまかな地質予測には寄与するが、定量的に精度良く地山性状を評価するには至っていない。従って、1掘削サイクル毎に行われる装薬孔穿孔によって得られた穿孔エネルギーによって請求項1記載の方法によって切羽の2次元コンター図又は地山の3次元コンター図を得たならば、それに合わせて前記穿孔エネルギーの概略的3次元分布を上書し更新していくことによって、切羽前方の地山をより精度良く予測することが可能になる。 According to the second aspect of the present invention, usually, when excavating a mountain tunnel, a plurality of drilling loggings are performed from the face to the front ground in advance to obtain a schematic three-dimensional distribution of drilling energy. back. However, although this rough three-dimensional distribution of drilling energy contributes to rough geological prediction, it has not yet been possible to quantitatively and accurately evaluate geological properties. Therefore, if a two-dimensional contour diagram of the face or a three-dimensional contour diagram of the ground is obtained by the method according to claim 1 by the drilling energy obtained by drilling the charge hole performed in each drilling cycle, the contour map of the face is obtained accordingly. By overwriting and updating the schematic three-dimensional distribution of the drilling energy, it becomes possible to predict the ground in front of the face more accurately.

請求項3に係る本発明として、ドリルジャンボによるロックボルト穿孔に対して、請求項1記載の第1手順から第4手順までを適用し、穿孔エネルギーの3次元コンター図を得ることを特徴とする穿孔エネルギーによる地山評価方法が提供される。 The present invention according to claim 3 is characterized in that the first to fourth procedures according to claim 1 are applied to drilling a lock bolt by a drill jumbo to obtain a three-dimensional contour diagram of drilling energy. A method for evaluating the ground using drilling energy is provided.

上記請求項3記載の発明は、ドリルジャンボによるロックボルト穿孔に対して、請求項1記載の第1手順から第4手順までを適用することにより穿孔エネルギーの3次元コンター図を得るようにしたものである。 The invention according to claim 3 is such that a three-dimensional contour diagram of drilling energy is obtained by applying the first to fourth steps according to claim 1 to the rock bolt drilling by a drill jumbo. Is.

以上詳説のとおり本発明によれば、ドリルジャンボによって計測された穿孔エネルギーを用いて切羽の2次元コンター図又は俯瞰した全体の3次元コンター図を作成するに当たって、穿孔エネルギーが急激に変化する境界をきっちりと表現できるようになる。 As described in detail above, according to the present invention, when creating a two-dimensional contour diagram of a face or a bird's-eye view of the entire three-dimensional contour diagram using the drilling energy measured by a drill jumbo, a boundary where the drilling energy changes abruptly is defined. You will be able to express it exactly.

ドリルジャンボによる掘削要領を示すトンネル側面図である。It is a side view of the tunnel which shows the excavation procedure by a drill jumbo. 削孔検層の箇所を示す切羽の斜視図である。It is a perspective view of the face which shows the part of the drilling logging. 削孔検層によって得られた穿孔エネルギーの概略的3次元分布図の例である。This is an example of a schematic three-dimensional distribution map of drilling energy obtained by drilling logging. 切羽の装薬孔穿孔パターン例を示す切羽正面図である。It is a front view of the face which shows the example of the charge hole perforation pattern of the face. 穿孔エネルギー急変箇所が存在した場合のエリア分け例を示す切羽正面図である。It is a front view of the face which shows the example of area division when the drilling energy sudden change part exists. 地山をメッシュで分割した切羽正面図である。It is a front view of a face in which the ground is divided by a mesh. 穿孔エネルギーの切羽コンター図である。It is a face contour diagram of the drilling energy. 概略的3次元分布図の上書・更新要領を示す図である。It is a figure which shows the procedure of overwriting / updating a schematic three-dimensional distribution map. 非特許文献1による地山評価システムの穿孔エネルギーの3次元表示図である。It is a three-dimensional display diagram of the drilling energy of the ground evaluation system according to Non-Patent Document 1.

以下、本発明の実施の形態について図面を参照しながら詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

山岳トンネルの掘削は、図1に示されるように、切羽近傍にドリルジャンボ5、吹付け機6、ホイールローダ等のトンネル施工用重機が配置され、例えば上半及び下半の一括併行作業により掘削を行うミニベンチ工法により上半及び下半のそれぞれにおいてロックボルト削孔および装薬孔・装薬を併行して行った後、上半及び下半を一気に切り崩し、その後ズリ出し→当り取り→一次吹付け→鋼製支保工の建込み→二次吹付け→ロックボルト打設などの手順にて掘削が1サイクル毎に行われる。また、切羽後方ではセントルが配置され、覆工体の構築、インバート施工が行われる。 For excavation of mountain tunnels, as shown in Fig. 1, heavy equipment for tunnel construction such as drill jumbo 5, spraying machine 6, and wheel loader is placed near the face, and excavation is performed by, for example, the upper half and the lower half of the excavation. After performing rock bolt drilling and charging holes / charging in parallel in each of the upper and lower halves by the mini-bench method, the upper and lower halves are cut down at once, and then slipping out → hitting → primary blowing Excavation is carried out every cycle in the order of attachment → construction of steel support work → secondary spraying → rock bolt placement. In addition, a center is placed behind the face, and the lining body is constructed and inverted.

〔削孔検層〕
掘削に当たっては、断層破砕帯の存在や局部的な脆弱部の存在を事前に予測し対策を行うことが重要となる。そのために、切羽前方の地山性状をおおまかに予測するために前記ドリルジャンボ5の削岩機を用いて削孔検層を概ね30〜50mの長さ範囲に亘って行い、削孔の長手方向に沿って穿孔エネルギーを連続的に計測する。削孔検層の箇所は概ね1又は複数箇所とされる。例えば、図2に示されるように、トンネル切羽の両側部と天端の3箇所で長尺削孔10、10…によって削孔検層を行う。
[Drilling logging]
When excavating, it is important to predict the existence of fault crush zones and the existence of local fragile areas in advance and take countermeasures. Therefore, in order to roughly predict the ground properties in front of the face, drilling logging is performed over a length range of approximately 30 to 50 m using the drill jumbo 5 rock drill, and the drilling direction is longitudinal. The drilling energy is continuously measured along. There is approximately one or more locations for drilling logging. For example, as shown in FIG. 2, drilling logging is performed by long drilling holes 10, 10, ... At three locations, both sides of the tunnel face and the top end.

近年のドリルジャンボは、コンピューター制御によるものが多く普及しており、削孔時に穿孔位置とともに、穿孔エネルギー、穿孔方向の角度データなどの掘削データを自動的に入手できるようになっている。これらの掘削データは、通信基地局2に無線通信された後、通信ケーブル3または無線によって現場事務所H内の管理コンピューター1に伝送され、記憶装置に記憶される。もちろん、現場事務所だけでなく、モデム7、7を介したインターネットや専用回線等の遠隔通信手段により、本社等に設置された管理コンピューター8に掘削データを送信することも可能である。 In recent years, many drill jumbo are controlled by a computer, and drilling data such as drilling energy and angle data in the drilling direction can be automatically obtained at the time of drilling as well as the drilling position. These excavation data are wirelessly communicated to the communication base station 2, then transmitted to the management computer 1 in the field office H by the communication cable 3 or wirelessly, and stored in the storage device. Of course, it is also possible to transmit the excavation data to the management computer 8 installed at the head office or the like by a remote communication means such as the Internet or a dedicated line via the modems 7 and 7 as well as the field office.

前記穿孔エネルギーは、単位体積あたりの岩盤を穿孔するのに要したエネルギー量を示し、より硬質な岩盤ほど多くの穿孔エネルギーが必要となることになるため、これに指標に地山の性状を知ることが可能になる。この穿孔エネルギーは下式(1)によって求められる。 The drilling energy indicates the amount of energy required to drill the rock mass per unit volume, and the harder the rock mass, the more drilling energy is required. Therefore, the properties of the ground are known as an index. Will be possible. This drilling energy is obtained by the following equation (1).

Figure 2021127655
ここに、Ed:穿孔エネルギー(J/cm3)
Ep:打撃エネルギー(J)<下式(2)による>
Cp:打撃数(bpm)
K :損失係数
Vd:穿孔速度(cm/min)
S :孔断面積(cm2)
Figure 2021127655
Here, Ed: drilling energy (J / cm 3 )
Ep: Strike energy (J) <according to the following formula (2)>
Cp: At bat (bpm)
K: Loss coefficient Vd: Drilling speed (cm / min)
S: Hole cross-sectional area (cm 2 )

Figure 2021127655
ここに、Ep:打撃エネルギー(J)
A :ピストン受圧面積(cm2)
L :ピストンストローク(m)
Pp:打撃圧(kgf/cm2)
削孔検層によって得た3箇所の穿孔エネルギーを用い、空間データ補完処理法によってそれらの中間領域の穿孔エネルギーを推測することにより穿孔エネルギーの概略的3次元分布を得るようにする。図3はその概略的3次元分布図の例を示したものである。
Figure 2021127655
Here, Ep: Strike energy (J)
A: Piston pressure receiving area (cm 2 )
L: Piston stroke (m)
Pp: Strike pressure (kgf / cm 2 )
Using the drilling energies of the three locations obtained by drilling logging, the drilling energy of those intermediate regions is estimated by the spatial data complementation processing method so that a rough three-dimensional distribution of the drilling energy can be obtained. FIG. 3 shows an example of the schematic three-dimensional distribution map.

〔装薬孔穿孔時の穿孔エネルギー計測〕
1サイクル毎の掘進作業は、先ずドリルジャンボ5によって切羽に装薬孔11の穿孔を行う。
[Measurement of drilling energy when drilling charge holes]
In the excavation work for each cycle, first, a charge hole 11 is drilled in the face by a drill jumbo 5.

装薬孔11の形成は、一般的には先ず芯抜き発破により自由面を形成させ、次に芯抜きによって形成された自由面に対して払い発破をかけ、順次周囲を拡大していく発破パターンによって穿孔が行われる。この装薬孔11の穿孔時に、穿孔位置とともに、穿孔エネルギーを含む穿孔データをコンピュータ制御によって自動的に計測する。そして、この穿孔エネルギー計測値に基づいて、切羽の2次元コンター図又は地山の3次元コンター図を作成して切羽前方の地山を評価する。以下、図面に基づいて更に詳述する。 Generally, the charge hole 11 is formed by first forming a free surface by blasting the core, then blasting the free surface formed by the blasting, and gradually expanding the periphery. Blasting is done by. When the charge hole 11 is drilled, the drilling position and the drilling data including the drilling energy are automatically measured by computer control. Then, based on the perforation energy measurement value, a two-dimensional contour diagram of the face or a three-dimensional contour diagram of the ground is created to evaluate the ground in front of the face. Hereinafter, the details will be further described based on the drawings.

<第1手順>
切羽Sに形成した穿孔箇所のすべての穿孔エネルギーを整理し、穿孔エネルギーが急変する箇所を抽出する。そして、急変箇所が連続している場合にそのラインを地質性状が急変している境界線と判断する。例えば、図5に示される切羽の装薬孔穿孔パターン図において、各穿孔位置での穿孔エネルギーを比較して穿孔エネルギーが急変している箇所があるかどうかを検討した結果、急変箇所が連続しているラインが想定される考えられるならば、そのラインを地質性状の境界線12として設定する。
<First step>
All the drilling energies of the drilling points formed on the face S are arranged, and the points where the drilling energy suddenly changes are extracted. Then, when the sudden change points are continuous, the line is judged to be the boundary line where the geological properties are suddenly changed. For example, in the charge hole perforation pattern diagram of the face shown in FIG. 5, as a result of comparing the perforation energies at each perforation position and examining whether or not there is a sudden change in the perforation energy, the sudden changes are continuous. If a line is assumed, that line is set as the boundary line 12 of the geological property.

なお、図示例では境界線12が一つの例を示したが、2本以上の境界線が存在する場合も当然に想定される。また、境界線12は直線の例を示したが境界線が中間で屈曲したり屈曲線であったり、湾曲線であったりする場合も当然に想定される。 In the illustrated example, one boundary line 12 is shown, but it is naturally assumed that there are two or more boundary lines. Further, although the boundary line 12 shows an example of a straight line, it is naturally assumed that the boundary line is bent in the middle, is a bending line, or is a curved line.

<第2手順>
次に、同図5に示されるように、境界線12によって分断された領域毎にエリア分けを行う。例えば、図示されるように、境界線12よりも左下側の領域をエリアAとして設定し、境界線よりも右上側の領域をエリアBとして設定する。
<Second step>
Next, as shown in FIG. 5, the area is divided into each area divided by the boundary line 12. For example, as shown in the figure, the area on the lower left side of the boundary line 12 is set as the area A, and the area on the upper right side of the boundary line is set as the area B.

なお、図示例ではエリアを2分割した例を示したが、3分割以上に分割される場合も当然に想定される。 In the illustrated example, an example in which the area is divided into two is shown, but it is naturally assumed that the area is divided into three or more.

<第3手順>
図6に示されるように、穿孔を行った地山範囲を対象として、図示の例では切羽全体を対象として、所定形状のメッシュで分割する。図示例では基本的に正方形状のメッシュで分割を行っている。この際、切羽の外縁と重なるメッシュについては三角形状または多角形状のメッシュとする。また、前記境界線12と交差するメッシュについては、境界線を一辺として含む三角形状または多角形状のメッシュとするのが望ましい。そして、各エリアA,Bに属する各メッシュの穿孔エネルギー値を推定するに当たって、該当するエリア内の穿孔エネルギー測定値のみに基づいて空間データ補完処理法によって推定を行う。前記空間データ補完処理法としては、前述した逆距離荷重平均法(IDW法)又はクリギング法を用いるのが望ましい。
<Third step>
As shown in FIG. 6, the perforated ground area is targeted, and in the illustrated example, the entire face is targeted and divided by a mesh having a predetermined shape. In the illustrated example, the division is basically performed by a square mesh. At this time, the mesh that overlaps with the outer edge of the face is a triangular or polygonal mesh. Further, it is desirable that the mesh intersecting the boundary line 12 is a triangular or polygonal mesh including the boundary line as one side. Then, in estimating the perforation energy value of each mesh belonging to each of the areas A and B, the estimation is performed by the spatial data complementation processing method based only on the perforation energy measurement value in the corresponding area. As the spatial data complementing processing method, it is desirable to use the inverse distance load averaging method (IDW method) or the kriging method described above.

なお、メッシュの内部に穿孔エネルギー測定値が存在する場合はその測定値をもって穿孔エネルギー値とし、メッシュ内部に穿孔エネルギー測定値が存在しない場合に、近傍の穿孔エネルギー測定値のみに基づいて空間データ補完処理法によって推定を行うようにすると処理時間を短縮できるようになる。 If there is a drilling energy measurement value inside the mesh, that measurement value is used as the drilling energy value, and if there is no drilling energy measurement value inside the mesh, spatial data is complemented based only on the nearby drilling energy measurement value. The processing time can be shortened if the estimation is performed by the processing method.

<第4手順>
すべてのメッシュについて、穿孔エネルギー値を設定し終えたならば、これら各メッシュの穿孔エネルギー値に基づいて切羽の2次元コンター図(又は地山の3次元コンター図)を作成する。例えば、図7に示されるように、切羽Sについて穿孔エネルギー値の2次元コンター図を作成する。
<4th step>
After setting the drilling energy values for all the meshes, a two-dimensional contour diagram of the face (or a three-dimensional contour diagram of the ground) is created based on the drilling energy values of each mesh. For example, as shown in FIG. 7, a two-dimensional contour diagram of the drilling energy value is created for the face S.

<第5手順(追加手順)>
以上の要領によって、ドリルジャンボの穿孔結果に基づいて、切羽面全体に対して高精度の穿孔エネルギーコンター図を得たならば、図8(A)(B)に示されるように、前記削孔検層によって得た穿孔エネルギーの概略的3次元分布を順次上書し更新していく。
<Fifth procedure (additional procedure)>
If a highly accurate drilling energy contour diagram is obtained for the entire face surface based on the drilling result of the drill jumbo according to the above procedure, the drilling is performed as shown in FIGS. 8 (A) and 8 (B). The schematic three-dimensional distribution of drilling energy obtained by logging will be overwritten and updated in sequence.

この際、前記切羽の穿孔エネルギーコンター図のデータは、装薬孔11の穿孔を行った長さ分に対するものであるが、削孔検層によって得た穿孔エネルギーの概略的3次元分布によってトンネル長手方向に沿う穿孔エネルギーの傾向は把握できるため、前記切羽の穿孔エネルギーコンター図と前記穿孔エネルギーの概略的3次元分布とに基づいて、切羽前方の地山を詳細かつ正確に予測することが可能となる。 At this time, the data of the perforation energy contour diagram of the face is for the length of perforation of the charge hole 11, but the tunnel length is based on the approximate three-dimensional distribution of the perforation energy obtained by the perforation inspection layer. Since the tendency of the drilling energy along the direction can be grasped, it is possible to predict the ground in front of the face in detail and accurately based on the drilling energy contour diagram of the face and the schematic three-dimensional distribution of the drilling energy. Become.

〔他の形態例〕
(1)上記形態例において、前記境界線12については1本の線として定義したが、任意の幅を有する帯状の線として定義することも可能である。
(2)上記形態例では、装薬孔11について穿孔エネルギーを計測したが、ロックボルト穿孔時にも同様に穿孔エネルギーを計測し、この結果を3次元コンター図として示すことも可能である。
[Other form examples]
(1) In the above embodiment, the boundary line 12 is defined as one line, but it can also be defined as a strip-shaped line having an arbitrary width.
(2) In the above embodiment, the drilling energy is measured for the charge hole 11, but it is also possible to measure the drilling energy at the time of drilling the lock bolt and show the result as a three-dimensional contour diagram.

1・8…管理コンピューター、2…通信基地局、3…通信ケーブル、5…ドリルジャンボ、6…吹付け機、7…モデム、10…長尺削孔、11…装薬孔、12…境界線、S…切羽 1.8 ... Management computer, 2 ... Communication base station, 3 ... Communication cable, 5 ... Drill jumbo, 6 ... Sprayer, 7 ... Modem, 10 ... Long drilling hole, 11 ... Charge hole, 12 ... Borderline , S ... Face

Claims (3)

ドリルジャンボによって切羽に対する装薬孔の穿孔時に、穿孔箇所とともに、穿孔エネルギーを自動的に計測し、これに基づいて切羽の2次元コンター図又は地山の3次元コンター図を作成して切羽前方の地山を評価するに当たって、
穿孔箇所の穿孔エネルギーを整理し、穿孔エネルギーが急変する箇所を抽出し、急変箇所が連続している場合にそのラインを地質性状の境界線と判断する第1手順と、
前記境界線によって分断された領域毎にエリア分けする第2手順と、
対象とする地山範囲を所定形状のメッシュで分割し、各エリアに属するメッシュの穿孔エネルギー推定値をそのエリア内の穿孔エネルギー測定値のみに基づいて空間データ補完処理法によって推定する第3手順と、
前記各メッシュの穿孔エネルギー値に基づいて切羽の2次元コンター図又は地山の3次元コンター図を作成する第4手順とからなることを特徴とする穿孔エネルギーによる地山評価方法。
When drilling a charge hole for the face with a drill jumbo, the drilling energy is automatically measured together with the drilled part, and based on this, a two-dimensional contour diagram of the face or a three-dimensional contour diagram of the ground is created in front of the face. In evaluating the ground,
The first step of organizing the drilling energy of the drilled part, extracting the part where the drilling energy changes suddenly, and judging that line as the boundary line of geological properties when the sudden change part is continuous,
The second step of dividing the area into areas divided by the boundary line, and
The third procedure is to divide the target ground area by a mesh of a predetermined shape and estimate the perforation energy estimated value of the mesh belonging to each area by the spatial data complementation processing method based only on the perforation energy measurement value in the area. ,
A method for evaluating a ground by drilling energy, which comprises a fourth procedure of creating a two-dimensional contour diagram of a face or a three-dimensional contour diagram of a ground based on the drilling energy value of each mesh.
事前に、切羽から前方地山に対して複数本の削孔検層を行い、穿孔エネルギーの概略的3次元分布を得ておき、請求項1記載の方法によって切羽の2次元コンター図又は地山の3次元コンター図を得たならば、それに合わせて前記穿孔エネルギーの概略的3次元分布を上書し更新していくことを特徴とする穿孔エネルギーによる地山評価方法。 In advance, a plurality of drilling layers are performed from the face to the anterior ground to obtain a rough three-dimensional distribution of drilling energy, and a two-dimensional contour diagram of the face or the ground is obtained by the method according to claim 1. A method for evaluating the ground by drilling energy, which comprises overwriting and updating the schematic three-dimensional distribution of the drilling energy according to the three-dimensional contour diagram of. ドリルジャンボによるロックボルト穿孔に対して、請求項1記載の第1手順から第4手順までを適用し、穿孔エネルギーの3次元コンター図を得ることを特徴とする穿孔エネルギーによる地山評価方法。 A ground evaluation method using drilling energy, which comprises applying the first to fourth steps according to claim 1 to drilling a lock bolt by a drill jumbo to obtain a three-dimensional contour diagram of the drilling energy.
JP2020024230A 2020-02-17 2020-02-17 Rock evaluation method using drilling energy Active JP7393240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020024230A JP7393240B2 (en) 2020-02-17 2020-02-17 Rock evaluation method using drilling energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020024230A JP7393240B2 (en) 2020-02-17 2020-02-17 Rock evaluation method using drilling energy

Publications (2)

Publication Number Publication Date
JP2021127655A true JP2021127655A (en) 2021-09-02
JP7393240B2 JP7393240B2 (en) 2023-12-06

Family

ID=77488211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020024230A Active JP7393240B2 (en) 2020-02-17 2020-02-17 Rock evaluation method using drilling energy

Country Status (1)

Country Link
JP (1) JP7393240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320401A (en) * 2021-11-25 2022-04-12 中国煤炭科工集团太原研究院有限公司 Anchor vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4421146B2 (en) 2001-07-09 2010-02-24 鹿島建設株式会社 Geological prediction method and geological prediction device in front of tunnel face
JP5587960B2 (en) 2012-01-25 2014-09-10 株式会社安藤・間 Tunnel elastic wave exploration method and tunnel elastic wave exploration system used therefor
JP6251128B2 (en) 2014-06-13 2017-12-20 株式会社奥村組 Judgment method of soil distribution by shield machine
JP6802641B2 (en) 2016-05-02 2020-12-16 大成建設株式会社 Evaluation method of the ground around the tunnel and tunnel construction method
JP6923132B2 (en) 2017-10-25 2021-08-18 株式会社鴻池組 Perforated navigation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320401A (en) * 2021-11-25 2022-04-12 中国煤炭科工集团太原研究院有限公司 Anchor vehicle
CN114320401B (en) * 2021-11-25 2023-08-04 中国煤炭科工集团太原研究院有限公司 Anchor protection vehicle

Also Published As

Publication number Publication date
JP7393240B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
Brunton et al. Parameters influencing full scale sublevel caving material recovery at the Ridgeway gold mine
JP6309888B2 (en) Method for predicting final displacement of tunnel
JP6769259B2 (en) Tunnel management system, tunnel management method and tunnel management program
JP6584010B2 (en) Tunnel face forward exploration method
JP5867957B2 (en) Method and system for predicting rock strength
JP3135207B2 (en) Construction management system for tunnel machine
JP6802641B2 (en) Evaluation method of the ground around the tunnel and tunnel construction method
NO20140001A1 (en) Accurate borehole geometry and BHA lateral motion based on real-time caliber measurements
US20160319661A1 (en) Using Downhole Strain Measurements to Determine Hydraulic Fracture System Geometry
CN104374827B (en) Measuring method of anisotropy coefficient of transverse isotropic rock in-situ dynamic elasticity modulus
CN103065051A (en) Method for performing grading and sectionalizing on rock mass automatically
CN109470101B (en) Method for researching influence of adjacent tunnel blasting on existing tunnel based on field model
Lupogo Characterization of blast damage in rock slopes: an integrated field-numerical modeling approach
JP2021127655A (en) Method for evaluating natural ground using drilling energy
JP3976318B2 (en) Geological prediction method in front of ground excavation
JP6820505B2 (en) Tunnel ground exploration method
JP4421146B2 (en) Geological prediction method and geological prediction device in front of tunnel face
US20210381365A1 (en) Borehole localization relative to objects and subterranrean formations
JP2005105651A (en) Method of evaluating natural ground in front of ground excavation part
JP5319618B2 (en) Ground condition prediction method and tunnel excavation method
Mutke et al. Seismic monitoring and rock burst hazard assessment in Deep Polish Coal Mines–Case study of rock burst on April 16, 2008 in Wujek-Slask Coal Mine
JP7247597B2 (en) Rock ground evaluation method, rock ground assessment system and rock ground assessment program
JP4480155B2 (en) Prediction method of geological composition of natural ground
RU2386032C1 (en) Definition method of content of effective component in imploded mountain mass at its excavation at motions
JP6434375B2 (en) Rock exploration method and rock exploration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231124

R150 Certificate of patent or registration of utility model

Ref document number: 7393240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150